
48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition AIAA 2010-515 
4 - 7 January 2010, Orlando, Florida 

Improved Methodologies for Maneuver Design of
 
Aircraft Stability and Control Simulations
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With many modern fighter aircraft experiencing unpredicted flight dynamics during 
flight tests, recent research has focused on developing methodologies for incorporating 
computational fluid dynamics into the aircraft development process. The goal of this ap­
proach is to identify configurations susceptible to stability and control issues early in the 
design process. Previous research has primarily focused on full aircraft configurations, how­
ever, to increase the rate of development the current study focused on a two-dimensional 
NACA0012 airfoil. The two-dimensional NACA0012 airfoil has the advantage of reducing 
the computational cost by orders of magnitude compared to full scale aircraft simulations, 
while still providing complicated aerodynamics at high angles of attack. Computationally 
predicted lift coefficients from a number of newly developed training maneuvers were used 
to generate reduced order aerodynamic loads models. For evaluation, these models were 
compared to generated static and dynamic validation data. Methods of improving both the 
computational training maneuver and the reduced order modeling approach are suggested. 

Nomenclature 

a speed of sound
 
α angle of attack
 
αef f induced angle of flow
 
c aerodynamic chord
 
cD drag coefficient (Lift/q∞Sref )
 
cL lift coefficient (Drag/q∞Sref )
 
cM pitching moment coefficient (Mz /q∞Sref c)
 
f frequency of sinusoidal motion
 
M∞ Mach number v/a
 
µ fluidic dynamic viscosity
 
Re Reynolds number v∞cρ∞/µ∞
 

ρ density
 
t time
 
Δt computational time step, seconds
 
Δt ∗ dimensionless computational time step
 
v∞ free-stream speed of flow
 
y position
 

I. Introduction 

Defining the Stability and Control (S&C) characteristics of an airplane is probably one of the most 
difficult and expensive aspects of aircraft development. This is partially due to the fact that the S&C 
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design phase extends well into the development process, and sometimes even beyond, often resulting in 
unexpected aerodynamic issues being identified late in the development process. This can lead to costly ad-
hoc fixes that are detrimental to the aircraft performance. Some recent examples include aircraft such as the 
F/A-18 and F-18E or F-22.1–6 It is therefore of utmost importance to be able to predict S&C characteristics 
of the aircraft in the early stages of its development. 

Several tools can be used to predict the S&C characteristics of an aircraft, including flight and wind tunnel 
testing, semi-empirical lower-order modeling and computational fluid dynamics (CFD). Flight testing is the 
most accurate of these methods, but is also the most expensive and cannot be used during early stages of the 
aircraft development process because the aircraft configuration may not be finalized. Wind tunnel testing 
is also accurate, but suffers from scaling issues, along with difficulty modeling unsteady dynamic behavior. 
Wind tunnel testing is also expensive, although cheaper than flight testing. Semi-empirical lower-order 
modeling has less fidelity than flight and wind-tunnel testing and is incapable of reliably predicting unsteady 
nonlinear aerodynamic behavior. A reasonable compromise between flight and wind tunnel testing and semi-
empirical lower-order modeling is CFD simulation. Modern CFD techniques have a relatively high level of 
fidelity and have successfully modeled the non-linear aerodynamic behavior of aircraft at full scale Reynolds 
numbers. This method reduces some of the major uncertainties associated with sufficiently modeling physical 
space. However, it comes with an additional cost in execution time that results from computer performance 
and small physical time step requirements to accurately capture the flow physics. This is exaggerated by 
the low frequency nature of most of the aerodynamic motions that result in nonlinear behavior of interest. 
Researchers at NASA Ames, for example, have attempted to perform a “brute force” approach to filling 
a stability and control database for vehicle design.7–9 They found that a reasonable database for static 
stability and control derivatives would include on the order of 30 different angles-of-attack, 20 different Mach 
numbers, and 5 different side-slip angles, each for a number of different geometry configurations or control 
surface deflections.7 They envisioned that a few hundred solutions can be obtained automatically and the 
remainder of the parameter space is filled using an interpolation procedure or neural networks. Considering 
today’s performance of computers and CFD codes, the routine calculations of hundreds of maneuvers in a 
reasonable time frame is unrealistic. In order to accurately and reliably predict the stability and control 
(S&C) characteristics of an aircraft prior to the costly flight test phase, CFD has to be combined with a 
predictive modeling of lower complexity. 

In response to this need, recent research at the United States Air Force Academy (USAFA) has focused 
on the application of CFD to aircraft S&C, in particular, on how to effectively incorporate CFD into the S&C 
model development process. The final goal is to develop a methodology for efficient and accurate screening 
of nonlinear aerodynamic phenomena such as spin, tumble, lateral instabilities, limit-cycle oscillations, and 
tail buffet of full scale aircraft early in the design process. To date, we have adopted the innovate approach 
introduced by McDaniel et al10 which is graphically represented in figure 1, with a summary as follows: 
(a) CFD simulations are performed using computational training maneuvers designed to excite the relevant 
flow physics encountered during actual missions, (b) a mathematical Reduced Order Model (ROM) is built 
of the aircraft response using system identification methods, (c) the model is validated by comparing CFD 
simulations against model predictions, and (d) predictions of all flight test points are made using the model 
to determine the expected behavior of the aircraft. 

The choice of both the computational training maneuver and the ROM approach is critical to the success 
of the above methodology. Currently, improvements are necessary to both for the computational tool to 
reach its full potential. Matthews and Schwartz,11 for example, showed that determining the appropriate 
training maneuver that properly excites all the relevant flow physics is not a trivial task but is vital to the 
success of the final aerodynamic model. In addition, previous research has primarily implemented SIDPAC12 

as the ROM. SIDPAC is a nonlinear parameter modeling technique based on regression methods developed 
by Morelli specifically for aircraft applications. However, Jeans13 showed that this method is incapable 
of generating an aerodynamic loads model capable of predicting both nonlinear and linear aerodynamic 
behavior within a single training maneuver. In response to the above requirements, the primary objectives 
of this paper are twofold. First, to further investigate the appropriate computational training maneuver the 
efficiently probes the design space such that the ROM can interpolate to all possible combinations of the 
independent variables within the regressor space while still exciting the relevant flow physics, and second, to 
investigate a new ROM approach with better predictive capabilities then a least square approximation. 

