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Abstract The transformation of temporal, one-point

correlation functions into longitudinal spatial and spatio-

temporal correlation functions in turbulent flows using a

simple statistical convection model is introduced. To

illustrate and verify the procedure, experimental data (one-

point and two-point) have been obtained with a laser

Doppler system from a turbulent, round, free-air jet.

1 Introduction

In the study of turbulence, temporal and spatial correlation

functions are fundamental quantities defining characteristic

scales of motion. In particular, integral scales and Taylor

microscales are directly defined from the correlation

function and, under the hypothesis of local isotropy, an

estimate of the rate of dissipation per unit mass can be

obtained.

Experimentally, measurements of correlation functions

have often been performed using single-point measurement

techniques, for example with stationary hot-wire probes

(e.g., Favre 1965) or laser Doppler anemometers (e.g.,

Romano et al. 1999). Temporal Eulerian correlation func-

tions can be obtained directly from the measured time

series. Two-point or spatial correlation functions can be

obtained with an array of multiple probes or, sequentially,

with two measurement probes at varied separations. With

particle image velocimetry (PIV), the Eulerian spatial

correlation can be measured directly from the spatially

resolved velocities at given time instances. However, the

temporal and spatial resolution of PIV usually lacks the

requirements to obtain small scales, for example the Taylor

microscale, with sufficient accuracy. High-speed particle

tracking (e.g., Ouellette et al. 2006) allows the Lagrangian

correlation statistics to be obtained.

Without spatially resolved data, longitudinal two-point

or spatial correlation functions are often approximated by

using single-point, temporal correlation functions and

invoking Taylor’s frozen flow hypothesis (Taylor 1938)

(TH), which assumes that the fluctuating velocity u0 is

small compared to the mean velocity U, that is, u0=U � 1;

thus, spatially fluctuating quantities of the advected fluid

along a path line of the fluid can be observed as temporal

fluctuations at a given point. The functions investigated in

the past span from local derivatives of velocities or of

passive scalars like the temperature, where TH reads

o

ot
¼ �U

o

ox
;

to statistical functions f, like correlations or structure

functions, using

f ðxþ n; tÞ ¼ f ðx; t � n=UÞ:

or

f ðx; t þ sÞ ¼ f ðx� Us; tÞ

Although TH requires small fluctuations compared with

the mean advective velocity, it has not seldom been applied

to turbulent flows, where the above condition is no longer

met. Here, as expected, it has been observed that TH works
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well only at small scales, smaller than the typical scale of

the flow (Lin 1953), where local homogeneity can be

assumed. Corrections due to the fluctuating advective

velocity may or may not be necessary (Heskestad 1965;

Tennekes 1975; Browne et al. 1983; Hill 1996).

If applied to functions on larger scales, corrections of the

TH become necessary, considering the variations of the

velocity in a turbulent flow. Cholemari and Arakeri (2006)

introduce methods which give a correspondence between the

temporal and longitudinal spatial correlations by translating

the time lag into separation or vice versa. However, they

cannot be used to derive the spatio-temporal correlations,

which decrease in amplitude for larger separations.

Cenedese et al. (1991) predict the decrease in correlation by

transfer functions, which work as a phase shifter from lower

to higher frequencies. In He and Zhang (2006) and Zhao and

He (2009), an elliptical approximation based on the second-

order Taylor-series expansion of the spatio-temporal corre-

lation function is introduced, reproducing well the shift and

deformation of the correlation peak. However, the latter two

methods describe the effect phenomenologically and require

empirical parameters to be adapted to the measured data.

In the present study, an integral method based on the

probability density distribution of the fluid velocity is

proposed to transform temporal into longitudinal spatial

and spatio-temporal correlation functions (Sect. 2). The

procedure is validated by comparing results to two-point

correlations measured directly with a laser Doppler system

from a turbulent, round, free-air jet (Sect. 3).

2 Integral time-to-length transform

To transform a temporal correlation function into a longi-

tudinal spatial correlation function, the spatio-temporal

correlation function

Rðn; sÞ ¼ u0ðx; tÞu0ðxþ n; t þ sÞh i

is introduced, where the chevrons mean the expectation of

the inner term. The temporal correlation function obtained

from single-point measurements then is R(0, s) with the

time delay s and no separation (n = 0). The transformation

into the longitudinal spatial correlation function with the

separation n and no time delay is then

Rðn; 0Þ ¼ Rð0;�hÞ ð1Þ

with the time of flight h, which the flow needs to cover the

separation n. Allowing both arguments, n and s of the

transformed correlation function to be varied, the spatio-

temporal correlation function

Rðn; sÞ ¼ Rð0; s� hÞ ð2Þ

is obtained.

