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Abstract: We analyze freely-acting discrete symmetries of Calabi–Yau three-folds de-
fined as hypersurfaces in ambient toric four-folds. An algorithm that allows the system-
atic classification of such symmetries which are linearly realised on the toric ambient
space is devised. This algorithm is applied to all Calabi–Yaumanifolds with h1,1(X) ≤ 3
obtained by triangulation from the Kreuzer–Skarke list, a list of some 350manifolds. All
previously known freely-acting symmetries on these manifolds are correctly reproduced
and we find five manifolds with freely-acting symmetries. These include a single new
example, a manifold with a Z2 × Z2 symmetry where only one of the Z2 factors was
previously known. In addition, a new freely-acting Z2 symmetry is constructed for a
manifold with h1,1(X) = 6. While our results show that there are more freely-acting
symmetries within the Kreuzer–Skarke set than previously known, it appears that such
symmetries are relatively rare.
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1. Introduction

Discrete symmetries of Calabi–Yau (CY) manifolds, both freely and non-freely acting,
are important for a number of reasons. As an immediate application, freely-acting sym-
metries can be divided out, thereby leading to new CY manifolds with smaller Hodge
numbers. Such quotient CYmanifolds have been used to fill out the previous fairly sparse
tip of the Hodge number plot [1] and, due to their relatively small moduli spaces, they
are useful for string compactifications. Further, most standard constructions lead to CY
manifolds with a trivial fundamental group. Quotients of CY manifolds by freely-acting
symmetries, on the other hand, have a non-trivial fundamental group. In the context of
string compactifications on CY manifolds, the presence of a non-trivial fundamental
group is required whenever gauge field Wilson lines need to be included. For CY com-
pactifications of the heterotic string in particular the inclusion of Wilson lines appears
to be the only viable way [2] to arrive at phenomenologically promising models. In fact,
the limited knowledge about such freely-acting discrete symmetries is one of the current
“bottlenecks” in the attempt to systematically construct heterotic CY vacua [4,5].

Freely (and non-freely) acting discrete symmetries of CYmanifolds can be important
for string compactifications in yet another way. Provided they are not divided out, such
symmetries can translate into discrete symmetries of the resulting lower-dimensional
theory. Such discrete symmetries can carry important information about the structure of
the effective theory, for example forbid certain unwanted operators, and they have been
extensively used in particle phenomenology. The possible origin of such “phenomeno-
logical” discrete symmetrieswithin string theory is an important questionwhich provides
a further motivation for the present paper.

Let us summarise the systematic knowledge on freely-acting symmetries of CY three-
folds to date. The oldest and conceptually simplest set of CY three-folds consists of
complete intersection CY three-folds in products of projective spaces (CICYs), some
7890 manifolds which have been classified in Ref. [3]. Considerable progress has been
made over the past years in finding freely-acting symmetries ofCICYs [6,7], culminating
in Ref. [8] which provides a classification of freely-acting symmetries with a linear
realisation on the projective ambient space for the entire CICY dataset. It was found
that only 195 of the 7890 CICY manifolds have freely-acting symmetries of this kind,
althoughmany of these 195manifolds allow for multiple symmetries. These results have
been used to construct new CICY quotients with small Hodge numbers [6,9] and to
systematically search for physically viable heterotic models on CICYs [4,5]. Especially
the latter work, which has led to the largest set of heterotic standard models to date,
would have been impossible to complete without these results on discrete symmetries
for CICYs.

Much less is known about discrete symmetries for the largest known set of CY three-
folds, hypersurfaces in four-dimensional toric varieties,whichwere classified byKreuzer



Discrete Symmetries of Calabi–Yau Hypersurfaces in Toric Four-Folds 937

and Skarke in Ref. [10]. Somewhat imprecisely but for ease of terminology we will refer
to these manifolds as toric CY (TCY) manifolds. The Kreuzer–Skarke list consists of
about half a billion reflexive polytopes leading to an even larger number of associated
TCY manifolds obtained by triangulation. In Ref. [11], this process of triangulation has
been carried out for all cases with Picard number h1,1(X) ≤ 6 and we will be relying
on this dataset.

Batyrev and Kreuzer [12] have classified all TCY manifolds X with freely-acting
symmetries � such that the quotient X/� can again be described as a TCY manifold.
Amazingly, among the half a billion reflexive polytopes, there are only 16 freely-acting
symmetries of this kind, associated to 16 of these reflexive polytopes.

In general, the quotient manifold associated to a freely-acting symmetry of a TCY
manifold does not have to be a TCY manifold itself. For this reason, there is no expec-
tation that these 16 cases provide a complete list of freely-acting symmetries for TCY
manifolds. In fact, this is already clear from the overlap between the two sets of CICY
and TCY three-folds. For example, it is well-known that the quintic in P

4, which appears
in both data sets, has a freely-actingZ5×Z5 symmetry. The quintic is also among the 16
cases identified by Batyrev and Kreuzer, who find a freely-acting Z5 symmetry. In other
words, only a single Z5 symmetry is “toric” and appears in the classification of Batyrev
and Kreuzer, while the full Z5 × Z5 symmetry is not toric and is, hence, not obtained
by their method. Further examples of this kind are provided by the bi-cubic in P

2 × P
2

(with a toricZ3 symmetry among the 16 cases and a non-toricZ3×Z3 symmetry group)
and the tetra-quadric in P

1 × P
1 × P

1 × P
1 (with a toric Z2 symmetry among the 16

cases and various larger, non-toric symmetry groups). These examples certainly show
that the 16 spaces identified by Batyrev and Kreuzer can have larger symmetry groups
than the toric ones identified in their paper. It is also expected that there are more TCY
manifolds with freely-acting (but non-toric) symmetries and the present paper provides
an example that shows this is indeed the case.

The main purpose of this paper is to take first steps towards a classification of discrete
symmetries for TCY three-folds. While in itself a fairly technical undertaking, this is
highly relevant for the above mentioned tasks, including the construction of CY quo-
tient manifolds with small Hodge numbers, finding phenomenologically promising CY
vacua of the heterotic string and understanding the string origin of discrete symmetries
in particle physics. Given the size and complexity of the Kreuzer–Skarke dataset, a com-
plete classification is also a formidable task well beyond the present scope of available
algorithms and computing power. The required triangulations of the reflexive polytopes
in the Kreuzer–Skarke list have only been carried out for h1,1(X) ≤ 6 [11] and this
sets an upper limit on what we can currently hope to achieve. In this paper we will,
in fact, be more modest and, for our systematic search, restrict to TCY manifolds with
h1,1(X) ≤ 3. This amounts to a class of some 350 spaces. A further restriction concerns
the type of symmetries we take into consideration. For a TCY three-fold X embedded
into a toric ambient four-fold A, we first determine the group G A of symmetries of
A acting linearly on the homogeneous coordinates of A. Then we classify symmetries
groups � of X which can be embedded into G A, that is, symmetries which descend from
linear actions on the ambient space.

Broadly, the algorithm for finding such symmetries � of TCY three-folds X , defined
as the zero loci of families of polynomials p in a toric four-fold A, proceeds as follows.

• Find the ambient space symmetry group G A from the toric data for A.
• For a given finite group �, study all group monomorphisms � → G A.
• For each such group monomorphism, find the family of invariant polynomials p.
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• Check if the hypersurfaces defined by such polynomials p are generically smooth.
• For freely-acting symmetries, check if the symmetry action is fixed point free on X .

For the case of freely-acting symmetries, the Euler number, η(X), of the CY manifolds
needs to be divisible by the group order |�|. A given TCYmanifold X (with η(X) �= 0),
therefore, has a finite list of candidate symmetry groups�. There are further indices [13],
depending on the embedding X ⊂ A, which need to be divisible by the group order |�|
and which can be used to constrain the possible freely-acting groups � further (or, in
cases where η(X) = 0, provide some non-trivial constraints). The net result is a finite
list of group orders and, hence, a finite list of possible freely-acting symmetry groups
for a given TCY three-fold, each of which can be analysed using the algorithm outlined
above.

For non freely-acting groups there is no simple a priori constraint on the group order.
However, we can still apply the above algorithm (dropping the last step of checking fixed
points) for the finite number of groups at any given group order, starting with group order
two and successively increasing up to a desired maximum. In this way, we can find all
symmetries (embedded into G A), freely-acting or not, up to a given maximal group
order. In practice, since symmetry groups of CY manifolds tend to be small, this can
amount to a complete classification provided the group order can be pushed sufficiently
high.

By applying this procedure, we find all freely-acting symmetries, linearly realised
on the ambient space, of the ∼ 350 TCY three-folds with h1,1(X) ≤ 3. We recover all
symmetries among these manifolds known from the Batyrev-Kreuzer classification, as
well as those known from the overlap with CICY manifolds. We find a single new, non-
toric symmetry group, Z2×Z2, on one of the 16 Batyrev-Kreuzer manifolds, where one
of the Z2 sub-groups is the toric symmetry identified by Batyrev and Kreuzer. In total,
there are five TCY three-folds with h1,1(X) ≤ 3 and with freely-acting symmetries. Our
results are summarised in Sect. 4.

While these systematic results show that there are new freely-acting symmetries,
beyond those identified by Batyrev-Kreuzer and those known from CICYmanifolds, the
search has not led to new manifolds with freely-acting symmetries. To show that such
manifolds exist, we also use our algorithm to construct a freely-acting Z2 symmetry
for a TCY manifold with h1,1(X) = 6, which is neither among the 16 manifolds of
Batyrev-Kreuzer nor a CICY manifold.

Theoutline of the paper is as follows. In the next section,wedescribe themathematical
background for our algorithm at a relatively informal level, with technical details and
proofs relegated to the Appendices. Section 2.7 sets out the classification algorithm
which is applied to two specific examples in Sect. 3. Our results from the systematic
search of all TCY manifolds with h1,1(X) ≤ 3 are given in Sect. 4 and we conclude in
Sect. 5.

2. Construction of Discrete Symmetries

In this section we review some background material on toric geometry and describe
our algorithm for classifying freely acting symmetries of TCY manifolds. Our presen-
tation will be informal and we will focus on the main ideas and results relevant for the
classification algorithm. Technical details and proofs can be found in the Appendices.
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2.1. Toric Calabi–Yau hypersurfaces. The central objects of interest are Calabi–Yau
three-folds defined as hypersurfaces in toric four-folds, TCY manifolds for short. This
section provides a short review of TCYmanifolds, mainly to set the scene and introduce
the required notation. For a more thorough discussion the reader may, for example,
consult Refs. [11,14,15]. We begin with a broad outline of the construction.

Following Ref. [14], TCY manifolds (along with their mirrors) can be constructed
elegantly from a pair of reflexive polytopes � and �◦. Underlying the construction
are two four-dimensional lattices M ∼= Z

4 and N ∼= Z
4 with pairing 〈· , ·〉, such that

� ∈ MR and �◦ ∈ NR satisfy

〈�,�◦〉 ≥ −1. (2.1)

A fan � can be associated to the polytope �◦ in the following way. First note that
reflexivity of �◦ means that the origin of N is the unique interior lattice point of �◦.
All other lattice points vi of �◦ are primitive generators of the rays of the fan �. The
cones of � are given by a triangulation of �◦, that is by forming subsets of the vi , each
of which contains the generators of a cone. We will only consider triangulations which
are star, regular and fine.1

The fan � gives rise to a toric four-fold A = P� by a construction which we will
review below. Within this toric four-fold, TCY three-folds are defined as zero loci of
polynomials p, whose constituent monomials are encoded by �, the Newton polytope
of the hypersurface equation, as explained in more detail below. The so-defined TCY
hypersurfaces are denoted by X . Although the ambient space P� is not necessarily
smooth, for CY three-folds every fine triangulation leads to a smooth hypersurface
X [14].

It can be computationally expensive procedure to find all triangulations of a polytope
�◦ which give rise to a smooth Calabi–Yau hypersurface. However, not all of the trian-
gulation data is crucial for the geometry of X . In particular, we may ignore everything
which happens inside of faces of codimension one of �◦. Furthermore, it is sufficient
to specify a triangulation of �◦ in terms of its cones of maximal dimension, which are
denoted by tr(�◦). The task of constructing all triangulations for sufficiently simple
polytopes, that is, those with few lattice points, has been completed in Ref. [11] and this
work represents the natural input data for our algorithm.

Let us now be more specific about the construction. The data in Ref. [11] provides
a list vi = (vir )r=1,...,4 ∈ �◦ ∩ N , where i = 1, . . . , n, of the lattice points of the
polytope �◦, along with a triangulation tr(�◦), that is a list of cones which constitute
the fan � ⊂ NR.

There are several ways to construct the toric ambient space A = P� from the data
encoded in the fan �. Here we will focus on the “global construction” in terms of
homogeneous coordinates which is best suited for our discussion of symmetries. In this
approach, P� is found as a quotient of an appropriate “upstairs” space by a group G.
The starting point for this construction is the space C

n with coordinates xi which are in
one-to-one correspondence with the ray generators vi of �. From this space we need
to remove the exceptional set Z(�) which is obtained as follows. Consider index sets
I = {i1, . . . , i p} ⊂ {1, . . . , n} for which the corresponding generators {vi | i ∈ I } do
not share a common cone in�. For any such I , this property is preserved if we enlarge I
by adding further indices, so that there is a minimal choice of such index sets generating
all of them. This choice is related to the generators of the Stanley–Reisner-ideal and we

1 When constructing a triangulation, one may ignore all lattice points on �◦ in the interior of three-
dimensional faces as such an omission has no effect on a Calabi–Yau hypersurface.
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denote the set of such minimal index sets by I. With the corresponding zero loci

Z(I ) = {x ∈ C
n | xi = 0 ∀ i ∈ I } ⊂ C

n , Z(�) =
⋃

I∈I
Z(I ) , (2.2)

we can construct the “upstairs” space of the quotient we want to describe by removing
the total zero locus Z(�) from C

n , that is, by

B = C
n − Z(�). (2.3)

To obtain the toric variety A, this upstairs space needs to be divided by the toric
group G ⊂ (C∗)n whose elements t = (t1, . . . , tn) ∈ (C∗)n act on C

n multiplicatively
as xi → ti xi . The group G consists of all t ∈ (C∗)n which satisfy

n∏

i=1

tvir
i = 1 for all r = 1, . . . , 4,

and, in general, has a continuous part isomorphic to (C∗)n−4 and a finite part. Note that
G only depends on the lattice vectors vi but not on how they are grouped into cones.
Consequently, G is the same for any triangulation of a given polytope. The continuous
part of G can be explicitly obtained from the linear relations

n∑

i=1

qri vi = 0 (2.4)

between the generators vi . The coefficients qri in these relations form a (n − 4) × n
matrix Q, the so-called charge matrix, whose columns we denote by qi . The continuous
part of the toric group can then be written as

Gcont = {(sq1, . . . , sqn ) | s ∈ (C∗)n−4} ∼= (C∗)n−4, (2.5)

where s = (s1, . . . , sn−4) are the group parameters and we have used the short-hand
notation sqi = ∏n−4

r=1 sqri
r .

The toric variety A = P� associated to the fan � can now be constructed as the
quotient

A = B

G = C
n − Z(�)

G . (2.6)

With the ambient space in hand, the family of polynomials defining the TCY mani-
folds X ⊂ A is finally given by

p =
∑

m∈�∩M

cm
∏

vi∈�◦∩N\{0}
x 〈m,vi 〉+1

i . (2.7)

for a choice of complex constants cm. The sum in this expression runs over all lattice
point of the Newton polytope � which can be obtained from �◦ using Eq. (2.1). The
Hodge numbers h1,1(X) and h2,1(X) of X can also be computed from the data encoded
by the polytopes � and �◦ using the well-known results from Ref. [14].

The following is an example of a global TCY construction, following the route
outlined above. This example will also be useful in order to illustrate our procedure for
classifying symmetries and we will repeatedly come back to it as we go along.
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Example. Let us consider a polytope �◦ with five vertices v1, . . . , v5 given by the
columns of the matrix

(v1, . . . , v5) =
⎛

⎜⎝

−1 −1 1 −1 −1
0 0 −1 0 4
0 0 0 2 −2
0 1 0 0 −1

⎞

⎟⎠ . (2.8)

Furthermore, this polytope also contains the integral points v6 = (−1, 2,−1, 0) and
v7 = (−1, 0, 1, 0), which are interior to one-dimensional faces, the origin (0, 0, 0, 0),
which is the unique interior point, as well as the integral point v8 = (−1, 1, 0, 0), which
is interior to a three-dimensional face and can, hence, be neglected. The triangulation is
unique and reads explicitly

tr(�◦) = {[v5, v6, v1, v7] , [v5, v6, v1, v3] , [v5, v6, v7, v4] , [v5, v6, v4, v3] ,
[v5, v1, v7, v3] , [v5, v7, v4, v3] , [v6, v1, v7, v2] , [v6, v1, v2, v3] ,
[v6, v7, v4, v2] , [v6, v4, v2, v3] , [v1, v7, v2, v3] , [v7, v4, v2, v3]} (2.9)

It follows that the zero set associated to this triangulation is described by the index set

I = {{1, 4}, {2, 5}, {3, 6, 7}} (2.10)

and is explicitly given by

Z(�) = Z({1, 4}) ∪ Z({2, 5}) ∪ Z({3, 6, 7})
= {x1 = x4 = 0} ∪ {x5 = x2 = 0} ∪ {x6 = x7 = x3 = 0}. (2.11)

From the above vertices and Eq. (2.4) the charge matrix (with the columns ordered as
v1, v2, . . . , v7) can be determined as

Q =
⎛

⎝
1 0 0 1 0 0 −2
0 1 0 0 1 −2 0
0 0 2 0 0 1 1

⎞

⎠ . (2.12)

The polar dual polytope � can be obtained from Eq. (2.1) and it has the five vertices
given by the columns of the matrix

⎛

⎜⎝

−7 1 1 1 1
−6 0 2 2 2
−4 0 0 0 4
−8 0 0 8 0

⎞

⎟⎠ . (2.13)

The defining polynomial, p, of the TCY manifold can then be computed from Eq. (2.7)
by summing over all the lattice points of�. For example, the five monomials in p which
arise from the above vertices of � are explicitly given by

x81 x47 , x23 , x85 x46 , x82 x46 , x84 x47 . (2.14)

However, the most general polynomial p has many more terms from the other lattice
points of �. From the standard formulae, the Hodge numbers of the so-defined TCY
manifold X = {p = 0} ⊂ A = P� are given by h1,1(X) = 3 and h2,1(X) = 83. ��
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2.2. Constraints on the order of symmetry groups. Freely-acting symmetries � of a
CY manifold X are severely constrained since certain topological indices need to be
divisible by the group order |�|. The simplest example for such an index is the Euler
number, η(X), of the manifold. The Euler numbers of X and its quotient X/� by a
freely-acting symmetry � are related by η(X/�) = η(X)/|�| and this shows that η(X)

must indeed be divisible by the group order |�|. For manifolds with η(X) �= 0 this
already implies a finite number of possible group orders, and, hence, a finite number of
possible freely-acting groups.