Previous simulations have primarily focused on three-dimensional and often full scale simulations of 
complete aircraft configurations.10, 11, 13–21 This was partially to validate that computational techniques have 
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Figure 1. Stability and control model build process.10 

progressed to the point where turbulent Navier-Stokes solvers are now capable of capturing the unsteady 
nonlinear aerodynamic behavior that leads to the various static and dynamic instabilities mentioned above. 
However, the cost of this approach was computationally expensive CFD simulations with a slow turn-around 
time, which severely hindered development. Given the rich history that currently exists for predicting 
massively separated high angle of attack flow using CFD, it was decided to simplify the geometry for the 
current study to two-dimensional airfoils. This approach drastically decreases the turn-around time for 
the various computational training maneuvers, while still allowing one to verify the methodologies for both 
linear and nonlinear aerodynamic regions by validating at high angles of attack that include stall. The 
premise being that any improvements made for a two-dimensional airfoil will also be valid for full aircraft 
configurations. 

II. S&C Training Maneuvers 

The goal of a training maneuver is to produce enough representative data to build a reliable ROM with 
predictive capabilities within a desired regressor space. In addition, a systematic approach must be developed 
for determining how well a prospective maneuver meets this objective. Previous studies focused on training 
maneuver development, (see Ref12, 14, 22, 23, 23, 24), used the frequency content and power density spectra 
characteristics of a particular maneuver as such a measure. Though correct for some applications, the same 
methodology cannot be used to characterize an appropriate maneuver used to predict S&C characteristics of 
the aircraft. This is partially due to the fact that the motion of the aircraft is not primarily given in terms 
of frequency. 

The basic requirement for a training maneuver that can be used to generate a reliable ROM in S&C 
applications is that it sufficiently covers the desired regressor space of state variables. A ROM built on 
data produced by such motions can then be used to predict the aircraft’s aerodynamic behavior within the 
regressor space if it is sufficiently covered. The systematic coverage of the regressor space can be, in general, 
treated as an optimization problem of filling the multidimensional space with strong constraints resulting 
from the fact that some axes of the regressor space do not represent an independent variable. 

For the current study we primarily focused on one degree of freedom (DOF) motion, and in particular, a 
pitching and plunging airfoil. For this simple one DOF motion the regressor space is defined by the angle of 
attack, α, and its first and second derivatives, α̇ and α̈. The regressor space is covered using either a basic 
frequency or amplitude sweep. 
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A. Rotational motion 

1. Chirp maneuver 

The chirp is an example of a frequency sweep with a constant amplitude and linearly increasing frequency. 
The angle of attack is specified in time as 

α(t) = A sin ωt2 , (1) 

where A is the amplitude of oscillations. The regressor space is symmetric about the initial angle of attack. 
Figure 2 shows the time history of α and regressor space coverage for two chirps with different amplitudes. 
Notice that the regressor coverage has very limited data in the low frequency region where most nonlinear 
aerodynamic behavior occurs. Altering the frequency growth rate of a linear chirp alters the density of the 
regressor space coverage shown in figure 2(b), but does not alter the overall shape of the coverage. 

The DC chirp is a chirp with an initial offset and is defined as 

α(t) = 
A 

1 − cos ωt2 . (2)
2 

Figure 3 shows two DC chirps in the time domain and their respective regressor space coverage. The DC 
chirp coverage of the regressor space is identical to the chirp, but with an offset in α0, the initial angle of 
attack. 

(a) t − α (b) α − α̇− α̈

Figure 2. Angle of attack as a function of time and regressor space coverage for the chirp 

(a) t − α (b) α − α̇− α̈

Figure 3. Angle of attack as a function of time and regressor space coverage for the DC chirp maneuver 

2. Spiral maneuver 

Spiral maneuvers are amplitude sweeps with constant frequency. The amplitude increases linearly in time 
and the angle of attack as a function of time is 

α(t) = At sin(ωt), (3) 

4 of 27 

American Institute of Aeronautics and Astronautics 



� � 

where A is the rate of amplitude increase. Figure 4 shows the regressor map coverage of two spiral maneuvers 
with different frequencies. As can be seen in the figure the spiral maneuvers are so named due to the spiral 
nature of the regressor map coverage. The systematic coverage of the regressor space is then achieved by 
using several spirals with different frequency. Similar to the chirp maneuver, changing the amplitude growth 
rate alters the density of the regressor space coverage shown in figure 4(b), but does not alter the overall 
shape of the coverage. 

The DC spiral is essentially a spiral with an initial offset and is defined as 

α(t) = 
A

t 1 − cos(ωt) . (4)
2 

Figure 5 shows the angle of attack as a function of time and the resulting regressor space coverage for two 
DC spirals with different frequencies. Like the DC chirp, the DC spiral is not symmetric about α0. 

(a) t − α (b) α − α̇− α̈

Figure 4. Angle of attack as a function of time and regressor space coverage for the spiral maneuver 

(a) t − α (b) α − α̇− α̈

Figure 5. Angle of attack as a function of time and regressor space coverage for the DC spiral maneuver 

3. Piecewise Linear Spirals (PWLS) 

A common limitation of both the chirps and spirals maneuvers is that they result in poor regressor space 
coverage of very low frequency motions. This is particularly true for static data which is essentially not 
covered except for the initial data point at t = 0. One possibility is to extend the low frequency segment by 
reducing the frequency growth rate to obtain data for a very low frequency spiral maneuver. However, such 
an approach has two major shortcomings. The first is the assumption that static data can be predicted from 
information contained in a maneuver with very low frequencies, an assumption which does not necessarily 
need to be valid. The second is, that even if the static data can be predicted from very low frequency 
maneuvers, the time needed to execute such a maneuver is excessive. 

A possible solution to this issue is a maneuver consisting of linear segments. As such, this maneuver 
will always have the second derivative α̈ = 0 and will cover regions of α − α̇ regressor space that cannot 
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be covered with the standard chirp or spiral maneuver. The ideal shape of the PWLS maneuver is a step 
maneuver. Such a maneuver produces discontinuities in the input signal which captures the system’s complete 
frequency content.25, 26 This maneuver is used as a training maneuver for the Volterra type of ROM26, 27 

and has excellent predictive capabilities in linear aerodynamics applications. There are however technical 
and numerical difficulties associated with this type of signal, particularly when the amplitude is large. 

The piecewise linear spiral, PWLS, maneuver proposed here is derived from the spiral maneuver. Figure 
6 shows the regressor space coverage of two such maneuvers. Static data is located along the line α̇ = 0. The 
α = const segment of the PWLS maneuver specifically has α̇ = α̈ = 0, while aerodynamic loads are initially 
unsteady and are a function of time. Therefore the length of this segment must be sufficiently long to allow 
the system to reach steady state values. 

The DC PWLS maneuver is essentially a PWLS maneuver with an initial offset and is based on DC 
spiral maneuver introduced previously. Two examples of the resulting regressor space coverage are shown 
in figure 7. Like the DC chirp and spiral maneuvers, the regressor space is not symmetric about α0, instead 
it extends from α = 0 to the maximum amplitude. The motivation for using this maneuver is that is gives 
controllability of the regressor space coverage in the α̈ = 0 plane which contains the static data. 

