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Abstract Ranked layers of binary classifiers are used for

the linearization of learning sets composed of multivariate

feature vectors. After transformation by ranked layer, each

learning set can be separated by a hyperplane from the sum

of other learning sets. Ranked layers can be designed,

among others, from radial binary classifiers. This work

elaborates on designing ranked layers from radial binary

classifiers with movable centers.

Keywords Ranked layers � Linear separability � Radial

binary classifiers � Movable centers

1 Introduction

Learning sets in classification problems contain examples

of objects assigned to particular categories (classes). Ob-

jects are typically represented in a standardized manner by

multivariate feature vectors of the same dimension. Binary

classifiers transform feature vectors into numbers equal to

one or zero. Classifiers can be designed based on learning

data sets according to various pattern recognition methods

[1, 2].

A layer of binary classifiers aggregates input data sets

if many feature vectors are transformed into the same

output vector with binary components. The aggregation is

separable if and only if some of the feature vectors be-

longing to the same class are aggregated into a single

output vector. Ranked layers allow aggregating learning

sets in a linearly separable manner [3]. This means that

each of the learning sets may be separated from the sum

of other learning sets by a hyperplane after transforma-

tion by the ranked layer. Linearly separable aggregation

plays a special role in pattern recognition methods based

on neural network models. In particular, this concept is

important in the perceptron model based on formal

neurons [4].

The linear separability of learning sets is important also

in support vector machines (SVM), one of the most popular

methods in data mining, [5, 6]. An essential part of the

SVM methods is linear separability induction through ker-

nel functions. Selection of the appropriate kernel functions

is still an open and difficult problem in many practical

applications of support vector machines. The ranked layers

can be treated as a useful alternative for the kernel func-

tions technique in the SVM context.

A family of K disjoined learning sets can always be

transformed into K linearly separable sets as a result of

transformation by the ranked layer of formal neurons—as

proved in the paper [7]. This result was extended to the

ranked layers of arbitrary binary classifiers in the work [3].

The procedure of ranked layer designing from radial binary

classifiers was proposed in the work [8]. An extension of

this procedure to radial binary classifiers with movable

centers is discussed in this work.
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2 Separable and linearly separable learning sets

Let us assume that each object Oj ðj ¼ 1; . . .;mÞ is repre-

sented in a standard manner by feature vectors xj½n� ¼
½xj1; . . .; xjn�T belonging to n-dimensional feature space

F½n� (xj½n� 2 F½n�). Each feature vector xj½n� can be treated

as a point of the feature space F½n�. Components xji of the

feature vector xj½n� are expected to be numerical results of

n standardized examinations of a given object Oj related to

particular features xi ði ¼ 1; . . .; nÞ (xji 2 f0; 1; g or

xji 2 R). In practice, we can often assume that the feature

space F½n� is equal to n-dimensional real space Rn

(F½n� ¼ Rn).

Let us assume that each object Oj belongs to one of K

categories (classes) xk (k ¼ 1; . . .;K). All the feature

vectors xj½n� that represent the objects Oj from one class xk

can be collected as kth learning set Ck:

Ck ¼ fxj½n� : j 2 Jkg ð1Þ

where Jk is the set of indices j of objects Oj assigned to the

kth class xk.

The learning set Ck contains mk feature vectors xj½n�
assigned to the kth category xk. The assignment of feature

vectors xj½n� to particular categories xk can be seen as

additional knowledge in the classification problem [1].

Definition 1 The learning sets Ck (1) are separable in the

feature space F½n�, if they are disjoined in this space

(Ck \ Ck0 ¼ ;, if k 6¼ k0). This means that the feature vec-

tors xj½n� and x0j½n� belonging to different learning sets Ck

and Ck0 cannot be equal:

ðk 6¼ k0Þ ) ð8j 2 JkÞ and ð8j0 2 Jk0 Þ xj½n� 6¼ xj0 ½n�
ð2Þ

We also take into consideration the separation of the

learning sets Ck (1) by hyperplanes Hðwk½n�; hkÞ in the

feature space F½n�

Hðwk½n�; hkÞ ¼ fx½n� : wk½n�Tx½n� ¼ hkg ð3Þ

where wk½n� ¼ ½wk1; . . .;wkn�T 2 Rn is the weight vector,

hk 2 R1 is the threshold, and wk½n�Tx½n� is the inner

product.

Definition 2 The feature vector xj½n� is situated on the

positive side of the hyperplane Hðwk½n�; hkÞ (3) if and only

if wk½n�Txj½n�[ hk. Similarly, the vector xj½n� is situated on

the negative side of Hðwk½n�; hkÞ if and only if

wk½n�Txj½n�\hk.

Definition 3 The learning sets (1) are linearly separable

in the n-dimensional feature space F½n� if each of the sets

Ck can be fully separated from the sum of the remaining

sets Ci by some hyperplane Hðwk½n�; hkÞ (3):

ð8k2f1;...;KgÞ9ðwk½n�;hkÞ ð8xj½n�2CkÞwk½n�Txj½n�[hk

and ð8xj½n�2Ci;i 6¼kÞwk½n�Txj½n�\hk

ð4Þ

If the inequalities (4) hold, then all vectors xj½n� from

learning set Ck are situated on the positive side of hyper-

plane Hðwk½n�; hkÞ (3) and all vectors xj½n� from the re-

maining sets Ci are situated on the negative side of this

hyperplane.

