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Abstract
In many daily jobs, repetitive arm movements are performed for extended periods of time under continuous cognitive 
demands. Even highly monotonous tasks exhibit an inherent motor variability and subtle fluctuations in movement stability. 
Variability and stability are different aspects of system dynamics, whose magnitude may be further affected by a cognitive 
load. Thus, the aim of the study was to explore and compare the effects of a cognitive dual task on the variability and local 
dynamic stability in a repetitive bimanual task. Thirteen healthy volunteers performed the repetitive motor task with and 
without a concurrent cognitive task of counting aloud backwards in multiples of three. Upper-body 3D kinematics were col-
lected and postural reconfigurations—the variability related to the volunteer’s postural change—were determined through a 
principal component analysis-based procedure. Subsequently, the most salient component was selected for the analysis of (1) 
cycle-to-cycle spatial and temporal variability, and (2) local dynamic stability as reflected by the largest Lyapunov exponent. 
Finally, end-point variability was evaluated as a control measure. The dual cognitive task proved to increase the temporal 
variability and reduce the local dynamic stability, marginally decrease endpoint variability, and substantially lower the inci-
dence of postural reconfigurations. Particularly, the latter effect is considered to be relevant for the prevention of work-related 
musculoskeletal disorders since reduced variability in sustained repetitive tasks might increase the risk of overuse injuries.

Keywords  Dual task · Largest Lyapunov exponent · Movement variability · Musculoskeletal disorders (MSDs) · Postural 
reconfigurations · Principal component analysis (PCA)

Introduction

Movement variability is a pervasive and fundamental aspect 
of human performance. The redundancy of the motor sys-
tem allows for the use of multiple strategies to perform any 
given task. Therefore, even highly monotonous tasks exhibit 
substantial variation over repetitions (Bernstein 1967). This 
inherent motor variability, which can manifest itself both 
in movements and in postures (Srinivasan and Mathiassen 
2012), may be an important index of healthy and functional 

movements. In fact, movement variability has been con-
sidered a prerequisite for flexibility and adaptability, both 
crucial to motor learning (see, e.g., Wolpert et al. 2001; Dha-
wale et al. 2017), which may have implications for the pre-
vention of overuse injuries (Hamill et al. 2012; Stergiou and 
Decker 2011). It has been suggested that one way to prevent 
overuse injuries or pain is to regularly alter the movement 
pattern in the execution of the repetitive task, thereby avoid-
ing an overload of the same soft tissues (Bartlett et al. 2007).
This hypothesis is of particular relevance in occupational 
contexts (Srinivasan and Mathiassen 2012; Madeleine et al. 
2008; Fuller et al. 2011; Côté et al. 2005) for the prevention 
of work-related musculoskeletal disorders.

Characterizing movement variability remains an impor-
tant challenge, since several different methods have been 
used to quantify movement variations, which not necessar-
ily have the same meaning (Van Emmerik et al. 2016). A 
traditional way to quantify movement variability is to use 
discrete movement variables such as the standard deviation 
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of movement amplitudes, i.e., spatial variability (Cignetti 
et al. 2009) or cycle durations, i.e., temporal variability 
(Danion et al. 2014). As opposed to traditional linear meas-
ures, the dynamical system theory (Kelso 1995) takes into 
account both spatial and temporal aspects of the movement 
and emphasizes notions such as stability and critical fluctua-
tions to capture essential features of movements (Harbourne 
and Stergiou 2009), shifting the focus from isolated joints 
towards complex coordinated actions (Bartlett et al. 2007). 
The basic assumption of the dynamical system theory is that 
any multisegmental biological system which shows coor-
dinated motor behavior by activity at the level of muscles, 
joints, and limbs, will find stable macroscopic coordination 
patterns by means of self-organization due to the intrinsic 
dynamics of the interactions at the microscopic level of its 
segments. The term stability in this context refers to the 
capacity of the system to counteract perturbations (Ding-
well and Marin 2006). The largest Lyapunov exponent is 
a nonlinear measure used to determine the local aspects of 
stability (Segal et al. 2008; Dingwell et al. 2001; Hak et al. 
2013). Local dynamic stability refers to the sensitivity of a 
system to small, intrinsic perturbations, and should not be 
confused with global stability. In fact, local fluctuations need 
to be attenuated to maintain global stability (Van Emmerik 
et al. 2016).

