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mathematical competencies effectively and instead lead 
mathematics students to try to follow rote learning (i.e., 
by mechanical or habitual repetition) task-solution meth-
ods “like robots with poor memories” (p.  12). Superficial 
rote learning strategies can be a major obstacle to learning 
and using mathematics (Lithner 2000, 2003, 2008; Boesen 
et al. 2010). Hiebert has concluded that students have more 
opportunities to learn facts and simple procedures than to 
engage in more complex processes, and achievement data 
indicate that students are indeed learning simple facts and 
calculation procedures but are not learning how to find 
solution methods by themselves or how to engage in other 
mathematical processes. Similar opportunities to learn have 
been found in a Swedish study including observations of 
200 mathematics classrooms (Boesen et  al. 2014). Teach-
ing, textbooks and assessments may promote rote learn-
ing, in the sense that algorithmic task-solution templates 
are provided by teachers and textbooks, and many practice 
and test tasks can be solved by imitating such templates 
(Lithner 2004; Stacey and Vincent 2009; Thompson et al. 
2012; Bergqvist and Lithner 2012; Shield and Dole 2013; 
Boesen et al. 2014). In a study of common textbooks from 
Australia, Canada, Finland, India, Ireland, Nepal, Scot-
land, Singapore, South Africa, Sweden, Tanzania and the 
USA, Jäder et al. (2015) found that 79% of the tasks could 
be solved by imitating given procedures, 13% could be 
completed by mainly applying given procedures but mak-
ing some minor modifications, and only 9% of the tasks 
required the construction of solution methods.

It is hardly reasonable to expect that students attain an 
in-depth understanding of all aspects of mathematics. Rote 
learning can reduce the demands on working memory and 
free up cognitive resources to be used for more advanced 
problem solving. In addition, rote learning and memori-
sation may have different roles and meanings in different 
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1 Introduction

One of the most persistent challenges in mathematics edu-
cation is replacing the dominant task and teaching designs, 
which are based on imitation of given solution methods. 
According to a review by Hiebert (2003), there are “mas-
sive amounts of converging data” showing that such teach-
ing models fail to promote students’ development of central 
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cultures. Leung (2014) noted that in East Asian cultures 
(including those of nations ranking high in TIMSS and 
PISA), there is a stress on, among other things, practice 
and memorisation. Stigler and Hiebert (1999) found that 
students in Japanese classrooms spend as much time solv-
ing challenging problems and discussing concepts as they 
do practicing skills. A possible conclusion is that a bal-
ance between rote learning and more creative mathemati-
cal activities may promote students’ development of cen-
tral mathematical competencies (Schoenfeld 1985; Hiebert 
2003).

A review by Niss (2007) suggested that students need 
to engage in activities in which they must ‘struggle’ (in a 
productive sense) with important mathematics, but a deli-
cate balance must be struck to prevent these struggles from 
becoming obstacles to rather than promoters of learning. 
However, in regard to proposals for more effective teach-
ing, Hiebert and Grouws (2007) concluded in a review that, 
at the time of their writing, the state of education was far 
from providing a coherent and systematic knowledge base 
that documented robust links between teaching and learn-
ing outcomes. Little was known about how to translate 
this abstract idea of ‘struggle’ into the design of specific 
artefacts (for example, tasks) and activities useful in teach-
ing and about the mechanisms that link such teaching to 
learning outcomes (Niss 2007). The productive struggle 
is rooted in the fact that developing central mathematical 
competencies (e.g., reasoning ability and conceptual under-
standing) requires active engagement in corresponding 
challenging learning processes (e.g., non-routine problem 
solving). There is little or no transfer to such competencies 
from easier learning processes, such as imitation of given 
solution templates (Schoenfeld 1985; Brousseau 1997; Niss 
2007). Although there are important insights concerning 
how to provide good learning opportunities (NCTM 2000; 
Boaler 2002; Cobb et  al. 2003; Niss 2003; Hiebert and 
Grouws 2007; Schoenfeld 2007, 2015; Stein et  al. 2008), 
it is methodologically difficult to verify that the desirable 
learning outcomes result from teaching rather than from 
other variables (Niss 2007). The research programme 
learning by imitative and creative reasoning (LICR) seeks 
to add to the growing knowledge of how to actually trans-
late this abstract idea of ‘struggle’ into the design of spe-
cific artefacts (e.g., tasks) and activities useful in teaching 
and of the mechanisms that link such teaching to learning 
outcomes. The focus is on the particular type of struggle 

when students construct task solutions instead of imitating 
them.

The purpose of this paper is to synthesise the research 
outcomes obtained to date in the form of task-design prin-
ciples by providing the following:

• a conceptual framework for key concepts and relations 
among teaching, tasks, student activities and learning;

• a theoretical basis for analysis of causal effects between 
task/teaching design and learning outcomes (cf. the 
Theory of Didactical Situations, Brousseau 1997);

• a structure for transforming initial design ideas, through 
cycles of evaluation and revision, into firmer design 
principles, thus providing a design research methodol-
ogy (McKenney and Reeves 2012);

• an application of this theory and methodology to the 
empirical studies carried out to date, in order to propose 
task design principles related to imitative and creative 
reasoning.

2  Conceptual framework, theory 
and methodology

2.1  Relating task properties, reasoning, interaction 
and learning

The model (Fig. 1) is inspired by, but not identical to, Stein 
et  al. (1996) framework for relationships between mathe-
matical tasks and learning. Its aim is to clarify the focus of 
LICR research, not to include all aspects of learning and 
teaching. Interventions and manipulations are carried out in 
components 3 and 4, and outcomes are measured in com-
ponents 1 and 2.

