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Abstract Over the last decade, the prognostics and health

management literature has introduced many conceptual

frameworks for remaining useful life predictions. However,

estimating the future behavior of critical machinery sys-

tems is a challenging task due to the uncertainties and

complexity involved in the multi-dimensional condition

monitoring data. Even though many studies have reported

promising methods in data processing and dimensionality

reduction, the prognostics applications require integration

of these methods with remaining useful life estimations.

This paper describes a multiple linear regression process

that reduces the number of data regimes under considera-

tion by obtaining a set of principal degradation variables.

The process also extracts health indicators and useful fea-

tures. Finally, a state-space model based on frequency-

domain data is used to estimate remaining useful life. The

presented approach is assessed with a case study on tur-

bofan engine degradation simulation dataset, and the

prediction performance is validated by error-based prog-

nostic metrics.

Keywords Failure prognostics � Multi-dimensional data �
Dimensionality reduction �
Remaining useful life estimation

Introduction

Maintenance strategies have witnessed substantial changes

over the years. The paradigm has shifted from classic

breakdown repairs to more complex and sophisticated

condition monitoring strategies, which avoid unnecessary

tasks by taking actions only when there is evidence of

abnormal system behaviors [1]. Due to the increase in the

variety and number of assets with more complex designs,

the maintenance strategies must respond changing expec-

tations and increasing awareness in an attempt to achieve

high plant availability and reliability in operations.

Prognostics can make contributions into these changing

expectations by providing dynamic maintenance planning

strategies for critical engineering systems. They can pro-

vide improved reliability and reduced costs for operation

and maintenance of complex systems. As a steadily

growing subject, prognostics have advanced expertise in

various disciplines [2]. Many breakthroughs in remaining

useful life estimation can be found in complex engineering

systems such as electronics [3, 4], batteries [5, 6], actuators

[7], turbofan engines [8, 9] and NASA’s launch vehicles

and spacecraft systems [10].

In general, a typical prognostic method modeled for the

complex systems depends on measured condition moni-

toring data and provides simplified representations of

complex datasets. Considering that the operations are

generally performed in multiple regimes, data processing

becomes a major issue confronting the prognostic users.

Since it is very unlikely to evaluate the operational and

environmental conditions, a systematic framework for data

processing is required to account for the uncertainties in

prognostics [11]. Such a data processing can analyze the

uncertainties in condition monitoring data for a better

O. Bektas (&) � J. A. Jones

Warwick Manufacturing Group, University of Warwick,

Coventry CV4 7AL, UK

e-mail: o.bektas@warwick.ac.uk

J. A. Jones

e-mail: j.a.jones@warwick.ac.uk

A. Alfudail

Mechanical Engineering Department, Umm Al-Qura University,

Al Taif Road, Makkah 24382, Saudi Arabia

e-mail: asfudail@uqu.edu.sa

123

J Fail. Anal. and Preven. (2017) 17:1268–1275

DOI 10.1007/s11668-017-0368-2

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Crossref

https://core.ac.uk/display/191369526?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://crossmark.crossref.org/dialog/?doi=10.1007/s11668-017-0368-2&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s11668-017-0368-2&amp;domain=pdf


understanding of the system’s damage propagation in

upcoming operational and environmental conditions.

The main objective of this paper is to develop a con-

ceptual prognostic framework to overcome the issues

presented by noisy and multi-dimensional data. Multiple

linear regression is used to model the relationship between

different explanatory regime variables and a monotonic

response variable by fitting an equation to monitoring data.

This process returns the coefficient estimates for a multiple

linear regression of the responses which can be further used

to calculate the response variables of all different opera-

tional trajectories. A state-space model is then proposed to

use these response variables for the multi-step ahead

remaining useful life (RUL) predictions.

Motivation and Problem Statement

For a degradation process that is predicated on system

aging and monotonic damage accumulation and manifests

itself in the physical composition of the system, it should

be possible to correlate sensor behavior with signs of aging

to estimate the remaining useful life of systems [12].

However, the multi-dimensional data caused by multiple

operational regimes could not provide useful information

to measure the monotonic damage accumulation. Further

applications are needed to provide useful information for

remaining useful life predictions.