Variability and stability, although related, represent dif-
ferent concepts. Their exact relationship is not clear yet. On 
the one side, an increase in movement variability is con-
sidered a source of behavioral change in the system which 
signifies growing instability that may lead to a coordina-
tion shift to a different stable coordination pattern. On the 
other side, some behaviors which seem to be stable, may 
paradoxically show quite some variability (Dingwell and 
Marin 2006). Thus, it seems that variability does not always 
decrease when people get into or refine a stable behavioral 
state. In certain conditions, variability may actually increase. 
This contradictory relationship is noticeable when observ-
ing the rich behavioral repertoire of elite sport players or 
expert musicians (Harbourne and Stergiou 2009; Glazier 
et al. 2003).

An effective way to manipulate variability and stability in 
a cyclical motor task is adding a secondary cognitive task. 
This method is of particular interest in the context of the 
risks for work-related MSDs since cognitive demands are a 
relevant occupational factor which has been shown to affect 
sustained repetitive movements (Srinivasan and Mathias-
sen 2012; Bloemsaat et al. 2005). The underlying theory 
of studies on dual-tasking is that resources are limited, and 
they have to be shared between a cognitive and a motor task, 
consequently performance will suffer (Plummer and Eskes 
2015). In dual-task paradigms, local dynamical stability 
might decrease, in terms of limited resources, since more 
difficult tasks demand more resources and as a consequence 

are less stable (Woollacott and Shumway-Cook 2002; Mag-
nani et al. 2017). The effects of dual-task paradigms on 
movement variability, however, have mostly been contro-
versial (Beurskens and Bock 2013; Beauchet et al. 2005).

In the current study, we designed a repetitive bimanual 
task with no postural constraints, which resembles real work-
related environments. In the context of the just described 
views on movement variability and stability, we here pro-
pose an alternative analysis method. The approach consists 
of applying principal component analysis (PCA) on the 
subjects’ upper-body postural motion (Daffertshofer et al. 
2004; Federolf et al. 2012) to isolate variability related to 
postural reconfigurations, i.e., intermittent and incidental 
changes in posture. We consider such postural configura-
tions as non-linear transitions between two different (pos-
tural) coordination patterns. Our variability and stability 
analyses subsequently were directed to the most salient 
component following the PCA, which, in a sense, was not 
‘contaminated’ by the non-linear, postural reconfigurations. 
Here, different variables were calculated (1) cycle-to-cycle 
spatial and temporal variability and (2) local dynamic sta-
bility as reflected by the largest Lyapunov exponent. As a 
control measure, endpoint variability was also assessed. In 
our view, exploring different methods to quantify movement 
variations at the level of the whole upper body may increase 
our understanding of the role of stability versus variability 
in sustained cyclical motion.

In summary, the goal of the current study was to inves-
tigate the effects of a concurrent cognitive task on differ-
ent types of movement variability i.e., endpoint variability, 
postural reconfiguration, cycle-to-cycle variability, and on 
the local dynamic stability, i.e., largest Lyapunov exponent, 
in a sustained repetitive upper-extremity motor task. In line 
with the view that tasks that demand more resources are 
less stable, we hypothesized that the local dynamic stability, 
would decrease in the dual-task condition. With respect to 
movement variability, no particular effects were predicted 
because of contradictory or absence of earlier findings. Our 
pilot study was conducted to increase our understanding on 
how a cognitive load may contribute to an increased risk for 
work-related overuse injuries, a topic to which we will return 
in the “Discussion” section.

Methods

Participants

Thirteen right-handed healthy subjects (9 female, 4 male; 
25.46 ± 3.46 years) volunteered for this study. No participant 
reported pain or history of injuries in neck, shoulder and 
arm regions. All participants gave informed written consent 
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and the study was approved by an institutionalized ethics 
review board.