When the manifold X is embedded into an ambient space A with normal bundle N ,
as is the case for TCY manifolds, there are further indices which need to be divisible
by |�|. From Ref. [13], one class of such indices is given by the indices of the bundles
N k ⊗ T Xl , where k, l ∈ Z

≥0. Explicitly, they are given by

χk,l := ind(N k ⊗ T Xl) =
∫

X
td(T X) ∧ ch(N k ⊗ T Xl) (2.15)

where td(T X) = 1 + 1
12c2(T X) is the Todd class of the CY manifold X . These quan-

tities need to be divisible by |�| for all (k, l) but, as has been shown in Ref. [13],
this is the case if and only if |�| is a divisor of the four indices χk,l with (k, l) ∈
{(0, 1), (1, 0), (2, 0), (3, 0)}.

Another relevant set of indices [13] are the modified signatures of the bundles N k ⊗
T Xl , defined by

σk,l := σ(N k ⊗ T Xl) =
∫

X
L(T X) ∧ c̃h(N k ⊗ T Xl) , (2.16)

where L(T X) = 1− 1
3c2(T X) is the L-genus of the CY manifold and c̃h is the Chern

character with the curvature R replaced by 2R. It has been argued in Ref. [13] that the
only new condition from these signatures arises from σ1,1.

In summary, in order to strengthen the constraint on |�| from the Euler number (or, in
the case η(X) = 0, to obtain constraints in the first place), we should consider divisibility
by |�| of the bundle indices χ0,1, χ1,0, χ2,0 and χ3,0 in Eq. (2.15) and divisibility of the
signature σ1,1 in Eq. (2.16). This leads to a finite list of possible group orders |�| and,
therefore, to a finite list of possible freely-acting groups � which can be systematically
analysed based on the algorithm described below. For our example this works as follows.

Example. Let us work out the above indices for our standard example. For the Euler
number it follows that η(X) = 2(h1,1(X) − h2,1(X)) = −160. Using the explicit
formulae in Ref. [13] we find for the other indices

χ0,1 = −80 , χ1,0 = 104 χ2,0 = 720 , χ3,0 = 2360 , σ1,1 = −1280. (2.17)

The greatest common divisor of these indices is 8 and, hence, the possible orders of
freely-acting groups for the manifold are |�| ∈ {2, 4, 8}. ��

As mentioned before, we are not aware of similar constraints on the order of non-
freely acting symmetries. In this case, the best we can do is to apply our algorithm to all
finite groups up to a given maximal order.
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2.3. Symmetry group of the ambient space. With a description of the ambient toric
space in hand, we are now in a position to find the subgroup, G A, of the ambient space
automorphism group which is linearly realized on the homogeneous coordinates xi . For
simplicity, we will simply refer to G A as the toric symmetry group. More details on
the full automorphism group of a toric variety and the toric symmetry group, including
proofs for the statements in this section, can be found in Appendix A.

As mentioned above, we will only consider linear transformations on the homoge-
neous coordinates xi , that is, elements of Gl(n, C). Our first task is to find the sub-group
G B ⊂ Gl(n, C) of linear automorphisms of the “upstairs” space B, defined in Eq. (2.3).
Then, we will study how such actions descend to the quotient A (2.6), which we will
refer to as the “downstairs” space.

We recall that the structure of B is encoded in the set I which contains index sets
I ⊂ {1, . . . , n}, one for each zero locus Z(I ) which is removed from C

n in order to
obtain B. While the index sets I ∈ I can overlap, that is corresponding zero sets Z(I )
can have a non-trivial intersection, it is straightforward to define a refinement of I,
denoted J , whose index sets form a partition of {1, . . . , n}. Specifically, we can define
an equivalence relation ∼ on {1, . . . , n} by

i ∼ j : ⇐⇒ i, j are contained in the same sets I ∈ I. (2.18)

The refinement J then consists of the equivalence classes under this relation.

Example. The index set I for our example (2.10) is a clean partition of {1, . . . , 7} and
for this reason we have

J = I = {{1, 4}, {2, 5}, {3, 6, 7}}. (2.19)

The equality of the two sets is a special feature of this particular example. In general,
the index sets I and J can be different. ��

There are a number of obvious sub-groups of G B which can be written down imme-
diately. These include the discrete permutation groups

S = {σ ∈ Sn | σ(I ) = I, ∀ I ∈ I} ⊂ Sn , R = {σ ∈ Sn | σ(I ) ∈ I, ∀I ∈ I} ⊂ Sn,

(2.20)
which, via the obvious embedding Sn ↪→ Gl(n, C), can also be thought off as sub-groups
of Gl(n, C). The first of these groups is the stabiliser group of the zero sets labelled by
I ∈ I, that is, it leaves each component, Z(I ), of the zero set unchanged. The second
group, R, maps the zero sets into each other. Clearly, both S and R leave the total zero
set Z(�) invariant and are, hence, sub-groups of G B .

It can be shown (see Appendix A) that

S =
⊗

J∈J
S(J ) , R ∼= P � S , (2.21)

where S(J ) is the group of permutations on the set J , and P = R/S. The group P
can be worked out explicitly by finding all permutation in Sn which map the index sets
J ∈ J into each other and which preserve the “natural” order of indices within each set
J . In other words, P should be thought of as the group which permutes zero sets.

Another obvious sub-group of G B is given by

HB = {g ∈ G B | g(Z(I )) = Z(I ), ∀I ∈ I} ⊂ G B , (2.22)



944 A. P. Braun, A. Lukas, C. Sun

that is, the sub-group which leaves the components Z(I ) of the zero set invariant indi-
vidually. It can be shown (see Appendix A) that

HB =
⊗

J∈J
Gl(J, C) , (2.23)

where Gl(J, C) denotes the general linear group acting on the coordinates x j , where
j ∈ J . It turns out that the full upstairs symmetry group G B can be expressed in terms
of the above groups and is, in fact, given by

G B = P � HB . (2.24)

In summary, the upstairs symmetry group G B consists of two parts, the group HB which
consists of blocks of general linear groups whose action leaves the components of the
zero sets Z(I ) unchanged and a permutation part, P , which permutes components of
the zero set.

Example. With the set J for our example in Eqs. (2.19) and (2.21) it follows that the
permutation groups S and P are given by

S = S({1, 4}) × S({2, 5}) × S({3, 6, 7}) ∼= S2 × S2 × S3 (2.25)

P = {id, ((2, 1), (4, 5), (3), (6), (7))} ∼= S2 (2.26)

where the permutation which generates P (given above in cycle notation) swaps the two
blocks {2, 5} and {1, 4}. From Eq. (2.23), we find for the continues part of the upstairs
symmetry group

HB = Gl({1, 4}, C) × Gl({2, 5}, C) × Gl({3, 6, 7}, C). (2.27)

In accordance with this structure, let us order the coordinates as ((1, 4), (2, 5), (3, 6, 7)).
The elements h ∈ HB can be represented as 7×7matriceswhich, relative to this ordering
of coordinates, have the form

h =
⎛

⎝
h2 0 0
0 h̃2 0
0 0 h3

⎞

⎠ . (2.28)

Here h2, h̃2 are general linear 2×2 matrices, acting on the coordinates (1, 4) and (2, 5),
respectively, while h3 is a general linear 3×3 matrix acting on the coordinates (3, 6, 7).
For the same ordering of the coordinates, the matrix version of the generator of P in
Eq. (2.26) can be written as

p =
⎛

⎝
0 12 0
12 0 0
0 0 13

⎞

⎠ . (2.29)

The upstairs symmetry groupG B = P�HB can then be viewed as allmatrices generated
by the matrices in Eqs. (2.28) and (2.29). ��
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The symmetry group G A of the toric variety A is the part of the upstairs symmetry
groups G B which descends to the quotient A = B/G. On general grounds, this part is
given by the formula

G A = NG B (G)

G , (2.30)

where NG B (G) denotes the normalizer of G within G B . The task is to evaluate this
formula for the upstairs symmetry group G B as given in Eq. (2.24) and this is explicitly
carried out in Appendix A. Here, we summarise the result which can be expressed in
terms of two further index sets K and L. The index set K is defined as containing the
sets K ⊂ {1, . . . , n} which label coordinates with the same charge qi . This means that
the toric group G can also be written as

G =
⊗

K∈K
GqK (K ). (2.31)

whereGqK (K ) denotes the groupwhich acts bymultiplying the coordinates xk for k ∈ K
by sqK . The second index set,L, is simply the refinement of the index sets J andK, that
is, it consists of all non-empty intersections J ∩K , where J ∈ J and K ∈ K. In general,
this will be a new index set, distinct from the ones introduced previously. However, for
reflexive polytopes, which is our case of interest, it can been shown (see Appendix A)
that L = K.

The downstairs versions of the groups R and S are defined as

RA = R ∩ NGl(n,Cn)(G) , SA = S ∩ CGl(n,Cn)(G) , (2.32)

where CGl(n,Cn)(G) is the centralizer of G in Gl(n, C
n). As before, we can write RA as

the semi-direct product

RA = PA � SA, PA = RA/SA. (2.33)

In other words, the group RA consists of all the elements of r ∈ R which normalize G,
that is, all r ∈ R for which the equations

sqr(i) = s̃qi (2.34)

have solutions s̃ ∈ (C∗)n−4 for all s ∈ (C∗)n−4. Then PA contains permutations in RA
which preserve the order of indices within each block K ∈ K but permute the blocks
with one another. Hence, PA can also be viewed as a sub-group of S(K), the permutation
group of the blocks K ∈ K. With this notation the symmetry group of the toric space A
can be written as

G A = PA � (HA/G) , HA =
⊗

K∈K
Gl(K , C). (2.35)

As usual, the above semi-direct product is defined by the multiplication rule

(p, h)( p̃, h̃) := (p p̃, p̃−1h p̃h̃) (2.36)

for p, p̃ ∈ PA and h, h̃ ∈ HA/G. Evidently, this symmetry group has the same structure
as its upstairs counterpart. There is a continuous part, HA/G, with blocks of general
linear groups acting on the homogeneous coordinates in a way that is consistent with the
structure of A, and a discrete part, PA, which permutes these blocks. For our example,
following the above steps leads to the following.
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Example. The charge matrix (2.12) for our example shows that the index set K is given
by

K = {{1, 4}, {2, 5}, {3}, {6}, {7}}. (2.37)

This is indeedmerely a refinement of the index setJ in Eq. (2.19) so that the intersection
of J and K does indeed not lead to a new index set, in line with our earlier claim. If we
write the charge vectors (2.12) as

q{1,4} =
⎛

⎝
1
0
0

⎞

⎠ , q{2,5} =
⎛

⎝
0
1
0

⎞

⎠ , q{3} =
⎛

⎝
0
0
2

⎞

⎠ , q{6} =
⎛

⎝
0

−2
1

⎞

⎠ , q{7} =
⎛

⎝
−2
0
1

⎞

⎠ ,

(2.38)
then, from Eq. (2.31), the toric group can be written as

G = Gq{1,4}({1, 4}) × Gq{2,5}({2, 5}) × Gq{3}({3}) × Gq{6}({6}) × Gq{7}({7}). (2.39)

In practice, adopting the coordinate ordering ((1, 4), (2, 5), (3), (6), (7)) as before, the
elements of G are given by the 7× 7 matrices

g = diag(sq{1,4} , sq{1,4} , sq{2,5} , sq{2,5} , sq{3} , sq{6} , sq{7}), (2.40)

with s = (s1, s2, s3) the three parameters of the toric group. From Eq. (2.35), we also
find

HA = Gl({1, 4}) × Gl({2, 5}) × Gl({3}) × Gl({6}) × Gl({7}), (2.41)

with associated matrices h ∈ HA of the form

h =

⎛

⎜⎜⎜⎜⎝

h2 0 0 0 0
0 h̃2 0 0 0
0 0 h1 0 0
0 0 0 h̃1 0
0 0 0 0 h′1

⎞

⎟⎟⎟⎟⎠
, (2.42)

where h2, h̃2 are general linear 2 × 2 matrices and h1, h̃1, h′1 ∈ C
∗. The permutation

part PA can be determined by solving the Eqs. (2.34) for this case, using the charge
matrix (2.12). The result is that PA is generated by the matrix

p̃ =

⎛

⎜⎜⎜⎝

0 12 0 0 0
12 0 0 0 0
0 0 1 0 0
0 0 0 0 1
0 0 0 1 0

⎞

⎟⎟⎟⎠ , (2.43)

which simultaneously permutes the blocks (1, 4) with (2, 5) and (6) with (7). Hence
PA ∼= S2. ��
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2.4. Construction of representations. Having determined the symmetry group G A of
the toric ambient space, our next step is to study group monomorphisms R : � → G A
from a finite group �. Given the structure of G A in Eq. (2.35), for γ ∈ �, we can always
write

R(γ ) = (π(γ ), r(γ )) where π : � → PA , r : � → HA/G. (2.44)

The multiplication rule (2.36) in G A means that the maps π and r must satisfy

π(γ γ̃ ) = π(γ )π(γ̃ ) , r(γ γ̃ ) = π(γ̃ )−1r(γ )π(γ̃ )r(γ̃ ) , (2.45)

and, hence,π : � → PA is a group homomorphism (indeed a permutation representation
given that PA can be viewed as a sub-group of the permutation group S(K) and r : � →
HA/G is a π -homomorphism. Therefore, we proceed by first generating the permutation
representations π and then, for each π , the corresponding π -representations r .

Permutation representations can be obtained by a standard method available in the
Mathematics literature, see for example Ref. [16], particularly Section 2, for details.
Broadly, this methodworks as follows. For a permutation representation π : � → S(K),
where S(K) is the permutation group of the blocks K ∈ K, the set K splits into subsets
Ki on each ofwhichπ acts transitively. For an x ∈ Ki wedenote byHi ⊂ � the stabiliser
sub-group of x . Then the coset�/Hi andKi can be identified via themapHiγ → γ x for
γ ∈ �. The action of the permutation representation π on Ki can now be described, via
this identification, by a right-multiplication on the cosets in �/Hi . Hence, in essence, all
that is required to construct the permutation representationsπ : � → S(K) is knowledge
of all the sub-groups of �, something that can be worked out by standard group theory
methods. From those representations π we then have to select the ones whose image is
contained in PA ⊂ S(K). Note that, while we are asking for the full representation R to
be injective, this does not necessarily have to be the case for π .

The second step is to construct the maps r : � → HA/G for each π and there are two
technical complications we have to resolve in this context. First, we have to deal with the
fact that r is, in general, aπ -homomorphisms rather than a regular group homomorphism
and, secondly, that r corresponds not to a linear but a (multi-)projective representation,
since its target space is not simply HA but the quotient HA/G.

To disentangle these two problems, let us first consider the case where π is the trivial
representation so that

r : � → HA

G =
⊕

K∈K Gl(K , C)

G (2.46)

is actually a group homomorphism. There is a standard method to classify projective
representations ρ : � → Gl(n, C)/C

∗ of a group � using the group’s Schur cover, �̂.
The Schur cover is a certain central extension of the original group and can be computed
purely from group theory. Then, all projective representations ρ of � can be obtained
from linear representations ρ̂ : �̂ → Gl(n, C) of the Schur cover by simply projecting
to the quotient (see, for example, Ref. [16] or the summary in Appendix B.1.1 for
details). This method can be trivially generalised to the multi-projective case, that is, to
homomorphisms of the form

ρ : � →
⊕

K∈K
Gl(K , C)/C

∗. (2.47)
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Specifically, we can study all linear representations ρ̂ : �̂ → ⊕
K∈K Gl(K , C) of the

Schur cover group and then project to the quotient in order to obtain all such multi-
projective representations ρ. These are not quite yet the representations r we are inter-
ested in, since the toric group G in Eq. (2.46) is usually a genuine sub-group of (C∗)|K|.
However, we can deal with this complication by simply selecting from the representa-
tions ρ̂ those representations r̂ which lead to well-defined homomorphisms upon taking
the quotient by G.
Example. Let us illustrate the discussion so far with or standard example, using the
group � = Z2 = {1,−1} for simplicity. Note that, from our previous index analysis,
|�| = 2 is indeed a possible order of a freely-acting group for this TCY manifold.

The permutation part, PA, of the ambient space symmetry group is isomorphic to S2
so there are two possible choices for the representation π . In line with our simplifying
assumption above we will first discuss the case where π is trivial. (The other case will
be exemplified below.) The Schur cover of Z2 is Z2 so we can simply study linear
representations r̂ : Z2 → HA, for HA as in Eq. (2.41). There are many possible choices
and one illustrative example, for the coordinate ordering ((1, 4), (2, 5), (3), (6), (7)), is

π(γ ) = 17 , r̂(1) = 17 , r̂(−1) = diag(1,−1, 1,−1,−1,−1, 1). (2.48)

Clearly, r̂(−1) chosen in this way normalises the toric group G in Eq. (2.39) and, hence,
this representation descends to a well-defined homomorphism r : Z2 → HA/G. ��

We are now ready to describe the algorithm for constructing all π -representations r
in the general case. We start with one of the representations π : � → PA constructed as
described above and recall that PA can be viewed as a subgroup of S(K), the permutation
group of the blocks K ∈ K. In general, there are various orbits under the action of π

but in order to simplify the discussion let us assume that there is only a single orbit.
The multi-orbit case is a straightforward generalization. Let us denote the blocks in this
single orbit by Ki ∈ K, where i = 1, . . . , b, and their stabiliser sub-groups under the
representation π by �i ⊂ �. We can think of the representation R as being given in the
following form

R(γ ) = π(γ )diag(r1(γ ), . . . , rbγ ), (2.49)

where the ri (γ ) act on the blocks Ki . The maps ri can now be restricted to �i so that
they induce projective representations r̃i : �1 → Gl(Ki , C)/C

∗. Focusing on r̃1, we can
construct all such representations from linear representations r̂1 : �̂1 → Gl(K1, C) of
the Schur cover �̂1, as discussed above. The point is now that r̃1 already determines the
full π homomorphism r , as is explained in detail in Appendix B. Broadly, this works
as follows. First choose γi ∈ � which map the blocks Ki to the block K1 under the
representation π , that is, which satisfy π(γi )(i) = 1. It can then be shown that, for every
block i , γ ∈ � can be written uniquely in the form

γ = γπ(γ )(i)hγ−1
i , (2.50)

where h ∈ �1. Then it follows that

ri (γ ) = r̃1(h), (2.51)

so that all ri and, hence, r is fixed in terms of r̃1.
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Example. Coming back to our standard example, with group � = Z2 = {1,−1}, we
would now like to discuss a case with a non-trivial choice of π . The only non-trivial
choice is, in fact,π(1) = 17 andπ(−1) = p̃, with thematrix p̃ given in Eq. (2.43). There
are three orbits under the action of π defined in this way, namely K1 = {{1, 4}, {2, 5}},
K2 = {{6}, {7}} and K3 = {{3}}.

Let us start with the orbit K1. The stabilizer group �1 of the block {1, 4} is the
trivial group and for the group elements γi in Eq. (2.50) we can choose γ{1,4} = 1 and
γ{2,5} = −1. This means that the correspondence between γ ∈ � and h ∈ �1 established
by Eq. (2.50) is given by 1 → 1 and −1 → 1. As a result, from Eq. (2.51), r must be
trivial on the orbit K1. A similar argument shows that r must also be trivial on the orbit
K2.

Finally, for the orbit K3 the stabiliser group for the only block {3} in this orbit is the
full group�1 = � andwe can, for example, choose−1 ∈ � to act as−1 in this direction.
This means the full homomorphism R for the ordering ((1, 4), (2, 5), (3), (6), (7)) is
specified by

π(−1) = p̃ , r(−1) = diag(1, 1, 1, 1,−1, 1, 1), (2.52)

with the matrix p̃ in Eq. (2.43). Note that this action is not freely acting. ��
To conclude our discussion, we summarise the algorithm to construct the monomor-
phisms R : � → G A.