3 Radial binary classifiers

The radial binary classifier RCðwi½n�; qiÞ can be character-

ized by the sphere with the centerwi½n� ¼ ½wi1; . . .;win�T and

radius qi (qi [ 0) [1]. The decision rule rðwi½n�;qi; x½n�Þ of

radial binary classifierRCðwi½n�; qiÞ is based on the distances

dðwi½n�; x½n�Þ between point x½n� and the center wi½n�:

rðwi½n�; qi; x½n�Þ ¼
1 if dðwi½n�; x½n�Þ � qi
0 if dðwi½n�; x½n�Þ[ qi

�
ð5Þ

In accordance with the decision rule rðwi½n�; qi; x½n�Þ, the

radial classifierRCðwi½n�; qiÞ is activated by input vector x½n�
(rðwi½n�; qi; x½n�Þ ¼ 1) if and only if the distance

dðwi½n�; x½n�Þ between vector x½n� and the center wi½n� is not

greater than the radius qi. The decision rule rðwi½n�; qi; x½n�Þ
(5) of radial classifier RCðwi½n�; qiÞ depends on the nþ 1

parameters wi½n� ¼ ½wi1; . . .;win�T and qi.
We can also take into consideration the radial binary

classifiers with a complementary decision rule rcðwi½n�;qiÞ
of the following form:

rcðwi½n�; qi; x½n�Þ ¼
1 if dðwi½n�; x½n�Þ � qi
0 if dðwi½n�; x½n�Þ\qi

�
ð6Þ

The decision rules rðwi½n�; qi; x½n�Þ (5) or rcðwi½n�; qi; x½n�Þ
(6) depend on the distance function dðwi½n�; x½n�Þ. A few

examples of popular distance functions dðwi½n�; x½n�Þ are

given below [9]:

dEðwi½n�; x½n�Þ ¼ ððx½n� � wi½n�ÞTðx½n� � wi½n�ÞÞ
1
2

� the Euclidean dist.

dL1
ðwi½n�; x½n�Þ ¼

X
l¼1;...;n

jwil � xlj the L1 dist.

dMðwi½n�; x½n�Þ ¼ ððx½n� � wi½n�ÞTR�1ðx½n� � wi½n�ÞÞ
1
2

� the Mahalanobis dist. ð7Þ

where R is the covariance matrix n� n designed based on

m feature vectors xj½n�.
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The Euclidean distance function (7) is used to design

radial classifiers.

4 Layers of radial binary classifiers

The layer composed of L radial binary classifiers

RCðwi½n�; qiÞ with the decision rules rðwi½n�; qi; x½n�Þ (5)

produces output vectors r½L� with L binary components ri
(ri 2 f0; 1g):

r½L�¼ ½r1;...;rL�T ¼½rðw1½n�;q1;x½n�Þ;...;rðwL½n�;qL;x½n�Þ�T

ð8Þ

The layer of L binary classifiers RCðwi½n�;qiÞ transforms

feature vectors xj½n� from learning sets Ck (1) into sets Rk

of the binary output vectors rj½L�:

Rk ¼ fri½L� : xj½n� 2 Ck ð1Þg ð9Þ

where

ð8j2f1;...;mgÞrj½L�¼½rðw1½n�;q1;xj½n�Þ;...;rðwL½n�;qL;xj½n�Þ�T

ð10Þ

Definition 4 The layer of L binary classifiers

RCðwi½n�; qiÞ (5) is separable, if it preserves separability

(2) of learning sets Ck (1) once they are transformed into

sets Rk (9). This means that the below implication is pre-

served after transformation (10) by the layer:

ðk 6¼ k0Þ ) ð8j 2 JkÞ and ð8j0 2 Jk0 Þ rj½L� 6¼ rj0 ½L�
ð11Þ

Definition 5 The layer of L binary classifiers

RCðwi½n�; qiÞ (6) is linearly separable, if the separable

learning sets Ck (2) become linearly separable sets Rk (9)

after transformation (10) by this layer:

ð8k 2 f1; . . .;KgÞð9vk½L�;hkÞ ð8rj½L� 2 RkÞ vk½L�Trj½L�[hk

and ð8rj½L� 2Ri; i 6¼ kÞ vk½L�Trj½L�\hk

ð12Þ

Each linearly separable (12) layer of binary classifiers

RCðwi½n�; qiÞ (6) is also a separable layer (10).

5 Designing ranked layers of radial binary
classifiers

The procedure of ranked layer designing from binary radial

classifiers RCðwi½n�; qiÞ (5) was proposed and described in

paper [8]. This procedure was based on the examination of

homogeneity of open Euclidean balls Bjðxj½n�; qjÞ centered

at particular feature vectors xj½n�:

ð8j ¼ 1; . . .;mÞ Bjðxj½n�; qjÞ
¼ fx½n� : ðx½n� � xj½n�ÞTðx½n� � xj½n�Þ\q2

i g
ð13Þ

Definition 6 The open Euclidean ball Bjðxj½n�; qjÞ (13) is

homogeneous in respect to learning sets Ck (1) if it contains

such feature vectors xj½n� that belong to only one of these

sets. The ball Bjðxj½n�; qjÞ is not homogeneous if it contains

feature vectors xj½n� from more than one learning set Ck (1).