Procedure

The protocol consisted of two trials of 5 min each, whose 
order was counterbalanced between participants. In one 
trial, a motor task was performed solo (M) and in the other 
a motor task was performed in combination with a cogni-
tive task (M + C). In the cognitive task, participants counted 
aloud backwards in multiples of three. In the motor task, 
participants performed a sustained repetitive task on a multi-
touch screen, tapping two pairs of visually presented targets 
with both hands simultaneously and in-phase (Fig. 1). Par-
ticipants could perform the task freely (without specified 
rhythm or posture), with the only requirement of touching 
the targets as fast and as accurate as possible. The motor task 
shares common features with the bimanual Fitts’ task used 
in previous studies (Longo and Meulenbroek 2018; Shea 
et al. 2012; Amazeen et al. 2005), however, no specific task 
variations as regards movement amplitude and target width, 
were applied in the current study to enhance its monotony. 
Before starting the measurements, participants were asked 
to adjust the chair height and distance to the touch screen 
to find the most comfortable position. The configuration of 

the chair was then maintained in all trials. All participants 
performed a warming-up trial for a minimum of 30 s or until 
they felt comfortable with the task.

Equipment

A custom-made script in Python 2.7 2010 (Python Soft-
ware Foundation, Beaverton, OR, USA) was implemented 
to present the stimuli and record the endpoint position on 
a 27′′ touch screen (1920 × 1080 resolution; ProLiteb Iiy-
ama, Iiyama Corporation, Tokyo, Japan). Four targets of 
27 mm in diameter were presented, with a between-targets 
distance of 125 mm in anterior direction and a distance of 
155 mm between the targets of the two hands. Xsens MVN 
BIOMECH motion capture suit (Xsens technologies BV, 
Enschede, The Netherlands) was used to record upper body 
kinematics at 60 Hz. Eleven sensor units were placed on the 
head, sternum, pelvis, shoulders, upper arms, forearms and 
hands following the recommendations by Xsens. Anatomi-
cal measurements and calibrations were performed accord-
ing to the procedures provided by Xsens. Data acquisition 
was done via the accompanying software (MVN Studio 4.2, 
Xsens technologies BV, Enschede, Netherlands) which cal-
culates the kinematic data. Thirty joint angles: the 3D angle 
configurations of wrist (2: left and right), elbow (2), shoul-
der (2) and four column angles: C1–Head, T1–C7, T9–T8, 
L5–S1, were considered for further analysis. All joint angles 
were expressed in local coordinate systems following the 
guidelines of the International Society of Biomechanics (Wu 
et al. 2005).

Data analysis

Touch screen data (XY coordinates) of the fingertip posi-
tions realized during the 5-min task were used to quantify 
the endpoint variability. We used the standard measure of 
variable error (VE), which was defined as the mean distance 
of all movement endpoints to the mean endpoint (Gordon 
et al. 1994). For further calculations, we determined for 
each participant the mean of VE for all four targets (VEm). 
One subject was excluded from this analysis since data were 
missing.

Xsens data were used to investigate other types of vari-
ability and local dynamic stability, which were the primary 
interest in the present study. For this purpose, a PCA was 
applied using the 30 joint angles as 30-dimensional input 
vectors. Prior to data analysis, the first 5 s were excluded 
from the raw dataset, to avoid analyzing settling-in behav-
ior. For each trial, every angle vector was normalized by 
subtracting the trial-mean. Then, a single input matrix was 
created with the normalized vectors as columns and the 
data of all subjects and both conditions (M, M + C) concat-
enated vertically. Finally, a single PCA was calculated on Fig. 1   Experimental setup
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this combined input matrix to facilitate direct comparisons 
between participants (Federolf 2016; Gløersen et al. 2017). 
The first three principal components (PCs) were considered 
for the analysis of postural reconfigurations which reflect 
the movement variability related to the volunteer’s postural 
changes ( see also Longo et al. 2018). The first principal 
component was further examined for the analysis of cycle-
to-cycle variability and local dynamic stability in repetitive 
cycles. All calculations in the current study were imple-
mented in Matlab R2015a (MathWorks Inc., Natic, MA, 
USA).

