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age- and origin-matched control individuals in the context 
of the European Early-Onset Dementia (EOD) consortium, 
originating from Belgium, Spain, Portugal, Italy, Sweden, 
Germany, and Czech Republic. We identified six frameshift 
variants and two nonsense variants that were exclusively 
present in patients. These mutations are predicted to result 
in haploinsufficiency through nonsense-mediated mRNA 
decay, which could be confirmed experimentally for 
SORL1 p.Gly447Argfs*22 observed in a Belgian EOAD 
patient. We observed a 1.5-fold enrichment of rare non-
synonymous variants in patients (carrier frequency 8.8 %; 
SkatOMeta p value 0.0001). Of the 84 non-synonymous 
rare variants detected in the full patient/control cohort, 36 
were only detected in patients. Our findings underscore a 
role of rare SORL1 variants in EOAD, but also show a non-
negligible frequency of these variants in healthy individu-
als, necessitating the need for pathogenicity assays. Prema-
ture stop codons due to frameshift and nonsense variants, 

Abstract  The sortilin-related receptor 1 (SORL1) gene 
has been associated with increased risk for Alzheimer’s 
disease (AD). Rare genetic variants in the SORL1 gene 
have also been implicated in autosomal dominant early-
onset AD (EOAD). Here we report a large-scale investiga-
tion of the contribution of genetic variability in SORL1 to 
EOAD in a European EOAD cohort. We performed mas-
sive parallel amplicon-based re-sequencing of the full cod-
ing region of SORL1 in 1255 EOAD patients and 1938 
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have so far exclusively been found in patients, and their 
predicted mode of action corresponds with evidence from 
in vitro functional studies of SORL1 in AD.

Keywords  SORL1 · Haploinsufficiency · Loss-of-
function · Rare variants · Alzheimer · Early onset · Meta-
analysis

Introduction

Alzheimer disease (AD) is the most common neurode-
generative disease and the predominant cause of dementia 
worldwide. Up to 10 % of AD patients is diagnosed with 
early-onset AD (EOAD), manifesting symptoms before 
the age of 65 years [18]. EOAD has a very strong genetic 
component, with a heritability estimate of 92–100 % [53]. 
A positive family history of AD is present in 35–60 % of 
EOAD patients, with up to 15 % of familial EOAD cases 
showing autosomal dominant inheritance [8, 19]. However, 
mutations in the known causal genes, encoding Amyloid 
Precursor Protein (APP), Presenilin 1 and 2 (PSEN1 and 
PSEN2), explain only 5–10 % of EOAD cases [4, 19, 53].

Rare variants in the sortilin-related receptor (SORL1) 
gene have been shown to contribute to early-onset as well 
as late-onset familial AD [35, 37, 48]. SORL1 was origi-
nally identified as a risk gene for AD in a candidate-gene 
based association study [42]. Early replication stud-
ies showed discrepant findings, possibly due to allelic 

heterogeneity, locus heterogeneity or lack of statistical 
power due to small cohort size. Nonetheless, the associa-
tion was subsequently confirmed in meta-analyses [20, 24, 
39, 50] and in genome-wide association studies (GWAS) 
including Korean, Japanese and Caucasian individuals 
[24, 33, 39]. The protein encoded by SORL1 is a type-1 
transmembrane, mosaic protein showing homology to the 
vacuolar protein sorting 10 (Vps10p) family, and the lipo-
protein receptor-related proteins (LRP) [52]. The protein 
SORL1 is unique among the Vps10p-family proteins as 
it contains additional ligand-binding structures within the 
LRP domains, including a β-propeller domain, a low-den-
sity lipoprotein receptor class A domain, and a fibronec-
tin type-3 domain [2, 16]. The SORL1 protein interacts 
directly with the APP protein through its complement-
type repeats within the low-density lipoprotein receptor 
class A domain [1, 2], and via a six amino acid-stretching 
FANSHY motif located in the cytoplasmic tail of SORL1 
[14]. Interaction with the protein APP, results in sequester-
ing of APP away from the secretase cleavage route, inhib-
iting formation of the amyloid-β (Aβ) peptide [2, 14, 32, 
36]. Functional characterization of downstream effects of 
variants identified in familial early-onset and late-onset 
AD patients elucidated a protective role for SORL1 in the 
amyloidogenic pathway. Investigation of the functional 
implications of the familial variant, p.Gly511Arg, showed 
disrupted interaction of the Vps10p domain with amyloid-β 
monomers, resulting in reduced lysosomal targeting of 
Aβ peptide by SORL1 [7]. Two additional rare variants, 
p.Glu270Lys and p.Thr947Met, were reported in familial 
late-onset AD patients of Caribbean-Hispanic origin. Both 
increased Aβ1-40 and Aβ1-42 secretion, and APP levels at 
the cell surface in transfected cell lines [48].