(a) t − α (b) α − α̇

Figure 6. Angle of attack as a function of time and regressor space coverage for the PWLS maneuver 

(a) t − α (b) α − α̇

Figure 7. Angle of attack as a function of time and regressor space coverage for the DC PWLS maneuver 

4. Schroeder maneuver 

The Schroeder maneuver is a multi-sine frequency sweep consisting of multiple cosine terms with a specified 
phasing28 that is optimized for a flat PDS spectrum over a specified frequency range. This wide band training 
signal was previously used by Murphy et al.23 and Goertz et al.14 for aircraft system identification with 
S&C applications. The angle of attack is specified as follows 

N 1 2πkt πk2 

α(t) = A cos − . (5)
2N T N 

k=1 
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An example of the resulting angle of attack as a function of time and regressor space coverage are shown in 
figure 8. 

(a) t − α (b) α − α̇− α̈

Figure 8. Angle of attack as a function of time and regressor space coverage for the Schroeder maneuver 

The Schroeder maneuver has three parameters that enable direct control of the regressor space coverage. 
These are maneuver amplitude, A, the maneuver length, T , and the number of frequencies in the maneuver, 
N . Changing the amplitude scales all three dimensions with the same scaling factor, which is identical to 
the previous maneuvers. Changing the maneuver length T scales the rate and acceleration such that when 
T is increased, rate and acceleration decrease. Figure 9 shows the effect of varying T on the Schroeder 
maneuver in the three planes of the regressor space. Including higher frequencies in the Schroeder maneuver 
by increasing the value of N , also alters the shape of the angle of attack curve. In addition, since the value 
of the first and second derivative strongly depends on frequency, including higher frequencies extends the 
limits of rate and acceleration coverage by the maneuver. Figure 10 shows the effect of N on the Schroeder 
maneuver in the three planes of the regressor space. By altering T and N simultaneously one can design the 
Schroeder maneuver covering the same regressor space while altering the density of the coverage within the 
space. However, for dense coverage the total maneuver time is significantly increased. 

(a) α − α̇ (b) α − α̈ (c) α̇− α̈

Figure 9. Effect of varying the length T on the resulting regressor space coverage for the Schroeder maneuver 

A limitation of the Schroeder maneuver is that it uses most of its resources on the perimeter of the 
regressor space leaving the low rate and acceleration space poorly covered (see figures 9(a) and 10(a)). This 
can be, to a certain extent, reduced by lowering the value of N and making the maneuver longer. Ultimately, 
for N = 1 the Schroeder maneuver reduces to a simple sinusoidal wave and for N = 2 the resulting maneuver 
is similar to the spiral maneuver introduced previously. A second limitation is that the Schroeder maneuver 
does not start from the α = 0 condition, posing difficulties on the start-up state. 

B. Translational motion 

The primary difference between rotational and translational motion is that for rotational motion the angle 
of attack, α, is the primary variable, while for translation an effective angle of attack must be derived from 
the motion. In the case of a two-dimensional plunging airfoil with the y-axis defined normal to the chord, it 
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(a) α − α̇ (b) α − α̈ (c) α̇− α̈

Figure 10. Effect of varying N on the resulting regressor space coverage for the Schroeder maneuver 

is the first derivative of the y-axis motion that determines the effective angle of attack according to 

−ẏ 
αeff = arctan . (6) 

v∞ 

Therefore, the maneuvers defined in previous section can be used to either directly prescribe a translational 
motion in the y-axis direction, or to prescribe the first derivative, ẏ. The advantage of the first approach is 
that all of the motions can be determined analytically, while the disadvantage is the indirect control of αeff . 
The advantage of the second approach is direct control of αeff , while the drawback is that some motions 
are determined by numerical integration. Other disadvantages of the second approach include: the motion 
depends on the freestream velocity, v∞ which can make the integration difficult if v∞ is time dependent, 
and some of the integrated motions result in relatively large displacements making them unsuitable for wind 
tunnels. The following sections describe the various maneuvers using the integrated motions approach. In 
all cases, the freestream velocity, v∞, is assumed constant. 

1. Integrated Chirp 

The primary issue with implementing a chirp motion to prescribe a translation is that the amplitude of 
the first derivative, which determines the value of αeff , is not constant, but grows with the frequency of 
the motion. This results in very low αeff at low frequencies making it difficult to examine the nonlinear 
aerodynamics in this region. This can be avoided by using the chirp motion to explicitly prescribe the 
first derivative of the translational motion and consequently αeff . The translational motion in the y-axis 
direction is then defined as 

y(t) = A sin(ωt2) (7) 

ẏ(t) = A sin(ωt2). (8) 

This integral, known as the Fresnel integral, does not have an analytical form and has to be solved numerically. 
The time history of displacement is then a function of the amplitude of αeff and the freestream velocity, 
v∞. Figure 11 shows examples of two Fresnel integrals resulting in an αeff with a chip motion shape. A 
disadvantage of the Fresnel chirp is that the initial displacement can reach values that are unobtainable by 
wind tunnel experiments, however this is less of an issue for CFD simulation. 

The Fresnel integral must be transformed into the primitive variables αeff , α̇eff , α̈eff . Since the primary 
motivation for the Fresnel chirp is direct control over the shape and values of αeff , it would be natural to 
investigate the Fresnel chirp regressor space defined in terms of αeff = y/v∞) and its first and arctan(− ̇
second derivatives. This regressor space will retain the shape of the original motion used for the integration, 
in this case of the chirp motion shown in figure 2. 

As in the case of the integrated chirp maneuver, the integrated DC chirp motion does not have an 
analytical expression and must be computed numerically. The equations describing the translational motion 
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(a) t − y (b) y − ẏ − ÿ

Figure 11. Displacement as a function of time and regressor space coverage for the Fresnel chirp 

2 

in the y-axis direction are 

y(t) = 
A 
2 

� � � 
1 − cos(ωt2) (9) 

ẏ(t) = 
A 

1 − cos(ωt2) . 
� � 

(10) 

Figure 12 shows two displacements that result in an αeff with DC chirp shapes. Due to the constant term in 
equation 9, the resulting motion is a superposition of an oscillatory motion and a linear increase. Similarly 
to the integrated chirp, this motion has limited applications in wind tunnels. The integrated DC chirp must 
also be transformed to the primitive variables αeff , α̇eff , α̈eff . Doing so will result in a regressor space 
coverage that retains the shape of the DC chirp motion shown in figure 3. 

