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Determining the local stream thrust (a vector quantity) from a measured pitot pressure (a scalar 
quantity) requires either knowledge of the flow direction, or a probe shape that compensates for flow 
direction. This compensation would ideally make the measured pressure directly proportional to the 
component of momentum along the probe axis. The flow angle sensitivity required to resolve this 
component of momentum was determined theoretically previously. A proposed probe nose shape was 
analyzed using CFD and found to produce flow angle sensitivity close to the required sensitivity. The 
proposed nose shape was also tested in a wind tunnel at Mach 1.67, 2.45, and 3.48 at angles of attack 
from 0 to 15 degrees. The test results indicate that the flow angle sensitivity of the proposed nose 
shape agrees with the required sensitivity to within 1% up to a flow angle of 15°. The current work 
extends the original theoretical development for the optimum nose shape to include viscous affects 
and surface curvature. The new second-order theory agrees well with experimental results for both 
the stream thrust probe as well as other, independent data. Further work can be done to refine the 
theory. 

I. Introduction 

IN many experimental evaluations of jet engines, the actual thrust of the engine can only be measured by taking 
reaction forces against a test stand. This technique measures the thrust minus the drag of the engine, but does not 

directly measure the thrust (as shown in Figure 1). 

Figure 1. Static thrust measurements (Refs. 1 and 2). 

A possible improvement to this method is to directly measure the thrust in the jet exhaust itself, as shown in Figure 
2. This leads to the problem of how to measure the pressures in the exhaust even though portions of the exhaust 
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could be curving away from the nominal thrust direction by as much as 15 degrees. In several previous papers,1-3 a 
derivation was given to determine the local stream thrust from a measured pitot pressure. Ideal, perfect gas behavior 
was assumed to illustrate the technique, which requires a probe shape that automatically compensates for flow 
direction.2 A CFD study compared the flow angle compensation characteristics of two proposed probe geometries.2 

The probe nose shape is designed such that the measured pressure is proportional to the component of momentum 
along the probe axis over a broad range of flow angles. This is in contrast to the typical requirement for a pitot probe 
to be insensitive to flow angle. If the probe were instead sensitive to the magnitude of the momentum vector, it 
would be required to also determine the flow angle in order to resolve the component in the desired direction. If the 
probe shape can automatically resolve the desired component of momentum, there would be no need to separately 
determine the flow angle. 

Figure 2. Pitot probe in the exhaust of a rocket engine. 

II. Desired Flow Angle Sensitivity 
Consider an axisymmetric pitot probe immersed in a flow of angle α as illustrated in Figure 3. The pressure-

sensing orifice is on the axis of the probe at the probe tip. 
Figure 3. Schematic of axi-symmetric probe. 

α v 
V 

u 

We desire the ratio of the stream thrust (P + ρu2) to the pressure sensed by the orifice at the probe tip (Pm) to be 
independent of the flow angle. That is, we require 

P + ρu 2 

f ( ) (1) ≠ α 
Pm 

Note that u is the component of velocity along the axis of the probe, whereas v is the component normal to the probe 
axis. The probe is intended to sense the component of momentum along the probe axis. If the vector V denotes the 
flow velocity, then u is given by 

u = V cosα (2) 

so 

2 2 αu 2 = V cos (3) 

Thus, the requirement for flow angle independence can be written by combining Eqns. 1 and 3 as1 

P + ρ V 
2 

cos 2 α 
f ( ) (4) ≠ α 

Pm 
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where the simplified notation Pα is used to indicate the sensed orifice pressure as a function of the flow angle α and 
P0 is the pitot pressure sensed when the probe is aligned with the flow (note that Pm is also a function of flow angle). 
It was shown in Ref. 1 that the required flow angle sensitivity is given by 

Pα ⎡1+ γM 2 cos 2 α ⎤ 
= (5) ⎢ ⎥P 1+ γM 2 

0 ⎣ ⎦ 

The desired distribution given by Eqn. 5 is shown in Fig. 4. 
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Figure 4. Desired supersonic distribution. 

The problem is now to determine the probe nose geometry that best approximates this dependence. To calculate 
engine thrust within the required margins, the optimized probe nose geometry must give results within 
approximately 0.1% of the desired distribution shown in Fig. 4. 

III. Second-Order Boundary Layer Theory 
When testing the probe model discussed in Hiers et al.1,2,3 in CFD simulations, a consistent difference of around 

one percent was noticed between inviscid-flow predictions and the experimental data. To explain this difference, 
two main factors were examined. The preliminary CFD predictions and the theory developed by Hiers et al.1,2 

assumed the flow was inviscid, which precluded the existence of a boundary layer. However, real flow (such as the 
experimental data) has a boundary layer and viscous effects. Therefore, the effect of a boundary layer had to be 
examined theoretically. At first, it was believed that a boundary layer could not lead to a significant pressure 
difference, due to the fact that the pressure gradient across the boundary layer is assumed to be zero in laminar flow 
over a thin flat plate. However, due to the large Reynolds’ numbers experienced by the probe, it is more likely that 
the boundary layer is turbulent, rather than laminar. Based on White’s Viscous Fluid Flow,4 a turbulent boundary 
layer, whether incompressible or compressible, produces a slight pressure gradient normal to the boundary layer. 
However, again according to White, this difference usually accounts for only around a 0.4% difference in the 
pressure. A second factor contributing to a change in pressure had to be considered. 