To identify multi-dimensional data in a degradation

process, let

Xi ¼ ½x1; x2; . . .; xt; . . .; xTi � ðEq 1Þ

be the set of features for the ith unit in a dataset and

xt ¼ ½xt;1; xt;2; . . .; xt;q� ðEq 2Þ

be the q-dimensional feature vector extracted from the raw

data collected from a system [9].

The preprocessing of such raw data is an essential step

to any study relying on any type of data-driven techniques.

To obtain a meaningful wear level index for prognosis, a

data processing approach is applied for feature extraction,

data cleaning and feature selection. The characteristics of

raw data and system conditions are first extracted. Then,

any useless and misleading outliers caused by noise during

operations are removed. This practice first deals with the

issues relating to organizing the multi-dimensional data to

reduce data redundancy and improve regime integrity. The

noisy sensors operating under different regimes are stan-

dardized to each other, and so the common behavior of

sensors can be observed and investigated. Next, a wear

level index can provide comparable and actionable infor-

mation about the common population health, as well as

track degradation progress and performance over time.

Signal Processing and Dimensionality Reduction

The ‘‘turbofan engine degradation simulation dataset’’ used

in this paper was provided by the Prognostics CoE at

NASA Ames and made publicly available [13]. Engine

degradation simulation was carried out using C-MAPSS

software, and four different scenarios were simulated under

different combinations of operational conditions, regimes

and fault modes (see Table 1). Several sensor channels in

the datasets characterize the fault evolution. It is expected

from users to develop their algorithms using training sets

and make the remaining useful life estimations by using

test sets provided in the package.

All four datasets are formed of multi-various time series,

which are assembled into training and test subsets. The

start of each variable is set in normal operational conditions

with an unknown case-specific initial wear level which is

considered normal [13].

Training time series operates in full operational periods

which terminates at a failure point due to the wear. On the

other hand, the test subsets are ended at a certain point

before the engine reaches the system failure. The challenge

is to predict the remaining useful life between the end of

each test set and to validate the results with the actual

failure point which was given separately by a vector cor-

responding to true RUL values of the test data [14].

Each measurement in both data subsets is a snapshot

data which are taken during a single operational cycle.

Although the measurements are not named, it is known to

users that they correspond to different variables [13].

Datasets with single and multiple operational regimes

are used in this paper. It is observed that some sensors

behave differently in different datasets. The raw measure-

ments are highly noisy and scattered values with different

value ranges in each single series.

Table 1 Turbofan engine degradation simulation dataset

characteristics

Dataset: FD001 Dataset: FD003

Train trajectories: 100 Train trajectories: 100

Test trajectories: 100 Test trajectories: 100

Conditions: ONE (sea level) Conditions: ONE (sea level)

Fault modes: ONE (HPC

degradation)

Fault modes: TWO (HPC and fan

degradation)

Dataset: FD002 Dataset: FD004

Train trajectories: 260 Train trajectories: 248

Test trajectories: 259 Test trajectories: 249

Conditions: SIX Conditions: SIX

Fault modes: ONE (HPC

degradation)

Fault modes: TWO (HPC and fan

degradation)
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Multiple Linear Regression

The raw values of selected time series, which are incon-

sistent with each other, need a feature extraction

transformation of the multi-regime data in the high-di-

mensional space to a space of a single wear level

dimension. This transformation can reduce the dimen-

sionality of the time series from their original scales to a

notionally common scale that will include meaningful

information for prognosis.

Feature extraction and dimension reduction can be

combined in one step by using ‘‘multiple linear regression’’

model which performs a mapping of the multi-regime data

to a lower-dimensional space in such a way that the vari-

ance of the measurements in the low-dimensional finding is

maximized. Multiple linear regression calculates the rela-

tionship between different explanatory variables and a

target variable by fitting a linear equation to observed data

[15, 16]. This model is based on:

Y ¼ Xbþ � ðEq 3Þ

where Y is a n� 1 vector of values of the target variable, X

is an n� p matrix of observed responses and b is a n� 1

vector of coefficient estimates for a multiple linear

regression of the responses.

y ¼ b0 þ b1x1 þ b2x2 þ b3x3 þ � � � þ bpxp ðEq 4Þ

More complex models may include multiple observations.

yi ¼ b0 þ b1xi1
þ b2xi2

þ � � � bpxipfor i ¼ 1; 2; . . .; k

ðEq 5Þ

With this equation, the multiple linear regression model

can be formulated in the following form.

y ¼

y1

y2

..