(a) t − y (b) y − ẏ − ÿ

Figure 12. Displacement as a function of time and regressor space coverage for the integrated DC chirp 

2. Integrated Spiral Maneuver 

For an integrated spiral maneuver the translational motion in the y-axis direction is defined as an integral 
of the original spiral motion (Eq. 3) according to 

1 t 
y(t) = At sin(ωt) = A sin(ωt) − cos(ωt) . (11)

ω2 ω 

Two examples of the y-axis displacement resulting in an αeff with a spiral shape are shown in figure 13(a). 
Like the previous integrated maneuvers, the integrated spiral must be transformed to the primitive 

variables αeff , α̇eff , α̈eff . The regressor space will then retain the shape of the spiral motion shown in 
figure 4. For this maneuver the shape of the regressor space is the same as the original displacement in y, 
and therefore there is not any advantage of using the integrated spiral motion unless one is trying to keep the 
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induced angle of attack consistent with the original spiral motion. It will, however, have a different shape if 
v∞ is dependent on time; in this case having a simple term in the integration may be advantageous. 

The integrated DC spiral maneuver is defined in a similar fashion as above. The translation motion in 
the y-axis direction is then defined as 

A A t2 t 1 1 
α(t) = t 1 − cos(ωt) = − sin(ωt) − cos(ωt) + . (12)

2 2 2 ω ω2 ω2 

Two examples of the y-axis displacement resulting in an αeff with a DC spiral shape are shown in figure 
14. Due to the linear term in equation 12, the motion consists of a superposition of an oscillatory motion 
and a quadratic increase, making it unsuitable for wind tunnels. Like the previous integrated maneuvers, 
the integrated DC spiral must be transformed to the primitive variables αeff , α̇eff , α̈eff and the resulting 
motion retains the shape of the DC spiral motion shown in figure 5. 

(a) t − y (b) y − ẏ − ÿ

Figure 13. Displacement as a function of time and regressor space coverage for the integrated spiral motion 

(a) t − y (b) y − ẏ − ÿ

Figure 14. Displacement as a function of time and regressor space coverage for the integrated DC spiral 

3. Integrated PWLS Maneuver 

The integrated PWLS maneuver consists of a sequence of linear and quadratic segments. Two examples of 
the integrated PWLS maneuver and the regressor space coverage are shown in figure 15. The advantage 
of the integrated PWLS over the PWLS maneuver for translational motion is that the integrated PWLS 
induces a continuous αeff while the PWLS induces step-wise functions of αeff . Like the previous integrated 
maneuvers, the integrated PWLS must be transformed to the primitive variables αeff , α̇eff , α̈eff and the 
resulting motion retains the shape of the original PWLS motion shown in figure 6. 

The integrated DC PWLS is a superposition of the integrated PWLS maneuver and a linear increase 
in time. Figure 16 shows the displacement in the y-axis direction as a function of time and the resulting 
regressor space coverage for two integrated DC PWLS maneuvers. Due to large displacement values caused 
by a constant term in the integration, this motion has limited use in wind tunnels. Transforming the 
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integrated DC PWLS maneuver into the primitive variables αeff , α̇eff , and α̈eff retains the shape of the 
original DC PWLS maneuver shown in figure 7 

(a) t − y (b) y − ẏ − ÿ

Figure 15. Displacement as a function of time and regressor space coverage for the integrated PWLS maneuver 

(a) t − y (b) y − ẏ − ÿ

Figure 16. Displacement as a function of time and regressor space coverage for the integrated DC PWLS 
maneuver 

4. Integrated Schroeder Maneuver 

The y-axis displacement of integrated Schroeder maneuver is defined as � � � � � �� N N1 2πkt πk2 1 T 2πkt πk2 

y(t) = cos − = sin − . (13)
2N T N 2N 2πk T N 

k=1 k=1 

An example of the y-axis displacement and the resulting regressor space coverage is shown in figure 17. The 
integrated Schroeder maneuver provides random coverage of the regressor space, however as in the case of 
the Schroeder maneuver, most of the coverage is concentrated on the perimeter of the regressor space. 

The integrated Schroeder maneuver transformed into αeff variables retains the shape of the original 
Schroeder maneuver shown in figure 6. The main advantage of using the regressor space defined in terms of 
αeff rather than y-axis displacement is that the shape is more compact and the regressor space coverage is 
more regular, which can influence the quality of the ROM interpolation. 

III. Computational Methodology 

A. Flow Solver 

Computations were performed using the commercially available flow solver Cobalt,29 which solves the un­
steady, three-dimensional, compressible Navier-Stokes equations. Cobalt is a cell-centered, finite volume 
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(a) t − y (b) y − ẏ − ÿ

Figure 17. Displacement as a function of time and regressor space coverage for the integrated Schroeder 
maneuver 

. 

based code applicable to arbitrary cell topologies including prisms, tetrahedra and hexahedrals. Second-
order accuracy in space is achieved using the exact Riemann solver of Gottleib and Groth,30 and gradient 
reconstruction using a least squares technique. To advance the discretized system a point-implicit method 
using analytic first-order inviscid and viscous Jacobians is used. A Newton sub-iteration method is used in 
the solution of the system of equations to improve time accuracy of the point-implicit method. The method 
is second-order accurate in time. Tomaro et al.31 converted the code from explicit to implicit, enabling 
CFL numbers as high as 106 . Cobalt is cast in an arbitrary Lagrangian-Eulerian formulation, and therefore, 
has the ability to compute rigid-body motion.32 Cobalt has both free and specified 6-degree-of-freedom 
rigid-body motion capabilities. Rigid-body motion reorients the grid without deforming it using a transfor­
mation matrix and a translation vector describes the motion of the grid. Due to the two-dimensional nature 
of the simulations Unsteady Reynolds Averages Navier-Stokes (URANS) was chosen for turbulence closure 
over Detached Eddy Simulation (DES), which was primarily developed for three-dimensional turbulence. 
Time-dependent static and dynamic computations were performed using the Shear Stress Transport (SST) 
technique proposed by Menter.33 The SST model is known to give reliable predictions of two-dimensional 
flow separation due to adverse pressure gradients. The SST model is a blend between the standard k − � and 
k − ω models, where the former is implemented in the outer region and the latter in the near wall region. 
For each region standard transport equations are solved for either k and � or k and ω. 

B. Computational Setup 

Simulations were conducted using the standard NACA0012 profile. The computational domain was rectan­
gular in shape with the airfoil geometry centrally located. The minimal distance from the body to each of the 
outer boundaries was 20c. The no-slip adiabatic wall boundary condition was employed at the body surface 
and the modified Riemann-invariant condition was implemented at the farfield boundary. All simulations 
were performed at Rec = 9.0 × 106 , M∞ = 0.20 for direct comparison to experimental data presented in 
Abbot and Von Doenhoff.34 For static simulations the computational domain was initialized to free stream 
conditions and for dynamic simulations the computational domain was initialized using the appropriate static 
solution. To ensure that the solution was converged at every time step, five Newton sub-iterations were used 
for all dynamic simulations. 