• Find all representations π : G → PA, not necessarily faithful.
• Focus on one of the representations π and find all orbits of the blocks under its action.
• For each orbit pick one block, K1, and consider its stabiliser group �1.
• Study all projective representations r̃1 : �1 → Gl(K , C)/C

∗ by using the Schur
cover �̂1 of �1.

• For each such representation r̃1, re-construct r on each orbit and, hence, the full
representation r .

• Check if the combination of π and r does indeed define a monomorphism R : � →
G A.

2.5. Smoothness of hypersurfaces. A group monomorphism R : � → G A, constructed
as described in the previous sub-section, provides an automorphism of the ambient space
A and it defines an action on the homogeneous coordinates xi of A. For R to give rise
to an automorphism of the TCY manifold X ⊂ A the defining polynomial p of X needs
to be invariant under the action of R. The general invariant polynomial pR(�) under the
action of R can be found from a generic defining polynomial p of X by applying the
Reynolds operator to p, that is, by

pR(�)(x) =
∑

γ∈�

p (R(γ )x) . (2.53)

In general, the invariant polynomials pR(�) have fewer independent coefficients than a
general p and it is not guaranteed that the generic TCY space X R(�) defined by pR(�)

is smooth. In the following, we devise a method to check smoothness for a TCY space
X defined as the zero locus of a polynomial p.

So far, we have used the global description of a toric variety in terms of homogeneous
coordinates. Alternatively, a toric variety may be glued together from patches, one for
each cone of maximal dimension (see Appendix C for details). Our smoothness check
will be carried in this latter description of a toric variety, proceeding patch by patch.
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Concretely, to each four-dimensional cone σ in the fan � we can associate a patch
V (σ ) with affine coordinates xσ

i , which correspond to the rays vi of σ . The defining
polynomial, pσ , on this patch can be obtained from p by setting the coordinates xi = xσ

i
for vi ∈ σ and setting all other coordinates to one. For the toric varieties we are consid-
ering, the patches V (σ ) are either of the form C

4 or C
4/G for a finite Abelian group

G. In the latter case, the coordinates xσ
i should be interpreted as “upstairs” coordinates

on C
4. In the case V (σ ) = C

4 the patch is clearly non-singular. For V (σ ) = C
4/G and

for fans constructed from fine triangulations of reflexive four-dimensional polytopes,
the action of G is such that it has fixed points only at the origin, xσ

i = 0, of the patch.
As a practical matter, a patch V (σ ) is smooth precisely if the matrix formed by vi ∈ σ

has determinant±1. For all non-smooth patches identified in this way, we have to check
whether or not the origin lies on the TCY hypersurface, that is, if pσ (0) = 0. If it is for
at least one patch the TCY hypersurface is singular and we can stop.

Otherwise, we can proceed and check if the defining equation p gives rise to singu-
larities. This is done patch by patch, considering the Jacobi ideals

I σ = 〈pσ ,
∂pσ

∂xσ
1

, . . . ,
∂pσ

∂xσ
4
〉. (2.54)

If all ideals I σ have dimension −1 the TCY hypersurface is smooth, otherwise it is
singular.

Example. We would like to check smoothness for our standard example with symmetry
� = Z2 and the symmetry action

(x1, x2, x3, x4, x5, x6, x7) �→ (x1, x2,−x3,−x4,−x5,−x6, x7), (2.55)

as given in Eq. (2.48). Specifically, we need to verify that a generic element in the family
X R(�) is smooth. Our general algorithm performs this check for a polynomial pR(�) with
random coefficients, as generated from Eq. (2.53). A simple choice for X R(�) is given
by the simple polynomial

pR(�) = x23 + x81 x47 + x84 x47 + x82 x46 + x85 x46 , (2.56)

which contains only the monomials (2.14) which correspond to the vertices of the poly-
tope �.

We first note that there are four singular patches on the ambient space which corre-
spond to the cones

[v1, v5, v6, v7] , [v4, v5, v6, v7] , [v1, v2, v6, v7] , [v2, v4, v6, v7] . (2.57)

As none of the associated loci meets our hypersurface (2.56), these singularities do not
induce singularities on X R(�).

To see that there are no singularities induced by the hypersurface equation (2.56),
note that this equation and all its partial derivatives can only vanish in one of the patches
when x3 = 0. As the whole situation is furthermore symmetric under swapping any
of x1 ↔ x4, x2 ↔ x5 or x6 ↔ x7, we only need to check a single four-dimensional
cone, which we can take to be the one generated by [v1, v2, v3, v6]. In the corresponding
patch, the hypersurface equation becomes

pσ = x23 + x81 + 1 + x82 x46 + x46 . (2.58)

It can be checked that the Jacobi ideal, I σ , of this equation has dimension −1 so that
X R(�) is indeed smooth. ��
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Our method for checking smoothness can, hence, be summarised as follows:

• Determine the most general invariant family of R(�)-invariant hypersurfaces X R(�)

by finding the corresponding polynomials pR(�) from Eq. (2.53).
• For each four-dimensional cone, σ ∈ �, with rays vi introduce affine coordinates xσ

i
and the affine version, pσ , of the polynomial pR(�) on the patch V (σ ).

• For each four-dimensional cone σ of � carry out the following.
− Check if V (σ ) is smooth by checking if the determinant of the matrix formed by

vi ∈ σ is ±1. If V (σ ) is not smooth check if the singularity at xσ
i = 0 lies on

the TCY hypersurface, that is, check if pσ (0) = 0. If so the TCY hypersurface is
singular and we can stop.

− Check if the Jacobi ideal I σ in Eq. (2.54) has dimension −1. If it does not the
TCY hypersurface is singular and we can stop.

• If the above checks have been passed for all four-dimensional cones σ ∈ � the
generic R(�)-invariant TCY hypersurface X R(�) is smooth.

2.6. Fixed point freedom. In order to check the fixed points of R(�) we return to the
global description of the toric variety. The idea is to check the appropriate fixed point
condition in the upstairs space B in Eq. (2.3) rather than in the more complicated toric
space A = B/G.

To set this up, we denote by q : B → A the projection to the quotient space. We
also require lifts �̂ and Ĝ A of the groups � and G A to the upstairs space, together with
projections 
 : �̂ → � and ν : Ĝ A → G A and the upstairs version R̂ : �̂ → Ĝ A of
the homomorphism R such that R ◦
 = ν ◦ R̂. (In practice, G A and Ĝ A are generated
by the same matrices, where the projective relations are taken into account for G A and
ignored for Ĝ A.) Writing γ = 
(γ̂ ), we have

q ◦ R̂(γ̂ ) = R(γ ) ◦ q. (2.59)

For γ ∈ � we define the downstairs fixed point set as

Fγ = {x ∈ A | R(γ )x = x}, (2.60)

We would like to compare this set with its upstairs counterpart for γ̂ ∈ �̂, where
γ = 
(γ̂ ), defined as

F̂γ̂ = {x̂ ∈ Â | R̂(γ̂ )(x̂) ∈ Gx̂}. (2.61)

Then Eq. (2.59) implies that

q(F̂γ̂ ) = F
(γ̂ ), (2.62)

that is, we obtain the downstairs fixed point set simply by projecting its upstairs coun-
terpart to the quotient.

Of course we are not primarily interested in the fixed point set of R(�) in A but in
its intersection with the TCY manifold X ⊂ A. We denote this intersection by Fγ :=
Fγ ∩ X . By X̂ ⊂ B we denote a lift of the TCY manifold such that q(X̂) = X . Then,
the upstairs version of the fixed point set intersected with X̂ given by F̂γ̂ = F̂γ̂ ∩ X̂
projects down to Fγ , that is

q(F̂γ̂ ) = Fγ . (2.63)
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What we want is for the Calabi–Yau manifold not to intersect the fixed point set, that is,
we require Fγ to be empty for all γ ∈ �. From the previous equation this is the same as
saying that F̂γ̂ is empty for all γ̂ ∈ �̂. Therefore, from Eq. (2.61), we should, in a first
instance, solve the equations

R̂(γ̂ )z = gz , (2.64)

where g = (sq1, . . . , sqn ) is an element of the toric group G, parametrized s =
(s1, . . . , sn−4). We can think of these equations as defining an ideal I in the ring C[z, s].
(It may be necessary to multiply some components of Eq. (2.64) with powers of some
parameters sr if the corresponding charges qi

r are negative, in order to achieve polyno-
mial form.) To this ideal we have to add the defining TCY equation in order to get the
ideal which described F̂γ̂ . Then, in order for the action to be fixed point free we need

the dimension of this ideal to be −1 for all γ̂ ∈ �̂.

Example. Finally, let us check for our standard example that the action of Z2 symmetry
given in Eq. (2.55) is indeed fixed point free.

For this, we need to find all fixed loci on the ambient space and intersect with the
hypersurface equation pR(�) = 0, with pR(�) given in Eq. (2.56). The fixed loci of
the ambient space are x3 = x4 = x5 = x6 = 0, together with their images under any
permutation x1 ↔ x4, x2 ↔ x5 or x6 ↔ x7. Since the situation is symmetric under
these permutations, it again suffices to check one such locus only. Solving pR(�) = x3 =
x4 = x5 = x6 = 0 we find that x1 = 0 or x7 = 0, a locus which is contained within
in the exceptional set Z(�). In conclusion, the action of the symmetry (2.55) is indeed
fixed point free. ��

2.7. Algorithm of classification. We now summarise the entire algorithm classifying
symmetries of TCY manifolds which are realised by a linear action on the toric ambient
space. For each TCY hypersurface X defined by a pair of reflexive polytopes �,�◦,
this algorithm consists of four main steps:

I. Possible symmetry groups (Sect. 2.2): For freely-acting symmetries, compute the
common divisors of the Euler number and the signatures of twisted bundles, which
provides us with a finite list of possible groups orders and, hence, a finite list of
groups �. For non freely-acting symmetries we merely search through all finite
groups � up to some maximal group order.

II. Compute the symmetries of the ambient space (Sect. 2.3): Compute the toric sym-
metry group G A = PA � (HA/G) from the toric data. This group consist of blocks
of general linear groups contained in HA and permutations of these blocks in PA.

III. Generate the representations (Sect. 2.4): For each group � found in step I, generate
all group monomorphisms R : � → G A.

IV. Check the symmetry actions (Sects. 2.5 and 2.6):Generate defining equations pR(�)

which are invariant under the action of R(�). Then check smoothness of the hyper-
surface X R(�) defined by pR(�) = 0 and, for the case of freely-acting symmetries,
the absence of R(�) fixed points on X R(�).

An implementation of the above algorithm requires the data of a fan � obtained from
a triangulation of �◦ for each model. We are using the database compiled in [11] as
input data containing such models. Furthermore, we are using GAP[17] for the required
group-theoretical data. Our computation system is composed of Mathematica modules,
and the computations in commutative algebra are performed using Singular [18]. The
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Calabi–Yau hypersurfaces are generated with random coefficients cm for eachmonomial
ranging from 0 to 100. If the computation in Singular is too time-consuming over the
field of rational numbers, we alternatively use finite fields and check over a number of
primes.

3. Examples

Wewill now carry out our algorithm for two specific examples. The first example is for a
freely-actingZ4 symmetry on the tetra-quadric hypersurface in P

1×P
1×P

1×P
1. Since

the tetra-quadric is a TCY as well as a CICY manifold, this Z4 symmetry is, in fact,
well-known in the literature [8]. This example serves as an illustration of our method in
an established context. The second example is for a TCY manifold with h1,1(X) = 6
and a freely-acting Z2 symmetry which was not previously known.

3.1. A Z4 symmetry of the tetra-quadric. The tetra-quadric with Hodge numbers
h1,1(X) = 4 and h1,2(X) = 68 is described by a polytope �◦ with eight vertices given
by

v1 = (−1, 0, 0, 0) v2 = (−1, 0, 0, 1) v3 = (−1, 0, 1, 0) v4 = (−1, 1, 0, 0)
v5 = (1,−1, 0, 0) v6 = (1, 0,−1, 0) v7 = (1, 0, 0,−1) v8 = (1, 0, 0, 0) ,

(3.1)

The zero set is then characterised by

I = {{1, 8}, {2, 7}, {3, 6}, {4, 5}} (3.2)

Z = {x1 = x8 = 0} ∪ {x2 = x7 = 0} ∪ {x3 = x6 = 0} ∪ {x4 = x5 = 0} (3.3)

The linear relations between the above vertices leads to the charge matrix

Q =
⎛

⎜⎝

0 0 0 1 1 0 0 0
0 0 1 0 0 1 0 0
0 1 0 0 0 0 1 0
1 0 0 0 0 0 0 1

⎞

⎟⎠ , (3.4)

with the associated toric group

G = {{s4, s3, s2, s1, s1, s2, s3, s4} |si ∈ C
∗}. (3.5)

Step I: The Euler number of the tetra-quadric is η(X) = −128 and the other relevant
twisted indices in Eqs. (2.15) and (2.16) can be worked out as

χ0,1 = −64 , χ1,0 = 80 , χ2,0 = 544 χ3,0 = 1776 , σ1,1 = −1280. (3.6)

The greatest common divisor of these numbers and the Euler number is 16 so for freely-
acting symmetry groups � we should consider the group orders |�| ∈ {2, 4, 8, 16}.
Step II: In order to compute the ambient space symmetry group we need to determine
the index sets J and K from the above toric data. In this particular case it turn out they
are both equal to I so that

J = K = I = {{1, 8}, {2, 7}, {3, 6}, {4, 5}}. (3.7)
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Following the general procedure explained in Sect. 2.3 it is then straightforward to
determine the ambient space symmetry group G A = PA � (HA/G). One finds that

PA ∼= S4 (3.8)

HA = GL({1, 8}, C) × GL({2, 7}, C) × GL({3, 6}, C) × GL({4, 5}, C) (3.9)

where PA acts by permuting the four blocks {1, 8}, {2, 7}, {3, 6}, {4, 5} ∈ K.
Step III: In general, we need to study all group monomorphisms R : � → G A for all
groups � with order |�| ∈ {2, 4, 8, 16}. For the purpose of this example, we focus on
the group � = Z4 and we denote its generator by γ , so that γ 4 = 1. The representation
matrices will be written down for the coordinate ordering ((1, 8), (2, 7), (3, 6), (4, 5)),
in line with the grouping into 2× 2 blocks in Eq. (3.9).

First, we need to construct the permutation representations π : Z4 → PA ∼= S4. For
illustration purpose we choose π as

π(γ ) =
⎛

⎜⎝

0 12 0 0
12 0 0 0
0 0 0 12
0 0 12 0

⎞

⎟⎠ , (3.10)

that is, as a simultaneous swap of blocks (1, 8) ↔ (2, 7) and (3, 6) ↔ (4, 5). There
are two orbits of blocks under the action of π , namely K1 = {{1, 8}, {2, 7}} and K2 =
{{3, 6}, {4, 5}}. We can focus on K1 (the other orbit K2 will work in exactly the same
way) and note that it has two blocks K1 = {1, 8} and K2 = {2, 7}. The stabilizer groups
�1 of K1 is given by �1 = {1, γ 2} ∼= Z2 ⊂ Z4. We choose the representation r̃1 of �1
on the block K1 as

r̃1(γ
2) = σ3 = diag(1,−1). (3.11)

The full map r : � → HA/G can then be re-constructed from r̃1 and is it straightforward
to show that

r(γ ) = diag(12, σ3,12, σ3). (3.12)

Combining this with the permutation representation (3.10) we finally get

R(γ ) =
⎛

⎜⎝

0 σ3 0 0
12 0 0 0
0 0 0 σ3
0 0 12 0

⎞

⎟⎠ . (3.13)

The general invariant polynomial under this symmetry action is given in Appendix D.9.
Step IV:To check fixed points we have to write down Eq. (2.64) for allZ4 group elements
using the group action defined by Eq. (3.13) and the elements (3.5) of the toric group.
This leads to

γ

{
x2 − s4x1 = 0 −s4x8 − x7 = 0 x1 − s3x2 = 0 x8 − s3x7 = 0
x4 − s2x3 = 0 −s2x6 − x5 = 0 x3 − s1x4 = 0 x6 − s1x5 = 0

γ 2
{

x1 − s4x1 = 0 −s4x8 − x8 = 0 x2 − s3x2 = 0 −s3x7 − x7 = 0
x3 − s2x3 = 0 −s2x6 − x6 = 0 x4 − s1x4 = 0 −s1x5 − x5 = 0

γ 3
{

x2 − s4x1 = 0 x7 − s4x8 = 0 x1 − s3x2 = 0 −s3x7 − x8 = 0
x4 − s2x3 = 0 x5 − s2x6 = 0 x3 − s1x4 = 0 −s1x5 − x6 = 0

(3.14)
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It can be shown in each case that the solutions to these equations are either contained in
the exceptional set (3.3) or are point-like in the ambient space and, hence, do not lie on
a generic tetra-quadric hypersurface.

The most general defining polynomial p consistent with the Z4 symmetry contains
21 independent terms and coefficients, including, for example

p � x25 x26 x27 x28 , x21 x22 x25 x26 , x21 x22 x23 x24 , x1x2x3x4x5x6x7x8 , · · · (3.15)

A calculation, for example using Singular [18], shows that a sufficiently general com-
bination of these terms does indeed produce a smooth hypersurface.

3.2. A Z2 symmetry of the twisted tetra-quadric. Wenow proceed to amore complicated
example which leads to a freely-acting Z2 symmetry which was not previously known.
Moreover, the underlying manifold is not among the 16 manifolds identified by Batyrev
and Kreuzer and, hence, this example shows that the number of manifolds with freely-
acting symmetries within the Kreuzer Skarke list is definitely larger than 16.

The space is defined by a polytope �◦ with the 10 vertices

v1 = (−1,−1,−1,−1) v2 = (−1, 0, 0, 0) v3 = (0,−1, 0, 0)
v4 = (0, 0,−1, 0) v5 = (0, 0, 0,−1) v6 = (0, 0, 0, 1)
v7 = (0, 0, 1, 0) v8 = (0, 1, 0, 0) v9 = (1, 0, 0, 0)
v10 = (1, 1, 1, 1).