1. A main aim during the past three decades of educa-
tional reform has been to help students acquire richer 
mathematical competence, i.e., the ability to under-
stand, judge, do, and use mathematics. Basic compe-
tencies include problem solving ability (in which a 
problem is a challenging task in which the solver does 
not know a solution method in advance), reasoning 
ability (to justify choices and conclusions) and under-
standing. The internationally influential reform-ori-
ented frameworks defining mathematical competence 
(NCTM 2000; Kilpatrick et al. 2001; Niss 2003) have 

Fig. 1  Student components (1 
and 2) and task/teacher design 
components (3 and 4)
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also influenced Swedish official policy documents 
since 1994 (Boesen et al. 2014).

2. Students’ task-solving reasoning affects the compe-
tence developed, or what is learnt from trying to solve 
the task. In contrast, students’ existing competence 
affects what type of reasoning they can carry out.

3. Students’ reasoning is affected by task properties, 
which are designed/selected by the teacher.

4. The teacher may interact with students to support task-
solving reasoning.

2.2  The theory of didactical situations

Brousseau’s (1997) theory of didactical situations in math-
ematics (TDS) is used as a theoretical clarification of the 
characteristics and consequences of rote learning and as a 
starting point for the design of a more constructive alter-
native. First, it is used to indicate why it may be attractive 
(and thus prevalent) in teaching to provide algorithmic 
solution templates: In TDS, students’ temporary incom-
plete or faulty conceptions are not considered failures but 
are often inevitable and constitutive of knowledge forma-
tion processes. However, the teacher may try to overcome 
students’ obstacles by providing task-solution templates. 
This relieves students of the need to take responsibility for 
their intellectual work, and then the struggle necessary for 
deeper learning will not take place.

Secondly, the theory explains why learning by imitating 
algorithms is ineffective. An algorithm is broadly defined 
to include all pre-specified task-solving methods, such as 
rules and template examples. An algorithm is a sequence 
of executable instructions for solving a class of tasks, and 
it can be determined in advance. The nth transition does 
not depend on any circumstance that was unforeseen in the 
(n − 1)th transition—it does not depend on new informa-
tion, new decisions, interpretations, or thus on any mean-
ing that could be attributed to the transitions. Therefore, the 
execution of an algorithm has high reliability and speed, 
which is a strength when the purpose is only to solve a task. 
However, if the purpose is to learn, an algorithm executed 
without considering its meaning may lead to rote learn-
ing. It is the domination of algorithmic solution templates 
in mathematics teaching and learning, not the algorithms 
themselves, that is problematic. However, algorithms are 
a fundamental and crucial part of mathematics. Fan and 
Bokhove (2014) have concluded in their literature survey 
that “learning of algorithms has suffered from an alleged 
dichotomy between procedures and understanding” (p. 481) 
but also that “the majority of more recent research seems to 
indicate that products and processes, procedures and under-
standing, go hand in hand” (p. 484).

Thirdly, the aim of TDS is the design of situations that 
allow for the construction of knowledge by the learner (as 
an alternative to imitation). One central aspect is the devo-
lution of problems: Students must take responsibility for 
a part of the problem-solving process. The teacher’s task 
is to arrange a suitable didactic situation in the form of a 
problem in such a way that if students solve it, then the stu-
dents will obtain the desired target knowledge. From the 
point when the students accept the problem as their own 
to the moment when they produce an answer, the teacher 
refrains from interfering and suggesting how to solve the 
task. The teacher must therefore arrange the devolution of 
a good problem rather than describe what the students are 
supposed to learn. This does not imply that the teacher is 
more passive or has a less important role than that in the 
‘solution-template providing’ approach. Designing a good 
problem for devolution is usually much more difficult than 
designing imitative tasks (Sect.  3.2), and it places higher 
demands on teacher interaction (Sect. 5.3).

2.3  Imitative and creative reasoning

A series of studies resulting in a research framework (Lith-
ner 2008) have suggested that a key factor affecting learn-
ing outcomes is whether students engage in imitative or 
creative reasoning. Reasoning is the line of thought adopted 
to produce assertions and reach conclusions in task solving. 
It is not necessarily based on formal logic; thus, it is not 
restricted to proof and may even be simple, incorrect and/or 
superficial, as long as some sensible reasons (as perceived 
by the reasoner) support it.

Algorithmic reasoning (AR) consists of an attempt 
to solve a task by applying a given or recalled algorithm 
(Lithner 2008). Examples include following a memorised 
procedure of finding the line through two points or imitat-
ing an example given by the teacher of how to multiply two 
three-digit numbers and applying it to two other numbers. 
Another version of imitative reasoning, namely, to recall 
and repeat memorised non-algorithmic knowledge (such as 
a mathematical proof), is uncommon in school and is not 
treated in this paper (see Lithner 2008 for an account).