C. Mesh Refinement and Time Step Study 

The mesh used for the current study was created using Solidmesh 2D,35 which is an Advancing Front Local 
Reconnection (AFLR) unstructured grid generator. A total of three meshes with total cell counts of 41,758, 
83,018, and 176,948, respectively, were created for the current study. Schematics of the medium density 
mesh showing the unstructured outer region and the prismatic boundary layer are shown in figure 18 The 

+first node height was chosen such that the average y was below 1.0, which ensured an adequate volume 
mesh that correctly models the boundary layer. To ensure that both spatial and temporal independence 
have been achieved, static simulations were performed on all three meshes at a constant angle of attack of 
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(a) Unstructured mesh in outer (b) prismatic boundary layer region 
flow region 

Figure 18. Schematics of the medium density mesh 

α = 15deg for dimensionless time steps ranging from Δt ∗ = 0.08 − 0.01, where Δt ∗ is defined by, 

Δtv∞∗Δt = (14) 
c 

Comparisons of the predicted lift and drag coefficients showed that the 83,018 cell medium density mesh 
in conjunction with Δt ∗ = 0.01 was sufficient for the static simulations. It was then assumed that these 
parameters combined with 5 sub-Newton iterations were also sufficient for the dynamic simulations. 

IV. S&C Aerodynamic Loads Modeling - Radial Basis Function, RBF 

The goal of the CFD calculations is to produce training data that can be used to build a reliable 
ROM. The ROM implemented for the current study is based on Radial Basis Functions, RBF. Previous 
research has primarily implemented the constant parameter interpolate designed specifically for aircraft 
system identification known as SIDPAC.12 SIDPAC is a least square regression based method that generates 
an explicit relationship between the aerodynamic force and state variables. This code has been extensively 
used at USAFA however, Jeans13 in his extensive study of an aircraft geometry showed that this method 
is incapable of generating an accurate low-order model of the aerodynamic loads based on the analysis of 
a single training maneuver. For the current application RBF appeared to be a better option. Based on 
these conclusions as well as on the preliminary tests with the NACA0012 airfoil and SIDPAC, which showed 
limited reliability, it was decided to use Radial Basis Functions for ROM generation. 

Radial Basis Functions are a popular choice as a non-parametric interpolant used, for example, in aero­
dynamic shape optimization and mesh deformation.36–38 The classical RBF interpolation is a linear combi­
nation of basis functions radial around point x 

N

y(x) = γlφ(c|x − xl|) (15) 
l=1 

were φ is a basis function and the term (|x − xl|) is the Euclidian distance and c is a shape factor. The 
coefficients γ are found from the condition that the RBF representation interpolates exactly at the control 
points, which in this application are the aerodynamic values of the training maneuvers. Some of the most 
common basis functions, their effect on predictive accuracy and their comparison to other metamodeling 
models can be found, for example, in Krishnamurthy.39 The basis function used during this study is a 
multiquadratic function developed by Hardy.40 

V. Results and Discussion 

All of the dynamic CFD simulations were performed at the Arctic Region Supercomputing Center (ARSC) 
on Midnight, a Sun cluster comprised of 2312 Opteron processors with a 68 TB Lustre file system. The 
calculations included the static and dynamic validation data as well as simulations of each of the training 
maneuvers described in Section II. 
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A. Validation Data 

1. Static calculations 

Static simulations were completed at angles of attack ranging from α = 0deg to α = 20deg in 2deg incre­
ments. Lift and pitching moment coefficient predictions are shown in figure 19. Overall, the lift coefficients 
predicted by the SST model compare favorably to published data in Abbot and Von Doenhoff,34however, a 
key difference is that the SST model delayed stall beyond α = 16deg by 1 − 2 degrees . As shown in figure 
19(a), once the wing did stall the SST model correctly predicted the corresponding drop in lift coefficient 
due to massive flow separation near the leading edge of the upper surface. 

(a) Time average lift coefficient (b) Time average pitching moment coefficient 

Figure 19. Static SST predictions of lift and pitching moment coefficient for the NACA0012 airfoil at Rec = 
9 × 106 , M∞ = 0.2 

2. Dynamic Calculations 

The dynamic pitching validation data consists of sinusoidal motions about α0 = 10deg at frequencies of 
f=0.5Hz, 1Hz and 2Hz and amplitudes of A=5deg and 10deg. As shown in figure 20, the 5deg ampli­
tude motion results in linear aerodynamic behavior, while the 10deg amplitude motion results in nonlinear 
aerodynamics at the lower frequencies when the angle of attack is greater than α = 18deg. In addition, the 
validation data shown in figure 20(b) varies from strongly nonlinear to less nonlinear as the frequency of 
the oscillatory motion is increased. A single reduced order model that can predict the linear and nonlinear 
aerodynamic behavior for a variety of frequencies and amplitudes such as these must be very robust. 

(a) 10 + 5sin(ωt) (b) 10 + 10sin(ωt) 

Figure 20. SST predictions of pitching moment for several dynamic pitching simulation of the NACA0012 
airfoil at Rec = 9 × 106 , M∞ = 0.2 

The dynamic plunging validation data consists of a simple oscillatory motion and a more complicated 
Fresnel chirp maneuver. The oscillatory motion had an amplitude of αeff = 10deg and frequency of f = 
0.85Hz. CFD predictions of pitching moment for each maneuver are shown in figure 21. Both maneuvers 
result in linear and nonlinear aerodynamics, and are therefore excellent tests of the ability of a single ROM. 
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(a) y = −2.14 + 2.14(ωt) (b) Fresnel chirp 

Figure 21. SST predictions of dynamic plunging motions, pitching moment, NACA0012 airfoil at Rec = 9 × 106 , 
M∞ = 0.2 

B. Training Maneuver Simulations 

1. Pitching Motion 

The various training maneuvers described in Section II were used to specify pitching motion of the NACA0012 
airfoil about x = 0.25c. For all of the simulations, the initial angle of attack was constant at α0 = 10deg. The 
goal is to evaluate which training maneuver is best at producing training data for the ROM. The resulting 
data is also examined for the presence of nonlinear aerodynamics. For each specific training maneuver 
simulations are completed at various amplitudes and frequencies such that the desired regressor space is 
sufficiently covered. 

Chirp Maneuvers Five chip maneuvers were completed with frequency increasing linearly from f = 0Hz 
to 6Hz at amplitudes of A = 2, 4.5, 7.5 and 10deg. The resulting lift and pitching moment coefficients as 
a function of α are shown in figure 22. As evident in the figure, most of the resulting aerodynamic data is 
linear in α even at 20deg attack. This is because for most of the maneuvers the frequency is sufficiently large 
that the airfoil behaves linearly even at extreme angles of attack. However, for the A = 10deg maneuver the 
lift and pitching moment coefficients do behave nonlinearly when the frequency is approximately less than 
f = 0.5Hz. 