(3.16)

The zero set is specified by

I = {{1, 10}, {2, 9}, {3, 8}, {4, 7}, {5, 6}, {1, 6, 7}, {1, 6, 8}, {1, 6, 9}, {1, 7, 8}, {1, 7, 9},
{1, 8, 9}, {2, 3, 4}, {2, 3, 5}, {2, 3, 10}, {2, 4, 5}, {2, 4, 10}, {2, 5, 10}, {3, 4, 5},
{3, 4, 10}, {3, 5, 10}, {4, 5, 10}, {6, 7, 8}, {6, 7, 9}, {6, 8, 9}, {7, 8, 9}}. (3.17)

The linear dependencies among the vertices (3.16) lead to the charge matrix

Q =

⎛

⎜⎜⎜⎜⎜⎝

0 1 0 0 0 0 0 0 1 0
0 0 1 0 0 0 0 1 0 0
0 0 0 1 0 0 1 0 0 0
0 0 0 0 1 1 0 0 0 0
0 1 1 1 1 0 0 0 0 1
1 0 0 0 0 1 1 1 1 0

⎞

⎟⎟⎟⎟⎟⎠
, (3.18)

which identifies the corresponding TCY as a ‘twisted version’ of the tetra-quadric. Its
Hodge numbers are h1,1(X) = 6 and h2,1(X) = 46. The above charge matrix gives rise
to the toric group

G = {(s6, s1s5, s2s5, s3s5, s4s5, s4s6, s3s6, s2s6, s1s6, s5) | si ∈ C
∗}. (3.19)

Step I: The Euler number of the twisted tetra-quadric is η(X) = −80 and the other
relevant twisted indices are

χ0,1 = −40 , χ1,0 = 50 , χ2,0 = 330 χ3,0 = 1070 , σ1,1 = −1080. (3.20)

The greatest common divisor of these numbers and the Euler number is 10 so for freely-
acting symmetry groups � we should consider the group orders |�| ∈ {2, 5, 10}.
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Step II: As can be seen from the charge matrix and the exceptional set given above, we
have that J = K = {{1}, {2}, {3}, {4}, {5}, {6}, {7}, {8}, {9}, {10}}.
The ambient space symmetry group G A = PA � (HA/G) is found from our general
procedure as

PA ∼= S4 × Z2 (3.21)

HA = GL(1, C)10 = (C∗)10 (3.22)

where the S4 in PA acts by permuting the four ordered tuples (2, 9), (3, 8), (4, 7), (5, 6)
and the Z2 acts by mapping (1, 2, 3, 4, 5) ↔ (10, 9, 8, 7, 6).
Step III: Here, we need to study all group monomorphisms R : � → G A for all finite
groups |�| ∈ {2, 5, 10}. For the purpose of this example, we focus on the group � = Z2
and we denote its generator by γ . A simple choice of representation is to take r to be
trivial and to set the permutation part to

π(γ ) = ((1, 10), (2, 9), (3, 8), (4, 7), (5, 6)). (3.23)

Step IV: As described earlier, a generic polynomial symmetric under the Z2 (3.23) may
easily be found by summing a generic polynomial with its image, the result is found in
Appendix D.10. Such a polynomial gives rise to a smooth hypersurface X R(Z2). To see
the fixed point freedom, we have to find solutions to (2.64). For the action above, fixed
points are found as solutions of

(x1s6, x2s1s5, x3s2s5, x4s3s5, x5s4s5, x6s4s6, x7s3s6, x8s2s6, x9s1s6, x10s5)

= (x10, x9, x8, x7, x6, x5, x4, x3, x2, x1). (3.24)

To find the corresponding loci on the toric variety, we may consider the elimination
ideal with respect to the variables si . It is generated by all polynomials of the form
x2i x2j − x210−i x210− j for i, j = 1 . . . 5 and has dimension 5, so that there are only fixed
points under this group action. As none of these points meet a generic smooth symmetric
polynomial, it follows that (3.24) has no simultaneous solutions with a generic smooth
symmetric polynomial and there are not fixed points under the group action (3.23).

4. Systematic Search for Symmetries

The classification of reflexive four-dimensional polytopes by Kreuzer and Skarke [10]
forms a natural starting point to apply our algorithm and find new examples of Calabi–
Yau threefolds with freely acting symmetries. A scan over all triangulations off all
reflexive polytopes, however, is presently beyond reach. In particular, it is already a
daunting task to find all triangulations, as the number of triangulations of each reflexive
polytope increases dramatically with the Picard number. In Ref. [11] all triangulations
for h1,1(X) ≤ 6 were found.2 For the purpose of our symmetry classification we will
focus on the subset of those triangulations with h1,1(X) ≤ 3, some 350 manifolds to
which we apply our classification algorithm.

2 The largest number of reflexive polytopes for fixed h1,1(X) exists for h1,1(X) = 27.
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4.1. Scan results for freely-acting symmetries. In this sub-sectionwepresent the result of
our classification, a list of all freely-acting symmetries, linearly realised in the ambient
space, for TCY manifolds with h1,1(X) ≤ 3. We find that only five of these TCY
manifolds allow for freely-acting symmetries of this kind and we briefly list those five
cases, together with the most important data, in the following. The invariant polynomials
are recorded in Appendix D.
Case #1, quintic in P

4:

• Hodge numbers: h1,1(X) = 1, h2,1(X) = 101
• Possible symmetry orders from indices: |�| ∈ {5, 25}
• Ray generators of fan �:

(v1, . . . , v5) =
⎛

⎜⎝

−1 −1 −1 −1 4
0 0 0 1 −1
0 0 1 0 −1
0 1 0 0 −1

⎞

⎟⎠ (4.1)

• Charge matrix:
Q = (

1 1 1 1 1
)

(4.2)

• Symmetry � = Z5 = 〈γ 〉:
R(γ ) = diag(1, α5, α

2
5, α

3
5, α

4
5) , α5 = e2π i/5. (4.3)

• Symmetry � = Z5 × Z5 = 〈γ1, γ2〉, with four possible actions of γ1

(1) : R(γ1) = diag(1, α3
5, α5, α

4
5, α

2
5)

(2) : R(γ1) = diag(1, α5, α
2
5, α

3
5, α

4
5)

(3) : R(γ1) = diag(1, α4
5, α

3
5, α

2
5, α5)

(4) : R(γ1) = diag(1, α2
5, α

4
5, α5, α

3
5)

(4.4)

and the same action of γ2

R(γ2) =

⎛

⎜⎜⎜⎝

0 0 0 0 1
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0

⎞

⎟⎟⎟⎠ (4.5)

in all four cases.
• Remarks: This is polytope ID# 2 of the database of [11]. The quintic is of course a
CICY manifold and all the above freely-acting symmetries are well-known. The Z5
symmetry is toric and among the 16 cases found by Batyrev and Kreuzer, while the
four Z5 × Z5 actions are non-toric.

Case #2, bi-cubic in P
2 × P

2:

• Hodge numbers: h1,1(X) = 2, h2,1(X) = 83
• Possible symmetry orders from indices: |�| ∈ {3, 9}
• Ray generators of fan �:

(v1, . . . , v6) =
⎛

⎜⎝

−1 −1 2 −1 −1 2
0 0 0 0 1 −1
0 0 0 1 0 −1
0 1 −1 0 0 0

⎞

⎟⎠ (4.6)
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• Charge matrix:

Q =
(
0 0 0 1 1 1
1 1 1 0 0 0

)
(4.7)

• Symmetry � = Z3 = 〈γ 〉:
R(γ ) = diag(1, α3, α

2
3, 1, α3, α

2
3) , α3 = e2π i/3. (4.8)

• Symmetry � = Z3 × Z3 = 〈γ1, γ2〉, with four possible actions of γ1

(1) : R(γ1) = diag(1, α2
2, α3, 1, α2

3, α3)

(2) : R(γ1) = diag(1, α2
3, α3, 1, α3, α

2
3)

(3) : R(γ1) = diag(1, α3, α
2
3, 1, α

2
3, α3)

(4) : R(γ1) = diag(1, α3, α
2
3, 1, α3, α

2
3)

(4.9)

and the same action of γ2

R(γ2) =

⎛

⎜⎜⎜⎜⎜⎝

0 0 1 0 0 0
1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0 1
0 0 0 1 0 0
0 0 0 0 1 0

⎞

⎟⎟⎟⎟⎟⎠
(4.10)

in all four cases.
• Remarks: This is polytope ID# 10 of the database of [11]. The bi-cubic is of course
a CICY manifold and all the above freely-acting symmetries have been found be-
fore [8]. The Z3 symmetry is toric and among the 16 cases found by Batyrev and
Kreuzer, while the four Z3 × Z3 actions are non-toric.

Case #3:

• Hodge numbers: h1,1(X) = 3, h2,1(X) = 83
• Possible symmetry orders from indices: |�| ∈ {2, 4, 8}
• Ray generators of the fan �:

(v1, . . . , v7) =
⎛

⎜⎝

−1 −1 1 −1 −1 −1 −1
0 0 −1 0 4 2 0
0 0 0 2 −2 −1 1
0 1 0 0 −1 0 0

⎞

⎟⎠ (4.11)

• Charge matrix:

Q =
⎛

⎝
1 0 0 1 0 0 −2
0 1 0 0 1 −2 0
0 0 2 0 0 1 1

⎞

⎠ (4.12)

• Symmetry � = Z2 = 〈γ 〉:
R(γ ) = diag(1, 1,−1,−1,−1,−1, 1) (4.13)

• Remarks: This is polytope ID# 147 of the database of [11]. The manifold and its
freely-acting Z2 symmetry is among the 16 cases identified by Batyrev and Kreuzer.
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Case #4:

• Hodge numbers: h1,1(X) = 3, h2,1(X) = 115
• Possible symmetry orders from indices: |�| ∈ {2, 4, 8}
• Ray generators of fan �:

(v1, . . . , v7) =
⎛

⎜⎝

−1 −1 −1 −1 −1 1 −1
0 0 0 2 2 −1 0
0 0 1 −1 0 0 0
0 2 1 −1 −1 0 1

⎞

⎟⎠ (4.14)

• Charge matrix:

Q =
⎛

⎝
0 0 0 0 1 2 1
0 0 1 1 0 2 0
1 1 0 0 2 4 0

⎞

⎠ (4.15)

• Symmetry � = Z2 = 〈γ 〉:
R(γ ) = diag(1,−1, 1,−1, 1,−1,−1) (4.16)

• Symmetry � = Z2 � Z2 = 〈γ1, γ2〉:
R(γ1) = diag(1,−1, 1,−1, 1,−1,−1) , R(γ2) = diag(σ1, σ1, 1,−1,−1) ,

σ1 =
(
0 1
1 0

)
(4.17)

• Remarks: This is polytope ID# 245 of the database of [11]. This manifold with its
freely-acting Z2 symmetry is among the 16 cases identified by Batyrev and Kreuzer.
The polytope has two triangulations realizing different regions of the Kähler cone.
They both allow the same fixed-point free actions as given above. However, the
Z2 � Z2 is non-toric and has not been found before. We will take a closer look at this
symmetry in the following sub-section.

Case #5:

• Hodge numbers: h1,1(X) = 3, h2,1(X) = 115
• Possible symmetry orders from indices: |�| ∈ {2, 4, 8}
• Rays of fan �:

(v1, . . . , v7) =
⎛

⎜⎝

−1 −1 −1 −1 −1 −1 1
0 0 0 2 2 2 −1
0 1 1 −1 −1 0 0
0 0 1 −1 0 0 0

⎞

⎟⎠ (4.18)

• Charge matrix:

Q =
⎛

⎝
0 0 1 1 0 0 2
0 1 0 0 1 0 2
1 0 0 0 0 1 2

⎞

⎠ (4.19)

• Symmetry � = Z2 = 〈γ 〉:
R(γ ) = diag(−1, 1,−1, 1,−1, 1,−1) (4.20)

• Remarks: This is polytope ID# 249 of the database of [11]. This manifold with its
freely-acting Z2 symmetry is among the 16 cases identified by Batyrev and Kreuzer.
The polytope has three different triangulations realizing different regions of the Käh-
ler cone. All of them allow the same fixed-point free action given above.
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4.2. A closer look at the Z2 �Z2 symmetry in case #4. In the previous classification, we
have found one new case, not previously known from the classification of symmetries
for CICYs or the Batyrev Kreuzer classification. We would now like to discuss this case
in more detail.

We recall that the vertices of �◦ for this TCY manifold are given by Eq. (4.14), the
associated charge matrix by (4.15) and that the Hodge numbers are h1,1(X) = 3 and
h2,1(X) = 115. We consider the following triangulation3

[v1, v3, v4, v5], [v1, v3, v4, v7], [v1, v3, v5, v6], [v1, v3, v6, v7], [v1, v4, v5, v6], [v1, v4, v6, v7],
[v2, v3, v4, v5], [v2, v3, v4, v7], [v2, v3, v5, v6], [v2, v3, v6, v7], [v2, v4, v5, v6], [v2, v4, v6, v7]

(4.21)

which consists of twelve four-dimensional cones and leads to the zero set

I = {{1, 2}, {5, 7}, {3, 4, 6}} (4.22)

Z(�) = {x1 = x2 = 0} ∪ {x5 = x7 = 0} ∪ {x3 = x4 = x6 = 0} (4.23)

The charge matrix (4.15) implies the following toric group:

G = {(s3, s3, s2, s2, s1s23 , s21s22s43 , s1) | s1, s2, s3 ∈ C
∗} (4.24)

Step I: The Euler number for this space is given by η(X) = −224 and the relevant
indices (2.15) and (2.16) by

χ0,1 = −112, χ1,0 = 152, χ2,0 = 1072, χ3,0 = 3528, σ1,1 = −1280. (4.25)

The greatest common divisors of the numbers and the Euler number is 8, so the possible
orders of freely-acting groups are � ∈ {2, 4, 8}.
Step II: From the index set I in Eq. (4.22) we find the two associated index sets

J = {{1, 2}, {5, 7}, {3, 4, 6}}, K = {{1, 2}, {3, 4}, {5}, {6}, {7}}. (4.26)

These sets imply an ambient space symmetry group G A = PA � HA/G with

HA = Gl({1, 2}, C) × Gl({3, 4}, C) × Gl({5}, C) × Gl({6}, C) × Gl({7}, C) , (4.27)

while PA is trivial.
Step III: In general, we should consider all groups of order |�| ∈ {2, 4, 8} but for the
present discussion we focus on the order four group � = Z2 � Z2 = 〈γ1, γ2〉. There are
numerous possible group monomorphisms R : � → G A and we consider the specific
example with

R(γ1) = diag(1,−1, 1,−1, 1,−1,−1) , R(γ2) = diag(σ1, σ1, 1,−1,−1) ,

σ1 =
(
0 1
1 0

)
. (4.28)

Note that, while these two matrices generate a group of order eight, this is reduced to
order four once projective identifications are taken into account.
Step IV: The most general TCY manifold of this type is defined by linear combination
of 153 monomials (corresponding to the 153 lattice points on �) which, in line with

3 There is a second triangulation with zero set I = {{1, 2}, {3, 4}, {5, 6, 7}} for which the discussion is
similar to the one presented here.
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Eq. (2.7), correspond to the points in the polar polytope �. These monomials have the
form

x81 x44 x47 , x81 x3x34 x47 , x81 x23 x24 x47 , . . . , x42 x43 x25 x27 , x33 x4x45 , x22 x43 x35 x7, x43 x45 , . . .

(4.29)
Requiring invariance under the action of the symmetry (4.28) reduces this list to 40
independent invariant polynomials of the form

x26 , x22 x43 x35 x7 − x21 x44 x35 x7 , . . . , x82 x43 x47 + x81 x44 x47 . (4.30)

It can be checked that a generic linear combination pR(�) of these 40 invariant building
blocks leads to a smooth TCY manifold X (R(�).

In order to check fixed point freedom, we focus on the action of R(γ2). With the toric
group (4.24), Eq. (2.64) leads to the following fixed point equations

s1s23 x5 − x5 = 0 s21s22s43 x6 + x6 = 0 s1x7 + x7 = 0 s3x1 − x2 = 0
s3x2 − x1 = 0 s2x3 − x4 = 0 s2x4 − x3 = 0

(4.31)

for R(γ2). After excluding the zero set (4.23), it can be checked that no component
of the so-defined fixed point set intersects the generic TCY manifold X R(�). The same
conclusion can be reached for the action of the other group elements.

5. Conclusion

In this paper, we have analysed symmetry groups of CY three-folds defined as hyper-
surfaces in toric ambient spaces (TCY manifolds) and we have developed methods to
classify those symmetrieswhich descend froma linear action on the toric ambient spaces.
Based on these results, we have set up an algorithm that allows for the classification of
symmetries for TCY manifolds obtained by triangulation from the Kreuzer–Skarke list.
We have carried out this classification for a small initial sample of all TCY manifolds
with h1,1(X) ≤ 3, some 350 manifolds.

We find that only 5 out of these 350 TCY manifolds admit (linearly realised) freely-
acting symmetries. Our algorithm reproduces all freely-acting symmetries known previ-
ously from either the overlap with the list of CICY manifolds [8] or the classification of
toric symmetries by Batyrev and Kreuzer [12]. We find one new, non-toricZ2�Z2 sym-
metry, where one of the Z2 factors corresponds to one of the 16 symmetries identified
by Batyrev and Kreuzer.

We have also used our methods to construct a new, freely-acting Z2 symmetry on a
TCY manifold with h1,1(X) = 6 which was not previously known to have freely-acting
symmetries. This example shows that the subset of TCY manifolds with freely-acting
symmetries is larger than the 16 cases identified by Batyrev and Kreuzer.

From our preliminary evidence it appears that the fraction of TCY manifolds with
freely-acting (linearly realised) symmetries is relatively small, namely five manifolds
out of 350. This figure is broadly in line with what was found in the context of CICY
manifolds [8], where about 2.5% of the 7890 types carry linearly realised, freely-acting
symmetries.

Naturally, our algorithm can also be used to find non-freely acting symmetries. There
is no a-priori constraint on the group order anymore but we can simply search all finite
groups up to a maximal order and, of course, omit the fixed point check from the algo-
rithm.
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It would be desirable to apply our algorithm to a larger class of TCY manifolds. As
it stands this is possible for TCY manifolds with h1,1(X) ≤ 6 since the corresponding
triangulations have been worked out in Ref. [11]. To extend our analysis to the entire
Kreuzer–Skarke list of about half a billion reflexive polytopes is a formidable challenge,
not least because working out the triangulations for the entire list is computationally
difficult. Dealing with this will certainly require some modifications and refinements of
our algorithm. For example, it is conceivable that necessary conditions for the existence
of freely-acting symmetries can be used to select a subset of polytopes for triangulation.
These and related issues are the subject of future work.
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A The Automorphism Group of a Toric Variety

A.1 Demazure’s structure theorem. The automorphism group of a toric variety is ele-
gantly captured in terms of Demazure’s structure theorem [19,20]. It states that the Lie
algebra of the automorphism group of a toric variety is generated by the action of the
open dense algebraic torus giving it its name, as well as maps

φiν : xi �→ xi + λ
∏

k �=i

x 〈αiν ,vk 〉
k , (A.1)

where the αiν are lattice points in M for which 〈αiν, vi 〉 = −1 and 〈αiν, vk〉 > −1 for
all k �= i . The αiν are called Demazure roots. We denote the group generated by (A.1)
and the action of the algebraic torus by Aut0(P�′).

The full automorphism group is recovered as follows [19,20]. For any automorphism
of the fan, i.e. maps in Gl(N )which preserve the set of cones in�, there is an associated
permutation of homogeneous coordinates which gives rise to an automorphism of P� .
Let us denote the group of all such maps by Aut(N , �). This automorphism is trivial if
it is a Weyl reflection, defined by

W (N , �) : {n �→ n − 〈α, n〉(vi (α) − v j (−α))} (A.2)

for any pair of semi-simple roots α (a root of vi (α)) and −α (a root of v j (−α). Then,
the following relation holds:

Aut(P�′)/Aut0(P�′) = Aut(N , �′)/W (N , �′) . (A.3)

Note that the Demazure roots, and hence the continuous part of the automorphism group,
is completely independent of the triangulation, as it only depends on the one-dimensional
cones. We are going to show in section A.6.2 that this remains true when we restrict to
the Lie algebra of linearly realized automorphisms.