In this study, we investigated the contribution of 
genetic variants in the SORL1 coding region to the occur-
rence of AD in pan-European cohorts of 1255 early-onset 
AD patients and 1938 age-matched non-affected control 
individuals.

Materials and methods

Study population

The cohort under study consisted of 1255 EOAD patients 
originating from Flanders-Belgium (n  =  312), Spain 
(n  =  342), Portugal (n  =  106), Italy (n  =  205), Swe-
den (n =  183), Germany (n =  100), and Czech Republic 
(n = 7), and 1938 age-matched European control individu-
als originating from Flanders-Belgium (n  =  748), Spain 
(n =  306), Portugal (n =  130), Italy (n =  444), Sweden 
(n =  303), and Czech Republic (n =  7) (supplementary 
table 1a). An additional set of patients (n = 30), from the 
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same source population, carrying a known pathogenic 
mutation in APP, PSEN1 or PSEN2, were not included 
in the study cohort, but used for comparison of clinical 
characteristics. Mean onset age of the patient cohort was 
59.0  ±  6.2  years. Mean age at inclusion for the control 
cohort was 66.4 ±  9.8  years. In both the patient and the 
control cohort, 60  % was female. In the patient cohort, 
information on familial history of AD was available for 
759 (60 %) individuals. A positive familial history (defined 
as presence of at least one first-degree relative with AD) 
was present for 327 (43 %) individuals, while 432 (57 %) 
individuals were considered sporadic patients. DNA and 
medical/demographic information on patients and control 
individuals from Spain, Portugal, Italy, Sweden, Germany, 
and Czech Republic was ascertained through the EU EOD 
consortium as previously described (details are provided in 
supplementary table 1b) [5, 11, 45, 46]. Consensus diagno-
sis of possible, probable or definite AD was given accord-
ing to the National Institute of Neurological and Communi-
cative Disorders and Stroke-Alzheimer Disease and Related 
Disorders Association (NINCDS-ADRDA) [29] and/or the 
National Institute on Aging-Alzheimer’s Association (NIA-
AA) diagnostic criteria [17, 30]. Belgian patients were 
ascertained at the memory clinics of Middelheim and Hoge 
Beuken, Hospital Network Antwerp (ZNA), Antwerp [12], 
and the University Hospitals of Leuven (UHL), Leuven 
[30]. Belgian control individuals were either recruited from 
partners of patients and screened for neurological or psy-
chiatric antecedents or neurological complaints or organic 
disease involving the central nervous system, or commu-
nity-recruited control individuals who were included after 
interview concerning medical and familial history and cog-
nitive screening by means of the Mini Mental State Exami-
nation (MMSE > 26) [15].

SORL1 sequencing

Sequencing of SORL1 exons 2–48, and at least 15 nt of 
each exon–intron flanking region, was performed by tar-
get enrichment using MASTR technology (Multiplicom, 
Niel, Belgium). PCR primers flanking each target region 
were designed using mPCR software (Multiplicom, Niel, 
Belgium). Target region size for amplification was set 
at 500 nt. In total, all target regions were covered by 46 
amplicons in nine multiplex PCR reactions. Subsequent 
indexing and sequencing was performed with exten-
sion of target-specific primer sequences with universal 
tag sequences (5′-TCGTCGGCAGCGTCAGATGTG-
TATAAGAGACAG-Fwd and 5′ GTCTCGTGGGCTCG-
GAGATGTGTATAAGAGACAG-Rev). Optimal anneal-
ing temperature and relative amounts of PCR primers 
for all targets were established for uniform amplification 
of each target in the multiplex reaction. Multiplex PCR 

reactions were performed on 20  ng genomiphied DNA 
(Illustra GenomiPhi V2; Thermo Fisher, MA, USA). 
Amplification quality and efficacy was verified by frag-
ment analysis on an ABI 3730 automated sequencer 
(Applied Biosystems, CA, USA). Subsequently, multiplex 
PCR amplicons of each individual were pooled to obtain 
equimolar concentrations of all amplicons. Library purifi-
cation was performed with AMPureXP beads (Beckman 
Coulter, CA, USA). Amplicon-specific barcodes (Nextera 
XT; illumina, CA, USA) were incorporated in a univer-
sal PCR step on the pooled libraries. Barcoded samples 
were subjected to bridge amplification and bead purifica-
tion prior to sequencing. Sequencing was performed on 
the Illumina MiSeq platform, using the Illumina reagent 
kit v2, generating 2 × 250 bp paired-end reads. Trimming 
of Illumina adapters from raw sequencing Fastq files was 
performed by Fastq-mcf. Read alignment and mapping 
was done against whole reference genome hg19 using 
the Burrows–Wheeler Aligner [26]. Variant calling and 
annotation was performed using GATK version 2.2 [28] 
and annotated using the Genomecomb software pipeline 
[40]. Variants with a read depth below 20 reads or with 
an imbalanced reference/variant allele read depth exceed-
ing 3:1 were considered false calls. All remaining variants 
with predicted effect on protein sequence were included 
in subsequent manual read inspection using the Integra-
tive Genomics Viewer software [41]. In total, 92  % of 
the SORL1 target sequence was sequenced at >20× read 
depth for all included individuals.