(a) t − CL (b) t − CM 

Figure 22. SST predictions of lift and pitching moment for chirp motions of a pitching NACA0012 airfoil 

Spiral Maneuvers Five spiral motions with a maximum angle of attack of α = 22deg were completed 
at f = 0.1, 0.5, 1, 2 and 3Hz. The resulting lift and pitching moment predictions are shown in figure 23. 
Compared to figure 22 the spiral motions produced considerably more nonlinear data then the chirp motion. 
This is primarily due to the fact that the frequency is constant for each individual spiral maneuver and 
therefore is it possible to explicitly specify extreme angles of attack at low frequencies. 

A PWLS maneuver based on a 2Hz spiral maneuver was also completed. As previously noted, the main 
advantage of this maneuver is that it is located in the α̈ = 0 plane, and therefore contains static data. The 
resulting lift and pitching moment coefficient predictions are also shown in figure 23. Similarly to the low 
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frequency spiral maneuvers, the PWLS maneuver captures a lot of nonlinearity in both lift and pitching 
moment. 

(a) t − CL (b) t − CM 

Figure 23. SST predictions of lift and pitching moment for spiral motions of a pitching NACA0012 airfoil 

Schroeder Maneuvers Three Schroeder maneuvers were completed with the following combinations of 
maneuver length, T , and number of frequencies, N : (a) N = 15, T = 3sec, (b)N = 15, T = 10sec and (c) 
N = 30 and T = 5sec. Resulting CFD predictions of lift and pitching moment coefficient for each of these 
maneuvers is shown in figure 24. The maneuvers were designed to provide broad coverage of the regressor 
space at both low and high frequencies. However, the nonlinear aerodynamic content is similar to that of 
the chirp maneuvers shown in figure 22. 

The main conclusion from the above comparisons is that of the maneuver investigated, spiral maneuvers 
contain the most low frequency nonlinear aerodynamic behavior (primarily because it is specified explicitly), 
but are also computationally most demanding. 

(a) t − CL (b) t − CM 

Figure 24. SST predictions of lift and pitching moment for Schroeder motions of a pitching NACA0012 airfoil 

2. Plunging 

The various training maneuvers described in Section II were also used to specify plunging motion of the 
NACA0012 airfoil. The plunging motion was achieved by displacing the entire mesh in the y-axis direction. 
For all of the simulations the initial displacement was zero and the airfoil was fixed at an initial angle of 
attack, α0 = 0deg. The freestream velocity vector was also held constant. The training maneuvers tested 
for plunging motion included: the chirp motion and Fresnel chirp motion, integrated spiral motion, PWLS 
and integrated PWLS maneuver. 

Chirp Motion Four chirp maneuvers were completed with frequency increasing linearly from f = 0Hz 
to 6Hz at displacement amplitudes of A =5, 14, 23 and 32% of the airfoil cord. Predicted lift and pitching 
moment coefficients are shown in figure 25. Lift and pitching moment behaved linearly for all of the prescribed 
chirp motions. This is because at low frequencies the values of αeff are too small for the airfoil to behave 
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nonlinearly, and at higher frequencies that induce values of αeff 18deg the frequency is sufficiently high that 
any nonlinear behavior is eliminated. 

(a) CL (b) CM 

Figure 25. SST predictions of lift and pitching moment for chirp motions of a plunging NACA0012 airfoil 

Fresnel Chirp Motion Several Fresnel chirps were designed such that the maximum induced angle of 
attack ranged from αeff = 1, 4, 7 and 10deg. Predicted lift and pitching moment coefficients are shown in 
figure 26. In contrast to the chirp maneuvers, the Fresnel chirps excited the airfoil’s nonlinear behavior at low 
frequencies. However, the Fresnel chirp also inherited the chirp’s poor qualities at very low frequencies. The 
data in figure 26 is similar to the chirp pitching motion predictions in figure 22, with most of the maneuver 
being in the linear region of lift and pitching moment. 

(a) CL (b) CM 

Figure 26. SST predictions of lift and pitching moment for Fresnel chirp motions of a plunging NACA0012 
airfoil 

Integrated Spiral Motion Three integrated spiral motions with a maximum induced angle of attack 
of αeff = 10deg were completed at specified frequencies of f = 0.5, 1 and 2Hz. Predicted lift and pitching 
moment coefficients are shown in figure 26. The resulting lift and moment predictions are similar to those 
of the Fresnel chirp motion results because the lowest frequency of the integrated spiral maneuver was 
f = 0.5Hz, which was similar to the lowest frequency of the Fresnel chirp that resulted in sufficient angles 
of attack for nonlinear aerodynamic behavior. 

Integrated PWLS Motion The last training maneuver computed for plunging was the integrated PWLS 
maneuver. For comparison, a standard PWLS plunging maneuver was also completed. Plotted in figure 28 
are y-axis displacement and induced angle of attack for each maneuver. Defining the displacement using a 
PWLS motion resulted in an αeff distribution with step-wise input, while the integrated PWLS displacement 
resulted in a piece-wise linear distribution of αeff . 

Predicted lift and pitching moment coefficients for each maneuver are shown in figure 29. For clarity, the 
data is plotted verses displacement rather then αeff . Both maneuvers resulted in similar predictions of both 
lift and pitching moment as well as the time necessary for flow separation, suggesting that both maneuvers 
are equally suited for producing nonlinear low frequency data. Both training maneuvers also resulted in 

17 of 27 

American Institute of Aeronautics and Astronautics 



(a) CL (b) CM 

Figure 27. SST predictions of lift and pitching moment for integrated spiral motions of a plunging NACA0012 
airfoil 

(a) y − t (b) αef f − t 

Figure 28. A comparison of displacement and resulting αeff for the Integrated PWLS and PWLS maneuvers 
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nonlinear aerodynamic behavior once the induced angle of attack was greater than αeff ≈ 18deg. However, 
a key difference occurs in the transition between segments of constant αeff . The integrated PWLS transition 
is smooth in displacement and consequently the lift and pitch curves are smooth also. This transition was 
not smooth for the PWLS maneuver and resulted in sever discontinuities for both lift and pitching moment, 
making the data difficult to filter through a low/high pass filter. 

(a) CL (b) CM 

Figure 29. SST predictions of lift and pitching moment for Integrated PWLS and PWLS motions of a plunging 
NACA0012 airfoil 

The results from the plunging simulations confirmed that training maneuvers suitable for pitching motion 
may produce results without nonlinear content for plunging motion, as was the case for the chirp motion. 
Integrated motions can extend the nonlinear content in the training data, as was the case of the Fresnel chirp 
motion, or can produce training data that is easier to filter, as was the case of integrated PWLS maneuver. 