In order to achieve a high generalization power of the

ranked layer, the below designing postulate concerning the

homogeneous ball Bjðxj½n�; qjÞ (13) was introduced [8]:

Designingpostulate I :TheballBjðxj½n�;qjÞ(13)shouldcontain

a largenumberof featurevectorsxj½n�belonging

toonlyoneof the learningsetsCkð1Þ:
ð14Þ

In accordance with the above postulate, the largest radius

qi was selected for each ball Bjðxj½n�;qjÞ while ensuring the

homogeneity condition.

qj ¼ maxfq : the ball Bjðxj½n�; qjÞ (13) is homogeneousg
ð15Þ

The homogeneous ball Bjðxj½n�; qjÞ (13) contains Mj feature

vectors xj½n� from one of the K learning sets Ck (2)

(xj½n� 2 Ck). The optimal homogeneous ball Bj� ðxj� ½n�; qj� Þ
contains feature vectors xj½n� from the k�th learning set Ck�

and is characterized by the maximal number Mj� of feature

vectors xj½n� among the other homogeneous balls

Bjðxj½n�; qjÞ (13):

ð8j 2 f1; . . .;mgÞ Mj� �Mj ð16Þ

The multistage procedure of the ranked layers designed

from binary radial classifiers RCðwi½n�; qiÞ (5), proposed in

paper [8], is described below:

Procedure of ranked layer designing ð17Þ

Stage 1. (Start)

• Put l = 1 and define sets DkðlÞ : ð9k 2 1; . . .;KÞ
DkðlÞ ¼ Ck ð1Þ
Stage 2. (Optimal homogeneous ball

Bj� ðXj� ½n�; qj� Þ ð13ÞÞ
• Find parameters k�, j� and qj� of the reduced data set

Dk� ðlÞ and the optimal homogeneous ball Bj� ðxj� ½n�; qj� Þ
(13). The parameter k� ðk 2 f1; . . .;KgÞ defines the

index kðlÞ of data set Dk� ðlÞ reduced during the lth step:

kðlÞ ¼ k� ð18Þ

The parameters j� and qj� define the reducing ball

BlðxjðlÞ½n�; qjðlÞÞ (13) during the lth step:
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jðlÞ ¼ j� ð19Þ

and

qjðlÞðlÞ ¼ qj� ð20Þ

Stage 3. (Reduction of the set Dk� ðlÞ )

• Remove feature vectors xj½n� contained in the optimal

ball Bj� ðxj� ½n�; qj� Þ (13)

Dk� ðlþ1Þ¼Dk� ðlÞ�fxj½n� :xj½n�2Bj� ðxj� ½n�;qj� Þ ð13Þg
andð8k2f1;...;Kgwhere k 6¼k�ÞDkðlþ1Þ¼DkðlÞ

ð21Þ

Stage 4. (Stop criterion)

if all data sets Dkðlþ 1Þ are empty, then stop

else increase the index l by one (l ! lþ 1) and go to

Stage 2.

Remark 1 Each radial binary classifier RCðwi½n�; qiÞ (5)

added to the layer in accordance with the procedure (17)

reduces (18) data set Dk� ðlÞ by at least one feature vector

xj� ½n�.

It can be proved on the basis of the above Remark 1 that

if the learning sets Ck (1) are separable (2), then after finite

number L steps, the procedure will be stopped. The fol-

lowing Lemma results [8]:

Lemma 1 The number L of radial binary classifiers

RCðxjðlÞ½n�; qjðlÞÞ with the decision rules rðwi½n�; qi; x½n�Þ
(5) in the ranked layer is no less than the number K of

learning sets Ck (1) and no greater than the number m of

feature vectors xj½n� in these sets.

K � L�m ð22Þ

The minimal number L ¼ K of radial binary classifiers

RCðxjðlÞ½n�; qjðlÞÞ (5) appears in the ranked layer when

whole learning sets Ck (1) are reduced (21) during suc-

cessive steps l. The maximal number L ¼ m of elements

appears in the ranked layer when only single elements xj½n�
are reduced during successive steps l.

Theorem 1 The sets Rk (9) obtained as a result of

transformation (8) of separable learning sets Ck (2) by the

ranked layer (17) of L radial binary classifiers

RCðwi½n�; qiÞ with the decision rules rðwi½n�; qi; x½n�Þ (5)

are linearly separable (12) with thresholds hk equal to zero:

ð8k 2 f1; . . .;KgÞð9vk½L�; hkÞ ð8rj½L� 2 RkÞ vk½L�Trj½L�[ 0

and ð8rj½L� 2 Ri; i 6¼ kÞ vk½L�Trj½L�\0

ð23Þ

Proof The proof is based on the choice of such vector

parameters vk½L� ¼ ½vk;1; . . .; vk;L�T which assure fulfilling

of the inequalities (20) [3]. Let us introduce for this pur-

pose the L-dimensional vector a ¼ ½a1; . . .; aL�T with

components ai specified below:

ð8l 2 f1; . . .; LgÞ al ¼ 1=2l ð24Þ

The weight vectors vk ¼ ½vk;1; . . .; vk;L�T in the inequalities

(23) are defined by using the parameters kðlÞ (18)

ð8l2f1; . . .;LgÞ if kðlÞ¼ k; then vk;1 ¼ al else vk;1 ¼�al

ð25Þ

It can be directly verified that all the inequalities (23) are

fulfilled by the weight vectors vk with components vk;1
specified by the rule (25). This means that sets Rk (9) are

linearly separable (4) with thresholds hk equal to zero. h

The arguments formulated in works [3] and [7] have

been used in the above proof of Theorem 1.