.

yn

2
6666664

3
7777775
X ¼

1 x11 x12 � � � x1n

1 x21 x22 � � � x2n

..

. ..
. ..

. ..
.

1 xn1 xn2 � � � xnn

2
6666664

3
7777775

ðEq 6Þ

In fitting the multiple linear regression model, the

coefficients are calculated by the methods of least squares.

b̂ ¼ X
0
X

� ��1

X
0
y ðEq 7Þ

Synthetic Wear Level Index Estimation

To assign the target variable, a mathematical model for the

synthetic data has been established. This makes it possible

to model a useful prognostic output for raw measurement

data. Since the exact behavior of degradation change is

known, the coefficient variables can be calculated with

regard to the operational setting, and the differences caused

by the noise.

The generalized time-varying health index equation can

be used as a synthetic wear level index to yield supervised

classifications for C-MAPSS datasets [14].

hðtÞ ¼ 1 � d � expðatbÞ ðEq 8Þ

where d is an arbitrary point in the wear space, a and b are

model parameters and t is time. This health index can be

used for various phenomena within a system.

With reference to this function, the following equation

for synthetic wear level index is formulated [9].

sWIt ¼ 1 � exp
logð0:05Þ � ðl � tÞ

0:95 � t

� �
ðEq 9Þ

where t is the time unit and l is the length of time series

representing the full sets of operations. This function forces

exponentially to increase wear levels. In Fig. 1, the wear

levels with different operational length measures are

shown.

The datasets FD002 and FD004 consist of a set of

operational regimes, but the degradation trends can be

clearly seen after the readings at each regime are selected

and monitored separately. In order to increase the perfor-

mance of the multiple linear regression model, the readings

at each regime order can be clustered and the dimension-

ality reduction is applied into these clustered readings [9].

In order to standardize the entire dataset into a common

scale, only the calculated coefficients from a reference

trajectory are applied in Eq. 5. Considering the initial wear

levels and the failure threshold points, the dimensionality

of different raw sensor measurements is organized and all

trajectories in the same dataset are normalized (see Fig. 2)
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Fig. 1 Synthetic wear level measurements (based on the first ten

trajectories from FD002)
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Failure Prognosis

Training trajectories demonstrate full operational life time

of engines, and failure occurs at a certain point which is

accepted as the threshold level for wear growth. Test

subsets, on the other hand, end some time prior to failure

occurrence. This means that there is an unknown time to

failure and also that there are no real data to train

remaining step.

In the lack of future data steps, the state-space modeling

predicts the future behavior of test subsets with a direct

connection from reference training trajectories. It is nec-

essary to train the model with a training subset and then

convert to the estimation mode to make multi-step ahead

remaining useful life estimations by including only the

external test trajectories.

State-Space Estimation Model

The proposed multi-step ahead prediction algorithm esti-

mates a continuous-time state-space model of order nx

using the frequency-domain data, the recurrence relation of

wear level index. The function generates a state-space

model object with identifiable parameters [17].

A state-space model with input u, output y and error

term (disturbance) e is represented by the following

equation in continuous time.

dxt

dt
¼Axt þ But þ Ket ðEq 10Þ

yt ¼Cxt þ Dut þ et ðEq 11Þ

where A, B, C, D and K are state-space matrices, and xt is

the vector of nx states.

Considering the discrete time, the state-space estimation

model takes the following form.

xðkþ1Þ ¼Axk þ Buk þ Kek ðEq 12Þ

yk ¼Ckt þ Duk þ ek ðEq 13Þ

This model matches the measured wear level index. When

the future behavior of the wear level as a state in the model

is concerned, an arbitrary state of the identified model can

be transformed so that the state can make multi-step ahead

predictions.