Postural reconfigurations

Changes in the postural configuration (Fig. 2) were deter-
mined by first defining the trends of the first three PCs (black 
lines) through a low pass filter (Butterworth filter; cut-off 
0.1 Hz). Then, the trends were used to classify four phases: 
events—interruptions or unusual movements during the 
execution of the task; transitions—rapid changes from a 
postural configuration to another; non-stationary phases—
gradual changes between postural configurations; quasi-sta-
tionary phases—unchanging postural configurations. In par-
ticular, events were defined by subtracting each trend from 
its PC; an event was marked if the deviation of the PC time 

series from its trend was lower than half its total average 
(i.e., pause within the repetitive task), or if it exceeded two 
times its total average (e.g., unusual movement). The slope 
of the trends underlying the residual time periods were used 
to delineate transitions, non-stationary, and quasi-stationary 
phases, respectively. Specifically, transitions were defined if 
the absolute value of the slope for a minimum of 100 sam-
ples exceeded a threshold of 0.1 and non-stationary phases 
if the absolute value of the slope for a minimum of 300 sam-
ples exceeded a threshold of 0.02. Thresholds and number 
of samples used were specific for our setup and best identi-
fied the four phases. Time periods that were not allocated to 
any of the former phases were marked as quasi-stationary 
phases. If a criterion for any of the phases was met in one 
PC, then this period was delineated accordingly in all PC 
time series (Fig. 2). For further comparisons, the cumulated 
duration per minute of each phase (D) was calculated. Thus, 
for each condition (M, M + C), four dependent variables were 
defined: De (events), Dt (transitions), Dns (non-stationary 
phases), and Dqs (quasi-stationary phases).

Cycle‑to‑cycle variability

Thirty consecutive cycles were selected in the PC1 time 
series in a quasi-stationary phase (Fig. 3a). The cycles 
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Fig. 2   Representative dataset of a 5  min trial of the motor (M) and 
the motor + cognitive (M + C) trial of one arbitrarily selected volun-
teer: the first three PCs are shown. The tapping movement between 
two pairs of targets is printed as a colored line, respectively, quasi-

stationary phases (cyan), non-stationary phases (green), and transi-
tions (red). The black line represents the low pass-filtered underlying 
trend
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selected corresponded to the first quasi-stationary phase 
of at least 30 cycles, i.e., longest consecutive cycles that 
could be detected among all participants and both condi-
tions in the relevant time periods. A cycle was defined 
as a back and forward movement, starting from the tar-
gets closer to the body. The starting points of the cycles 
corresponded to the local maxima of PC1. Spatial (SDC) 
and temporal (SDT) variability were calculated on the 30 
selected cycles. SDC was calculated by first interpolating 
each cycle such that it was represented by 100 samples 
(i.e., expressed in percent). For each sample, the stand-
ard deviation between cycles was determined. Finally, the 
mean of the standard deviations over the whole cycle was 
calculated. SDT was assessed as the standard deviation of 
the movement duration between cycles. The mean of the 
movement duration (Tm) between the 30-selected cycles 
was also assessed as a control measure.

Local dynamic stability

The largest Lyapunov exponent (LyE) was calculated for 
the same 30 cycles selected in the PC1-time series. LyE is 
a measure of local dynamic stability, which quantifies the 

exponential rate of separation of neighboring trajectories of 
the attractor. LyE was calculated by first constructing a state 
space representation of the time series (Fig. 3b). The time 
delay (τ) was determined using the average mutual infor-
mation (AMI; Fraser and Swinney 1986 )and the embed-
ding dimension (m) using a false nearest neighbor algorithm 
(Kantz 1994) Therefore, m = 2 and τ = 9 were selected. 
Finally, LyE values were calculated for the time series using 
Wolf’s algorithm (Wolf et al. 1985; Buzzi et al. 2003.)