Due to high GC content (74  %), SORL1 exon 1 was 
sequenced using simplex PCR amplification followed by 
Sanger sequencing using the BigDye termination cycle 
sequencing kit v3.1 on the ABI 3730 DNA Analyzer. 
Sequences were analyzed using Seqman (DNAstar, WI, 
USA) and NovoSNP software [51]. Rare variant validation 
was performed on genomic DNA by Sanger sequencing, as 
was segregation analysis of variant p.Tyr1816Cys. Variant 
position on genomic level was based on Genbank accession 
number NC_000011.9, transcript position was based on 
NM_003105.5, and protein-level position on NP_003096.1.

In silico prediction

Putative pathogenic effects of coding SORL1 variants were 
predicted using Polymorphism Phenotyping software version 
2 (PolyPhen2, http://genetics.bwh.harvard.edu/pph2/), Sorting 
Intolerant from Tolerant (SIFT, http://sift.jcvi.org), SIFTindel 
for frameshift variants (http://sift-dna.org/), and Mutation-
Taster (http://mutationtaster.org/) databases. Previous identi-
fication of variants was investigated by comparison of identi-
fied variants against public databases, including the Database 
of Single Nucleotide Polymorphisms 141 (http://www.ncbi.
nlm.nih.gov/SNP/), the Exome Variant Server (http://evs.

http://genetics.bwh.harvard.edu/pph2/
http://sift.jcvi.org
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http://evs.gs.washington.edu/EVS/
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gs.washington.edu/EVS/), the International HapMap Project 
(http://hapmancbi.nlm.nih.gov/), the 1000 Genomes Project 
(http://www.1000genomes.org/), and the Exome Aggregation 
Consortium database (http://exac.broadinstitute.org/). Protein 
stability predictions were performed using the FoldX free 
energy prediction tool [47], implemented within the YASARA 
molecular graphics suite (http://www.yasara.org/) for mis-
sense variants located within the Vps10p domain.

RNA sequencing

RNA sequencing data were generated for the 
p.Gly447Argfs*22 frameshift variant carrier. Total RNA 
was isolated from Epstein–Barr virus immortalized lymph-
oblast cells derived from whole blood lymphocytes. RNA 
isolation was performed using 1.0 × 107 lymphoblast cells 
with the RNeasy mini kit (Qiagen Inc., Valencia, CA, USA) 
according to manufacturer’s protocol. Depletion of genomic 
DNA from the RNA sample was performed by turboDNase 
treatment (Life Technologies, Carlsbad, CA, USA). RNA 
quality control to determine RNA concentration and RIN 
value was performed using the Agilent Technologies 2100 
Bioanalyzer. RIN value was measured at 9.3 in a concentra-
tion of 86 ng/µl total RNA. The sequencing library was con-
structed using Truseq stranded mRNA Library Prep Reagent 
Set (Illumina, San Diego, CA, USA). Library preparation 
was performed using 1 mg total RNA and included poly-A 
selected RNA extraction, RNA fragmentation, and random-
hexamer-primed reverse transcription. Sequencing of pre-
pared libraries was performed using an Illumina HiSeq 2000 
sequencer, generating 126,949,218 101-nucleotide paired-
end sequence reads. Data analysis was performed using an 
in-house developed processing pipeline. Removal of read 
adapters and trimming of read ends was performed using 
Trimmomatic [3]. Trimmed reads were mapped against the 
UCSC human reference genome hg19 [43] using the Bow-
tie short read aligner integrated in Tophat2 [21]. Post-align-
ment QC and filtering of mapped-reads was performed with 
RSeqQC [49]. Variant calling was performed by employing 
GATK [28], VARSCAN [23] and VEP [31] software.

Nonsense‑mediated mRNA decay

Nonsense-mediated mRNA decay (NMD) was inves-
tigated for p.Gly447Argfs*22. NMD was inhibited in 
Epstein–Barr virus immortalized lymphoblast cell lines 
derived from the p.Gly447Argfs*22 carrier and two non-
carrier controls with 150 μg/mL cycloheximide (Sigma, St 
Louis, MO, USA) at 37 °C for 4 h, as previously described 
[10]. After incubation, RNA was isolated using the RNe-
asy mini kit. Depletion of genomic DNA from the RNA 
sample was performed by turboDNase treatment. Subse-
quent cDNA synthesis was performed using superscript 
III first-strand cDNA kit, oligoDT and random hexamers 
primers (Life Technologies, Carlsbad, CA, USA). Real-
time quantitative PCR was performed to investigate the 
effect of p.Gly447Argfs*22 on SORL1 expression using 
SYBR Green technology (Life Technologies, Carlsbad, 
CA, USA). SORL1 expression levels were measured in 
triplicate, with three measurements per experiment in two 
separate experiments. Expression of SORL1 in untreated 
lymphoblast cells was quantified and analyzed with qBase-
Plus (Biogazelle, Ghent, Belgium). Effect of CHX incuba-
tion on SORL1 expression in the p.Gly447Argfs*22 car-
rier and two non-carrier controls was quantified using the 
2
−��CT (Livak) method [27].