After the dimensionality of data is reduced to a single

wear level index for each trajectory, it is expected that the

wear growth model can be applied to learn the pattern from

historical data and to estimate remaining useful life time

until the pattern exceeds threshold point. Although the

state-space model can accomplish the training for the

cleaned vectors, it cannot produce predictions of multi-step

long-term time series when exponential growth is present

as in the case in Fig. 2. The exponential series is trans-

formed so that the model can perform well. Then, each

further series is defined as a function of the preceding

values [18].

The corresponding formula for the recurrence relation of

the exponential growth is

xrðiÞ ¼
1 for i ¼ 1

xf ðiÞ=xf ði�1Þ for i� 0

(
ðEq 14Þ

where xr corresponds to the recurrence relation of the wear

index which will be used for state-space modeling and

forecasting.

Since the wear level index is noisy, it is required to be

simplified into a form that is suitable for the recurrence

relation. It is observed that when the wear level is fitted and

recursively defined, the algorithm can perform effectively

in terms of prediction performance.

The proposed model matches the wear level index

between the test trajectories and the corresponding part of

the training trajectories, but the model is interested in the

recurrence relation which is a state in the model. After the

data are recalculated as shown in Fig. 3, the wear index

patterns take a stationary form rather than being non-sta-

tionary. The proposed model has an arbitrary state that can

be transformed so that the stationary state has meaning, in

this case the recurrence relation of the exponential wear

index.

The model then transforms the state coordinates in order

to generate a multi-step ahead predictor expressed in the

same state coordinates as the original training model so that

the model’s state corresponds to the time dependent tra-

jectory cycle size. The key point is to rely on actual, direct

measurements of the recurrence relation of the matching

training trajectory. In practice, the predictor state of the

matching trajectory xn is transformed into the multi-step

ahead prediction state zn. After the multi-step ahead
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Fig. 2 Wear level index of trajectories
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predictor is expressed in the desired state coordinates, it

has a single input, the measured system output, and a single

output, the predicted system output. This predictor function

is simulated to estimate the system output and system state

of the matching training trajectory. When the predictor

state of the test trajectory is applied into that function, the

estimated output of the test data with measured and known

values can be achieved. In Fig. 4, the blue curve shows the

recurrence relation of the original recurrence relation. The

red curve is also the recurrence relation, but it is derived

from a fitted wear level index and it is used in the model to

increase the performance of the model. The yellow curve

shows the forecasted response for 200 hours beyond the

measured test data’s time range.

Subsequently, the final data vectors should be reinstated

to the initial exponential form, after the forecasted values

are received and the predictor function makes multi-step

predictions with these series.

xpðiÞ ¼
xf ðendÞ for i ¼ 1

xpðiÞ � xpði�1Þ for i� 0

(
ðEq 15Þ

RUL estimation of the model corresponds to a unique

number of cycles in each instance. However, all the cal-

culations from multiple training inputs are required to

describe the relative likelihood of the remaining useful life

variable to take on a given value. Therefore, the final

estimation for each instance varies to the other calcula-

tions. Figure 5 illustrates multiple predictions for a single

test trajectory. Each prediction here is estimated from a

different predictor function trained with a different

matching training trajectory. In order to minimize the

prediction risk, the final remaining useful is accepted as the

mean of the top matching predictor calculations.

Remaining useful life is calculated as the time interval

between the end of the test subset and the point where the

prediction value exceeds the value of training subset target

vector. In Fig. 6, the future wear growth at gas turbine

performance is shown. This calculation can be made as

much as the number of compatible training subsets. In

other words, the model can give more detailed and more

accurate results as the amount of operational data

increases.

Results and Discussion

The C-MAPSS turbofan dataset provides a separate vector

of true remaining useful life values for the test data series.

According to their true RUL values, the performance

evaluation metrics based on the estimation performance

can be applied. The measurements have signified their
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Fig. 3 Wear level and recurrence relation
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practical relevance in prognostic designs and have found

their way into multi-step predictions. The metrics used in

this research are based on the works of [14, 19].