TH assumes that the flow is ‘‘frozen’’ while it moves

through the measurement point(s) with the mean velocity U

yielding

h ¼ n
U

ð3Þ

Turbulent flows with fluctuating velocity u(t) may

significantly differ from this ‘‘frozen’’ hypothesis. The

idea of the new integral time-to-length transform (ITLT) is

that any fluid structure with a specific temporal correlation

function, which has been measured at a specific point, can

move to another point in flow direction within a certain

time. This time depends on the varying fluid velocity u.

While TH assumes that this velocity is constant, namely

the mean velocity U, ITLT considers that the velocity and

also the time to cover the separation between the two points

can vary.

For a given separation n, every possible velocity value u

yields a different time of flight h. For given n and u, the

time of flight is determined by

h ¼ n
u

ð4Þ

assuming that u does not change within the separation n (or

within the time of flight h). If u has a probability density

function pu(u), then (for a given n) the time of flight has a

probability density of

phðhÞ ¼
jnj
h2

puðn=hÞ ð5Þ

Integration over all possible times of flight yields an

averaged spatio-temporal correlation function

Rðn; sÞ ¼
Z1

�1

Rð0; s� hÞphðhÞdh ð6Þ

3 Experimental verification

Laser Doppler data have been taken in a turbulent, round,

free-air jet, as illustrated in Fig. 1. The flowfield consists of

the turbulent inner jet and an outer co-flow. Both parts of

the flowfield are seeded. The co-flow is slow and has a low

turbulence intensity of about 1 %. The velocity of the outer

co-flow is expected to be uniform over the outlet, while the

velocity profile of the inner flow is fully developed. The

flow specifications are summarized in Table 1 and the

specifications of the laser Doppler system in Table 2. A

two-velocity component laser Doppler system has been

used with two independent probes, yielding a two-point

system. Both measurement volumes measure the u com-

ponent. The two channels acquire the velocity samples

independently (free-running mode) without coincidence.
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The Reynolds number is 20,000 based on the inner mean

velocity and diameter. The laser Doppler data have been

taken in the center of the jet at a distance x = 320 mm

(40di) downstream. The separation of the measurement

volumes has been varied between n = 0 and n = 32 mm

(4di) with symmetrical shifts of ±n/2 with respect to x. For

one-point measurements, the appropriate data sets have

been selected from the two-point measurements.

The mean velocity U and the RMS velocity u0 are

obtained from the measurements as ensemble averages

applying transit time weighting (Hösel and Rodi 1977;

Fuchs et al. 1994). The mean velocity decays from 7.85 to

7.15 m/s over the measurement region, while the RMS

velocity decays from 1.44 to 1.40 m/s. This corresponds

approximately to an inverse relation with the distance to

some virtual origin lying within the nozzle; the virtual

origin of the RMS data being slightly further inside the

nozzle than the mean velocity data set. A turbulence

intensity u0=U of about 19 % is found, slightly increasing

with the distance from the nozzle. Comparing with

Wygnanski and Fiedler (1969), this small value indicates

that the present free jet may not be fully developed in the

measurement region; this is of no direct consequence for

the present study.

The correlation functions are obtained from the mea-

surements using the fuzzy slotting technique with local

time estimation (Nobach 2002) and transit time weighting.

Then, the correlation functions R(n, s) have been normal-

ized, yielding the correlation coefficient functions q(n, s)

with

qðn; sÞ ¼ Rðn; sÞ
ðu0Þ2

ð7Þ

using the RMS u0 of the fluctuating part of the velocity for

the autocorrelation cases and

qðn; sÞ ¼ Rðn; sÞ
u01u02

ð8Þ

for the cross-correlation cases, where u01 and u02 are the

RMS velocities at the two measurement points.