The procedure of ranked layer designing (17) allows

to generate a sequence of optimal homogeneous balls

Bj� ðxj� ½n�; qj� Þ (13). The procedure (17) is stopped if

each feature vector xj½n� is located in optimal ball

Bj� ðxj� ½n�; qj� Þ.
The postulate (14) can be treated as an example of the

greedy strategy aimed at ranked layer designing with a

great power of generalization. A more general designing

postulate can be formulated as:

Designing postulate II :

The ranked layer should include the minimal number

L (19) of radial binary classifiersRCðwi½n�; qiÞ (5)

ð26Þ

We can also remark that the assumptions of the procedure

(17) may be less restrictive in some points. First of all, the

demand that all balls Bjðxj½n�; qjÞ (13) should be homoge-

neous can be relaxed in some limits. Not every feature

vector xj½n� must be placed in an optimal ball Bj� ðxj� ½n�; qj� Þ
(13). A small fraction of feature vectors xj½n� (1) may re-

main beyond the balls Bj� ðxj� ½n�; qj� Þ. After such kind re-

laxation of the procedure (17), full linear separability (23)

of sets Rk (9) is no longer guaranteed. The sets Rk (9) may

become almost linearly separable [10]. Taking into ac-

count, the sets Rk (9) which may not necessarily be linearly

separable (23), but only almost linearly separable, may

allow achieving greater generalization power of the de-

signed layer of binary classifiers RCðwi½n�; qiÞ with deci-

sion rules (5) or (6) [10].
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6 Radial binary classifiers with movable centers

The procedure of ranked layer designing (17) involves the

search (Stage 2) for the optimal homogeneous balls

Bj� ðxj� ½n�; qj� Þ (13). Each optimal ball Bj� ðxj� ½n�; qj� Þ should

be distinguished by a large number Mj� (16) of feature

vectors xj½n� from one of the K learning sets Ck (1).

The search for the optimal ball Bj� ðxj� ½n�; qj� Þ (13) can

be based on the sequencing of feature vectors xj½n� (1)

according to the distances dðxj½n�; xj0 ½n�Þ (7) from the cur-

rent central vector xj0 ½n� used in the ball Bj0 ðxj0 ½n�; qj0 Þ
(Fig. 2). The symbol xjðbÞ½n� (xjðbÞ½n� 62 Ck) stands for the

closest vector to the central vector xj0 ½n� (xj0 ½n� 2 Ck (1)):

ð8xj½n� 62 CkÞ dðxj0 ½n�; xjðbÞ½n�Þ � dðxj0 ½n�; xj½n�Þ ð27Þ

Remark 2 The maximal homogeneous ball Bj0 ðxj0 ½n�; qj0 Þ
(13) with the center in point xj0 ½n� has radius qj0 equal to

dðxj0 ½n�; xjðbÞ½n�Þ (27):

qj0 ¼ dðxj0 ½n�; xjðbÞ½n�Þ ð28Þ

Remark 3 The ball Bj0 ðxj0 ½n�; qj0 Þ (13) with the center in

point cj0 ½n� (cj0 ½n� ¼ xj0 ½n�) and radius qj0 (28) contains the

maximal number Mj0 of feature vectors xj½n� among all the

other homogeneous balls Bj0 ðxj0 ½n�; qj0 Þ (13) centered in this

point.

In some cases, the number Mj of feature vectors xj½n�
contained in the homogeneous ball Bjðcj½n�; qj) (13) can be

increased by the center cj½n� displacement (movable cen-

ter), where

ð8j ¼ 1; . . .;mÞ Bjðcj½n�; qjÞ
¼ fx½n� : ðx½n� � cj½n�ÞTðx½n� � cj½n�Þ\q2

i g
ð29Þ

We can distinguish two types of procedures for center cj½n�
displacements:

i: displacements based on averaging

ii: radial displacements
ð30Þ

Both of these procedures start from homogeneous ball

Bjðcj½n�; qjÞ (13) with the center in point cj½n� ¼ xj½n�
(xj½n� 2 Ck (1)) and maximal radius qj ¼ dðcj½n�; xjðbÞ½n�Þ
(28) (Fig. 2).

7 The procedure of displacements based
on averaging

The homogeneous ball Bjðcj½n�; qjÞ (13) with radius qj0 (28)

is enlarged at the beginning of the procedure to heteroge-

neous ball Bjðcj½n�;KqjÞ, with coefficient K greater than

one:

Bjðcj½n�;qjÞ ! Bjðcj½n�;Kqj0 Þ;whereK[ 1 ð31Þ

The ball Bjðcj½n�;Kqj0 Þ contains Mk(1) elements xj½n� of

learning set Ck (1) and some elements of other learning

sets Ck0 . The mean vector mkð1Þ is computed on Mkð1Þ
elements xj½n� of learning set Ck (1) in ball

Bjðcj½n�;Kqj0 Þ:

mkð1Þ ¼
X

j2Jkð1Þ
xj½n�=Mkð1Þ ð32Þ

where Jkð1Þ is the set of indices j of elements xj½n� of

learning set Ck (1) in ball Bjðcj½n�;Kqj0 Þ (31).

The temporary ball B1ðmkð1Þ; qjð1ÞÞ centered in point

mkð1Þ (32) is defined as:

B1ðmkð1Þ;qjð1ÞÞ¼fx½n�:ðx½n��mkð1ÞÞTðx½n��mkð1ÞÞ\q2
jð1Þg
ð33Þ

where

q2
jð1Þ ¼ ðxjð1Þ½n� �mkð1ÞÞTðxjð1Þ½n� �mkð1ÞÞ ð34Þ

and qjð1Þ is the largest distance qj (28):

ð8xj½n� 2 Bjðcj½n�;Kqj0 ÞÞ qj � qjð1Þ ð35Þ

The following stop criterion is used in procedure i.:

the temporary ball B1ðmkð1Þ;qjð1ÞÞ is homogeneous

then Procedure i: is stopped; otherwise

vector xjð1Þ½n� is removed from ball Bjðcj½n�;Kqj0 Þð31Þ;
and step (31) is repeated

ð36Þ

We can see that the above procedure will be stopped after a

finite number of steps.