In the following, we will prove a statement analogous to Demazure’s structure the-
orem for automorphisms linearly realized on the homogeneous coordinates of a toric
variety which is suited for our classification of symmetries. This is based on the “global”
presentation of a toric variety A as the quotient

A = B/G , B = C
n − Z(�). (A.4)

http://creativecommons.org/licenses/by/4.0/
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A.2 Zero set and permutation group. We start with an analysis of the symmetries of the
zero set Z(�) of a toric variety corresponding to the index set I. Its elements are sets
I ⊂ {1, . . . , n} which encode the components of the zero set as defined in Eq. (2.2). For
this index set we define the following permutations groups:

S = {σ ∈ Sn | σ(I ) = I, ∀ I ∈ I} ⊂ Sn , R = {σ ∈ Sn | σ(I ) ∈ I, ∀I ∈ I} ⊂ Sn .

(A.5)
The group S leaves all sets I in I invariant individually and we refer to it as the stabiliser
group while R permutes the sets I into each other. Clearly, S is a sub-group of R. It is
actually a normal sub-group since for s ∈ S and r ∈ R we have rsr−1(I ) = I and,
hence, rsr−1 ∈ S. We can, therefore, define the quotient group

P = R/S , (A.6)

which can be thought of as the group of permutations on I, induced from permutations
in Sn . We can write down the short exact group sequence

1 → S
ı→ R

[·]→ P → 1. (A.7)

where ı is the inclusion map and [·] denotes taking the equivalence class. We now show
that this sequence splits. We begin with the

Remark. Denote by Ic = {{1, . . . , n}\I | I ∈ I} the complementary sets. Then the
groups S and R are the same for I and for Ic. This simply follows from the fact that a
set I is invariant (is mapped to another set I ′) under a permutation σ ∈ Sn if and only
if the complement {1, . . . , n}\I is invariant (is mapped to {1, . . . , n}\I ′) under σ .

The complication is that the subsets in I can overlap. It is, therefore, useful to split the
set {1, . . . , n} up in a different way. Define an equivalence relation on {1, . . . , n} by

i ∼ j :⇔ i and j are contained in the same sets I ∈ I. (A.8)

We denote the equivalence classes by J = {1, . . . , n}/ ∼ and it follows that

{1, . . . , n} =
⋃

J∈J
J (A.9)

as a disjoint union. Note that for a J ∈ J and I ∈ I with J ∩ I �= ∅ it follows that
J ⊂ I . Indeed, if j ∈ J ∩ I and k ∈ J then k ∼ j and, hence, k and j must be contained
in the same sets of I. Since j ∈ J it follow that k ∈ J , so that J ⊂ I . This means every
I ∈ I can be written as a disjoint union

I =
⋃

J∈J ,J∩I �=∅
J. (A.10)

Lemma A.1. For s ∈ S it follows that s(J ) = J for all J ∈ J . Further, for r ∈ R it
follows that r(J ) ∈ J for all J ∈ J .

Proof. For the first part consider a set J ∈ J , a permutation s ∈ S and any j ∈ J .
Assume that i is contained in precisely the sets I1, . . . , Ip ∈ I. Hence, s(i) ∈ s(Ik) = Ik ,
so that s( j) is also contained in I1, . . . , Ip ∈ I. Also, s( j) cannot be contained in any
other I ∈ I, which is not among I1, . . . , Ip ∈ I, since j would have to be in I in this
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case. This implies that i ∼ s( j), so s( j) ∈ J and, hence s(J ) ⊂ J . Since s is injective
and J is a finite set this means s(J ) = J .

For the second part, again focus on a J ∈ J and a permutation r ∈ R. Pick a j ∈ J
and call J̃ ∈ J the equivalence class of the image r( j). I want to show that r(J ) ⊂ J̃ .
Let k ∈ J , so that j and k are contained in the same sets I1, . . . , Ip ∈ I. Then, both
r( j) and r(k) are contained in r(I1), . . . , r(Ip) ∈ I and in no further I ∈ I. This means
that r(k) ∼ r( j), so r(k) ∈ J̃ and, hence, r(J ) ⊂ J̃ . Further, every l ∈ J̃ is the image
under r of r−1(l) ∈ J , so that r(J ) = J̃ . ��
We can now understand the structure of the stabilizer group S.

Theorem A.2. The stabilizer group S is given by S = ⊗
J∈J S(J ), where S(J ) is the

group of permutations on the set J .

Proof. From Lemma (A.1) it is clear that S ⊂ ⊗
J∈J S(J ). Conversely, let s ∈⊗

J∈J S(J ), so that s(J ) = J for all J ∈ J . Since, from Eq. (A.10), every I ∈ I
can be written as a union of certain J ∈ J it follows that s(I ) = I for all I ∈ I, so
s ∈ S and, hence,

⊗
J∈J S(J ) ⊂ S. ��

Returning to the general story, we call a permutation r ∈ R order-preserving iff for
all J ∈ J and all i, j ∈ J with i < j it follows that r(i) < r( j). In other words, such
permutations preserve the natural ordering of the numbers 1, . . . , n but only within each
set J ∈ J . The set of all order-preserving permutations forms a sub-group of R which
we denote by P ′.

Lemma A.3. Each equivalence class p ∈ P contains exactly one order-preserving
permutation in P ′.

Proof. For existence, consider an arbitrary representative s ∈ p of an equivalence class
p ∈ P and consider the restriction s|J : J → s(J ) to any J ∈ J . We can find a
permutation rJ ∈ S(J ) of J such that s|J ◦ rJ has the order-preserving property. The
maps rJ : J → J combine into permutation a r ∈ Sn which, from Theorem A.2 is an
element of the stabilizer group S. Then, s ◦ r ∈ p and it is order-preserving.
For uniqueness, consider two permutations s, s̃ ∈ p which are both order-preserving.
This means than r ≡ s ◦ s̃−1 is in S that is, r |J ∈ S(J ) is a permutation of J . For i, j ∈ J
with i < j we have r(i) < r( j) which means that r |J = idJ . This is true for all J ∈ J
so that r = id and, hence, s = s̃. ��
This result means that we can define a group isomorphism τ : P → P ′ ⊂ R which
assigns to a class p ∈ P the unique order-preserving permutation τ(p) ∈ p. Of course,
[τ(p)] = p, so τ splits the sequence (A.7). This means that R is a semi-direct product

R ∼= P � S (A.11)

with the isomorphism ϕ : P × S → R defined by ϕ((p, s)) = τ(p)s and the multipli-
cation in P � S given by

(p, s)( p̃, s̃) = (p p̃, p̃−1s p̃s̃). (A.12)

Hence, we can determine P ∼= P ′ by finding the permutations in Sn which map the sets
I into each other (that is, which are elements of R) and are order-preserving. The group
R can then be obtained from S and P by forming the semi-direct product (A.11).
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A.3 Invariance group of the upstairs space. We now discuss the structure of G B of
the upstairs space B = C

n − Z(�). First note that there is an obvious embedding
Sn ↪→ Gl(n, C) defined by σ(ei ) = eσ(i), with the standard unit vectors ei . Hence,
the above subgroups S, R, P ′ ⊂ Sn have isomorphic images in Gl(n, C) which we
denote by SB, RB, PB , respectively. In fact, from the definition of S, R, P it is clear that
SB, RB, PB leave the zero set Z invariant and are, hence, sup-groups of G B . Another
obvious sub-group of G B is

HB = {g ∈ G B | g(Z(I )) = Z(I ), ∀I ∈ I} ⊂ G B , (A.13)

that is, the sub-group which leaves the components Z(I ) of the zero set invariant indi-
vidually. Clearly, SB ⊂ HB .

Lemma A.4. For g ∈ G B we have g(Z(I )) ∈ Z for all I ∈ I, that is, elements of G B
map zero sets Z(I ) into other zero sets.

Proof. For g ∈ G B , the image g(Z(I )) is a vector-space of the same dimension as
Z(I ). But the only vector spaces contained in Z are the Z(I ) and their sub-spaces, so
g(Z(I )) must be contained in some Z(I ′). Say that Z(I ′) = g(Z(I )) ⊕ X , for some
vector space X . Then g−1(Z(I ′)) = Z(I ) ⊕ g−1(X) which, by the same argument
applied to g−1, should be a subset of some Z( Ĩ ). This means that Z(I ) ⊂ Z( Ĩ ) but,
since we have dropped trivial zero sets which are already contained in others, it follows
that Z(I ) = Z( Ĩ ). So we have Z(I ) ⊕ g−1(X) ⊂ Z( Ĩ ) = Z(I ) which means that
g−1(X) = 0 and, hence, X = 0. Therefore, g(Z(I )) = Z(I ′). ��
Lemma A.5. The group G B can be decomposed as G B = PB HB. Further, HB is a
normal sub-group of G B and PB ∩ HB = 1.

Proof. For the first part of the statement, consider a g ∈ G B and its restriction gI :
Z(I ) → Z(I ′) = g(Z(I )) to the zero set Z(I ). We can find a permutation matrix
rI : Z(I ) → Z(I ′) which maps the standard basis {ei | i /∈ I } of Z(I ) into the basis
{ei | i /∈ I ′} of Z(I ′). Clearly, h̃ I ≡ r−1

I ◦ gI : Z(I ) → Z(I ) and gI = rI ◦ h̃ I . The
maps rI can be made consistent on intersections of zero sets since g(Z(I ) ∩ Z(I ′)) =
g(Z(I )) ∩ g(Z(I ′)). Hence, the rI can be combined to a map r ∈ Gl(n, C) with
r |Z(I ) = rI which permutes the standard basis vectors ei and maps zero sets Z(I ) into
each other, so r ∈ RB . Further, defining h̃ = r−1 ◦ g it follows that h̃ ∈ HB . From the
previous section, we know that we can write r = ps, where p ∈ PB and s ∈ SB . Finally,
with h ≡ sh̃ ∈ HB we have g = ph, where p ∈ PB and h ∈ HB .

To show that HB is a normal sub-group of G B , consider a η ∈ HB and a g =
ph ∈ G B . Then gηg−1 = phηh−1 p−1 = ph′ p−1, where h′ = hηh−1 ∈ HB . Hence,
gηg−1(Z(I )) = ph′ p−1(Z(I )) = Z(I ), so gηg−1 ∈ HB .
Finally, from the definition of R it is clear that RB ∩HB = SB . But SB contains precisely
one order-preserving element, the identity. ��
The result of the previous Lemma shows that G B is a semi-direct product G B ∼= P � HB .

If we denote by φ : P → PB the isomorphism between order-preserving permuta-
tions in P and corresponding Gl(n, C)matrices, then a pair (p, h) ∈ P � HB is mapped
to φ(p)h ∈ G B and the multiplication in P � HB is

(p, h)( p̃, h̃) = (p p̃, φ( p̃)−1hφ( p̃)h̃). (A.14)
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We have already understood the permutation group P and how to compute it from the
basic data. It remains to consider HB . To this end, we define the group

G(J ) =
⊗

J∈J
Gl(J, C) , (A.15)

where Gl(J, C) is the general linear group acting in the directions of the coordinates
xJ ≡ (x j | j ∈ J ). Recall that the sets J were defined around Eq. (A.8). The elements
of (A.15) can be viewed as block-diagonal n×n matrices with the blocks corresponding
to the coordinates xJ .

Lemma A.6. It follows that G(J ) ⊂ HB.

Proof. From Eq. (A.10) we know that every set I ∈ I can be written as a disjoint union
I = ⋃

J of some J ∈ J . It follows that Z(I ) = Z(∪J ) = ∩Z(J ). The transforma-
tions (A.15) leave all Z(J ) and, hence, Z(I ) invariant so that G(J )

⊂ HB . ��
Unfortunately, HB can be larger than G(J ). In general we know that the zero sets Z(I )
and their intersections Z(I1)∩· · ·∩ Z(Ip) = Z(I1∪· · ·∪ Ip) have to be invariant under
transformations h = (hi j ) ∈ HB . This implies, for any union I1 ∪ · · · ∪ Ip, that

hi j = 0 for i ∈ I1 ∪ · · · ∪ Ip , j ∈ (I1 ∪ · · · ∪ Ip)
c. (A.16)

We call a zero set I and associated set J regular if for every J ∈ J and all i ∈ J ,
j ∈ J c there exists an I ∈ I with i ∈ I but j /∈ I . Then we have:

Theorem A.7. If the zero set I is regular then G(J ) = HB.

Proof. Focus on a specific J ∈ J and fix a i ∈ J and a j ∈ J c. From regularity there
exists an I ∈ I such that i ∈ I and j ∈ I c. Applying (A.16) for I and I c means that
hi j = 0. Since i and j were arbitrary this means that hi j = 0 for all i ∈ J and all j ∈ J c.
Now consider an i ∈ J c and a j ∈ J . We know that J c is the disjoint union of the other
J , so i ∈ J̃ ⊂ J c for a particular J̃ ∈ J . Regularity, applied to J̃ , means that there
exists an I ∈ I with i ∈ I and j ∈ I c. As before, (A.16) applied to I leads to hi j = 0.
Since i , j were arbitrary this means that hi j = 0 for all i ∈ J c and all j ∈ J .
In summary, for all J ∈ J we have hi j = 0 if i ∈ J and j ∈ J c or if i ∈ J c and j ∈ J .
This means that h ∈ G(J ), so HB ⊂ G(J ). The opposite inclusion has already been
shown in the previous Lemma, so G(J ) = HB . ��
Therefore the complete symmetry group of B = C

n − Z(�) is given by

G B ∼= P � G(J ). (A.17)

A.4 Normalizer in GL(n, C). In order to find the symmetry group G A of the toric space
we need to compute the normalizer of the toric group G within G B , the symmetry group
of the upstairs space. This is relatively easy if the group elements of G are proportional
to the unit matrix within each block (A.15) of G B . In order to sort this out it is instructive
to first deal with a related - but simpler - problem, namely to compute the normalizer of
G within Gl(n, C).
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To this end it is useful to split the various coordinate directions up into disjoint blocks
K = {K | K ⊂ {1, . . . , n}}, collecting the directions with the same charges qi , such that

G =
⊗

K∈K
GqK (K ) (A.18)

where GqK (K ) = {sqK 1|K | | s ∈ (C∗)n−d} consists of matrices proportional to the unit
matrix and by qK we denote the charge in the directions in K . As usual, we think of the
symmetric group Sn as being embedded into Gl(n, C) via σ(ei ) = eσ(i) for σ ∈ Sn . We
would like to work out the normalizer

NGl(n,C)(G) = {g ∈ Gl(n, C) | gG = Gg} = {g ∈ Gl(n, C) | ∀γ ∈ G ∃γ̃ ∈ G : gγ = γ̃ g}.
(A.19)

It is also useful to introduce the commutant

CGl(n,C)(G) = {g ∈ Gl(n, C) | gγ = γ g ∀γ ∈ G} , (A.20)

of G within Gl(n, C) as well as the sub-groups of Sn defined by

R = Sn ∩ NGl(n,C)(G) , S = Sn ∩ CGl(n,C)(G). (A.21)

They consist of permutations which normalize or commute G, respectively. We start by
characterizing the groupsR and S in a different way which is more useful for practical
calculations.

Lemma A.8. i) R ⊂ R̄ ≡ {σ ∈ Sn | σ(K ) ∈ K ∀K ∈ K}, ii) S = {σ ∈ Sn | σ(K ) =
K ∀K ∈ K}
Proof. i) Consider a permutation σ ∈ Sn which normalizes G so that for all γ ∈ G

there exists a γ̃ ∈ G such that γ σ = σ γ̃ with γ = diag(sqi ) and γ̃ = diag(s̃qi ). It
follows that s̃qi = sqσ(i) for all i , so that γ̃ = diag(ssσ(i) ). Consider all i ∈ K for a
given block K , so that qi = qK . Then sqσ(i) = s̃qK for all i ∈ K . This only works if
all qσ(i) = qK ′ are equal, so that σ(i) ∈ K ′ for all i ∈ K . Hence, σ(K ) ⊂ K ′ ∈ K.
Applying the same argument to σ−1 and K ′ leads to σ−1(K ′) ⊂ K , so combined we
have σ(K ) = K ′.

ii) Clearly, permutationswhich only act within blocks are in the commutant. Conversely,
permutations in the commutant have to be block-diagonal from Schur’s Lemma.

��
So, S is the set of permutations of directions within each block and R̄ contains permuta-
tions of blocks and within blocks. Unfortunately, the groupRwe are actually interested
in can be genuinely smaller than R̄. If there are more blocks than variables s it might
happen that a permutation of these blocks cannot be compensated by a choice of s̃ in the
normalizer condition. Clearly, S ⊂ R is a sub-group and indeed a normal sub-group so
that we can define the quotient group

P = R/S. (A.22)

There is a monomorphism P → R which involves assigning to an element of P the
element ofRwhich permutes the blocks inK in the same way and preserves the natural
order in each block K ∈ K. In this way,

R = P � S. (A.23)

We are now ready for the following theorem.
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Theorem A.9. The normalizer can be expressed in terms of the commutant as NGl(n,C)

(G) = P CGl(n,C)(G), CGl(n,C)(G) is a normal sub-group of NGl(n,C)(G) and P ∩
CGl(n,C)(G) = 1.

Proof. We begin by showing that every matrix g =∈ NGl(n,C)(G) can be written as a
product of a permutation and a matrix in the commutant. First, g = (gi j ) ∈ NGl(n,C)(G)

means that for all γ ∈ G there exists a γ̃ ∈ G such that gγ = γ̃ g.Write γ = diag(χi ) and
γ̃ = diag(χ̃i )whereχi = sqi and χ̃i = s̃qi . Then it follows that gi j (χ̃i−χ j ) = 0 for all i ,
j . Thematrix g is invertiblewhichmeans that for every row i there exists a column j with
gi j �= 0 and, moreover, for each rowwe can choose a different column. This means there
exists a permutationσ ∈ Sn so that giσ−1(i) �= 0 for all i . In order to satisfy the normalized
condition we then need that χ̃i = χσ−1(i). Now define c = σ−1g so that g = σc. The
normalizer condition then reads cγ c−1 = σ−1γ̃ σ = diag(χ̃σ (i)) = diag(χi ) = γ and,
hence, c ∈ CGl(n,C)(G) is in the commutant. This shows that every g in the normalizer
can be written as g = σc with σ ∈ Sn and c in the commutant. With this decomposition,
the normalizer condition, gγ = γ̃ g becomes σγ = γ̃ σ which shows that, in fact,
σ ∈ R. Further we know that every r ∈ R can be written as r = ps, where p ∈ P and
s ∈ S, so that g = rc = psc. But both s, c and their product sc are in the commutant.
This proves the decomposition NGl(n,C)(G) = P CGl(n,C)(G).