Statistical analysis

Low-frequency (MAF between 0.01 and 0.05) and com-
mon (MAF ≥ 0.05) SORL1 coding variants were tested for 
deviations from Hardy–Weinberg equilibrium using PLINK 
[38]. Allele frequencies of common and low-frequency var-
iants in patients and controls were compared by X2 statis-
tics. Odds ratios and 95 % confidence intervals were calcu-
lated by logistic regression modeling, corrected for gender 
and APOE ε4 allele carrier status using PLINK. Nominal 
p values were corrected for the number of variants tested 
using Bonferroni correction. SORL1 variants with MAF 
<0.01 were included in rare variant burden analysis for 
individuals originating from Spain, Italy, Portugal, Sweden, 

Fig. 1   Non-synonymous rare SORL1 variants identified in EOAD 
patients and control individuals. Patient-only variants denote vari-
ant present in patient cohort. Shared variants denote variants present 
in both the patient and control cohort. Control-only variants denote 
variants present in the control cohort. Functional domains are adapted 

from [37], and based on uniprot information. Protein-level variant 
position was based on NP_003096. Vps10p vacuolar protein sort-
ing 10 domain, LDLR low-density lipoprotein receptor domain, TM 
transmembrane domain

http://evs.gs.washington.edu/EVS/
http://hapmancbi.nlm.nih.gov/
http://www.1000genomes.org/
http://exac.broadinstitute.org/
http://www.yasara.org/
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and Belgium. Individuals originating from Czech Republic 
(7 patients, 7 controls) and Germany (100 patients, 0 con-
trols) were excluded from the analysis based on cohort size. 
Rare variant burden analysis was performed by collapsing 
alleles of all rare coding variants across the full SORL1 
coding sequence or separately for each functional protein 
domain using an optimized sequence kernel association test 
(SKAT-O test), adjusted for sample size <2000. Rare vari-
ants association tests were performed using the R package 
SeqMeta [9]. SKAT-O meta-analysis was performed using 
standard beta-weights, and correction for gender and APOE 
ε4 carrier status of included individuals. Presented SKAT-
O meta p values represent minimal p values over ρ as pro-
posed by Lee et  al. [25]. Correction for multiple testing 
was performed using Šidák correction. Functional protein 
domains were determined according to Pottier et  al. [37]. 
Differences in relative lymphoblast SORL1 expression 
were calculated using an unpaired nonparametric (Mann–
Whitney) test.

Results

SORL1 mutation screening

We analyzed the coding sequence of SORL1 in 1255 Euro-
pean early-onset AD patients and 1938 origin-matched 
control individuals and identified 92 rare frameshift, non-
sense and nonsynonymous variants (MAF  <  0.01) in a 
total of 219 individuals, of whom 111 (51 %) were patients 
(Fig. 1; Supplementary tables 2, 3, 4). In addition, the cod-
ing region harbored 102 rare synonymous variants, five 
low-frequency variants (MAF 0.01–0.05; three missense 
and two synonymous), one common missense and five 
common synonymous variants (MAF ≥ 0.05) (Supplemen-
tary tables 5, 6).

The observed rare variants included eight muta-
tions introducing a premature termination codon (PTC): 
frameshift mutations p.Thr659Serfs*30, p.Cys752Serfs*21, 
p.Tyr350fs*, p.Gly447Argfs*22, p.Cys1103Valfs*4, 
p.Val1747fs*, and nonsense variants p.Arg416* and 
p.Arg1442* (Table  1), predicted to result in haploinsuffi-
ciency due to NMD. All PTC mutations were private vari-
ants and exclusive to the patient cohort [8/1255 (0.64  %) 
patients vs. 0/1938 controls]. For one of the frameshift 
mutation carriers, p.Gly447Argfs*22, biomaterials were 
available for investigation of the predicted mRNA decay. 
RNA sequencing on lymphoblast cells demonstrated that 
the alternative allele (insertion of A) was called, but only 
in a minority of reads (6.8  %) compared to the reference 
allele. Quantitative RT-PCR on lymphoblast cells showed 
reduced SORL1 expression levels in the p.Gly447Argfs*22 
variant carrier compared to non-carrying control Ta
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individuals (Mann–Whitney p value <0.001) (Fig.  2a). 
Blocking of nonsense-mediated decay by CHX treatment 
showed significant increase of SORL1 expression in the 
p.Gly447Argfs*22 carrier compared to non-carrying con-
trol individuals (Mann–Whitney p value 0.03) (Fig. 2b). 