Working supposition: If coefficient K in enlarged ball

Bjðcj½n�;Kqj0 Þ (31) is not excessively large, then homoge-

neous ball B1ðmkð1Þ; qjð1ÞÞ (33) obtained at the end (36) of

the procedure contains no less elements xj½n� than the ini-

tial homogeneous ball Bjðcj½n�; qj0 Þ (13).

For certain structures of learning sets Ck (1), the

number of elements xj½n� in homogeneous ball

B1ðmkð1Þ; qjð1ÞÞ (33) can be significantly increased as a

result of procedure i (36). The procedure of Displace-

ments based on averaging may be particularly useful, for

example, in the case of learning sets Ck (1) with more

general homogeneous spaces. An example of such a

structure is shown in Fig. 1.

Enlarged ball Bjðcj½n�;KqjÞ (31) was used in the above

procedure description. In a more general formulation, this

procedure can be started from any heterogeneous subset of

feature vectors xj½n� (1).
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8 Procedures of radial displacements

This procedure can be started from any open homogeneous

ball Bj0 ðxj0 ½n�; qj0 Þ (13) which contains Mj feature vectors

xj½n� from only one learning set Ck (2) (xj½n� 2 Ck). The

ball BðxjðaÞ½n�; qjÞ (13) can be characterized by two feature

vectors: the central vector xjðaÞ½n� (xjðaÞ½n� 2 Ck) and the

border vector xjðbÞ½n� (xjðbÞ½n� 62 Ck) with the smallest dis-

tance dðxjðaÞ½n�; xjðbÞ½n�Þ (28) (Fig. 2).

The central vector xjðaÞ½n� and the border vector xjðbÞ½n�
(xjðbÞ½n� 62 Ck) of the open homogeneous ball Bj0 ðxj0 ½n�; qj0 Þ
(13) can be used in the following representation of this ball:

BðxjðaÞ½n�;xjðbÞ½n�Þ¼
fx½n� :ðx½n��xjðaÞ½n�ÞTðx½n��xjðaÞ½n�Þ\d2ðxjðaÞ½n�;xjðbÞ½n�Þg

ð37Þ

The difference between the vectors xjðaÞ½n� and xjðbÞ½n� is

called the radial vector rjðbÞ;jðaÞ½n�:

rjðbÞ;jðaÞ½n� ¼ xjðaÞ½n� � xjðbÞ½n� ð38Þ

Vectors xjðaÞ½n� and xjðbÞ½n� allow to define the following ray

rjðbÞ;jðaÞðaÞ in n-dimensional feature space F½n� (x½n� 2 F½n�):

rjðbÞ;jðaÞðaÞ¼fx½n� :x½n�¼xjðbÞ½n�þaðxjðaÞ½n��xjðbÞ½n�Þg
¼fx½n� :x½n�¼xjðbÞ½n�þarjðbÞ;jðaÞ½n�g; wherea�1

ð39Þ

Radial displacement of ball BðxjðaÞ½n�;xjðbÞ½n�Þ (37) appears

when the central point xjðaÞ½n� is moved along radial vector

rjðbÞ;jðaÞ½n� (38). In this case, the central point xjðaÞ½n� is

replaced by xa½n�:

xa½n� ¼ xjðbÞ½n� þ arjðbÞ;jðaÞ½n�; where a� 1 ð40Þ

and the radius qj ¼ dðxjðaÞ½n�; xjðbÞ½n�Þ (28) is replaced by

qa, where (34):

q2
a ¼ ðxa½n� � xjðbÞ½n�ÞTðxa½n� � xjðbÞ½n�Þ ð41Þ

As a result, the ball BðxjðaÞ½n�; xjðbÞ½n�Þ (37) is replaced by

an enlarged ball Bðxa½n�; xjðbÞ½n�Þ:

Bðxa½n�; xjðbÞ½n�Þ ¼ fx½n� : ðx½n� � xa½n�ÞTðx½n�xa½n�Þ\q2
ag
ð42Þ

Let us define the hyperplane HðxjðaÞ½n�; xjðbÞ½n�Þ tangent to

the ball BðxjðaÞ½n�; xjðbÞ½n�Þ (37) at the border point xjðbÞ½n�:

HðxjðaÞ½n�;xjðbÞ½n�Þ¼fx½n� :x½n�TrjðbÞ;jðaÞ½n�¼xjðbÞ½n�T rjðbÞ;jðaÞ½n�g
ð43Þ

Increasing the parameter a in the ball Bðxa½n�;xjðbÞ½n�Þ (42)

can cause loss of homogeneity inherited from ball

BðxjðaÞ½n�;xjðbÞ½n�Þ (37), where xjðaÞ½n�2Ck (1). However, in

some cases, homogeneity of the ball Bðxa½n�;xjðbÞ½n�Þ (42)

can be preserved despite the increase of parameter a. One

sufficient condition for the preservation of open ball

Bðxa½n�;xjðbÞ½n�Þ (42) homogeneity during the increase of

parameter a can be based on the below condition linked to

tangent hyperplane HðxjðaÞ½n�;xjðbÞ½n�Þ (43) and radial vec-

tor rjðbÞ;jðaÞ½n� (38):

if xj½n�TrjðbÞ;jðaÞ½n�[ xjðbÞ½n�TrjðbÞ;jðaÞ½n�; then xj½n� 2 Ck

ð44Þ

The above condition means that each feature vector xj½n�
(1) situated on the positive side of tangent hyperplane