Statistical analysis

To determine changes in the postural configuration, the 
cumulated duration per minute of each phase (De, Dt, Dns, 
Dqs) was compared between the two conditions (M, M + C). 
As the data were not normally distributed, a Wilcoxon 
signed-rank test was used. Variables De, Dt, Dns are inde-
pendent and were analyzed applying a Šidák correction for 
multiple comparisons, thus reducing the α-level for sta-
tistical significance to α = 0.0174. For completeness, also 
variable Dqs, which directly depends on the other variables 
(Dqs = 60 s − [De + Dt + Dns]) was analyzed; also applying 
the corrected α-threshold of α = 0.0174. For the analysis of 

M M+C

LyE = LyE =1.97  LyE =3.42  

(a)

(b)

time [s]
0 50 100 150 200 2500 50 100 150 200 250

-40
-20

0
20
40
60

PC
1

time [s]

Fig. 3   a Representation of PC1 of the motor (M) and the motor + cog-
nitive (M + C) trial of one arbitrary selected subject. The enlargement 
shows 30 cycles selected in the quasi-stationary phases for the anal-

ysis of cycle-to-cycle variability. b State space representation of 30 
cycles of the same representative subject for the analysis of the larg-
est Lyapunov exponent
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cycle-to-cycle variability, local dynamic stability and end-
point variability the data were normally distributed, there-
fore, a paired-samples t test was used to compare SDC, SDT, 
Tm, LyE, and VEm for both conditions. Here, the α-level for 
statistical significance was set to α = 0.05. Statistical analy-
ses were performed using SPSS Version 22 (IBM, Chicago, 
IL, USA).

Results

Results of the principal component analysis

Principal components 1–3 represented 44.9, 16.9, and 9.9% 
of the overall variance in the kinematic data, respectively. 
Figure 2 shows an example of the first three PC score time 
series of the M and M + C trial for one selected subject. The 
first principal component (PC1) represented the movement 
component containing the largest variance and, in the cur-
rent study, PC1 was dominated by the cyclic movement pat-
tern of the task. PC2 and PC3 represent variance orthogonal 

to PC1 and were largely affected by postural reconfigurations 
of the subjects.

Motor task versus motor + cognitive task

With respect to endpoint variability, a statistical trend 
was observed in VEm which decreased in the M + C [9.34 
(± 3.22) mm] compared to the M [11.01 (± 3.78) mm] trials 
[t(11) = 1.83, P = 0.095, d = 0.48]. Postural reconfigurations 
(Fig. 4a) revealed a significant main effect in Dqs which was 
higher in the M + C than in the M trial (Z = 2.43, P = 0.015, 
r = 0.67). A statistical trend was found in Dt (Z = 2.02, 
P = 0.043, r = 0.56), indicating more frequent changes in the 
M than in the M + C trial. No significant differences between 
conditions were found in Dns (Z = 1.73, P = 0.084, r = 0.48) 
and in De (Z = 0.67, P = 0.5, r = 0.19).

Cycle-to-cycle variability (Fig. 4b) revealed a signifi-
cant main effect between conditions in SDT [t(12) = 2.39, 
P = 0.036, d = 0.75] indicating higher temporal variability 
in the M + C than in the M trial. However, no significant 
differences between conditions were observed in SDC 
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[t(12) = 0.45, P = 0.664, d = 0.16] and in Tm [t(12) = 1.24, 
P = 0.239, d = 0.33]. Local dynamical stability (Fig. 4c) 
decreased in the M + C as compared to the M trial as 
reflected by an increase of LyE [t(12) = 2.36, P = 0.036, 
d = 0.6].