We now need to show that CGl(n,C)(G) is a normal sub-group of NGl(n,C)(G). Choose
a c in the commutant and g = pc′ in the normalizer. Then gcg−1 = pc̃ p−1 where
c̃ = c′cc′−1 is in the commutant, sowe need to show that pc̃ p−1 is also in the commutant,
that is pc̃ p−1γ = γ pc̃ p−1 for all γ ∈ G. This is equivalent to c̃γ̃ = γ̃ c̃ where
γ̃ = p−1γ p. However, γ̃ has the same block-structure than elements in G (as the action
of p permutes the blocks) so that c̃ and γ̃ indeed commute.
Finally, since the action p−1γ p of a p ∈ P on γ ∈ G permutes the blocks of γ , it follows
that the only p ∈ P for which p−1γ p = γ is, in fact, p = 1, so that NGl(n,C)(G) and
P ∩ CGl(n,C)(G) = 1. ��
So, in summary, we have found that the normalizer can be expressed in terms of the
commutant as

NGl(n,C)(G) = P � CGl(n,C)(G) , (A.24)

and the latter, by means of Schur’s Lemma, can be written as

CGl(n,C)(G) =
⊗

K∈K
Gl(K , C). (A.25)

A.5 Invariance group of the toric ambient space. In order to find the symmetry group
G A of the toric ambient space A we have to compute the normalizer NG B (G). Clearly,
this normalizer is given by

NG B (G) = G B ∩ NGl(n,C)(G). (A.26)

The two groups on the right-hand side have been explicitly determined in the previous
two sections, so our remaining task is to express their intersection in a useful form.
Both groups have a similar structure in that they relate to a block-decomposition of the n
coordinates and consist of a semi-direct product of a permutation groupwhich exchanges
the blocks times block-diagonal matrices which generate general linear transformations
within each block. However, the block-decomposition is in general different for the two
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cases. The group G B relates to the block-decomposition J which follows from the
structure of the zero set and is given by

G B = P � HB , HB =
⊗

J∈J
Gl(J, C). (A.27)

The group NGl(n,C)(G), on the other hand, relates to the block-decomposition K which
follows from the toric group G and is given by

NGl(n,C)(G) = P � CGl(n,C)(G) , CGl(n,C)(G) =
⊗

K∈K
Gl(K , C). (A.28)

The complication is that the block-decompositionsJ andK are not necessarily identical.
It is, therefore, useful to define the refined block-decomposition given as the intersection
of J and K defined by4

L = {L = J ∩ K | J ∈ J , K ∈ K , L �= ∅}. (A.29)

We introduce the usual collection of groups associated to this block-decomposition.
First, there are the block-diagonal matrices in

HA =
⊗

L∈L
Gl(L , C). (A.30)

Then we have the stabilizer group, SL, and the block-permutation group, RL, defined
by

SL = {σ ∈ Sn | σ(L) = L ∀L ∈ L} , RL = {σ ∈ Sn | σ(L) ∈ L ∀L ∈ L}. (A.31)

As usual, we can then form the quotient and the semi-direct product

PL = RL/SL , RL = PL � SL. (A.32)

From the definition of the various block structures is it clear that

HA = HB ∩ CGl(n,C)(G) , (A.33)

and we expect this to be the continuous part of NG B (G). We also define the intersection
of the permutation groups

RA = R ∩R , SA = S ∩ S , PA = RA/SA , RA = PA � SA. (A.34)

The two sets of discrete groups relate in the following way.

Lemma A.10. i) RA ⊂ RL, ii) SA = SL, iii) PA ⊂ PL.

Proof. i) Consider a r ∈ R ∩R so that r(J ) ∈ J for all J ∈ J and r(K ) ∈ K for all
K ∈ K. Then, for any L = J ∩ K ∈ L we have r(L) = r(J ∩ K ) = r(J ) ∩ r(K )

so that r(L) ∈ L. Hence, R ∩R ⊂ RL.
4 For fans obtained from triangulations of reflexive polytopes,K always is a refinement ofJ (see Appendix

A.6.2).
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ii) “⊂”: For s ∈ S ∩S we have s(J ) = J for all J ∈ J and s(K ) = K for all K ∈ K.
Then, for all L = J∩K ∈ Lwehave s(L) = s(J∩K ) = s(J )∩s(K ) = J∩K = L ,
so that s ∈ SL.
“⊃”: Let s ∈ SL, hence s(L) = L for all L ∈ L. Every J ∈ J can be written as a
disjoint union J = ⋃

L:L∩J �=∅ L and likewise every K ∈ K as K = ⋃
L:L∩K �=∅ L .

Hence, since all L are left invariant by s so are all J and K and it follows that
s ∈ S ∩ S.

iii) This follows directly from i) and ii).
��

Theorem A.11. The normalizer group NG B (G) can be written as NG B (G) = RA HA.

Proof. “⊃”: Consider a g = rh ∈ RA HA, where r ∈ RA = R ∩ R and h ∈ HA =
HB ∩CGl(n,C)(G). It follows that rh ∈ RHB = G B and rh ∈ RCGl(n,C) = NGl(n,C)(G)

and, hence, g = rh ∈ NG B (G).
“⊂”: Start with a g ∈ NG B (G) = G B ∩ NGl(n,C)(G) which can be written as g = ph̃ =
π c̃ with p ∈ P , h̃ ∈ HB , π ∈ P , c̃ ∈ CGl(n,C)(G). It follows that π−1 p = c̃h̃−1 ∈
CGl(n,C)(G)HB . Since π−1 p is a permutation it follows that π−1 p ∈ SS which is the
set of permutations in CGl(n,C)(G)HB . Write π−1 p = σ s−1, where σ ∈ S and s ∈ S,
so that ps = σπ ≡ γ . Since ps ∈ R and πσ ∈ R it follows that γ ∈ R ∩R = RA.
Define h = s−1h̃ ∈ HB and c = σ−1c̃ ∈ CGl(n,C)(G so that g = γ h = γ c. It follows
that h = c ∈ HB ∩ CGl(n,C)(G = HA and, therefore g = γ h ∈ RA HA. ��

It is clear that we can write NG B (G) as a semi-direct product

NG B (G) = PA � HA (A.35)

by dividing out the group SA. To find the invariance group, G A, of the toric space we
have to divide this by G which results in

G A = PA � (HA/G). (A.36)

This completes the calculation of G A.

A.6 Toric varieties obtained from reflexive polytopes. The results outlined above hold
for any toric variety constructed from a simplicial fan. Here, however, we are interested
in toric varieties which are associated with triangulations of reflexive polytopes, which
gives extra structure. Let us first recall the definition of Demazure roots, (A.1). In the
context of reflexive polytopes, it directly follows that only xi corresponding to vertices
vi can have Demazure roots, which are in turn given by all interior points5 of the dual
faces�

[3]
i . Restricting to actions which act linearly on the homogeneous coordinates we

recover the theorem stated in section A.6.1. The set of all roots α for which−α is a root
as well are known as semi-simple roots in the literature.

5 This is the reason for the appearance of one of the correction terms in Batyrev’s formula for h2,1 of a
toric hypersurface Calabi–Yau threefold.
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A.6.1 The set K. Let us review the setK. Its elements K are sets containing a collection
of indices {1, .., n} such that qi = q j for all i, j in a specific K . As we discuss now, this
has fairly strong implications for any two i, j in the same K .

Theorem A.12. On a simply connected toric variety, any two lattice points vi and v j
on �◦ for which qi = q j are vertices of �◦. Furthermore, there exist points αi j inside

of �
[3]
i as well as α j i inside of �

[3]
j for which αi j = −α j i .

Proof. From the equality of qi and q j it follows that the corresponding divisors Di and
D j are linearly equivalent. As all linear equivalences take the form

n∑

k=1

〈αi j , vk〉Dk = 0 (A.37)

for some vector αi j in M ⊗ R, there must be a vector αi j such that

〈αi j , vi 〉 = −1 〈αi j , v j 〉 = 1 〈αi j , vk〉 = 0 ∀ k �= i, j (A.38)

For a simply connected toric variety, the set of all vectors vi generate the lattice N . Hence
a first consequence of this is that αi j is contained in the dual lattice M . Furthermore, the
above implies that it is a lattice point on �, as 〈αi j , vk〉 ≥ −1 for all points vk on �◦.
〈αi j , vk〉 = 0 ∀ k �= i, j implies that all vk except vi and v j are contained in a three-
dimensional hyperplane of N ⊗R passing through the origin. As�◦ is four-dimensional
and the convex hull of all of the vl , it follows that vi and v j must be above and below this
hyperplane, so that they must be vertices. In this case (A.38) implies that αi j is inside

the dual three-dimensional face of vi , �
[3]
i and α j i = −αi j is inside �

[3]
j . ��

The above provides an alternative algorithm to determine the set K. All indices l
corresponding to non-vertices vl form sets Kl = {l}. For any vertex vi , we have to
find the interior points of the dual face �

[3]
i . If the negative of such an interior point is

also inside of a three-dimensional face �
[3]
j (defining a dual vertex v j of �◦) there is

a set K ∈ K containing both i and j . This defines an equivalence relation ∼K and the
equivalence classes are precisely the sets K ∈ K.

Thisway of thinking is particularly useful for polytopes�◦withmany integral points,
where many points (all non-vertices) can never occur in any non-trivial set K ∈ K.

A.6.2 The set J . The data exploited in the last paragraph only depends on the structure
of the polytopes�◦ and�. Let us now consider the triangulation data.We have described
the SR ideal by an index sets I ∈ I and have constructed the refinement J of I as the
set of equivalence classes under the relation

j ∼J i ↔ i and j are contained in the same sets I ∈ I. (A.39)

In other words, J is obtained by first forming all intersections between sets in I and
then discarding sets which are already containing smaller sets.

Lemma A.13. If all cones in a fan � are symmetrical with respect to exchanging i ↔ j
then i ∼J j .
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Proof. To see this, all we have to do is go through the construction of J from the data
of cones. We first find the SR ideal by forming the complement of the set of cones in
the power set of {1, · · · , n}. By construction this will be symmetrical under i ↔ j . But
then also the set of generators I enjoys the same symmetry so that i and j are in the
equivalence class in J as claimed. ��
Theorem A.14. If Di = D j , so that i ∼K j , it follows that i ∼J j .

Proof. Due to the lemma, it is sufficient to show that any triangulation of the polytope
�◦ is such that the collection of cones is symmetric under the exchange i ↔ j . First
of all, the triangulation tr(�◦) is completely fixed in terms of its cones of maximal
(i.e. 4) dimension. Every one of these cones is spanned by four linearly independent
vectors in N . If such a cone contains both vi and v j among its generators, there is
nothing to show, as this is symmetric in i and j . A cone which just contains vi but not
v j is hence spanned by vi and three vectors vk1 , vk2 , vk3 in the plane orthogonal to αi j .
This means the cone in question has a face (which is a three-dimensional cone) spanned
only by vk1 , vk2 , vk3 . For a fan constructed from a triangulation, every three-dimensional
cone is the intersection of precisely two four-dimensional cones. Hence there must be
another four-dimensional cone spanned by vk1 , vk2 , vk3 and another vector. The only
vector which turns vk1 , vk2 , vk3 into a four-dimensional cone (besides vi ) is v j . Hence
there is a cone {1, k1, k2, k3} as well. ��

As a direct consequence of the above,K is a refinement of J (the converse is wrong,
i.e. K �= J in general) for any triangulation. This means we do not need to consider
the index set L = K ∩ J since it equals K. Also K is ultimately independent of the
triangulation chosen for �◦.

B Toric π -twisted Representations

In this appendix, we collect some results on the representation theory of finite groups �

acting linearly on the homogeneous coordinates of toric varieties. Due to the decomposi-
tion (A.36) for the toric symmetry groups G A, our representations R : � → G A can sim-
ilarly be split into a permutation representation π : � → PA and a map r : � → HA/G
into the continuous part of the ambient space symmetry group. Since this continuous
part has the block structure HA/G = ⊕

K∈K Gl(K , C)/G the map r can be split up into
the corresponding blocks which we denote by ri . The semi-direct product structure of
the ambient space symmetry group G A means that r is a π -representation, that is, it
satisfies

r(γ γ̃ ) = π(γ̃ )−1r(γ )π(γ̃ )r(γ̃ ). (B.1)

B.1 Toric representations. Let us first discuss the case where π is trivial so that r : � →
HA/G is a regular group homomorphism.

B.1.1 Schur covers We begin with the review of Schur covers, see [16,21] for a proper
introduction. The central idea it to construct projective representations

r̄ : � → Gl(d, C)/C
∗ , (B.2)

via linear representations
r̂ : �̂ → Gl(d, C) (B.3)
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of a larger group �̂, called the Schur cover of �. The Schur cover is a central extension
of � by the Schur multiplier κ = H2(�, C

∗), that is, there is a short exact sequence

1 → κ → �̂ → � → 1, (B.4)

Wewill discuss the definition of group cohomology below. The extension sequence (B.4)
can be defined by fixing a so-called factor set e : �×� → K via the multiplication rule

(k, γ )(k̃, γ̃ ) = (kk̃e(γ, γ̃ ), γ γ̃ ). (B.5)

For a given extension (B.4) and projective representation r̄ , let l(γ ) be a lift of r̄ to
Gl(d, C) which satisfies

l(γ )l(γ̃ ) = f (γ, γ̃ )l(γ γ̃ ). (B.6)

Here, f is map f : �×� → C
∗. The factor set f captures the departure of the projective

representation r̄ from a linear one. Note that two such lifts l, l ′ are equivalent if we can
find a h : � → C

∗ such that
h(γ )l(γ ) = l ′(γ ) (B.7)

By Eq. (B.6), the factor sets are then related by

f ′(γ, γ̃ ) = f (γ, γ̃ )h(γ )h(γ̃ )h−1(γ γ̃ ) (B.8)

These relations define the group cohomology. Two factor sets f , f ′ are in the same class
[ f ] = [ f ′] in H2(�, C

∗) if they are related to equivalent lifts l and l ′.
One can define the map δ : Hom(K , C

∗) → H2(�, C
∗) by δ(ϕ) = [ϕ ◦ e]. Now

suppose that the class [ f ] ∈ H2(�, C
∗), associated to the lift (B.6), is in the image of

δ. This means there exists a ϕ ∈ Hom(K , C
∗) such that [ϕ ◦ e] = [ f ] or, dropping

cohomology classes, there exists a function h : � → C
∗ such that

ϕ ◦ e(γ, γ̃ ) = f (γ, γ̃ )h(γ̃ )h(γ γ̃ )−1h(γ ). (B.9)

Then defining a map r̂ : �̂ → HA by

r̂(k, γ ) = ϕ(k)h(γ )l(γ ) (B.10)

gives us a linear representation which becomes the projective representation r̄
in Gl(d, C)/C

∗.
The question is now if we can ‘undo’ the factor set f by enlarging the group � to �̂

and studying linear representations of �̂. As discussed in the last section, if we can find
a map ϕ ∈ Hom(K , C

∗) (that is, ϕ can be used to map e(γ, γ̃ ) → f (γ, γ̃ ) and we can
think of ϕ(k) as a being proportional to the unit matrix) and h(γ ) such that

ϕ(e(γ, γ̃ )) = f (γ, γ̃ )h(γ )h(γ̃ )h−1(γ γ̃ ) (B.11)

holds for every factor set f (γ, γ̃ ) our choice of e(γ, γ̃ ) is sufficiently general. The
central statement is now that the Schur cover obtained by using the Schur multiplier is
precisely such that this holds. For the choice K = H2(�, C

∗), δ is indeed surjective,
and any projective representation can be lifted to a linear one. Hence, using the Schur
cover we can lift every projective representation to a linear one.
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B.1.2 Multiple Schur covers Let us now discuss the next more complicated cases, which
are representations on products of projective spaces

r̄ : � →
⊗

i

Gl(di , C)/C
∗. (B.12)

First of all, if we are given such a representation and a lift l(γ ), (B.6) implies that f is
a map f : � × � → (C∗)n . We can think of f as a matrix

f (γ, γ̃ ) =
⊕

Idi×di ci (γ, γ̃ ) , (B.13)

that is, it is block diagonal and each block is proportional to the unit matrix. We can of
course rewrite

f (γ, γ̃ ) =
∏

i

fi (γ, γ̃ ) (B.14)

fi (γ, γ̃ ) = Idi×di ci (γ, γ̃ ) ⊕ j �=i Id j×d j (B.15)

where now fi : � × � → C
∗.

Clearly, equivalent f (γ, γ̃ ) are again related by (B.8). This equivalence is derived
using the action of C

∗ on the homogeneous coordinates and we may consider each of
the n actions in turn and denote the corresponding map hi : � → C

∗ hi (γ ). This gives
rise to a similar decomposition into h(γ ) = ∏

hi (γ ) with hi : � → C
∗. With this we

find that f (γ, γ̃ ), f ′(γ, γ̃ ) define the same class in H2(�, (C∗)n) if all of the fi and f ′i
define the same class in H2(�, C

∗)

f ′i (γ, γ̃ ) = fi (γ, γ̃ )hi (γ )hi (γ̃ )h−1
i (γ γ̃ ). (B.16)

We now use the same Schur cover as before, (that is, we have the same exact sequence
(B.4) and e : � × � → K ), and consider maps ϕ, which now maps ϕ : K → (C∗)n .
As is f (γ, γ̃ ), ϕ(k) will be a block-diagonal matrix with each block proportional to the
unit matrix. We can hence also decompose ϕ into homomorphisms ϕi : K → C

∗,

ϕ(k) =
∏

i

ϕi (k) (B.17)

ϕi (k) = Idi×di pi (k) ⊕ j �=i Id j×d j (B.18)

We are now ready to confront (B.11) for this setup. As we have decomposed ϕ, h, f
in the same way, a solution to the generalization of (B.11) can be found if we can solve

ϕi (e(γ, γ̃ )) = fi (γ, γ̃ )hi (γ )hi (γ̃ )h−1
i (γ γ̃ ) (B.19)

The existence of such hi , ϕi for each f (γ, γ̃ ) is already implied if e(γ, γ̃ ) originates
from the standard Schur cover, so that we are done and the same construction applies
here. The linear representation is found as

r̂(k, γ ) = ϕ(k)h(γ )l(γ ) (B.20)

The case of a toric variety may now be discussed in a similar fashion. The difference
to having independent products of projective linear groups as in Eq. (B.12) is that we
may have more factors of Gl(di , C) than C

∗ actions in (B.12). Alternatively, we may
think of the C

∗ actions on each of the Gl(di , C) ‘blocks’ as being correlated. Let us
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assume we have in total b blocks, with c blocks correlated to the other (b − c) blocks,
so that G ∼= (C∗)b−c. We can find all multi-projective representations in this case by
treating all of the blocks as uncorrelated and then checking two more conditions to
remove the invalid ones. A sufficient condition for a linear representation to descend to
a multi-projective representation in the case of correlated blocks is:

r̂(k, γ )r̂(k̃, γ )−1 ∈ G (B.21)

This reason for this is that given the same γ , varying k does not change the identification
of r̄(γ ) inside r̂(k, γ ). Denoting the projection from �̂ to� by π̂ we have that π̂(k, γ ) =
π̂(k̃, γ ) for all k, k̃ ∈ K . Hence by the definition of π̂ we have r̂(k, γ )r̂(k̃, γ )−1 ∈ G.
Finally, we need to identify under which circumstances two different linear representa-
tions of � give rise to the same multi projective representation. Two projective represen-
tations r̄1 and r̄2 are equivalent only when there exists a automorphism P of the space
of homogeneous coordinates and a function θ : � → G, such that for each γ ∈ �, we
have P(r̄1(γ )) = θ(γ )(r̄2(γ )P). Inserting the definition of r̄ = π̂(r̂(k, γ )), this means
that

P(π̂(r̂(k1, γ )) = θ(γ )(π̂(r̂2(k2, γ ))P). (B.22)

We see that choosing different k1 and k2 is equivalent to inserting another factor into
θ , namely θ is k1, k2 dependent. However in the sense of equivalent representation, we
could just make one convenient choice of k1, k2 for each γ , checking the formula (B.22).
This is sufficient to remove the redundancies.