Mean Absolute Error

MAE calculates an average of the absolute error terms.

MAE ¼ 1

n

Xn
i¼1

eij j ¼ 1

n

Xn
i¼1

yi � ŷij j ðEq 16Þ

Mean Absolute Percentage Error
MAPE averages the absolute percentage errors in the

predictions of multiple RUL calculations at the same pre-

diction horizon.

MAPE ¼ 100

n

Xn
i¼1

yi � ŷi
yi

����
���� ðEq 17Þ

Mean Square Error
MSE is a risk function that calculates the average of the

squares of the errors.

MSE ¼ 1

n

Xn
i¼1

ei
2 ¼ 1

n

Xn
i¼1

yi � ŷið Þ2 ðEq 18Þ

False Positive Rate (FP) and False Negative Rate (FN)
FP is the ratio where a fault is predicted in spite of the

asset performing within desired conditions. Conversely, a

negative rate is the ratio of unanticipated predictions when

the system would fail.

FPðiÞ ¼
1 error[ tFP

0 otherwise

8<
:

FNðiÞ ¼
1 � error[ tFN

0 otherwise

8<
:

ðEq 19Þ

where tFP, and tFN are the user-defined acceptable early or

late prediction limits.

In Table 2, the prognostic metric results are shown. The

multi-step forecast performance over the long-term cycles

is calculated in a close-range to true remaining useful life.

The performance evaluation prognostic metrics have been

prepared to determine whether or not the designed algo-

rithm or multi-step prediction results can show their

practical results. The developed model seems to exhibit

promising results at multi-step long-term time series pre-

dictions for exponential wear growths. The training of

network could accomplish learning as desired, while

training performance is substantially increased by multiple

predictor function use and the recurrence relation

calculation.

Figure 7 provides a comparison of true and predicted

RULs for the first ten trajectories of all datasets. The box

plots demonstrate that most of the true RULs are within the

range of upper and lower whiskers, whereas a considerable

number are actually between the upper and lower quartiles.

However, some cases are particularly dangerous for the

performance evaluation made by prognostic metrics

because their high error rates are detrimental to the per-

formance level of the entire dataset.

0 50 100 150 200 250
Time

0

0.2

0.4

0.6

0.8

1

1.2
N

or
m

al
is

ed
 W

ea
r L

ev
el

 

Training Trajectory
Multi Step Ahead Prediction
Test Trajectory

Fig. 6 Remaining useful life

Table 2 Prognostic performance metrics

Dataset MAE MAPE MSE FP (%) FN (%)

FD001 13.6 18.2 332.6 60 40

FD002 16.2 26.1 555.5 52 48

FD003 15.7 20.9 498.5 63 37

FD004 18.3 24.3 630.3 56 44

Fig. 7 Comparison of true and predicted RUL
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A comparison of absolute error rates and test trajectory

unit lengths is provided in Fig. 8. In each dataset case, the

error rates show a clear increase as the unit lengths

decrease. Considering that the longer test trajectories are

mature enough to adequately represent system behavior,

the RUL predictions in these samples are generally con-

sistent and do not result in high error rates. It is observed

that the consistency in the mature trajectories is a result of

the grown patterns, which are not affected by undesired

fluctuations in the data. On the other hand, in the case of

short trajectories, the variance in data fluctuations is a

major concern as they might result in undesired failures in

the overall accuracy.

Conclusion

In this paper, a multiple linear regression-based dimen-

sionality reduction model is proposed for multi-step ahead

remaining useful life estimation. The prediction method

builds on a state-space model using frequency-domain

data.

The performance of the proposed prognostic method is

evaluated by four different subsets of turbofan engine

degradation simulation dataset which were simulated under

different combinations of operational conditions and fault

modes. The results have shown that the combination and

filtering of models can yield a low error rate in the

remaining useful life prediction.

Analysis of the multi-step ahead estimation suggests that

the model can determine the remaining useful life of an

average operating system, and can adjust the estimation

over time-based usage data. It is also observed that the

dimensionality reduction model can detect the initial wear

levels of different trajectories.
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