Discussion

The current pilot study explored the effects of a concurrent 
cognitive task on different types of movement variability, 
i.e., endpoint variability, postural reconfiguration, cycle-
to-cycle variability, and on the local dynamic stability, i.e., 
largest Lyapunov exponent, in a sustained repetitive upper-
extremity motor task. In agreement with our hypothesis and 
the view that tasks that demand more resources are less sta-
ble, the local dynamic stability decreased under dual-task 
conditions (Fig. 4c). However, the effects of the secondary 
cognitive load on different types of movement variability 
revealed contrasting results as compared to earlier studies 
that used different variability measures (Beauchet et al. 
2005; Hollman et al. 2007). Temporal variability increased 
(Fig. 4b), suggesting that the cognitive task caused interfer-
ence due to the competition for attentional resources neces-
sary for the motor task. The increase of temporal variability 
with an additional cognitive load is in line with dual-task 
interference effects reported earlier (Dubost et al. 2006; 
Beauchet et al. 2005). Spatial variability was not affected 
by the counting task and the endpoint variability marginally 
decreased. Simultaneously, the incidence of postural recon-
figurations significantly decreased in the dual-task condition 
(Fig.4a), indicating that participants adopted fixed postures 
for longer periods of time. Since motor variability has been 
purported as beneficial for avoiding overuse injuries and 
pain (Bartlett et al. 2007; Srinivasan and Mathiassen 2012), 
the decrease in postural readjustments due to dual tasking 
may constitute a risk factor for MSDs.

The postural readjustment results may be interpreted 
from the viewpoint of dynamical systems theory as follows. 
Generally, in dual-task paradigms, the challenge for a motor 
system performing movements and a cognitive task is to 
adapt to the secondary task demands without reducing the 
quality of movement performance. The main purpose of a 
dynamical system then is to reach or maintain global sta-
bility. Goal-directed actions are supported by reducing the 
number of biomechanical degrees of freedom of the motor 
system through the formation of functional synergies afford-
ing preferred and stable coordination patterns. However, a 
stable system does permit flexible and adaptive motor behav-
ior, encouraging free exploration of coordination changes 
to be able to acquire different stable motor solutions over 
time, a mechanism known to enhance motor learning (Gla-
zier et al. 2003). Now, if the motor system is perturbed 

due to a concurrent cognitive task, as we observed in the 
current study, local stability may be reduced. A dynamical 
movement system can try to attenuate local fluctuations and 
maintain a stable coordination pattern by adopting another 
functional solution or coordination mode that suits the dual-
task constraints better. The result of this process may be that 
the system is constrained at the joint level thus reducing the 
incidence of postural reconfigurations.

A novelty of the present study is the application of PCA 
for the assessment of different types of variability and local-
dynamic stability. Using this approach, we moved away from 
quantyfing the variability of isolated joints by a limited 
number of pre-selected kinematic variables, and instead, 
moved towards metrics such as postural reconfigurations of 
the whole upper body which allowed us to capture complex 
multijoint coordination and thus provide a fuller account of 
multijoint cyclical movements while coping with a cogni-
tive load. Further, we attempted to better understand what 
distinct parameters measuring variability and stability reflect 
in sustained upper-extremity motion. Our results show that 
LyE and temporal variability reflect unwanted fluctuations 
in performance due to reduced control with an increase in 
task difficulty.The incidence of postural reconfigurations, 
however, reflects a potential beneficial variability due to the 
dynamics of the human movement system. Another benefit 
of distinguishing between different types of variability by 
means of PCA is that the LyE can then be calculated on 
quasi-stationary phases. Stationarity of the underling time 
series is a prerequisite for this calculation, but in human 
movement studies this stationarity is often difficult to define. 
However, one limitation of this approach was that the num-
ber of consecutive cycles needed for the calculation of LyE 
was limited by the occurrence of postural reconfigurations, 
nonetheless the length selected is considered adequate for 
the analysis (cf. Wolf et al. 1985). Further, due to the novelty 
of the current approach and the low sample size, our findings 
need to be taken with caution.

In conclusion, the current findings suggest that under 
cognitive demands, the temporal variability and dynamic 
instability of cyclical arm movements increase. Simultane-
ously, at the postural level, cognitive loads led to a decreased 
incidence of postural reconfigurations. Particularly, for the 
prevention of MSDs, this reduced postural variability should 
be carefully monitored since postural reconfigurations may 
play a role in the prevention of overuse injuries.
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