Opportunities for students to create knowledge in line 
with TDS have been found to be rare in teaching, textbooks 
and tests. When it is applied, students are able to make 
better progress with Creative Mathematically founded 
Reasoning (CMR, Lithner 2008). Empirical studies of the 
distinctions between AR and students’ own constructions 
of solutions have defined this reasoning type as fulfilling 
three criteria: (1) Creativity: the learner creates a reasoning 
sequence not experienced previously, or re-creates a forgot-
ten one (Silver 1997). (2) Plausibility: there are predictive 
arguments supporting the strategy choice and arguments for 
verification, explaining why the strategy implementation 
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and conclusions are true or plausible (Pólya 1954; Lithner 
2008). (3) Anchoring: the arguments are anchored in the 
intrinsic mathematical properties of the components of the 
reasoning (Lithner 2008). A literature review has revealed 
two main uses of mathematical ‘creativity’ (Sriraman et al. 
2013): the extraordinary creativity of geniuses and the eve-
ryday creativity that “can be fostered broadly in the general 
school population” (Silver 1997, p.  75). The latter mean-
ing is used here, i.e., the creation of task solutions (or the 
re-creation of forgotten ones) that are original to the indi-
vidual who creates them.

Solving a task using CMR is largely similar to what 
many others have written in terms of (non-routine) prob-
lem solving (NCTM 2000). The reason for introducing the 
notion is that in a large part of the literature a “problem” is 
equated with “any mathematical task”, including also rou-
tine exercises. In addition, when a “problem” is defined as a 
task for which students have no access to a solution method 
from the start, there are various additional requirements, 
for example, that a problem be challenging (Schoenfeld 
1985) or require exploration (Niss 2003). A task requiring 
CMR does not have to meet similar criteria such as being 
challenging, requiring exploration or invoking modelling. 
Thus, the LICR programme can be more focussed on the 
distinction between imitation and creation instead of other 
types of struggle.

2.4  Methodology: educational design research

Because mathematics learning is immensely complex 
(Niss 2007) and the difficulties in designing and analys-
ing interventions are underestimated (Schoenfeld 2007), a 
structure for this type of research is helpful. Some of the 
fundamental questions in design research concern how to 
base the design itself in relevant experiential and scientific 
knowledge, how to evaluate and revise the design, and how 
to reach conclusions in a format that is both generalisable 
for building scientific theoretical knowledge and concretely 
applicable for educational development. Methodological 
approaches combining these aspects are therefore advo-
cated (Brown 1992; Cobb et  al. 2003; Schoenfeld 2007). 
In contrast to most methodologies, the theoretical products 
of design experiments have potential for rapid pay-off for 
practice, because they are empirically evaluated princi-
ples for the development of tasks and teaching (Cobb et al. 
2003). Principles guide rather than strictly determine a 
design, and their use in practical design requires creative 
input, imaginative extensions and development through 
feedback from trials (Swan 2008), because there is often 
not enough research to support detailed prescriptions 
(Smith and Stein 2011). Hence, in design research, there is 
often an “emphasis more on sensitizing the designer to cru-
cial issues than on specifying particular courses of action” 

(Ruthven et al. 2009, p. 341). By focussing closely on the 
imitative-creative dimension, the LICR programme aims at 
more specific and directive design principles.

Design propositions provide initial guidance on how to 
achieve the goal. During cyclic processes of design and 
formative evaluation, propositions are revised and trans-
formed into research results in the form of design princi-
ples that are theoretical insights that recommend how to 
address a specific class of issues (McKenney and Reeves 
2012).

3  Initiation phase

A design research project is initiated by formulating 
requirements and propositions (McKenney and Reeves 
2012).

3.1  Design requirements in three research contexts

Design requirements specify criteria that the intervention 
should meet and essentially describe what the intervention 
will address in a particular context (ibid.).

It is clear from the start that the LICR programme will 
not produce final and complete principles for design-
ing tasks and teaching optimally enhancing learning. In 
the best-case scenario, some substantial progress towards 
such a utopian goal can be made. Therefore, the aim of the 
research design is to be useful not only in classroom design 
but also for further design research. Three main types of 
contexts are studied, with partially different requirements, 
as described in the following sections.

3.1.1  Experimental research

The purpose of the experimental studies is to reduce the 
number of variables manipulated and measured, in order 
to facilitate statistical analyses of relations, particularly 
between task design and learning processes/outcomes. 
Therefore, one requirement is that the task design com-
monly found in teaching, textbooks and tests be able to 
be modelled in a reduced experimental setting. Another 
requirement is that CMR tasks be designed in such a way 
that they differ from the AR tasks only in terms of the 
absence of given solution methods (Figs.  2, 3 below). A 
third requirement is that to avoid statistical floor/ceiling 
effects, the tasks should not be too difficult to solve during 
practice and not too easy to solve during testing.

3.1.2  Explanatory research

These studies concern a basic understanding of the phe-
nomena related to learning processes and outcomes. Here, 
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the main requirement is to design tasks and research 
contexts so that these phenomena can be identified and 
understood.

3.1.3  Clinical research

The main requirement in clinical classroom interventions 
is that both the design and the research evaluation should 
work in the increased complexity of a real classroom. In 
addition, the interventions should align at least relatively 
well with the official curricula documents and, for ethical 
reasons, be expected not to have negative consequences for 
the students’ learning.

3.2  Characteristics of tasks that enhance imitation 
and creation of solutions

Designing tasks that enhance algorithmic reasoning in a 
school context is relatively easy: first, mathematics is full 

of powerful standard methods, developed over centuries, 
for solving many types of tasks. For example, there are 
arithmetic calculation algorithms, rules for determining the 
properties of geometrical objects and methods for solving 
various types of equations. It is straightforward to construct 
a task that requires the application of such methods. Sec-
ond, textbooks are full of tasks that are solvable by copy-
ing worked examples and other types of templates. Third, 
because the student does not have to understand the mean-
ing or underlying concepts of a task accompanied with 
an algorithmic solution template, there are relatively low 
requirements not only for students’ creative ability but also 
for their conceptual understanding (Lithner 2008). Finally, 
if solution templates are available, students are likely to 
use them (Hiebert 2003; Lithner 2003, 2008; Boesen et al. 
2014).