Figure 2 shows the autocorrelation coefficient function

obtained from the one-point experimental data. Note, that

the variance estimates are biased by data noise, whereas

the correlations are not, yielding an autocorrelation coef-

ficient q\ 1 at s = 0. Figure 3 shows examples of cross-

correlation coefficient functions obtained from two sets

of two-point experimental data for separations n of 0 and

32 mm. The two LDV measurement volumes for two-point

Fig. 1 Experimental setup

Table 1 Flow specifications

Outer diameter, do 140 mm

Inner diameter, di 8 mm

Outer velocity (at nozzle exit) 0.5 m/s

Inner velocity (at nozzle exit), U0 35.9 m/s

Outer volume flux 27.6 m3/h

Inner volume flux 6.5 m3/h

Kinematic viscosity, m 14 9 10-6 m2/s (air)

Reynolds number, Re ¼ U0di

m
2 9 104

Table 2 Specification of the laser Doppler system

Laser Ar?, max. 5 W used with 500 mW,

multi-mode

Wavelength 514.5 and 488 nm

Optical configuration Fiber-coupled probe, backscatter

Frequency shift Bragg cell, 40 MHz

Focal length 310 mm

Measurement volume 400 lm� 50 lm

Processor IFA750
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Fig. 2 Temporal autocorrelation function (ACF) obtained from one-

point measurement
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measurements are aligned parallel. Therefore, the cross-

correlation for two overlapping measurement points

(n = 0) almost reaches the amplitude of the autocorrelation

for one measurement point. While both the noise in the

autocorrelation/one-point case and the differences between

the measurement channels in the cross-correlation/two-

point case generate systematic errors of the estimated

correlation coefficients, this bias does not affect the fol-

lowing derivations of the spatio-temporal transform.

Therefore, no corrections of the correlation functions have

been undertaken.

Based on the mean velocity U and the RMS velocity u0

obtained from the measured data set, the temporal corre-

lation function is transformed into the longitudinal spatial

correlation function using TH [Eqs. (1), (3)] and ITLT

[Eqs. (5), (6)]. In the present study, a Gaussian distribution

of the velocity u is assumed to derive the probability

density function of times of flight. Alternatively, the

probability density can be derived directly from the mea-

sured data.

Figure 4 shows the results of the two transforms in

comparison with the longitudinal spatial correlation func-

tion obtained from two-point measurements. The results of

the different methods have no significant deviations from

each other or from the two-point cross-correlation. Even

the simple transform based on TH shows reasonable

results. This coincides directly with the results found in

Tummers et al. (1995). For a flow with 25 % turbulence

intensity, this is noteworthy, since this is far away from a

‘‘frozen’’ flow condition.

To understand this observation, a detailed look at the spa-

tio-temporal correlation function is useful. Figure 5 shows the

results of the transformation based on TH and ITLT in com-

parison with appropriate temporal cross-correlation functions

from the two-point measurement at a separation of the

measurement volumes of n = 32 mm (4di). The shift in time

of the maximum correlation corresponds to the mean time of

flight to cover the separation. The height of the maximum

decreases, which indicates that the shape of fluid structures

changes during their passage. Furthermore, the peak width

increases, indicating spatial diffusion of the fluid structures.

Similar behavior has been shown by Kerhervé et al. (2008) for

a turbulent round jet and by Cenedese et al. (1991) and by

Chatellier and Fitzpatrick (2005) for other turbulent flow

configurations.

TH simply shifts the autocorrelation function to the time

of flight given by the separation of the probes divided by

the mean velocity. The shape of the obtained spatio-
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Fig. 3 Temporal cross-correlation functions (CCF) obtained from

two-point measurements
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Fig. 4 Comparison of the longitudinal spatial correlation functions

obtained from one-point measurements using Taylor’s hypothesis

(TH) and the integral time-to-length transform (ITLT) compared to

corresponding two-point measurements (CCF)
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measurements using Taylor’s hypothesis (TH) and the integral time-

to-length transform (ITLT) compared to corresponding two-point

measurement (CCF) for a separation of n = 32 mm (4di) with the

autocorrelation function (ACF) for comparison
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temporal correlation function is the same as the autocor-

relation function. Therefore, the transform based on TH is

not able to reproduce the degradation of the correlation

height or the expansion of the correlation width. However,

the accuracy of the predicted time shift by TH is addi-

tionally limited due to the fact that the maximum position

of the correlation peak may deviate from the separation

divided by the mean velocity due to a skewness of the

deformed peak. This yields a correlation peak traveling

slower than the mean velocity as observed by He and

Zhang (2006) and in Zhao and He (2009).