C. Lower-Order Aerodynamic Loads Modeling 

1. Pitching Motion 

The aerodynamic loads predicted by the chirp, spiral, and Schroeder pitching maneuvers were each used as 
input to generate aerodynamic loads ROMs using radial basis functions. The resulting ROM was then used 
to predict both the static and dynamic validation data. The CFD training data were filtered through the 
low/high pass MLS filter41 to avoid modeling high-frequency oscillations. Some of the RBF ROM results 
also showed high-frequency oscillations, usually in regions of the regressor space with high gradients of lift 
or pitching moment, and were therefore filtered through the same low/high pass filter. 

To obtain the maximum possible coverage of the regressor space the various training maneuvers within 
each maneuver class were combined into one larger training dataset prior to generating the ROM. For 
example, the five chirp training maneuver results were combined into one larger chirp training dataset. The 
same approach was also implemented for the spiral and Schroeder training maneuvers. 

In the case of the spiral maneuvers the regressor space coverage was obtained by combining the spiral 
maneuvers at f = 0.5Hz, 1Hz, 2Hz and 3Hz. The coverage was then completed by adding either the 
very low frequency f = 0.1Hz spiral, or the PWLS maneuver. ROMs generated using either maneuver 
primarily affected the predicted static data. Figure 30 compares static predictions for an ROM dataset that 
includes either the f = 0.1Hz spiral or the PWLS maneuver. Noticeable differences occur in the pitching 
moment predictions in figure 30(b), where the ROM that included the PWLS maneuver resulted in much 
better predictions. As a result, the final spiral ROM was generated using data from spiral maneuvers at 
f = 0.5Hz, 1Hz, 2Hz and 3Hz combined with the PWLS maneuver. 

The resulting ROMs that were generated using training data from the various types of maneuvers were 
then used to predict the static and dynamic validation data presented in Section 1. Shown in figures 31, 32, 
33 and 34 are comparisons of predicted lift and pitching moment by the the Spiral, Chirp and Schroeder based 
ROM to the dynamic CFD validation data. The dynamic validation data consists of sinusoidal motion about 
α0 = 10deg at frequencies of f=0.5Hz, 1Hz and 2Hz and amplitudes of A=5deg and 10deg. The variations 
in amplitude and frequency were such that it contains regions with both linear and nonlinear aerodynamic 
behavior making it a severe test case for the various ROMs. Spirals and chirp based ROMs generally resulted 
in good predictions of the aerodynamic loads for both lift and pitching moment. The Schroeder based ROM 
resulted in good predictions at lower frequencies and rather poor predictions at higher frequencies. This was 
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(a) cL (b) cM 

Figure 30. A comparison of SST static lift and pitching moment predictions to RBF ROM predictions based 
on the spiral training maneuver dataset. 

particularly true at a frequency of f = 2Hz. It is also important to note in figure 34(c) an oscillation in 
the spiral based pitching moment predictions at 2Hz. It is expected that the cause of this oscillation is the 
spiral maneuvers irregular coverage of the regressor space. 

(a) f = 0.5Hz (b) f = 1Hz (c) f = 2Hz 

Figure 31. A comparison of SST and ROM predictions of lift coefficient for a dynamic pitching maneuver of 
α = 10 ± 10 sin(ωt) at frequencies of f = 0.5Hz, 1Hz and 2Hz 

(a) f = 0.5Hz (b) f = 1Hz (c) f = 2Hz 

Figure 32. A comparison of SST and ROM predictions of lift coefficient for a dynamic pitching maneuver of 
α = 10 ± 5 sin(ωt) at frequencies of f = 0.5Hz, 1Hz and 2Hz 

A comparison of ROM predictions of static lift and pitching moment to CFD data is shown in figure 35. 
As expected, in both cases it is the spiral ROM that gives the best results. It should be emphasized, that 
even if the comparison of the chirp based ROM and CFD is favorable, the results are extrapolated since 
the chirp training maneuver does not cover static regions of the regressor space. The Schroeder based ROM 
gives similar results as the chirp based ROM due to its poor coverage of the very low frequency regions. 
However, in this case, the static data is located within the regressor space coverage of the Schroeder training 
maneuver. 

For this particular case, an extreme test of the ROM reliability and robustness is sinusoidal motion at 
f = 1.5Hz. This is because the pitching motion transitions from the state shown in figure 33(b) to the state 

20 of 27 

American Institute of Aeronautics and Astronautics 



(a) f = 0.5Hz (b) f = 1Hz (c) f = 2Hz 

Figure 33. A comparison of SST and ROM predictions of pitching moment coefficient for a dynamic pitching 
maneuver with α = 10 ± 10 sin(ωt) at frequencies of f = 0.5Hz, 1Hz and 2Hz 

(a) f = 0.5Hz (b) f = 1Hz (c) f = 2Hz 

Figure 34. A comparison of SST and ROM predictions of pitching moment coefficient for a dynamic pitching 
maneuver of α = 10 ± 5 sin(ωt) at frequencies of f = 0.5Hz, 1Hz and 2Hz 

(a) CL (b) CM 

Figure 35. A comparison of SST and ROM predictions of static lift and pitching moment coefficient for three 
different ROM that result from each type of training maneuver 
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in figure 33(c). Sinusoidal CFD simulations were completed at f = 1.5Hz for amplitudes of A = 10deg, 
9deg and 8deg, and predictions of lift and pitching moment coefficient are shown in figure 36. The CFD 
calculations indicate that the transition occurs between f = 1Hz and f = 1.5Hz since at f = 1.5Hz the 
pitching moment curve has a shape similar to figure 33(c). Also shown in figure 36 is a comparison of 
the predicted aerodynamic loads for all three ROM. The chirp based and Schroeder based ROM predicted 
similar trends to the CFD solution, while the spiral based ROM predict a pitching moment curve similar to 
f = 1Hz, and therefore incorrectly predicted this transition in the range of f = 1.5HZ-2Hz. 

(a) A = 10deg (b) A = 9deg (c) A = 8deg 

(d) A = 10deg (e) A = 9deg (f) A = 8deg 

Figure 36. A comparison of SST and ROM predictions of lift and pitching moment coefficient for a dynamic 
pitching maneuver with α = 10 ± 1A sin(ωt) at a frequency of f = 1.5Hz 

2. Plunging Motion 

The aerodynamic loads predicted by the four Fresnel chirp maneuvers previously presented were combined 
into one dataset and used as training data for a plunging ROM. Two ROMs were generated, the first model 
implemented y, y, ˙ ÿ as the state variables while the second model implemented αeff , α̇eff , α̈eff . These 
models were then used to predict the lift and pitching moment for a sinusoidal oscillatory motion. As 
comparison of CFD and ROM predictions are shown in figure37. Comparing the ROM predictions with the 
CFD data, one can see that the ROM generated using y, y, ˙ ÿ as the state variables predicts strong peaks 
in pitching moment which is not seen in the CFD data. The ROM generated using αeff , α̇eff , α̈eff as the 
state variables resulted in fairly good agreement with CFD data. This is due to increased regular coverage 
of the regressor space defined in terms of αeff , α̇eff , α̈eff . 