It is easy to design a task that requires CMR to be solved; 
one must ensure only that the student does not know the 
solution method in advance. However, it is more difficult 
to design such a task in a way that is simultaneously not 
too difficult for the student to solve. Designing a task that 
requires CMR, that is not too difficult and whose solution 
also leads the student to construct a particular target knowl-
edge (see TDS) is even more challenging. According to the 
CMR definition above, it must be possible for students to 
construct arguments anchored in mathematics that support 
the task-solution reasoning. If students do not have access 
to a solution method (recalled or given) to follow, only two 
possibilities remain for solving the task. One is to guess, 
but although guesswork can be a constructive part of prob-
lem solving, it is almost never possible to solve a task only 
by guessing. The other possibility is to construct (part of) 
the solution, and this construction requires some guidance, 
some type of (explicit or implicit) argument to support the 
choices and conclusions.

A task in which a complete solution method is available 
(given or recalled) to a particular student from the start, is 
denoted an AR task. For example, students can solve the 
Eq. 3x + 4 = 19 if they already know a general method for 
solving linear equations. In this paper, a CMR task is a task 
in which (1) no complete solution method is available from 
the start to a particular student, and (2) it is reasonable for 
students to justify the construction and implementation of a 
solution. These two categories include all tasks of interest 
for school task design, because the complements are tasks 
without solution templates that are not possible to solve by 
mathematical arguments, i.e., those that are intended to be 
solved by pure guesswork or not at all.

3.3  Design propositions

Design propositions serve the practical goals of design 
research by helping to sharpen the focus of an intervention 

Fig. 2  Task with solution method

Fig. 3  Task without solution method
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and providing grounds upon which design choices can be 
made. They serve the theoretical goals by providing start-
ing points for the framework and are validated, refuted, or 
refined when interventions are tested during evaluation and 
reflection (McKenney and Reeves 2012).

The purpose when formulating design propositions here 
is not to carry out a broad literature overview in a search 
for the aggregated best design. Such overarching frame-
works (NCTM 2000) tend to be far too complex for the 
limited quest for relations between CMR/AR task designs 
and learning processes/outcomes. Instead, the propositions 
are largely based on two fundamental works of mathemat-
ics education: Schoenfeld’s (1985) work on problem solv-
ing and Brosseau’s (1997) idea of devolution of problems.

The design propositions, as well as the design principles 
below, are intended to be prescriptive and are stated here in 
a somewhat simplified version based on the one suggested 
by van den Akker (2010): If the goal is G, then this can be 
achieved by claim C, owing to the empirical and/or theo-
retical argument A. The propositions contain claims about 
how task or teaching design may promote the two types of 
reasoning and how this may affect learning (Fig.  1). For 
simplicity and clarity, the statements are written in a cat-
egorical format aiming at capturing main strands but not all 
variations that exists in reality.

3.3.1  Task-design propositions

1. If the goal is for students to develop mathematical 
competence, learning by CMR tasks is more efficient 
than learning by AR tasks.

 Argument: this general formulation is supported by 
TDS. However, the study of mathematical competence 
in general is outside the scope of this paper. Therefore, 
propositions related to more specific aspects are formu-
lated.

2. If the goal is for students to develop problem solving 
ability, learning by CMR tasks is more efficient than 
learning by AR tasks.

 Argument: students develop problem solving ability 
if and only if they practice problem solving (Schoen-
feld 1985; Hiebert 2003). This statement is somewhat 
oversimplified, and it is important that not only task 
design but also teaching design be adapted to problem 
solving (Stein et al. 2008). However, this argument is 
based on research on problem solving, and CMR tasks 
are not exactly the same as problems (see the Sect. 6 
above). Thus, it is not known whether students will 
develop problem-solving ability by practicing on non-
challenging CMR tasks. However, the research referred 
to above has shown that when given AR tasks, students 
mainly apply the algorithms without trying to construct 
any parts of the solution, thus making it unlikely for 

problem solving ability to develop. It seems that not 
even procedural ability is well developed by such tasks 
(Hiebert 2003).

3. If the goal is for students to develop mathematical 
understanding, learning by CMR tasks is more efficient 
than learning by AR tasks.

 Argument: because it is necessary to consider math-
ematical properties in CMR but not in AR, it is likely 
that CMR will better develop students’ understanding.

4  Results obtained within the design research 
process

This section presents examples of empirical studies evalu-
ating the propositions above.

4.1  Experimental research

Experiments are carried out comparing (a) background 
variables, such as cognitive capacity, grades, gender, and 
motivation, (b) practice format, i.e., learning through AR or 
CMR task design, and (c) learning processes and learning 
outcomes, which are mainly measured by performance on 
post-test tasks but also by eye-tracking and brain imaging 
methods. The task formats are designed to resemble ordi-
nary school tasks but are adapted for the data collection 
methods (Fig. 2). Eye-tracking and particularly brain-imag-
ing environments impose strong restrictions on task-stu-
dent interaction, thus also affecting the experimental task 
design. Jonsson et  al. (2014) have allowed students work 
alone with tasks presented on a computer screen. Eighty-
nine students were matched into two groups on the basis 
of mathematics grades, gender and cognitive ability tests. 
The AR group received training through 14 task sets with 
laboratory versions of a design that is common in schools 
(Fig. 2): a context, a given solution method, an example of 
how to apply the method and questions that could be solved 
by the method.