B.2 Twisted representations. Let us now discuss the case of a non-trivial representation
π and the resulting interplay between π and r . Before considering the full problem of
finding all (multi-)projective π -twisted representations, we discuss how we can manage
to find all π -twisted linear representations r : � → PA �

⊕
K∈K Gl(K , C). To start

the construction, let us assume that we have found a, not necessarily injective, group
homomorphism

π : � → PA. (B.23)

How can we find all compatible π -twisted representations r satisfying (B.1)? Further-
more, we assume for simplicity that π(�) acts transitively on the ’blocks’ Ki ∈ K (of
course all of these have to have the same size) and leaves everything else unchanged.
We will discuss the general case below.

Labelling the relevant blocks by Ki , where i = 1, . . . , b, we can single out the block
Ki and consider its stabilizer groups �i ⊂ � under the action of π . We denote by
ri : �i → GL(Bi , C)/C

∗ the map r restricted to the block Ki . Equivalently, we can
write the entire representation R as the matrix product

R(γ ) = π(γ ) · diag(r1(γ ), · · · , rn(γ ). (B.24)

Note that the restriction r̃i and ri to the stabiliser group�i defines a group homomorphism
(since, by definition, π acts trivially on the stabiliser).We now explain that it is sufficient
to fix a single one of the representations r̃i to recover the whole π -twisted representation
r . For definiteness, let us hence consider �1, the stabilizer of the first block, and fix the
representation r̃1 : �1 �→ Gl(K1, C). To reconstruct the whole action of � we pick a
set of group elements γi such that π(γi )(1) = i . For any block i , we can then write an
arbitrary group element γ ∈ � uniquely as

γ = γπ(γ )(i)hγ−1
i , (B.25)
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where h ∈ �1. We can hence think of h to depend on γ and i . To see this, note that we
can choose h as

h = γ−1
π(γ )(i)γ γi . (B.26)

This is indeed an element of �1 since

π(h)(1) = π(γπ(γ )(i))
−1π(γ )π(γi )(1)

= π(γπ(γ )(i))
−1π(γ )(i)

= 1.

(B.27)

We may hence write

R(γ ) = R(γπ(γ )(i))R(h)R(γ−1
i ) (B.28)

for any i and γ and using the appropriate h ∈ �1. Going through the definitions this
means that we have

ri (γ ) = r̃1(h) (B.29)

This allows us to recover all of the matrices ri (γ ) and hence the entire π -twisted repre-
sentation from r̃1. The group homomorphisms r̃1 can, in turn, be constructed from the
linear representations of the Schur cover �̂1, as discussed above.

In general π : � → PA does not act transitively on the blocks and there may be
several orbits. In this case, we can apply the above method separately for each of the
orbits and then combine all of the data to find the representation R : � → PA � HA.

In summary, in order to find the representations R = (π, r) : � → PA � HA, we
have to carry out the following steps.

(1) Find all permutation representations π : � → PA, not necessarily faithful.
(2) Find all orbits of the blocks under the action of π .
(3) For each orbit {Ki }, pick out the block K1 and determine its stabiliser group, �1,

under the action of π .
(4) Choose the group elements γi such that π(γi )(1) = i .
(5) Study all representations r̃1 : �1 → Gl(K1, C)/C

∗ by considering the Schur cover,
�̂1 of �1.

(6) Re-construct the entire map r from r̃1 by using Eq. (B.26).
(7) Repeat this process for each orbit, assemble the results into the complete represen-

tation R and check if R is faithful.

C Patches on Toric Varieties and Smoothness of Hypersurfaces

Let us describe how the coordinate patches corresponding to each four-dimensional cone
σ ∈ � of a toric variety with fan � are found. Let us start with cones corresponding to
smooth affine varieties, in which case the corresponding patch is simplyC

4. In this case,
the rays of σ are generated by four lattice vectors vσ

i such that thematrix (vσ
1 , vσ

2 , vσ
3 , vσ

4 )

has determinant one and the vi generate the N-lattice with integer coefficients. The four
rays of the dual cone6 σ∨ are then generated by four lattice vectors v∨i which generate
the M-lattice and satisfy

〈v∨j , vσ
i 〉 = δi j . (C.1)

6 The dual cone is defined by 〈σ∨, σ 〉 ≥ 0.
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The affine toric variety V (σ ) = (C∗)4 associated with each smooth four-dimensional
cone has a stratification

V (σ ) = (C∗)4 #i=1..4 (C∗)3 # j=1..6 (C∗)2 #k=1..4 (C∗) # pt (C.2)

in which each stratum (C∗)n is associated with an 4− n dimensional cone contained in
σ . We can find good coordinates for all of these strata using points on the M-lattice. In
the present case, the v∨i defined above give rise to coordinates on (C∗)4 which have a
well-defined limit to the other strata in (C.2), that is, we can use them as coordinates for
the whole of V (σ ). These coordinates can be written as

x̂σ
i ≡

∏

j

(x j )
〈v∨i ,v j 〉 = xσ

i

∏

{x j }\{xσ
i }

x
〈v∨i ,v j 〉
j , (C.3)

where we denote the homogeneous coordinates corresponding to the vσ
i by xσ

i and
keep the notation of denoting all homogeneous coordinates simply by xi . In the above
expression, the first product ranges over all homogeneous coordinates (ray generators
of the fan �) and the second one only over homogeneous coordinates associated with
rays not contained in σ .

On the patch V (σ ), we can rewrite the defining polynomial p of a TCY hypersurface
X in terms of the local coordinates x̂i . Every monomial pm in p is associated with a
vector m in the M-lattice and we may write m = ∑

i=1..4 miv∨i as the v∨i generate the
M-lattice. Hence

pm =
∏

x
〈m,v j 〉+1
j =

∏

j

x j

∏

i

x
mi 〈v∨i ,v j 〉
j

=
∏

i

(x̂σ
i )mi

⎡

⎣
∏

j

x j

⎤

⎦

=
∏

i

(x̂σ
i )〈m,vσ

i 〉+1
⎡

⎣
∏

{x j }\{xσ
i }

x j

⎤

⎦

(C.4)

Not surprisingly, we can rewrite every monomial purely in terms of the x̂i such that
p(xσ

i ) = p(x̂σ
i ) when we set all other coordinates = 1. Let us take pσ to be the

polynomial which is obtained when we set {x j }\{xσ
i } to 1. This is of course the same

as ’gauge fixing’ all coordinates xi except the local coordinates xσ
i . For each patch

V (σ ) = C
4 we can define the Jacobi ideal of the local defining polynomial pσ by

I σ = 〈pσ ,
∂pσ

∂xσ
1

, . . . ,
∂pσ

∂xσ
4
〉. (C.5)

To check smoothness on V (σ ) we have to verify that the dimension of this ideal is −1.
Let us now discuss the singular patches V (σ ). Naively, singular patches arise because

gauge fixing all coordinates except the ones in σ may leave some residual discrete group
G ⊂ G which still has to be divided out. Hence, the local patch has the structure
V (σ ) = C

4/G and the local coordinates xσ
i really parametrize the covering space C

4.
As before, we may find coordinates on (C∗)4 ⊂ V (σ ) by considering four vectors
generating the M-lattice. What we cannot hope for, however, is for the ray generators of
σ∨

i to generate theM-lattice (overZ).We can however extend these to a set of generators



978 A. P. Braun, A. Lukas, C. Sun

of the M-lattice by considering a larger set {v∨μ} ⊃ {v∨i } . These can be used to define a
number of coordinates on V (σ )

x̂σ
μ ≡

∏

i

(xi )
〈v∨μ,vi 〉. (C.6)

As we can expand any vector of the m-lattice in terms of the v∨μ with integer coefficients,
we can again rewrite p as a function solely of the v∨μ upon dividing out

∏
{x j }\{xσ

i } x j .

(This also follows more abstractly from the fact that C[v∨μ] is the polynomial ring of
V (σ ).) However, we havemore than four v∨μ , so that there are a number of linear relations

∑

μ

αμv∨μ = 0 (C.7)

with αμ ∈ Z. These turn into relations

∏

μ

x̂
αμ
μ = 1. (C.8)

Hence we now find a complete intersection as the appropriate expression for pσ . The
additional defining equations capture the orbifold singularities on V (σ ) = C

4/G.
As a simple example, let us consider a Calabi–Yau (elliptic curve) hypersurface of P123.
We take homogeneous coordinates (y, x, z) ∼ (λ3y, λ2x, λz). The fan of P123 has rays
generated by

vy =
(
1
0

)
vx =

(
0
1

)
vz =

(−3
−2

)
(C.9)

The hypersurface can be described by

y2 = x3 + f xz4 + gz6 (C.10)

Let us discuss the cone σ spanned by x and z. Gauge fixing y = 1 leaves a residual Z3
acting on x and z so that we expect V (σ ) = C

2/Z3. The generators of σ∨ are
(−1

0

)
→ ẑ = z3/y

(−2
3

)
→ x̂ = x3/y2 (C.11)

Clearly, we cannot rewrite (C.10) in terms of these coordinates alone, which corresponds
to the fact that the above vectors do not generate the M-lattice by only a sublattice M ′
such that M/M ′ = Z3. We can cure this by defining a new coordinate

(
1
−1

)
→ ξ̂ ≡ xz/y (C.12)

so that (C.10) becomes (after dividing by y2)

1 = x̂ + f ξ̂ ẑ + gẑ2 = 0 (C.13)

However, we now have the additional relation

ξ̂3 = ẑ x̂ (C.14)
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which is nothing but the defining equation of an A3 singularity (which is the same as
C
2/Z3) embedded into C

3.
As we have already discussed, we have to make sure our hypersurface X defined

by p = 0 must not meet the singularities of the ambient space as this would lead to
singularities on X as well. As the singularities arise through fixed points of the group
action of G on C

4, we can lift X ⊂ V (σ ) to a (different) hypersurface X̃ in C
4 which

descends to X via a free group action of G. Smoothness of the covering space is then
equivalent to smoothness of the quotient.We are hence interested in studying coordinates
on the cover of V (σ ). These coordinates can be found by writing the x̂μ as monomials
such that (C.8) is automatically solved. This, however, can be done by simply using
(C.6) and setting all {x j }\{xσ

i } to unity. We have hence found that we can treat all four-
dimensional cones in the very same way provided that the orbifold points of the ambient
space A do not meet the invariant hypersurface X .

D Invariant Polynomials of Examples

D.1 Case #1, first symmetry action. The invariant polynomial under (4.3) is a general
linear combination of monomials with exponents

(5, 0, 0, 0, 0), (3, 1, 0, 0, 1), (3, 0, 1, 1, 0), (2, 0, 1, 0, 2), (2, 1, 2, 0, 0), (2, 2, 0, 1, 0), (2, 0, 0, 2, 1),

(1, 2, 0, 0, 2), (1, 3, 1, 0, 0), (1, 0, 3, 0, 1), (1, 0, 0, 1, 3), (1, 1, 1, 1, 1), (1, 0, 2, 2, 0), (1, 1, 0, 3, 0),

(0, 0, 0, 0, 5), (0, 5, 0, 0, 0), (0, 1, 1, 0, 3), (0, 2, 2, 0, 1), (0, 0, 5, 0, 0), (0, 3, 0, 1, 1), (0, 0, 2, 1, 2),

(0, 1, 3, 1, 0), (0, 1, 0, 2, 2), (0, 2, 1, 2, 0), (0, 0, 1, 3, 1), (0, 0, 0, 5, 0),
(D.1)

where we have used the same labelling of coordinates as in (4.1).

D.2 Case #1, second symmetry action. The invariant polynomial under (4.4) is found
from the above by finding the orbits of the homogeneous coordinates under the permuta-
tions R(γ2). The monomials in each orbit must then appear with an identical coefficient
in the defining polynomial of an invariant hypersurface. The orbits under the choice (2)
in (4.4) are

[(0, 5, 0, 0, 0), (5, 0, 0, 0, 0), (0, 0, 0, 5, 0), (0, 0, 5, 0, 0), (0, 0, 0, 0, 5)] ,
[(0, 0, 1, 3, 1), (1, 0, 0, 1, 3), (3, 1, 0, 0, 1), (0, 1, 3, 1, 0), (1, 3, 1, 0, 0)] ,
[(1, 0, 3, 0, 1), (0, 3, 0, 1, 1), (3, 0, 1, 1, 0), (1, 1, 0, 3, 0), (0, 1, 1, 0, 3)] ,
[(1, 0, 2, 2, 0), (2, 2, 0, 1, 0), (0, 1, 0, 2, 2), (0, 2, 2, 0, 1), (2, 0, 1, 0, 2)] ,
[(2, 1, 2, 0, 0), (0, 2, 1, 2, 0), (1, 2, 0, 0, 2), (2, 0, 0, 2, 1), (0, 0, 2, 1, 2)] ,

[(1, 1, 1, 1, 1)] .

(D.2)

The other groups actions in (4.4) can be found from this by a permutation of variables.

D.3 Case #2, first symmetry action. The exponents of the invariant monomials under
(4.1) are given by
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(3, 0, 0, 0, 0, 3), (3, 0, 0, 3, 0, 0), (3, 0, 0, 1, 1, 1), (3, 0, 0, 0, 3, 0), (2, 0, 1, 1, 0, 2), (2, 1, 0, 2, 0, 1),

(2, 1, 0, 0, 1, 2), (2, 0, 1, 2, 1, 0), (2, 0, 1, 0, 2, 1), (2, 1, 0, 1, 2, 0), (1, 1, 1, 0, 0, 3), (1, 2, 0, 1, 0, 2),

(1, 0, 2, 2, 0, 1), (1, 1, 1, 3, 0, 0), (1, 0, 2, 0, 1, 2), (1, 1, 1, 1, 1, 1), (1, 2, 0, 2, 1, 0), (1, 2, 0, 0, 2, 1),

(1, 0, 2, 1, 2, 0), (1, 1, 1, 0, 3, 0), (0, 0, 3, 0, 0, 3), (0, 3, 0, 0, 0, 3), (0, 1, 2, 1, 0, 2), (0, 2, 1, 2, 0, 1),

(0, 0, 3, 3, 0, 0), (0, 3, 0, 3, 0, 0), (0, 2, 1, 0, 1, 2), (0, 0, 3, 1, 1, 1), (0, 3, 0, 1, 1, 1), (0, 1, 2, 2, 1, 0),

(0, 1, 2, 0, 2, 1), (0, 2, 1, 1, 2, 0), (0, 0, 3, 0, 3, 0), (0, 3, 0, 0, 3, 0).
(D.3)

D.4 Case #2, second symmetry action. As in case #1, the invariant polynomial under
(4.9) is found from the above by finding the orbits of the homogeneous coordinates
under the permutations R(γ2). The monomials in each orbit must then appear with an
identical coefficient in the defining polynomial of an invariant hypersurface. The orbits
under the choice (4) in (4.9) are

[(3, 0, 0, 0, 0, 3), (0, 3, 0, 3, 0, 0), (0, 0, 3, 0, 3, 0)] ,
[(0, 3, 0, 0, 3, 0), (0, 0, 3, 0, 0, 3), (3, 0, 0, 3, 0, 0)] ,
[(3, 0, 0, 1, 1, 1), (0, 3, 0, 1, 1, 1), (0, 0, 3, 1, 1, 1)] ,
[(0, 0, 3, 3, 0, 0), (3, 0, 0, 0, 3, 0), (0, 3, 0, 0, 0, 3)] ,
[(1, 2, 0, 2, 1, 0), (2, 0, 1, 1, 0, 2), (0, 1, 2, 0, 2, 1)] ,
[(2, 1, 0, 2, 0, 1), (0, 2, 1, 1, 2, 0), (1, 0, 2, 0, 1, 2)] ,
[(2, 1, 0, 0, 1, 2), (0, 2, 1, 2, 0, 1), (1, 0, 2, 1, 2, 0)] ,
[(2, 0, 1, 2, 1, 0), (0, 1, 2, 1, 0, 2), (1, 2, 0, 0, 2, 1)] ,
[(0, 1, 2, 2, 1, 0), (1, 2, 0, 1, 0, 2), (2, 0, 1, 0, 2, 1)] ,
[(0, 2, 1, 0, 1, 2), (2, 1, 0, 1, 2, 0), (1, 0, 2, 2, 0, 1)] ,
[(1, 1, 1, 0, 0, 3), (1, 1, 1, 0, 3, 0), (1, 1, 1, 3, 0, 0)] ,

[(1, 1, 1, 1, 1, 1)] .

(D.4)

D.5 Case #3. The exponents of the invariant monomials under (4.13) are given by

(8, 0, 0, 0, 0, 0, 4), (6, 1, 0, 0, 1, 1, 3), (6, 0, 0, 2, 0, 0, 4), (5, 0, 0, 1, 2, 1, 3), (5, 2, 0, 1, 0, 1, 3),

(4, 0, 0, 0, 4, 2, 2), (4, 2, 0, 0, 2, 2, 2), (4, 4, 0, 0, 0, 2, 2), (4, 1, 0, 2, 1, 1, 3), (4, 0, 0, 4, 0, 0, 4),

(3, 0, 1, 1, 0, 0, 2), (3, 1, 0, 1, 3, 2, 2), (3, 3, 0, 1, 1, 2, 2), (3, 0, 0, 3, 2, 1, 3), (3, 2, 0, 3, 0, 1, 3),

(2, 0, 1, 0, 2, 1, 1), (2, 2, 1, 0, 0, 1, 1), (2, 1, 0, 0, 5, 3, 1), (2, 3, 0, 0, 3, 3, 1), (2, 5, 0, 0, 1, 3, 1),

(2, 0, 0, 2, 4, 2, 2), (2, 2, 0, 2, 2, 2, 2), (2, 4, 0, 2, 0, 2, 2), (2, 1, 0, 4, 1, 1, 3), (2, 0, 0, 6, 0, 0, 4),

(1, 1, 1, 1, 1, 1, 1), (1, 0, 1, 3, 0, 0, 2), (1, 0, 0, 1, 6, 3, 1), (1, 2, 0, 1, 4, 3, 1), (1, 4, 0, 1, 2, 3, 1),

(1, 6, 0, 1, 0, 3, 1), (1, 1, 0, 3, 3, 2, 2), (1, 3, 0, 3, 1, 2, 2), (1, 0, 0, 5, 2, 1, 3), (1, 2, 0, 5, 0, 1, 3),

(0, 0, 2, 0, 0, 0, 0), (0, 1, 1, 0, 3, 2, 0), (0, 3, 1, 0, 1, 2, 0), (0, 0, 1, 2, 2, 1, 1), (0, 2, 1, 2, 0, 1, 1),

(0, 0, 0, 0, 8, 4, 0), (0, 2, 0, 0, 6, 4, 0), (0, 4, 0, 0, 4, 4, 0), (0, 6, 0, 0, 2, 4, 0), (0, 8, 0, 0, 0, 4, 0),

(0, 1, 0, 2, 5, 3, 1), (0, 3, 0, 2, 3, 3, 1), (0, 5, 0, 2, 1, 3, 1), (0, 0, 0, 4, 4, 2, 2), (0, 2, 0, 4, 2, 2, 2),

(0, 4, 0, 4, 0, 2, 2), (0, 1, 0, 6, 1, 1, 3), (0, 0, 0, 8, 0, 0, 4).