In contrast, ITLT is able to recover the spatio-temporal

correlation correctly, including the time shift, the degra-

dation of the correlation height and the expansion of the

correlation width. Even the skewness of the peak is

reproduced correctly.

In Fig. 6, the results of ITLT are shown in comparison

with the two-point measurements for different longitudinal

spatial separations of the two measurement volumes. The

results of ITLT clearly correspond to the two-point mea-

surements, indicating that ITLT is an appropriate model for

the temporal development of fluid structures, while the

result for TH would fail.

Although the spectral transfer functions from the auto-

correlation to the modeled spatio-temporal correlation

functions are redundant, if the time responses are correct, it is

still interesting to verify the correspondence of the obtained

transfer functions with the results in Cenedese et al. (1991).

Therefore, the experimentally obtained spatio-temporal

correlation functions and the pendents obtained by TH and

ITLT are Fourier transformed and divided by the Fourier

transform of the autocorrelation function.

The diagrams in Fig. 7 show the first 15 complex

spectral transfer coefficients for the case n = 32 mm (4di).

The result of TH rotates in the complex plane with unit

magnitude, corresponding to a simple time shift. Although

the experimental data strongly scatter, ITLT obviously

reproduces the amplitude decreasing with increasing fre-

quency, yielding similar results as in Cenedese et al.

(1991).

Unfortunately, if u changes within the separation n (or

within the time of flight h) the probability density function

of times of flight changes and also the fluid structure

passing by changes, yielding an additional degradation of

the correlation. This case is a strong limitation of the

present transformation method, which requires the tempo-

ral correlation in the Lagrangian framework to be much

longer than the time of flight for a certain velocity and a

given separation of the measurement volumes.

An indication on how good this requirement is fulfilled is

given by comparing the integral time scales derived as the

integral of the cross-correlation coefficient functions for

different separations of the measurement volumes. If the

requirement of small changes during the passage is fulfilled,

the integral time scale should be constant and independent

of the separation of the measurement volumes. Figure 8

shows the integral time scales obtained from the two-point

measurements. With increasing separation, a small decrease

in the integral time scale can be observed. However, it is small

enough to allow reliable application of the ITLT method.

4 Longitudinal spatial correlation

In deriving the spatio-temporal correlation function, ITLT

is clearly superior to the TH. However, if only the longi-

tudinal spatial correlation function is required at turbulence

levels at least up to 25 %, the TH performs as well (Fig. 4).
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measurements using the integral time-to-length transform (ITLT)
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different separations n
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To estimate the longitudinal spatial correlation function

from two-point measurements, only the values at s = 0

(coincidence) are measured for several separations n, while

all other time lags of the spatio-temporal correlation are not

taken into account. However, on the left tail of the spatio-

temporal correlation function, the two transform methods

almost coincide (Fig. 5). Significant deviations are visible

only at the peak center and on the right tail of the spatio-

temporal correlation function. Only for turbulence levels

above at least 25 % could we expect deviations on the left

tail of the spatio-temporal correlation functions occurring

between the TH and ITLT, yielding also differences

between the longitudinal spatial correlation functions.

5 Conclusion

An integral time-to-length transform method has been

introduced. It is capable of reproducing the longitudinal

spatial-temporal correlation by considering fluctuations of

the varying convective velocity. Therefore, it is able to

provide longitudinal spatial and spatio-temporal correlation

functions from temporal correlation functions obtained

from single-point measurements. In the case of turbulent

flows, it is superior to Taylor’s hypothesis of a ‘‘frozen’’

flow. The integral transform method is able to recover the

spatio-temporal correlation correctly, including the time

shift, the degradation of the correlation height, the expan-

sion of the correlation width and the skewness of the peak.

On the contrary, the transform of a temporal correlation

function into a longitudinal spatial correlation function

based on Taylor’s hypothesis is possible up to turbulence

intensities of at least 25 %, because the systematic errors

are small, even if the model of a ‘‘frozen’’ flow is far from

reality. However, for turbulence intensities beyond 25 %,

differences between the methods may occur also at the time

lag s = 0; hence, differences of the obtained longitudinal

spatial correlation function must be expected as well.

However, Taylor’s hypothesis is not able to recover the

temporal development of fluid structures and, therefore, is

not capable of transforming temporal correlation functions

into spatio-temporal correlations, which the integral

method is able to reproduce reliably.
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