The other group practiced with similar tasks, and the 
only difference was that no solution procedures were pro-
vided; thus, CMR was required to solve the tasks (Fig. 3). 
As expected, because the students had been given solution 
methods, the AR group outperformed the CMR group dur-
ing practice (Fig. 4).

Each student practiced for approximately one-half 
hour on one occasion. One week later, students from 
both groups took identical tests with various mathemati-
cal questions related to the practice tasks. As shown in 
Fig.  4, the CMR group outperformed the AR group on 
the test. In addition, it was found that this performance 
difference was largest for the students with the lowest 
cognitive proficiency (measured by standard psychology 
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tests; Operation span and Ravens APM). In other words, 
it was the students with the lowest cognitive proficiency 
that had most to gain by CMR practice compared to AR 
practice. This finding contradicts the common belief that 
tasks requiring creative reasoning are more suitable for 
high-performing students. Norqvist (2016) has hypoth-
esised that complementing the AR task design (exempli-
fied in Fig.  2) with written explanations by experienced 
teachers of why the given solution method work would 
increase post-test performance. However, in Norqvist’s 
study (n = 104), the hypothesis was rejected, and no post-
test improvement relative to the task design of Fig. 2 was 
found.

A functional magnetic resonance brain imaging study 
(n = 73, Karlsson et  al. 2015) has found similar perfor-
mance results, as shown in Fig.  4. Concerning brain 
activity, one hypothesis was that the CMR group outper-
formed the AR group because the former had some type 
of higher activity during the post-test. In fact, the oppo-
site hypothesis was confirmed by the study. Those who 
learnt by creative reasoning had lower brain activity dur-
ing the post-test (Fig. 5) and somehow were able to use 
their mental resources more economically and still per-
form better. It is difficult to draw inferences from the task 

design regarding brain activity, but it seems that practic-
ing by CMR tasks leads to some type of better memory 
encoding.

4.2  Explanatory research

Explanatory research examines how experimental results 
can be understood. Adhering to the design requirements 
above, the main priority is to design tasks and settings that 
enable rich investigations of students’ reasoning. Therefore, 
in contrast to experimental research, explanatory research is 
based on think-aloud protocols. It may also include small-
group work and more complex tasks than those exemplified 
in Figs. 2 and 3.

Sidenvall et  al. (2015) found that students in ordinary 
classrooms mainly use AR and that apart from obtain-
ing solution templates from books and teachers, the stu-
dents’ peer–peer interaction commonly involves copying 
one another’s solutions. A study by Granberg and Olsson 
(2015) found that the dynamic software GeoGebra supports 
collaboration and CMR by providing students with a shared 
working space and feedback that enhances their creative 
reasoning. Van Steenbrugge and Norqvist (2016) identified 
relationships among task design, student characteristics and 
reasoning type.

4.3  Clinical research

In the experimental and explanatory out-of-school 
research contexts above, it is possible to design tasks 
in which the primary priority is to create research data. 
Thus, it is not necessary that students actually learn 
anything in line with their curricula goals. In clini-
cal in-school research, the learning goals become the 
starting point, and the tasks must be designed to align 
with them. Brousseau (1997) has emphasised that tasks 
should be designed with the desired target knowledge 
in mind. In clinical studies, this is achieved with the 
method of Hypothetical Learning Trajectory (Simon 

Fig. 4  Practice results and post test results

Fig. 5  The AR group activated 
more of the left angular gyrus 
brain region during the post-test
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1995; Clements et al. 2004), which starts by establishing 
the student’s prior competence in relation to the desired 
learning goal. Then, a developmental sequence is antici-
pated, i.e., the student’s progression through knowledge 
levels from the initial state to the learning goal. Finally, 
a set of tasks that intended to take the student through 
the developmental sequence is designed. For example, in 
order for students to create (instead of being given) the 
standard set of rules for congruent triangles, a sequence 
of tasks with increasing complexity can be designed.

4.4  Learning goals: task solving understanding 
and fluency

Design principles include learning goals to aim for. 
Instead of trying to handle the complexity of broad 
learning goals (NCTM 2000) and aim for precision, the 
present versions of the design principles focus on two 
limited but central aspects of competence: students’ 
understanding of why specific solution methods are suit-
able and their ability to use these methods.

Mathematics students spend most of their study 
time on tasks (Boesen et  al. 2014), and solution proce-
dures are important (Kilpatrick et  al. 2001) but under-
researched in mathematics education (Star 2005). 
Mathematical understanding is often defined in terms 
of networks, representations and connections. Relating 
to the NCTM (2000) standards for representations of 
abstract and real mathematical entities and connections 
between representations, the LICR programme devel-
oped a definition of mathematical understanding that 
aims to find not a universally agreed-upon definition but 
a restricted one that is functional for the purposes of this 
study:

Task-solving understanding is defined as the ability to 
justify mathematically the key representations and con-
nections of the methods used in strategy choices and 
implementations.

This definition, based on the ability to justify, can be 
extended to aspects of understanding other than task-
solution methods, and it is likely that learning by CMR 
also affects such aspects, but this possibility is outside 
the scope of this paper. Task-solving understanding is 
knowing why a solution method is suitable for a specific 
task. Modifying a definition of procedural fluency given 
by Kilpatrick et al. (2001), we obtain a characterisation 
of knowing how to solve a task.