HðxjðaÞ½n�; xjðbÞ½n�Þ (43) belongs to the same learning set Ck

as the central vector xjðaÞ½n� (xjðaÞ½n� 2 Ck) of the initial ball

Bðxa½n�; xjðbÞ½n�Þ (42). The condition (44) can be verified by

computing the scalar products with radial vector rjðbÞ;jðaÞ½n�
(38) and by checking the inequalities below:

ð8xj½n� 62 Ckð1ÞÞrjðbÞ;jðaÞ½n�Txj½n� � rjðbÞ;jðaÞ½n�TxjðbÞ½n�
ð45Þ

Fig. 1 Two learning sets C1 and C2 with more general homogeneous

spaces

Fig. 2 An example of feature vectors xj½n� (1) sequencing according

to distances (7), where xjðaÞ½n� (xjðaÞ½n� 2 Ck (1)) is the central vector

of the homogeneous ball Bj0 ðxj0 ½n�; qj0 Þ (13) with four elements xj½n�

and xjðbÞ½n� (xjðbÞ½n� 62 Ck) as the border vector of this ball. The

symbols ‘‘x’’ are used for xj½n� 2 Ck (1) and the symbols ‘‘o’’ are used

for xj½n� 62 Ck
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Lemma 2 If each feature vector xj½n� (1) situated on the

positive side (39) of tangent hyperplane HðxjðaÞ½n�; xjðbÞ½n�Þ
(43) belongs to the same learning set Ck as central vector

xjðaÞ½n� (xjðaÞ½n� 2 Ck) of the homogeneous ball

BðxjðaÞ½n�; xjðbÞ½n�Þ (37), then the enlarged ball

Bðxa½n�; xjðbÞ½n�Þ (42) is homogeneous for an arbitrarily

large value of parameter a (a� 1).

Lemma 2 can be proven by geometrical consideration.

This Lemma can be reformulated in the manner below by

using the condition (45).

Lemma 3 If each feature vector xj½n� (1), which does not

belong to set Ck, fulfills the condition (45), then the en-

larged ball Bðxa½n�; xjðbÞ½n�Þ (42) is homogeneous for ar-

bitrarily large values of parameter a (a� 1).

If some feature vectors xj½n� (1) from other learning

sets Ck0 (k0 6¼ k) (1) are situated on the positive side (39) of

the tangent hyperplane HðxjðaÞ½n�; xjðbÞ½n�Þ (43), then the

parallel shifting of this hyperplane allows to skip such a

situation. Let us consider the following shifted hyperplanes

HbðxjðaÞ½n�; xjðbÞ½n�Þ with parameter b (b� 0):

HbðxjðaÞ½n�;xjðbÞ½n�Þ¼fx½n� :x½n�TrjðbÞ;jðaÞ½n�¼xb½n�TrjðbÞ;jðaÞ½n�g
¼fx½n� :x½n�TrjðbÞ;jðaÞ½n�
¼xjðbÞ½n�TrjðbÞ;jðaÞ½n�þbrjðbÞ;jðaÞ½n�TrjðbÞ;jðaÞ½n�g

ð46Þ

where xb½n� ¼ xjðbÞ½n� þ bðxjðaÞ½n� � xjðbÞ½n�Þ ¼ xjðbÞ½n�þ
brjðbÞ;jðaÞ½n�, and b� 1 (39).

Remark 4 If parameter b is greater than certain threshold

bt (bt � 0), then the relation (44) is fulfilled and the en-

larged ball Bðxa½n�; xjðbÞ½n�Þ (42) is homogeneous for arbi-

trarily large values of parameter a (a� 1) (lemma 2).

Enlargement of the homogeneous ball BðxjðaÞ½n�; xjðbÞ½n�Þ
(37) is aimed at increasing the number Mj of feature vec-

tors xj½n� from the learning set Ck (1) contained in this ball.

Shifting (46) of the tangent hyperplane HðxjðaÞ½n�; xjðbÞ½n�Þ
(38) is also done for this purpose.

9 Strategies for designing linearizing layers

The multistage procedure (17) of ranked layer designing

from binary radial classifiers allows to generate, in indi-

vidual steps l, the sequence of L balls Blðxl½n�; qlÞ (13) with

centers xl½n� and radiuses ql as follows:

B1ðx1½n�; q1Þ;B2ðx2½n�; q2Þ; . . .;BLðxL½n�; qLÞ: ð47Þ

The balls Blðxl½n�; qlÞ are designed based on the following

sequence of data sets DkðlÞ (17) reduced in subsequent

steps l, where Dkð1Þ ¼ Ck (1) for l ¼ 1:

ð8k 2 f1; . . .;KgÞ Dkð1Þ 	 Dkð2Þ 	 . . . 	 DkðLÞ ð48Þ

Remark 5 Only one data set DkðlÞðlÞ is reduced during

each step l in accordance with the ranked procedure (17):

ð8l ¼ 1; . . .; LÞ ð8k 6¼ kðlÞÞ DkðlÞ ¼ Dkðl� 1Þand

DkðlÞðlÞ ¼ DkðlÞðl� 1Þ=RkðlÞðl� 1Þ
ð49Þ

where RkðlÞðl� 1Þ is the non-empty set of such feature

vectors xj½n� (xj½n� 2 DkðlÞðl� 1ÞÞ, which are reduced dur-

ing the step l� 1.