(D.5)

D.6 Case #4, first symmetry action. The exponents of the invariant monomials under
(4.16) are given by
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(8, 0, 0, 4, 0, 0, 4), (8, 0, 2, 2, 0, 0, 4), (8, 0, 4, 0, 0, 0, 4), (7, 1, 1, 3, 0, 0, 4), (7, 1, 3, 1, 0, 0, 4),

(6, 2, 0, 4, 0, 0, 4), (6, 0, 0, 4, 1, 0, 3), (6, 2, 2, 2, 0, 0, 4), (6, 0, 2, 2, 1, 0, 3), (6, 2, 4, 0, 0, 0, 4),

(6, 0, 4, 0, 1, 0, 3), (5, 3, 1, 3, 0, 0, 4), (5, 1, 1, 3, 1, 0, 3), (5, 3, 3, 1, 0, 0, 4), (5, 1, 3, 1, 1, 0, 3),

(4, 0, 1, 1, 0, 1, 2), (4, 4, 0, 4, 0, 0, 4), (4, 2, 0, 4, 1, 0, 3), (4, 0, 0, 4, 2, 0, 2), (4, 4, 2, 2, 0, 0, 4),

(4, 2, 2, 2, 1, 0, 3), (4, 0, 2, 2, 2, 0, 2), (4, 4, 4, 0, 0, 0, 4), (4, 2, 4, 0, 1, 0, 3), (4, 0, 4, 0, 2, 0, 2),

(3, 1, 0, 2, 0, 1, 2), (3, 1, 2, 0, 0, 1, 2), (3, 5, 1, 3, 0, 0, 4), (3, 3, 1, 3, 1, 0, 3), (3, 1, 1, 3, 2, 0, 2),

(3, 5, 3, 1, 0, 0, 4), (3, 3, 3, 1, 1, 0, 3), (3, 1, 3, 1, 2, 0, 2), (2, 2, 1, 1, 0, 1, 2), (2, 0, 1, 1, 1, 1, 1),

(2, 6, 0, 4, 0, 0, 4), (2, 4, 0, 4, 1, 0, 3), (2, 2, 0, 4, 2, 0, 2), (2, 6, 2, 2, 0, 0, 4), (2, 0, 0, 4, 3, 0, 1),

(2, 4, 2, 2, 1, 0, 3), (2, 2, 2, 2, 2, 0, 2), (2, 6, 4, 0, 0, 0, 4), (2, 0, 2, 2, 3, 0, 1), (2, 4, 4, 0, 1, 0, 3),

(2, 2, 4, 0, 2, 0, 2), (2, 0, 4, 0, 3, 0, 1), (1, 3, 0, 2, 0, 1, 2), (1, 1, 0, 2, 1, 1, 1), (1, 3, 2, 0, 0, 1, 2),

(1, 1, 2, 0, 1, 1, 1), (1, 7, 1, 3, 0, 0, 4), (1, 5, 1, 3, 1, 0, 3), (1, 3, 1, 3, 2, 0, 2), (1, 7, 3, 1, 0, 0, 4),

(1, 1, 1, 3, 3, 0, 1), (1, 5, 3, 1, 1, 0, 3), (1, 3, 3, 1, 2, 0, 2), (1, 1, 3, 1, 3, 0, 1), (0, 0, 0, 0, 0, 2, 0),

(0, 4, 1, 1, 0, 1, 2), (0, 2, 1, 1, 1, 1, 1), (0, 0, 1, 1, 2, 1, 0), (0, 8, 0, 4, 0, 0, 4), (0, 6, 0, 4, 1, 0, 3),

(0, 4, 0, 4, 2, 0, 2), (0, 8, 2, 2, 0, 0, 4), (0, 2, 0, 4, 3, 0, 1), (0, 6, 2, 2, 1, 0, 3), (0, 0, 0, 4, 4, 0, 0),

(0, 4, 2, 2, 2, 0, 2), (0, 8, 4, 0, 0, 0, 4), (0, 2, 2, 2, 3, 0, 1), (0, 6, 4, 0, 1, 0, 3), (0, 0, 2, 2, 4, 0, 0),

(0, 4, 4, 0, 2, 0, 2), (0, 2, 4, 0, 3, 0, 1), (0, 0, 4, 0, 4, 0, 0)

(D.6)

D.7 Case #4, second symmetry action. The invariant polynomial under (4.1) is found
from (D.6) by finding the orbits of the homogeneous coordinates under the permutations
R(γ2). The monomials in each orbit must then appear with an identical coefficient in
the defining polynomial of an invariant hypersurface. The orbits under (4.1) are

[(0, 8, 4, 0, 0, 0, 4), (8, 0, 0, 4, 0, 0, 4)], [(0, 8, 2, 2, 0, 0, 4), (8, 0, 2, 2, 0, 0, 4)],
[(0, 8, 0, 4, 0, 0, 4), (8, 0, 4, 0, 0, 0, 4)], [(1, 7, 3, 1, 0, 0, 4), (7, 1, 1, 3, 0, 0, 4)],
[(1, 7, 1, 3, 0, 0, 4), (7, 1, 3, 1, 0, 0, 4)], [(2, 6, 4, 0, 0, 0, 4), (6, 2, 0, 4, 0, 0, 4)],

[(0, 6, 4, 0, 1, 0, 3),−(6, 0, 0, 4, 1, 0, 3)], [(2, 6, 2, 2, 0, 0, 4), (6, 2, 2, 2, 0, 0, 4)],
[(0, 6, 2, 2, 1, 0, 3),−(6, 0, 2, 2, 1, 0, 3)], [(2, 6, 0, 4, 0, 0, 4), (6, 2, 4, 0, 0, 0, 4)],
[(0, 6, 0, 4, 1, 0, 3),−(6, 0, 4, 0, 1, 0, 3)], [(3, 5, 3, 1, 0, 0, 4), (5, 3, 1, 3, 0, 0, 4)],
[(1, 5, 3, 1, 1, 0, 3),−(5, 1, 1, 3, 1, 0, 3)], [(3, 5, 1, 3, 0, 0, 4), (5, 3, 3, 1, 0, 0, 4)],

[(1, 5, 1, 3, 1, 0, 3),−(5, 1, 3, 1, 1, 0, 3)], [(0, 4, 1, 1, 0, 1, 2),−(4, 0, 1, 1, 0, 1, 2)],
[(4, 4, 0, 4, 0, 0, 4), (4, 4, 4, 0, 0, 0, 4)], [(2, 4, 4, 0, 1, 0, 3),−(4, 2, 0, 4, 1, 0, 3)],

[(0, 4, 4, 0, 2, 0, 2), (4, 0, 0, 4, 2, 0, 2)], [(4, 4, 2, 2, 0, 0, 4)],
[(2, 4, 2, 2, 1, 0, 3),−(4, 2, 2, 2, 1, 0, 3)], [(0, 4, 2, 2, 2, 0, 2), (4, 0, 2, 2, 2, 0, 2)],
[(2, 4, 0, 4, 1, 0, 3),−(4, 2, 4, 0, 1, 0, 3)], [(0, 4, 0, 4, 2, 0, 2), (4, 0, 4, 0, 2, 0, 2)],

[(1, 3, 2, 0, 0, 1, 2),−(3, 1, 0, 2, 0, 1, 2)], [(1, 3, 0, 2, 0, 1, 2),−(3, 1, 2, 0, 0, 1, 2)],
[(3, 3, 1, 3, 1, 0, 3),−(3, 3, 3, 1, 1, 0, 3)], [(1, 3, 3, 1, 2, 0, 2), (3, 1, 1, 3, 2, 0, 2)],
[(1, 3, 1, 3, 2, 0, 2), (3, 1, 3, 1, 2, 0, 2)], [(0, 2, 1, 1, 1, 1, 1), (2, 0, 1, 1, 1, 1, 1)],

[(2, 2, 0, 4, 2, 0, 2), (2, 2, 4, 0, 2, 0, 2)], [(0, 2, 4, 0, 3, 0, 1),−(2, 0, 0, 4, 3, 0, 1)],
[(2, 2, 2, 2, 2, 0, 2)], [(0, 2, 2, 2, 3, 0, 1),−(2, 0, 2, 2, 3, 0, 1)],

[(0, 2, 0, 4, 3, 0, 1),−(2, 0, 4, 0, 3, 0, 1)], [(1, 1, 0, 2, 1, 1, 1), (1, 1, 2, 0, 1, 1, 1)],
[(1, 1, 1, 3, 3, 0, 1),−(1, 1, 3, 1, 3, 0, 1)], [(0, 0, 0, 0, 0, 2, 0)],

[(0, 0, 0, 4, 4, 0, 0), (0, 0, 4, 0, 4, 0, 0)], [(0, 0, 2, 2, 4, 0, 0)]
(D.7)
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A sign in front of a vector of exponents indicates that the two monomials must have the
same coefficient with a relative sign in the defining equation.

D.8 Case #5. The exponents of the invariant monomials under (4.20) are given by

(8, 0, 0, 4, 0, 0, 4), (8, 0, 2, 2, 0, 0, 4), (8, 0, 4, 0, 0, 0, 4), (7, 1, 1, 3, 0, 0, 4), (7, 1, 3, 1, 0, 0, 4),

(6, 2, 0, 4, 0, 0, 4), (6, 0, 0, 4, 1, 0, 3), (6, 2, 2, 2, 0, 0, 4), (6, 0, 2, 2, 1, 0, 3), (6, 2, 4, 0, 0, 0, 4),

(6, 0, 4, 0, 1, 0, 3), (5, 3, 1, 3, 0, 0, 4), (5, 1, 1, 3, 1, 0, 3), (5, 3, 3, 1, 0, 0, 4), (5, 1, 3, 1, 1, 0, 3),

(4, 0, 0, 2, 0, 1, 2), (4, 0, 2, 0, 0, 1, 2), (4, 4, 0, 4, 0, 0, 4), (4, 2, 0, 4, 1, 0, 3), (4, 0, 0, 4, 2, 0, 2),

(4, 4, 2, 2, 0, 0, 4), (4, 2, 2, 2, 1, 0, 3), (4, 0, 2, 2, 2, 0, 2), (4, 4, 4, 0, 0, 0, 4), (4, 2, 4, 0, 1, 0, 3),

(4, 0, 4, 0, 2, 0, 2), (3, 1, 1, 1, 0, 1, 2), (3, 5, 1, 3, 0, 0, 4), (3, 3, 1, 3, 1, 0, 3), (3, 1, 1, 3, 2, 0, 2),

(3, 5, 3, 1, 0, 0, 4), (3, 3, 3, 1, 1, 0, 3), (3, 1, 3, 1, 2, 0, 2), (2, 2, 0, 2, 0, 1, 2), (2, 0, 0, 2, 1, 1, 1),

(2, 2, 2, 0, 0, 1, 2), (2, 0, 2, 0, 1, 1, 1), (2, 6, 0, 4, 0, 0, 4), (2, 4, 0, 4, 1, 0, 3), (2, 2, 0, 4, 2, 0, 2),

(2, 6, 2, 2, 0, 0, 4), (2, 0, 0, 4, 3, 0, 1), (2, 4, 2, 2, 1, 0, 3), (2, 2, 2, 2, 2, 0, 2), (2, 6, 4, 0, 0, 0, 4),

(2, 0, 2, 2, 3, 0, 1), (2, 4, 4, 0, 1, 0, 3), (2, 2, 4, 0, 2, 0, 2), (2, 0, 4, 0, 3, 0, 1), (1, 3, 1, 1, 0, 1, 2),

(1, 1, 1, 1, 1, 1, 1), (1, 7, 1, 3, 0, 0, 4), (1, 5, 1, 3, 1, 0, 3), (1, 3, 1, 3, 2, 0, 2), (1, 7, 3, 1, 0, 0, 4),

(1, 1, 1, 3, 3, 0, 1), (1, 5, 3, 1, 1, 0, 3), (1, 3, 3, 1, 2, 0, 2), (1, 1, 3, 1, 3, 0, 1), (0, 0, 0, 0, 0, 2, 0),

(0, 4, 0, 2, 0, 1, 2), (0, 2, 0, 2, 1, 1, 1), (0, 0, 0, 2, 2, 1, 0), (0, 4, 2, 0, 0, 1, 2), (0, 2, 2, 0, 1, 1, 1),

(0, 0, 2, 0, 2, 1, 0), (0, 8, 0, 4, 0, 0, 4), (0, 6, 0, 4, 1, 0, 3), (0, 4, 0, 4, 2, 0, 2), (0, 8, 2, 2, 0, 0, 4),

(0, 2, 0, 4, 3, 0, 1), (0, 6, 2, 2, 1, 0, 3), (0, 0, 0, 4, 4, 0, 0), (0, 4, 2, 2, 2, 0, 2), (0, 8, 4, 0, 0, 0, 4),

(0, 2, 2, 2, 3, 0, 1), (0, 6, 4, 0, 1, 0, 3), (0, 0, 2, 2, 4, 0, 0), (0, 4, 4, 0, 2, 0, 2), (0, 2, 4, 0, 3, 0, 1),

(0, 0, 4, 0, 4, 0, 0).

(D.8)

D.9 The tetra-quadric. The generic invariant hypersurface is given by a linear combi-
nation of polynomials with the following exponent vectors. Here, a sign indicates that
the two monomials must be combined with a relative sign.

[(2, 1, 0, 0, 2, 2, 1, 0), (0, 0, 2, 1, 1, 0, 2, 2)], [(2, 2, 0, 0, 2, 2, 0, 0), (0, 0, 2, 2, 0, 0, 2, 2)],
[(2, 1, 1, 0, 2, 1, 1, 0), (1, 0, 2, 1, 1, 0, 2, 1)], [(2, 2, 1, 0, 2, 1, 0, 0), (1, 0, 2, 2, 0, 0, 2, 1)],

[(2, 0, 0, 1, 1, 2, 2, 0),−(0, 1, 2, 0, 2, 0, 1, 2)], [(2, 0, 1, 1, 1, 1, 2, 0),−(1, 1, 2, 0, 2, 0, 1, 1)],
[(2, 2, 2, 1, 1, 0, 0, 0),−(2, 1, 2, 2, 0, 0, 1, 0)], [(2, 0, 0, 2, 0, 2, 2, 0),−(0, 2, 2, 0, 2, 0, 0, 2)],
[(2, 0, 1, 2, 0, 1, 2, 0),−(1, 2, 2, 0, 2, 0, 0, 1)], [(1, 0, 0, 0, 2, 2, 2, 1),−(0, 0, 1, 0, 2, 1, 2, 2)],

[(1, 1, 0, 1, 1, 2, 1, 1), (0, 1, 1, 1, 1, 1, 1, 2)], [(1, 2, 0, 1, 1, 2, 0, 1), (0, 1, 1, 2, 0, 1, 1, 2)],
[(1, 2, 1, 1, 1, 1, 0, 1), (1, 1, 1, 2, 0, 1, 1, 1)], [(1, 1, 0, 2, 0, 2, 1, 1), (0, 2, 1, 1, 1, 1, 0, 2)],
[(1, 2, 0, 2, 0, 2, 0, 1), (0, 2, 1, 2, 0, 1, 0, 2)], [(0, 2, 0, 1, 1, 2, 0, 2), (0, 1, 0, 2, 0, 2, 1, 2)],

[(0, 2, 0, 2, 0, 2, 0, 2)], [(0, 1, 0, 1, 1, 2, 1, 2)], [(1, 1, 1, 1, 1, 1, 1, 1)], [(2, 0, 2, 0, 2, 0, 2, 0)],
[(1, 2, 1, 2, 0, 1, 0, 1)].

(D.9)

D.10 The twisted tetra-quadric. The invariant polynomial of the model discussed in
Sect. 3.1 is generated by the following linear combinations of monomials with equal
coefficients
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[(0, 0, 0, 1, 2, 0, 1, 2, 2, 2), (2, 2, 2, 1, 0, 2, 1, 0, 0, 0)],
[(0, 0, 0, 2, 1, 1, 0, 2, 2, 2), (2, 2, 2, 0, 1, 1, 2, 0, 0, 0)],
[(1, 0, 0, 2, 2, 0, 0, 2, 2, 1), (1, 2, 2, 0, 0, 2, 2, 0, 0, 1)],
[(0, 0, 1, 0, 2, 0, 2, 1, 2, 2), (2, 2, 1, 2, 0, 2, 0, 1, 0, 0)],
[(0, 0, 1, 1, 1, 1, 1, 1, 2, 2), (2, 2, 1, 1, 1, 1, 1, 1, 0, 0)],
[(1, 0, 1, 1, 2, 0, 1, 1, 2, 1), (1, 2, 1, 1, 0, 2, 1, 1, 0, 1)],
[(0, 0, 1, 2, 0, 2, 0, 1, 2, 2), (2, 2, 1, 0, 2, 0, 2, 1, 0, 0)],
[(1, 0, 1, 2, 1, 1, 0, 1, 2, 1), (1, 2, 1, 0, 1, 1, 2, 1, 0, 1)],
[(0, 2, 1, 0, 0, 2, 2, 1, 0, 2), (2, 0, 1, 2, 2, 0, 0, 1, 2, 0)],
[(0, 0, 2, 0, 1, 1, 2, 0, 2, 2), (2, 2, 0, 2, 1, 1, 0, 2, 0, 0)],
[(1, 0, 2, 0, 2, 0, 2, 0, 2, 1), (1, 2, 0, 2, 0, 2, 0, 2, 0, 1)],
[(0, 0, 2, 1, 0, 2, 1, 0, 2, 2), (2, 2, 0, 1, 2, 0, 1, 2, 0, 0)],
[(1, 0, 2, 1, 1, 1, 1, 0, 2, 1), (1, 2, 0, 1, 1, 1, 1, 2, 0, 1)],
[(0, 2, 0, 1, 0, 2, 1, 2, 0, 2), (2, 0, 2, 1, 2, 0, 1, 0, 2, 0)],
[(1, 0, 2, 2, 0, 2, 0, 0, 2, 1), (1, 2, 0, 0, 2, 0, 2, 2, 0, 1)],
[(0, 2, 0, 0, 1, 1, 2, 2, 0, 2), (2, 0, 2, 2, 1, 1, 0, 0, 2, 0)],
[(0, 1, 0, 0, 2, 0, 2, 2, 1, 2), (2, 1, 2, 2, 0, 2, 0, 0, 1, 0)],
[(0, 1, 0, 1, 1, 1, 1, 2, 1, 2), (2, 1, 2, 1, 1, 1, 1, 0, 1, 0)],
[(1, 1, 0, 1, 2, 0, 1, 2, 1, 1), (1, 1, 2, 1, 0, 2, 1, 0, 1, 1)],
[(0, 1, 0, 2, 0, 2, 0, 2, 1, 2), (2, 1, 2, 0, 2, 0, 2, 0, 1, 0)],
[(1, 1, 0, 2, 1, 1, 0, 2, 1, 1), (1, 1, 2, 0, 1, 1, 2, 0, 1, 1)],
[(0, 1, 2, 0, 0, 2, 2, 0, 1, 2), (2, 1, 0, 2, 2, 0, 0, 2, 1, 0)],
[(0, 1, 1, 0, 1, 1, 2, 1, 1, 2), (2, 1, 1, 2, 1, 1, 0, 1, 1, 0)],
[(1, 1, 1, 0, 2, 0, 2, 1, 1, 1), (1, 1, 1, 2, 0, 2, 0, 1, 1, 1)],
[(0, 1, 1, 1, 0, 2, 1, 1, 1, 2), (2, 1, 1, 1, 2, 0, 1, 1, 1, 0)],

[(1, 1, 1, 1, 1, 1, 1, 1, 1, 1)].

(D.10)

As before, we have given the vector of exponents of the monomials.
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