Task-solving fluency is defined as the skill to choose 
and implement methods flexibly, accurately, efficiently 
and appropriately.

5  Design principles

The results from the studies exemplified above and from 
other studies form the basis for the revision of the design 
propositions (Sect. 3.3) into the present version of design 
principles presented in this section. Most of the LICR 
data are from the Swedish context, and most of the other 
studies referred to relate to Western culture. The princi-
ples may be culture specific, as are other mathematics 
education results (Leung 2014). The origins of the claims 
are indicated in the arguments following each principle. 
The statements are written in a categorical format aim-
ing at capturing the main strands but not all variation that 
exists in reality. Relating to Fig. 1, the principles are pre-
sented in three groups: task design affecting reasoning, 
task design affecting learning and embryos for teaching 
design principles.

5.1  Task‑design principles related to the reasoning used

5.1.1  The AR task-design principle

If the goal is to design a task such that a student will use 
AR to solve it, this can be achieved by either providing a 
task-solution method in connection with the task or judg-
ing that the student already knows a method.

Argument: In all LICR studies that have, in various 
ways, analysed students’ work with such tasks, the con-
clusion is that if a task-solution method is given (by the 
book, the teacher or a peer) or known in advance, the stu-
dents will apply the method and seldom explore it fur-
ther (for example, reflect on why the method is suitable 
or construct alternative methods; Lithner 2003; Boesen 
et al. 2010; Sidenvall et al. 2015). In more general terms, 
this conclusion is also supported by a literature survey 
by Hiebert (2003). Sometimes, it has been argued that 
the mere presence of interactive dynamic software leads 
students into creative explorations, but Olsson (2017a) 
refuted this claim and indicated that it is the task design, 
not the presence of the dynamic software, that mainly 
determines whether the students will use AR or CMR. 
Boesen et al. (2010) found that when designing tasks, it 
is possible to approximate what standard solution proce-
dures students know by analysing how present these pro-
cedures are in the students’ previous textbooks; thus, it is 
possible, with relatively high certainty, to predict whether 
students will attempt AR or CMR in a particular task.
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5.1.2  The CMR task-design principle

If the goal is to design a task such that a student will use 
CMR to solve it, the creativity, justification and concep-
tual challenges must be suitable.

Argument: TDS focuses on the students’ responsibil-
ity to solve the task themselves. But how can one provide 
for the possibility for the student to solve a CMR task, 
to ensure that it is of suitable difficulty? Earlier analy-
ses (Lithner 2004) have shown that there are at least two 
types of difficulties involved: the ‘creative’ challenge and 
the ‘conceptual’ challenge. These are complemented in this 
paper by a third challenge, ‘justification’. None of these are 
necessary in AR. One could add other challenges, such as 
‘technical’ (e.g., complex calculations) or ‘linguistic’, but 
these would have the same relevance for AR and are not 
included here.

The creative challenge concerns the level of ingenuity 
required. For example, it is more likely that students can 
solve a task that can be solved by stepwise progress rather 
than requiring a single far-fetched trick. The conceptual 
challenge determines how the advanced mathematical 
properties (such as in representations and connections) of 
the task need to be understood in order to construct a solu-
tion. The justification challenge concerns how difficult it is 
to use arguments to predict the outcome of a hypothetical 
solution idea and/or to verify that an implemented solution 
is correct. An extreme example is the four-colour theorem; 
it is fairly easy to hypothesise through empirical arguments, 
but extremely difficult to prove, that four colours are suffi-
cient for any map. Another example is that that when inter-
acting with dynamic software, it is important that students 
can formulate predictive argumentation to fully utilise 
the feedback obtained when solving CMR tasks (Olsson 
2017b).

The creative challenge may be relatively low but still 
require substantial justification and/or conceptual consid-
erations. Thus, if the purpose is to learn some aspects of 
a new concept or notion, it is not necessary to have very 
difficult tasks (as most CMR textbook tasks do; Jäder et al. 
2015). In AR, it is not usually necessary to consider the 
mathematical properties of the components in the reason-
ing, but even in simple CMR, it is necessary to understand 
the relevant properties. For example, many students have 
difficulties in learning the power rules, and thus they try 
to memorise them as separate rules, even though the rules 
are based on a few ideas that are valid for all of the rules. 
A common way to teach these rules is first to describe and 
explain them and then to let students apply them to large 
numbers of tasks of the type ‘simplify a5a3’ (see almost 
any algebra textbook). This can be done by following the 
rule (add the exponents) without considering any basic 
properties of powers. An alternative that does not include 

difficult conceptual challenges is to give students tasks in 
which they construct at least some of these rules directly 
from the basic definitions of powers, for example, by first 
finding out that a5a3 = aaaaa ⋅ aaa = a

5+3 and then gener-
alising this idea to aman = a

m+n.

5.2  Task‑design principles related to fluency 
and understanding

These principles concern how task design is related to 
learning in terms of task-solving fluency and understanding 
(as defined above).

5.2.1  The task-solving fluency principles

(a) If the goal is for a student to solve a specific task suc-
cessfully, an AR task design is more efficient than a 
CMR task design.