In accordance with Designing postulate I (14), the set

RkðlÞðl� 1Þ (49) should be the greatest. This means that in the

context of the radial binary classifiers, the optimal ball

Blðxl½n�; qlÞ (13) with center xl½n� and radius ql should con-

tain the greatest number of elements xj½n� of the reduced

learning set CkðlÞðl� 1Þ. The postulate (14) is an example of

the greedy strategy aimed at designing a ranked layer with a

great power of generalization. The procedure (17) of ranked

layer designing includes Designing postulate I (14) within

Stage 2. Designing postulate II (26) is somewhat more

general than Designing postulate I (14). Postulate II (26) can

lead beyond the greedy strategy, but so far there has been a

lack of efficient computational procedures.

Both the procedures of displacements based on aver-

aging and radial displacements of the homogeneous ball

Bjðxj½n�; qjÞ (13) can be used to obtain a ranked layer with a

great power of generalization. Two types of the above-

mentioned procedures can be used alternatively for par-

ticular balls Bjðxj½n�; qjÞ (13). This means that for some ball

Bjðxj½n�; qjÞ (13), the best results will produce procedure

displacements based on averaging, but for a different ball

Bj0 ðxj0 ½n�; qj0 Þ (13), better results can be achieved by using

the radial displacements procedure. Typically, the best

results mean the modified ball, for example the homoge-

neous Bðxa½n�; xjðbÞ½n�Þ (42), with a large number of ele-

ments xj½n� of one of the sets DkðlÞðlÞ (49).

A key issue remains. Which of the homogeneous balls

Bjðxj½n�; qjÞ (13) should be subjected to individual proce-

dures of displacements (30)? A variety of strategies can be

proposed for the selection of one or more homogeneous balls

Bjðxj½n�; qjÞ (13) and the appropriate technique to modify

these balls. However, this issue requires further study.

10 Experimental results

To demonstrate the particular steps of ranked layer design-

ing, the results of four experiments are presented. The first

experiment was performed on artificial data sets with normal

distributions. In the second experiment, data sets with a ring

structure were used. The third experiment was carried out on
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the well-known and well-understood Iris data set [1], and

finally, three data sets from the UCI repository were chosen.

10.1 Experiment 1

In the first experiment, the procedure of radial displace-

ments (25) of the homogeneous balls Bjðxj½n�; qjÞ (13) was

used. This procedure was applied to the learning sets

generated in accordance with the normal model [9]. Ob-

jects belonging to two categories were randomly generated

from populations with normal distributions with mean

vectors l1 ¼ ½0; 0�, l2 ¼ ½3; 1�, respectively, and the same

covariance matrices R1 ¼ R2, where the variance of the

first class equaled 2.4 and for the second 2.0, and the

correlation coefficient was at level 0.9.

The results are shown in Fig. 3. The initial B1 ball is

centered at the [�0.86, 0.64] point, and the initial radius

is 2.54. Sixty-six objects can be correctly classified in the

first step. Using the procedure with movable centers, the

center is shifted to the c1=[-1.06, 0.69] point. The length

of the final first radius equals q1=2.73. The number of

classified objects, belonging to category 1, is 71, and thus,

the displacement of the center increases this number by

five.

In the second step, the initial B2 ball is centered at the

[4.11, 0.26] point, with a radius of 2.14. The final center in

the second step is c2 = [23.71, �21.87], and the radius is

enlarged to q2 = 31.27. The number of correctly classified

objects in category 2 increases from 61 to 99.

The center of the final B3 ball is c3=[102.33, 148.19],

while the initial center is situated in [2.33, 2.46]. Using the

movable centers procedure, the radius of the final B3 ball

increases from 5.48 to q3=180.47. Both at the first and at the

second setting, there are 17 correctly classified category 1

objects.

In the fourth step, the initial center [�2.01, �2.67] is

displaced to the c4 = [�102.01, �52.14] point. The initial

radius equaled 1.3833 and was enlarged to q4 = 112.699.

Twelve category 1 observations are correctly classified.

In the last step, the remaining one object from the sec-

ond category is classified using the B5 ball with

c5 = [�0.77, �2.06] center and radius 1.

10.2 Experiment 2

The procedure of displacements based on averaging was

used in the second experiment. One hundred and eighty-

one objects of two categories: 66 in the inner ring and 115

in the outer ring are shown in Fig. 4a.

In the first step, the center of the homogeneous ball B1 is

located in the c1 = [-0.09, 0.05] point with the radius

equal to q1 = 0.06. Forty-two inner ring observations can

be correctly classified using this classifier. In the second

step, the homogeneous ball B1ðc1½n�; q1Þ (13) is enlarged to

heterogeneous ball B1ðc1½n�;Kq1Þ, with coefficient K

greater than one. K ¼ 2 is assumed. Inside the ball, there

are 66 inner ring objects and 74 second category objects.

By averaging the featured objects inside the ball, dis-

placement of the center is performed. The new center is

moved to the c2 = [�0.09, 0.03] point. The center cor-

rection is analogical to this in the k-means method. In the

last step, the radius is decreased to q2 = 0.08. Finally, all

66 objects forming the inner ring are correctly classified.

The remaining 115 outer ring objects are correctly classi-

fied using radial classifier B3ðc3½n�; q3Þ with the center

c3 = [�0.10, 0.02] and radius q2 = 0. 15.