When plunging motion is defined by prescribing αeff the translation in the y-axis direction is determined 
by direct integration of the first derivative, ẏ. This integration introduces an integration constant that is 
dependent on the initial conditions. For most typical experimental and CFD applications this constant is 
arbitrary and therefore is often assumed to be one. However, for the current application this constant is 
important when determining the regressor space coverage and hence the applicability of a training maneuver. 

As an example, consider the simple case of αeff = 10sin(ωt) at a frequency f = 0.85Hz. Using equation 
6, ẏ = −v∞ tan(αeff ) and displacement is then given as follows 

y(t) = ˙ v∞ tan(αeff )dt = f(t) + C, ydt = − (16) 

with an integration constant C. Using the initial condition y(t) = 0 or y(t) ≈ −4.15 for integration, locates 
the plunging motion at two different positions within the regressor space, as shown in figure 38(a). If using 
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(a) CL (b) CM 

Figure 37. A comparison of SST and Fresnel chirp based ROM predictions of lift and pitching moment 
coefficient for a sinusoidal oscillatory motion of a plunging NACA0012 airfoil 

CFD to predict the aerodynamic behavior, these two motions would produce identical results since the 
difference in position is not large enough to affect the Reynolds number. However, plotting the motions 
regressor space coverage together with the four Fresnel training maneuvers introduced previously, as in 
figure 38(b), shows that the motion defined using the initial condition y(t) = 0 is almost entirely outside 
the training maneuvers regressor space coverage while the initial condition y(0) ≈ −4.15 is almost entirely 
inside. Figure 39 then shows the ROM predictions of lift and pitching moment compared to CFD solutions 
for the motion defined with the initial condition y(t) = 0 and y(t) ≈ −4.15. The ROM based on the initial 
condition y(t) ≈ −4.15 significantly improves the predictions of both lift and pitching moment. 

The correct formulation of the initial condition for a specific maneuver of interest is defined by the 
training maneuver, which is an apparent paradox. In the case above, the initial portion of the f = 0.85Hz 
sinusoidal oscillatory motion is replaced with the Fresnel chirp up to f = 0.85Hz. As which point the actual 
sinusoidal motion is analyzed. The resulting analyzed motion along with its position within the regressor 
space is shown in figure 40. Using this approach the analyzed motion is within the regressor space coverage 
of the Fresnel chirp training maneuvers. 

It should be emphasized that such treatment is needed only needed when y-axis displacement is used as 
input to ROM. Using the αeff defined regressor space avoids this paradox because it does not use position 
as a regressor variable. 

(a) y − t (b) y − ẏ

Figure 38. Regressor space coverage of two oscillatory motions with different values of the integration constant. 
Also shown is the regressor space coverage for the Fresnel chirp training maneuvers 

VI. Extending regressor space coverage 

As seen in the results, for a reliable ROM, sufficient coverage of the regressor space is crucial. For the 
training maneuvers considered in the current study, altering maneuver properties such as amplitude result 
in changes in the regressor space coverage around a specific set of initial state variables. For the case of a 
two-dimensional pitching airfoil a single training maneuver results in regressor space coverage around one 
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(a) CL (b) CM 

Figure 39. Lift and pitching moment coefficient, sinusoidal motion, y and αef f - regressor space 

(a) y − t (b) y − ẏ

Figure 40. Procedure for correctly positioning a motion of interest within the training maneuver regressor 
space coverage when the maneuvers are defined in terms of y-axis displacement 

24 of 27 

American Institute of Aeronautics and Astronautics 



initial angle of attack, α0. However, certain properties of the regressor space coverage remain unchanged. 
For example, the acceleration is always negative for the downward stroke of the pitching airfoil and positive 
for the upward stroke. The only exception is the Schroeder maneuver where the first and third quadrants of 
the acceleration plane is to a limited extent covered. To extend the coverage of the considered maneuvers, 
it is necessary to alter the initial angle of attack, α0, about which the maneuvers are build. This effectively 
traverses the regressor space coverage along the primary variable axis. Figure 41 shows such an example for 
the chirp training maneuver. 

Figure 41. Extended regressor space covered by multiple chirp maneuvers with varying α0 

VII. Conclusion 

Improved methodologies for implementing computational fluid dynamics in full aircraft stability and 
control analysis were further developed using a two-dimensional NACA0012 airfoil. The premise being that 
any improvements made for a two-dimensional airfoil will also be valid for full aircraft configurations. Several 
training maneuvers that improve the regressor map coverage along with a new approach to reduced order 
model development were investigated. 

For aircraft S&C applications, the ability to cover the relevant regressor space and to capture a broad 
spectrum of physical phenomena within that regressor space was shown to be crucial. This is different 
from earlier philosophies that primarily focused on frequency coverage. Of all the investigated maneuvers, 
spiral maneuvers augmented with a piece wise linear spiral maneuver resulted in the best regressor space 
coverage for static and very low frequency data, however, they are the most computationally demanding. 
Chirp maneuvers generally resulted in the best regressor space coverage at higher frequencies. The Schroeder 
maneuver resulted in coverage somewhere between the previous two, but had the additional advantage of 
covering the first and third quadrant of the α − α̈ regressor space, which is left uncovered by spiral and 
chirp maneuvers. On the other hand, the regressor space coverage by the Schroeder maneuver is somewhat 
irregular and difficult to control systematically. 

The aerodynamic loads resulting from the various CFD training maneuvers were then used to generate 
reduced order models, which were then used to predict lift and pitching moment for static conditions and 
several dynamic sinusoidal maneuvers. The predicted aerodynamic loads were compared to CFD validation 
data. The reduced order model implemented was based on radial basis functions, and showed improvements 
over previous regression based models. This was primarily in the ability to predict both linear and nonlinear 
aerodynamic behavior with a single aerodynamic loads model, a task that has been difficult to achieve in 
the past. All of the reduced order models resulted in reliable predictions in both the linear and nonlinear 
aerodynamic regions. Apart from static and very low frequency data, the chirp maneuvers resulted in the 
most robust and reliable reduced order models. This was, in part, due to the very regular coverage of the 
regressor space by this maneuver. However, for reliable predictions of very low frequency and even static 
aerodynamic behavior, which is where the most extreme nonlinear aerodynamic behavior occurs, the spiral 
based reduced order models were superior. 

This article highlights that a well designed training maneuver can provide enough high quality training 
data for a reduced order model to predict strong nonlinearities located within the covered regressor space. 
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