 Argument: In all experimental studies in which stu-
dents have been given corresponding AR and CMR 
tasks, the proportion of solved AR practice tasks is 
significantly higher (Fig.  4). This conclusion is also 
theoretically expected, and is almost self-evident, 
because the solution templates included in these tasks 
reduce the task difficulty (see Brousseau’s characteri-
sation of algorithms above). There are also indications 
that having a high proportion of solved tasks enhances 
students’ self-confidence, at least in the short term. 
However, it may be questioned whether this type of 
“efficiency” is desirable (see the Discussion section 
below).

(b) If the goal is for students to develop task-solving flu-
ency, learning by CMR tasks is more efficient than 
learning by AR tasks.

 Argument: Theoretical arguments are presented in the 
design propositions above. With practice tasks such as 
those in Figs. 2 and 3, the proportion of solved post-
test tasks is higher for students practicing by CMR 
tasks in all LICR studies to date (Fig.  4). Examples 
of post-test tasks are those with short time recall for-
mulas (such as y = 3x + 1 in Fig. 2); those with short 
time recall and applied solution methods (for example, 
finding the number of matches to get 100 squares in 
a row); and those with more time available to recon-
struct solution methods (Jonsson et  al. 2014). Jons-
son et al. (2016) have shown that post-test effects are 
caused by the effortful struggle related to CMR and 
not to the transfer of appropriate processing (i.e., 
similarities between how information is encoded and 
retrieved). In addition, in a brain imaging study by 
Karlsson et  al. (2015), students who practiced with 
CMR tasks scored more highly on post-test tasks and 
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exerted less effort in terms of brain activity. Ongoing 
pilot studies in ordinary classrooms indicate that CMR 
task design may also be more efficient in this setting.

(c) If the goal is for students to develop task-solving flu-
ency, adding justifications that explain the solution 
methods given in AR tasks does not improve learn-
ing compared to AR tasks in which the given solution 
method is not explained.

 Argument: Brousseau’s (1997) theory can be inter-
preted to be rather categorical in claiming that stu-
dents can truly learn only when they construct the 
knowledge themselves (1997 p.  30). Nonetheless, it 
can reasonably be hypothesised that if the task infor-
mation (or teacher) not only presents how the solution 
method to a task works but also explains why it works, 
then students will learn better. However, Norqvist 
(2016) found no learning gains after experienced 
teachers added written explanations to AR practice 
tasks. Although that study supports the categorical 
interpretation of TDS, this design principle needs to 
be further analysed to be better confirmed, modified or 
refuted—for example, by not only providing explana-
tions but also by ensuring that students actively try to 
use them in effective ways.

5.2.2  The task-solving understanding principle

If the goal is for students to develop task-solving under-
standing, learning by CMR tasks is more efficient than 
learning by AR tasks.

Argument: Task-solving understanding is substantially 
more difficult to measure than task-solving fluency, par-
ticularly through comparisons of the effects of the two task 
designs, and LICR studies have only begun such attempts. 
Theoretically, one line of argumentation is presented in 
the design propositions above. Empirically, the findings by 
Olsson (2017a) indicate that students practicing by address-
ing CMR tasks are better in the post-test at explaining and 
justifying their choices and claims. An ongoing study indi-
cates that students addressing such tasks (for example, as 
in Fig. 3) become more proficient in solving certain trans-
fer post-test tasks. For example, in a task similar to that 
in Fig. 3, but with the 1 × 1 row of squares replaced by a 
1 × 2 row of rectangles, the same solution idea but not the 
same algorithm (y = 3x + 1) can be used. This transfer abil-
ity is taken as an indication that students addressing CMR 
tasks better understand their solution. Another ongoing 
eye-tracking study indicates that students learning by CMR 
tasks are more focussed on the parts of the task that are 
judged necessary to consider in order to develop task-solv-
ing understanding.

5.2.3  The cognitive capacity principle

The design principles above are valid for students of vary-
ing cognitive capacities.

In this broad formulation, this principle is still largely 
hypothetical. The reason to include it is that it appears that 
students with mathematics learning difficulties are some-
times assigned imitative tasks more than average students 
are, and that teachers sometimes claim that students with a 
lower capacity cannot solve creative tasks. In contrast, Jon-
sson et al. (2014) found that students with lower cognitive 
capacity have more to gain from learning by CMR tasks 
than do students with higher cognitive capacity.

5.3  Teaching design principles

Although this paper primarily concerns task design, and 
LICR research on teaching design (Fig.  1) is in the early 
phases, the present teaching design principles are briefly 
presented.

5.3.1  The AR teaching design principle

If the goal is for students to use AR to solve tasks, this can 
be achieved by giving the students solution methods either 
before or during the task-solving attempts. In this situation, 
it is not necessary for the teacher to understand the stu-
dents’ specific needs, because regardless of what they are, 
the teacher’s action can always be the same: to describe the 
solution method.

Argument: In this theoretical version of “AR teaching”, 
it is not necessary for the teacher to do anything apart from 
describing task-solution methods for students to apply and 
learn (perhaps by rote learning). Although this may not 
be common in a strict sense, the general idea of providing 
solution templates is common (Hiebert 2003; Boesen et al. 
2014). Teaching in line with an AR design is easier to plan 
and requires less teacher competence and less teacher and 
student effort, at least in a short-term perspective.

5.3.2  The CMR teaching design principle

If the goal is for students to use CMR to solve tasks, first 
let the students try to construct their own solutions. If this 
fails, then, in line with characteristics of formative assess-
ment, diagnose the students’ task-specific difficulties and 
provide feedback that supports students’ ability and respon-
sibility to construct solutions.