10.3 Experiment 3

In the third experiment, the Iris data set was chosen. It is

the well-known and well-understood problem of three

species of irises, where each of 150 flowers is described by

four attributes and belongs to one of three classes. For

calculations, the procedure of radial binary classifiers with

movable centers designing was applied.

The results are presented in Table 1. Five steps were

needed to classify the objects belonging to three classes. In

the first step, the whole category Iris setosa was perfectly

classified by B1 ball with the c1 = [5.1, 103.5, -158.6,

-89.8] center and the enlarged q1 = 211.14 radius. In the

second step, 48 objects belonging to the Iris versicolor

category were classified by the B2 ball with the c2 = [9.7,

3.1, -1.5, -2.5] center and the q2 = 8.39 radius. In the

next two steps, 44 and 6 objects belonging to the Iris vir-

ginica category were classified by B3 and B4 balls

(c3 = [7.5, 3.7, 6.4, 2.7], q3 = 2.46 and c4 = [-95.1,

-67.5, -25.5, -8.3], q4 = 127.22). In the last step, two

remaining objects belonging to the Iris versicolor category

were correctly classified by B5 ball (c5 = [6.0, 2.7, 5.1,

1.6] and q5 = 0.63).

10.4 Experiment 4

In the last experiment, data sets from the UCI repository

were chosen. The first data set (Yeast) contains data of

protein localization sites in yeast bacteria, based on several

bio-statistical tests. The number of objects is 1484, and

each object is described by eight numerical attributes and

the class label (ten classes). The objective of the second

data set (E. coli) is similar—to predict the cellular local-

ization sites of proteins. The data set contains 336 instances

described by seven numerical attributes and the class.

There are eight classes. The third chosen data set is

BreastTissue. It presents electrical impedance measure-

ments in samples of freshly excised tissue from the breast.
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Fig. 3 Results for experiment

1—the initial and final balls of

each step
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One hundred and six instances, nine numerical attributes

and the class are available.

The results for ranked layers of radial binary classifiers

and for modification with movable centers were compared

to the results of the support vector machines with the RBF

kernel approach (Table 2). For the SVM method, the pa-

rameters were fixed as C ¼ 1:0, e ¼ 1e� 12, c ¼ 0:1 or

0.5. The classification tests were performed using the ten-

fold cross-validation. To unify the results, the same shares

assigned to folds were used in our own implementation and

in the Weka System.

In the case of the Yeast data set, the accuracy for the

ranked layers of the radial binary classifiers method as well

as the movable centers approach was 0.51. The data set is

complex and the number of classes is high. Not equally

distributed classes and the fact that objects from various

classes are not separable caused the small accuracy. The

best results (Q = 0.56) were obtained using the SVM with

RBF kernel approach.

The accuracy for the ranked layers of the radial binary

classifiers for the E. coli data set was 0.79. The movable

centers approach gave slightly better results (Q = 0.80),

and it was the highest accuracy among the compared

Fig. 4 Example results of the

procedure of displacements

based on averaging

Table 1 Results for the Iris

data set (ci center of Bi ball, qi
radius of Bi ball, mi number of

classified objects by the Bi ball)

Step i Ball center ci Radius qi mi Category

1 (5.1, 103.5, -158.6, -89.8) 211.136 50 Iris setosa

2 (9.7, 3.1, -1.5, -2.5) 8.398 48 Iris versicolor

3 (7.5, 3.7, 6.4, 2.7) 2.460 44 Iris virginica

4 (-95.1, -67.5, -25.5, -8.3) 127.215 6 Iris virginica

5 (6.0, 2.7, 5.1, 1.6) 0.625 2 Iris versicolor

Table 2 Results for the chosen data sets (m number of objects, n

number of attributes, K number of classes, QRLRBC accuracy for the

ranked layers of radial binary approach, QSVM-RBF accuracy for the

SVM with RBF kernel approach)

Data set m n K QRLRBC QSVM-RBF

Yeast 1484 8 10 0.51 0.56

E. coli 336 7 8 0.79 0.76

BreastTissue 106 9 6 0.45 0.54
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methods. A 0.76 accuracy was obtained for the SVM with

RBF kernel approach.

For the BreastTissue data set, the accuracy for the

ranked layers of the radial binary classifiers was Q ¼ 0:45,

while for the SVM with RBF kernel approach, it was

Q ¼ 0:54.

This method is new and is still being researched to

improve quality and determine the scope of its applica-

bility. In our opinion, these results are encouraging for

further work to optimize the strategy of ranked layer

designing.

11 Concluding remarks

The ranked layer of binary classifiers allows to transform

separable learning sets into sets that are linearly separable.

The problem of learning set linearization is important, for

example, in the context of support vector machine (SVM)

techniques [5]. The linearization of the learning sets in the

SVM approach is not always done successfully through a

search for appropriate kernel functions.

The procedure of ranked layer designing from formal

neurons was described for the first time in paper [7]. In this

approach, the ranked layer was designed using hyperplanes

in the feature space. The basis exchange algorithms, which

are similar to linear programming, allow one to find opti-

mal hyperplane parameters efficiently, even in the case of

large multidimensional data sets.

A computationally straightforward procedure for build-

ing ranked layers using the optimal homogeneous balls was

described in work [8]. This procedure is based on ex-

haustive examination of homogeneous balls centered in all

feature vectors contained in the learning sets.

An extension of the procedure of ranked layer designing

using radial binary classifiers with movable centers has

been proposed and discussed in this work. In particular,

center movements based on averaging and radial

displacements of the open homogeneous balls were pro-

posed and examined. There are still many problems with

this approach, but the results achieved so far are encour-

aging for further research and applications.
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