In addition to these 8 PTC mutations, we observed 84 
rare missense variants in the patient/control cohort. Of 
the total identified rare missense variants and PTC muta-
tions, 44 (48 %) were only observed in the patient cohort 
(supplementary table  2). In addition, 19 rare missense 
variants (21  %) were present in both patient and con-
trols, and 29 variants (32  %) were only observed in con-
trols (supplementary tables  3, 4). One patient carried a 
frameshift (p.Cys1103Valfs*4) and a missense variant 
(p.Asp2065Val); three patients and two controls carried 
double missense variants. Of the rare variants observed in 
this study, 30 (33 %) were not previously reported in any of 
the screened databases, the majority of which [22 (73 %)] 

Fig. 2   SORL1 expression and investigation of NMD. a SORL1 
expression in lymphoblast cell lines of AD patient carrying SORL1 
frameshift variant p.Gly447Argfs*22 and non-carrying control indi-
viduals. Measurements per sample were conducted in triplicate, 
with three measurements per experiment in two separate experi-
ments. Y-axis indicates the relative expression quantities of SORL1. 
Error bars correspond to the standard error of the mean (SEM). Nor-
malization was carried out against the housekeeping gene YWHAZ. 
Unpaired nonparametric Mann–Whitney test was performed to com-
pare SORL1 expression of the p.Gly447Argfs*22 variant carrier with 
the control individuals. b SORL1 expression in lymphoblast cell lines 
of AD patient carrying SORL1 frameshift variant p.Gly447Argfs*22 
and non-carrying controls. Black bars represent SORL1 expression in 
untreated samples (reference, set to 1); grey bars represent SORL1 
expression after cycloheximide (CHX) treatment (relative to the non-
treated sample). Error bars correspond to the standard error of the 
mean (SEM). Unpaired nonparametric Mann–Whitney test was per-
formed to compare the effect of CHX incubation on SORL1 expres-
sion of the p.Gly447Argfs*22 variant with the control individuals

Fig. 3   Clinical characteristics of mutation carriers. a Scatter plot 
showing the onset ages for the SORL1 PTC and patient exclusive 
missense carriers versus those of PSEN1, PSEN2 and APP carriers. 
Mann–Whitney U test p value 0.016. b The proportion of SORL1 
PTC, SORL1 missense and PSEN1, PSEN2 and APP carriers with a 
sporadic, unknown or positive familial history for AD
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were only observed in the patient cohort, while seven 
(23 %) were only found in controls, and one novel variant 
was detected in patients as well as controls (supplemen-
tary tables 2, 3, and 4). Of the variants only observed in the 
patient cohort, 35 of 44 (80 %) were predicted to be patho-
genic by at least two of three prediction tools, whereas 20 
of 29 (69 %) variants only observed in the control cohort, 
and 12 of 19 (63 %) shared variants, were predicted patho-
genic (supplementary tables 2, 3, and 4). The effect of vari-
ants on protein stability could be modeled for eight vari-
ants observed in patients only, and seven variants observed 
in controls only located in the VPS10p domain. Predicted 
destabilization (∆∆G-value above 1.0) was shown for four 
out of eight patient-only variants against one out of seven 
control-only variants (supplementary table 7).

Clinicopathological characteristics

All patients carrying a PTC (n = 8) or a patient-only mis-
sense (n =  39) variant, received a probable (n =  44) or 
definite (n =  3) AD diagnosis. The mean onset age (OA) 
of the PTC carriers was 58.6  ±  5.2  years, with an age 
range of 15 (50–65) years, and a mean disease duration of 
11.0 ± 5.0 years (Fig. 3a). The missense carriers had a mean 
OA of 57.9 ± 6.5 years, with a wide age range of 34 (35–
69) years, and mean disease duration of 12.5 ± 5.5 years. 
In comparison, the mean OA was 52.4 ±  10.9  years for 
PSEN1 carriers (n = 23), 49.5 ± 1.5 years for PSEN2 car-
riers (n = 2) and 53.0 ± 6.8 years for APP carriers (n = 5) 
in the EOD cohort. A positive familial history was reported 
in 71.4 % (5/7) of the SORL1 PTC carriers, and in 43.5 % 
(10/23) of the SORL1 missense carriers. For the PSEN1 
carriers a familial history was reported in 88.9 % (16/18), 
and in 100  % of the PSEN2 (2/2) and APP (5/5) carriers 
(Fig. 3b). For one variant, located in the fibronectin type III 
domain (p.Tyr1816Cys), DNA of relatives was available. 

The variant was also present in an affected sister, and not 
present in an unaffected sister (supplementary figure 1).