Argument: This proposition is in line with TDS and has 
general support in reviews (Hiebert 2003; Niss 2007). In 
contrast to AR teaching, if the teacher’s goal is to support 
the students’ CMR, then it is necessary both to diagnose 
what the students’ difficulties with the particular task are, 
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and to provide feedback that is adapted to students’ difficul-
ties (but does not provide a solution method). Thus, such 
teaching by necessity is designed as formative assessment, 
which in several reviews has been shown to be one of the 
most effective ways to enhance student learning (Black and 
Wiliam 1998; Hattie 2009).

6  Discussion

6.1  The paradox: no one advocates rote learning, but it 
is common

No one advocates rote learning, at least not as the only way 
to learn. Although it is far from clear whether, when and 
how alternative approaches such as problem solving, mod-
elling, and explorative learning are better, there is a grow-
ing body of evidence supporting such alternatives or com-
plements to imitative teaching and learning. Concerning 
task design, Coles and Brown (2016) noted the persistence 
of a gap between teacher intentions and student activity 
in the literature. Many mathematics textbooks worldwide 
are dominated by imitative tasks (Jäder et  al. 2015), and 
the relatively few creative tasks may be turned into imi-
tative tasks if teachers provide solution templates (Stein 
et al. 1996). A fundamental question is why imitative tasks 
continue to dominate. A partial answer may be found in 
the conflict between short- and long-term teaching goals. 
Teaching based on an AR task design is more efficient in 
the sense that (a) it takes less time to prepare for a lesson, 
(b) it requires less teacher competence, because the main 
teaching strategy can be to describe the solution methods, 
which requires only that the teacher be able to solve the 
tasks, and (c) the students will to a larger extent know what 
to do and be able to solve large numbers of tasks with (d) a 
minimal need for help other than the given solution meth-
ods. As teachers, we may for good reason believe that giv-
ing our students solution methods is the best way to help 
them learn. In contrast, the main gains from CMR task 
design seem to be from a longer-term perspective than a 
single lesson in terms of, for example, students’ improved 
understanding and problem-solving ability. The short-
term/long-term perspective contrast may also be relevant 
for individual students in terms of AR tasks requiring less 
struggle during training but leading to rote learning and a 
weak understanding.

6.2  Is an AR task design never better?

Of course, a CMR task design is not an option when the 
target knowledge is too difficult for students to attain 
through their own constructions; and even when attaining 
such knowledge is possible, it may take too much time. 

One elementary argument is that it took the world’s best 
mathematicians thousands of years to construct our upper-
secondary school mathematics. Thus, it seems utopian to 
design tasks so cleverly that students can construct all of 
the knowledge by themselves. It is more realistic to find a 
suitable balance between the two task designs.

It also seems reasonable to consider whether an AR 
design can be better than the relatively strict versions used 
in the studies above. One attempt mentioned above has 
failed in the sense that the added explanations did not yield 
better post-test results. Nonetheless, it seems difficult to 
accept the categorical statement of Brousseau (1997, p. 30) 
that students can truly learn only by constructing their own 
solutions. Perhaps richer explanations are required, such as 
explanations from a teacher or other types of social interac-
tions. Another possibility may be practice testing learning, 
which in recent studies has been shown to strengthen learn-
ing (Dunlosky et al. 2013) and could probably be used with 
AR tasks to enhance memorisation but perhaps not under-
standing. There are, of course, also numerous other poten-
tial possibilities.

6.3  How, when and why does CMR task design lead 
to better learning?

As argued above, it seems reasonable that the reason that 
CMR practice leads to better task-solving understanding 
than AR practice is that intrinsic mathematical properties 
must be considered when solving CMR tasks. But why 
does CMR lead to better task-solving fluency? From the 
main starting points of this paper (Schoenfeld 1985; Brous-
seau 1997), it can be argued that CMR enhances all learn-
ing. But what are the more specific mechanisms? LICR 
researchers, in mathematics education, psychology and 
neuroscience, agree that the effect is likely to be caused 
by some type of productive struggle (Niss 2007), but these 
researchers have somewhat different specific hypotheses 
explaining the effect. One hypothesis is that the struggle 
itself leads to more efficient memory consolidation of the 
task-solving methods learned. Another is that the increased 
understanding reached by using CMR enhances task-solv-
ing fluency and transfer. This is one of the questions being 
further pursued.

Another remaining question is what specific competen-
cies, other than task-solving fluency and understanding, are 
enhanced by CMR. To date, most interventions have been 
very short, from 30 min to a few hours. The learning from 
short practice sessions is probably very local and restricted 
to, for example, task-solving fluency and understanding 
related to limited sets of tasks. Broader competencies, such 
as problem solving, modelling and communication abili-
ties and understanding the big ideas of mathematics, take 
a much longer time, months and years, to develop, and the 
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LICR programme is beginning to engage in longer inter-
ventions. A third question is whether the findings by Jons-
son et al. (2014) that students with a lower cognitive capac-
ity have more to gain from CMR practice than do students 
with a higher capacity, are also valid for students with more 
severe learning difficulties.

It is also possible that different emphases on the three 
challenges of the CMR task-design principle may develop 
competencies differently: An emphasis on the creative chal-
lenge may enhance problem solving, on the justification 
challenge to enhance reasoning and on the conceptual chal-
lenge to enhance mathematical understanding. However, 
these possibilities remain to be disentangled as the LICR 
programme seeks to further develop the design principles.
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