Additional clinical information was available for 6 PTC 
carriers. All presented with an insidious memory dysfunc-
tion. In one carrier (p.Cys752Serfs*21), disease onset was 
also accompanied by apathy. Further progression of dis-
ease in the carriers was typical of AD, with progression to 
a global cognitive deterioration and functional dependence. 
Of note, in patient DR12.1 (p.Gly447Argfs*22), the onset 
of visual hallucinations, a fluctuating extrapyramidal syn-
drome and a REM-sleep behavior disorder, after a disease 
duration of 11 years, led to the suspicion of a concomitant 
Lewy body pathology.

Neuropathological examination was not available for 
SORL1 PTC carriers, but has been performed in 3 SORL1 
missense carriers [DR112.1 (p.Leu762Pro), CS540 
(p.Ala1548Thr) and CS770 (p.Gly1447Ser)]. All three had 
high-level AD neuropathologic changes (A3B3C3) [34], 
confirming the clinical AD diagnosis. Neuronal loss, glio-
sis and abnormal protein deposition—mostly in the form 
of senile plaques and neurofibrillary tangles (Fig. 4)—were 
most pronounced in the neocortical areas, amygdala, hip-
pocampus and parahippocampal cortex, while the striatum, 
thalami, brainstem and cerebellum were more spared. A 
diffuse amyloid angiopathy, in DR112.1 most pronounced 
in the occipital cortex and cerebellum, was present in all 
three patients. Hippocampal sclerosis was absent. Isolated 
α-synuclein immunoreactive Lewy bodies and Lewy neu-
rites were observed in the amygdala of CS770, but absent 
from CS540. No α-synuclein immunohistochemistry was 
performed in DR112.1.

Rare variant association analysis

The frequency of rare PTC mutations and missense variants 
in SORL1 was 8.8  % (111 carriers/1255 patients) in the 

Fig. 4   Neuropathology of SORL1 missense carrier CS540. Neuro-
pathological brain examination of a SORL1 missense carrier show-
ing cortical thinning and superficial spongiosis in the frontal cortex, 
where pyramidal neurons contain very large tangles and abundant 
lipofuscin (a). Frequent mature and in a lesser extent diffuse beta-

amyloid plaques are observed in the neocortical regions (b), as well 
as the cingulum and hippocampus. Frequent hyperphosphorylated tau 
immunoreactive (AT8) threads and large globose neurofibrillary tan-
gles are present in neocortical areas (c) and cingulum
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overall patient cohort and 3.7 % (47/1255) for patient-only 
variants. Mutation frequency in the overall control cohort 
was 5.6  % (108/1938), and 1.7  % (33/1938) for control-
only variants. Mutation frequency in patients with known 
familial history of AD was 8.9  % (29/327), and 4.0  % 
(13/327) for patient-only variants.

SKAT-O meta-analysis was performed using all coun-
try cohorts except Germany and Czech Republic which did 
not meet inclusion criteria for association analysis, result-
ing in a total of n = 1085 patients and n = 1752 controls. 
This meta-analysis confirmed significant enrichment of rare 
PTC mutations and missense variants in patients [SKAT-
O p value 0.0001; rare allele frequency in patients 5.0 % 
(108/2170), rare allele frequency in control individuals 
2.8 % (98/3504)] (Table 2). Most significant enrichment of 
these variant in patients was found for the fibronectin type 
III protein domain (SKAT-O p value 0.01) (Supplementary 
table 8). The fibronectin type III domain is the largest pro-
tein domain of the SORL1 protein, spanning amino acids 
1527–2108 [37, 44]. The cumulative minor allele frequency 
was largest for this domain, yet variants were identified in 
each of the SORL1 functional protein domains (Fig.  1). 
When excluding PTC variants from this analysis, findings 
remained the same, with association over the full protein (p 
value 0.0007), and strongest association for fibronectin III 
domain (p value 0.013).

Single variant analysis of low‑frequency and common 
variants

We identified six common (MAF  ≥  0.05) variants in 
the SORL1 coding sequence, including one missense 
variant p.Ala528Thr, and five synonymous variants 
(p.His269His, p.Thr833Thr, p.Ser1187Ser, p.Asn1246Asn, 
and p.Ala1584Ala). In addition, we identified five low-
frequency variants (MAF 0.01–0.05), including three mis-
sense variants and two silent variants. Low-frequency mis-
sense variant p.Glu270Lys was previously associated with 

AD in Caribbean-Hispanic familial late-onset AD patients 
and Northern-European sporadic late-onset AD patients 
with MAF below 0.01, and was shown to segregate within 
affected Caribbean-Hispanic families [48]. Fixed-effects 
meta-analysis showed no significant association for this 
variant with AD in our cohort [OR 0.75 (95  % CI 0.51–
1.12), p value 0.17] (Supplementary table  5). Association 
of missense variant p.Ala528Thr has been demonstrated 
in Caribbean-Hispanic familial late-onset AD patients at a 
MAF of 0.16. Fixed-effects meta-analysis showed no sig-
nificant association for this variant with AD in our cohort 
[OR 1.22 (95 % CI 0.94–1.59), p value 0.14] (Supplemen-
tary table  6). Although one synonymous variant showed 
nominal significance, none of low-frequency and common 
variants showed significant association with EOAD after 
correction for multiple testing.

Discussion

We performed a systematic screening of the complete cod-
ing sequence of SORL1 in a large EOAD patient/control 
cohort in the frame of the BELNEU and EU EOD consor-
tia. We found an increased burden of rare PTC and non-
synonymous variants in the EOAD patients, of whom 8.8 % 
carried one or more SORL1 variants. These independent 
findings corroborated previous reports of an increased fre-
quency of rare SORL1 variants in EOAD [35, 37]

Strikingly, PTC mutations were exclusively observed 
in patients. These variants most likely lead to a significant 
loss of SORL1 protein due to NMD mRNA decay of the 
mutant transcript. Indeed, we observed reduced SORL1 
expression in lymphoblast cells of the p.Gly447Argfs*22 
carrier, which increased upon blocking of NMD, indicative 
of haploinsufficiency. Further, the mode of action of these 
predicted loss-of-function mutations is in line with the 
observation of reduced SORL1 expression in post-mortem 
brain [6] and in human neuronal stable cell lines [1] leading 

Table 2   SKAT-O meta-analysis of rare variant burden

Rare variant burden analysis was performed using SKAT-O meta-analysis corrected for gender and APOE ε4 status, including individuals origi-
nating from Belgium, Spain, Italy, Portugal and Sweden with non-missing information on gender and APOE ε4 status. Individuals originating 
from Germany and Czech Republic were excluded from analysis due to sub-threshold cohort size. Percentages are based on alleles

Country of origin Rare alleles/total alleles patients Rare alleles/total alleles controls SKAT-O
p value

Belgium 27/610 (4.4 %) 38/1488 (2.6 %) 0.01

Spain 34/674 (5.0 %) 11/490 (2.2 %) 0.07

Italy 21/374 (5.6 %) 18/768 (2.3 %) 0.01

Portugal 6/196 (3.1 %) 5/166 (3.0 %) 0.49

Sweden 20/316 (6.3 %) 26/592 (4.4 %) 0.09

Meta-analysis 108/2170 (5.0 %) 98/3504 (2.8 %) 0.0001
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to increased amyloid load. In addition, overexpression 
of SORL1 cDNA showed decreased amyloid-β secretion 
in induced human neuronal cells [54]. At a frequency of 
0.64 % in the European EOAD cohort, SORL1 PTC muta-
tions are rare. In familial patients, the frequency of SORL1 
PTC mutations is increased to 1.5 %, which appears in line 
with reports of SORL1 PTC mutations in other AD cohorts. 
Eleven SORL1 PTC mutations have previously been 
reported, of which 8 were identified in 484 (1.7 %) familial 
EOAD patients from France [35, 37] and 3 in 154 (1.9 %) 
familial LOAD patients of Caribbean-Hispanic origin [48]. 
We observed a higher frequency of positive family history 
of AD in PTC variant carriers (71.4 %) compared to car-
riers of missense variants. Combined with the notion that 
SORL1 PTC mutations have not been observed in healthy 
controls to date, this suggests that PTC variants may have 
a high disease penetrance, but samples of affected relatives 
were not available to explore this further. Further evidence 
is needed to draw inferences on clinical relevance. Com-
pared to carriers of an established pathogenic mutation in 
one of the three causal genes for EOAD (PSEN1, PSEN2 
and APP), who had a positive familial history in 92 % of 
the patients (23/25), familial history of SORL1 PTC carri-
ers was somewhat lower. In addition, the mean onset age 
of the SORL1 PTC carriers (58.6 ± 5.2 years) was higher 
when compared to the PSEN1, PSEN2 and APP carriers 
(52.3  ±  9.8  years), suggesting a less aggressive disease 
process. Because our study is limited to EOAD, the upper 
limit of onset age reported here is determined by the clini-
cal criteria of EOAD, but this does not exclude a role for 
rare SORL1 variants in LOAD. In fact, rare SORL1 vari-
ants have previously been associated with familial LOAD 
by Vardarajan et al. [48].

In contrast to PTC mutations, the frequency of rare 
missense variants in healthy controls was non-negligible 
(5.6  %), and included a substantial proportion (69  %) of 
predicted pathogenic missense variants. This can in part be 
explained by a lower penetrance of SORL1 missense vari-
ants compared to PTC variants, and/or a variable degree 
of pathogenic relevance of the identified missense variants 
for AD. Pathogenicity may differ depending on parameters 
like the nature of the amino acid substitution, or location 
of the mutation in specific protein domains, at methylation 
sites or within adapter protein binding motifs. This neces-
sitates functional follow-up to investigate effects of SORL1 
variants, e.g., on APP trafficking, amyloid-β formation and 
clearance, to define functional relevance of each rare mis-
sense variant. Whereas others have reported that missense 
variants in SORL1 may lead to autosomal dominant AD, 
the relatively high frequency of predicted pathogenic vari-
ants in healthy controls in our study indicates that in the 
absence of functional evidence of pathogenicity, the obser-
vation of a SORL1 missense variant should be interpreted 

with caution. This caveat notwithstanding, meta-analysis 
showed a significant enrichment of rare missense variants 
in patients, which remained significant after exclusion of 
PTC mutations. This adds to the growing evidence that 
SORL1 missense variants may play a role in AD suscepti-
bility. Of note, we obtained evidence of rare variant asso-
ciation in this hypothesis-driven, single gene resequenc-
ing study, but in the context of a whole exome sequencing 
study, this finding would not have survived multiple testing 
correction, illustrating the need for large sample sizes in 
hypothesis-free rare variant studies.

We observed missense variants in SORL1 throughout 
the different protein coding domains from Vps10p to FAN-
SHY motif, only sparing the propeptide (Fig. 1). One of the 
missense variants, exclusively found in the patient cohort, 
p.Gly511Arg, had been detected in two affected relatives of 
a French autosomal dominant EOAD family [37]. This mis-
sense variant was shown to disrupt APP sorting from the 
trans-Golgi network to the lysosomal degradation pathway 
through abolished interaction of SORL1 with amyloid-β 
[7]. We observed p.Gly511Arg in a sporadic patient from 
Italy with an age at onset of 55 years. We could not per-
form segregation analysis for this variant due to absence 
of DNA of relatives. For missense variant p.Tyr1816Cys, 
located in the fibronectin type III domain, and detected in 
a patient from Italy with an age at onset of 63  years and 
a reported familial history of AD, we demonstrated the 
presence of the variant in an affected relative while absent 
from an unaffected relative. The elucidation of the crystal 
structure of the Vps10p and β-propeller domains suggested 
that amyloid-β monomers are bound by the SORL1 Vps10p 
domain through beta-sheet interaction, binding amyloid-β 
inside a tunnel structure formed by a 10-bladed beta-
sheet propeller [22]. Rare variants located in the Vps10p 
domain, such as p.Gly511Arg putatively affect SORL1-
amyloid-β interaction by destabilization of the SORL1 
beta-sheet structure or disruption of the amyloid-β binding 
motif. Interestingly, patient-only missense variants affect-
ing the Vps10p domain showed strongest Gibbs free energy 
changes, indicating strongest effects on SORL1 protein 
stability.

An alternative functional consequence of rare coding 
variants involves disruption of the anti-amyloidogenic APP 
trafficking pathway mediated by SORL1. A binding region 
for APP at the SORL1 protein is located at the cytoplas-
mic tail of the protein, where a six amino acid-stretching 
FANSHY motif is involved in binding the retromer adapter 
complex. We identified one patient-only missense variant, 
p.Asn2174Ser, in an Italian sporadic patient with onset 
age 57 years, altering the third amino acid in the FANSHY 
sequence from asparagine to serine. The retromer complex 
functions as the seed of direct interaction of SORL1 with 
APP. Site-directed mutagenesis disrupting the FANSHY 
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motif in vitro has been shown to be amyloidogenic by abla-
tion of the sequestering of APP by SORL1 to the trans-
Golgi network [13, 14].

In contrast with previous investigations of SORL1 cod-
ing variants in late-onset AD cohorts, we could not identify 
a significant association of common and low-frequency var-
iants (MAF > 0.01) with disease status. Initial association 
of variants p.Ala528Thr and p.Glu270Lys was reported for 
familial late-onset cases of Caribbean-Hispanic origin [48]. 
Discrepancies between variant frequency and direction of 
effect could be due to cohort ethnicity and founder effects. 
Absence of significant association for these variants in our 
EOAD patient/cohort analysis might also reflect reduced 
pathogenic relevance of these variants in EOAD compared 
to late-onset AD.

In conclusion, the study we performed represents one 
of the largest systematic screenings of SORL1 in EOAD 
patients and control persons. PTC variants were identi-
fied exclusively in patients, and their mode of action cor-
responds with evidence on the inverse relation between 
SORL1 expression and amyloid-β formation from in vitro 
functional studies of SORL1 in AD. The increased propor-
tion of familial disease among PTC variant carriers is indic-
ative of a strong effect on AD pathogenesis. Rare missense 
variants were associated with increased risk of early-onset 
AD. Some of these rare missense variants may also exert 
a strong effect on individual and familial risk of AD. The 
substantial frequency of (predicted pathogenic) variants in 
healthy controls, however, necessitates further research on 
the functional impact of the identified rare SORL1 variants 
to elucidate the affected pathways.
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