The probe surface is highly curved, as shown in Fig. 3. Based on the work by Sislian,5 streamline curvature 
produces unexpectedly large changes in boundary layer properties. In a turbulent boundary layer surface curvature 
primarily affects the turbulent mixing energy. Also, the convex curvature of the probe surface causes additional 
centrifugal acceleration. According to Gillis et al.,6 the problem of measuring static pressure is more complicated 
because it is a function of the coordinate normal to the curved surface. Wilcox shows these effects occur even for 
boundary layers where δ is much smaller than the radius of curvature, R, and at high Reynolds numbers.7 White also 
gives a relationship for the pressure gradient normal to the surface as a function of local curvature:4 

∂P ρu 2 
(6) = 

∂y R 
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Other researchers have taken a different approach. Seginer11 found that a compressible boundary layer would, in 
most cases, have a normal pressure gradient too large to ignore, and developed a quasi-similar solution for these 
cases. Melnik et al.12 developed the theory behind viscous transonic flows over airfoils at high Reynolds numbers, 
with special attention being paid to the curvature effects. 

To include the effects of curvature and a resulting normal pressure gradient, it is necessary to expand on the 
standard first-order boundary layer theory. Prandtl’s first-order boundary-layer theory does not account for surface 
curvature, and it also precludes the existence of a normal pressure gradient. Higher-order boundary layer theories, 
such as the second-order theory given in Schlichting13 do account for these effects. By using a second-order theory, 
the effects of curvature and displacement would be accounted for. These effects are often negligible, but in this case, 
they could cause the small difference between the experimental and CFD results. For more detail on previous work 
in curved boundary layers, the reader is referred to the review performed by Pasman.16 

Finally, a justification for approximating a supersonic flow field with a subsonic theory is required. Supersonic 
flow over a blunt object will, at supersonic freestream speeds, produce a detached shock wave in front of the body. 
Error! Reference source not found., reproduced here as Figure, shows a schematic of the situation. Given this 
transonic flow scenario, several statements can be made. Forward of the point, normal to freestream point, there 
exists a normal shock. Away from this point, “the shock wave gradually becomes curved and weaker, eventually 
evolving into a Mach wave at large distances from the body."17 For part of the flow, the shock is strong enough to 
induce subsonic flow behind it, which leads to subsonic surface flow on part of the probe. 

Figure5. Supersonic flow over a blunt object (Ref. 17). 

A. Second-order Boundary Layer Theory 
Given the inability of first-order boundary layer theory to predict the effects of the boundary layer on a highly 

curved surface, a second-order theory was explored. For this section, much of the information came from H. 
Schlichting’s Boundary Layer Theory, especially Chapters VII and IX.13 For more detail, the reader is referred to 
Schlichting13 and Pasman.16 

To obtain a theory accurate to the second order, it is required to use a singular perturbation scheme, to obtain 
asymptotic expansions to the Navier-Stokes solutions for high Reynolds numbers. For this theory, the perturbation 
scheme is: 

1 1ε = = (7) 
Re U ∞ Ro

ν 

The term in the denominator is the Reynolds number with the nose radius of curvature at the stagnation point as 
the characteristic length. Using this perturbation scheme allows the boundary layer theory to be extended to higher 
orders. The first terms in this solution are exactly Prandtl’s first-order solution. Further terms can be interpreted “as 
corrections to the classical theory which represent boundary layer effects of second order,”13 such as curvature. 

The starting point of the second-order theory is the curvilinear Navier-Stokes equations, stated as:13 
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2 2 2∂u R ∂u ∂u vu R 1 ∂p R ∂ u ∂ u 1 ∂u u+ u + v + = − +ν { + + − +2 2 2 2∂t R + y ∂x ∂y R + y R + y ρ ∂x (R + y) ∂x ∂y R + y dy (R + y) 
2R ∂v R dR Ry dR ∂u

− v + }
2 3 3(R + y) ∂x (R + y) dx (R + y) dx ∂x 

2 2 2 2∂v R ∂v ∂v u 1 ∂p ∂ v 2R ∂u 1 ∂v R ∂ v+ u + v − = − +ν { − + + −
2 2 2 2∂t R + y ∂x ∂y R + y ρ ∂y ∂y (R + y) ∂x R + y ∂y (R + y) ∂x (8) 

v R dR Ry dR ∂v+ u + }
2 3 3(R + y) (R + y) dx (R + y) dx ∂x 

R ∂u ∂v v+ + = 0 
R + y ∂x ∂y R + y 

The curvilinear coordinate system is shown in Figure 5. 

Figure 5. Curvilinear coordinate system (from Ref. 13). 

These equations assume two-dimensional, incompressible flow, with high Reynolds numbers. Both the high 
Reynolds number assumption and the two-dimensional flow assumption hold for the flow over the stream thrust 
probe. The results will have to be corrected for compressibility at the end of the calculations, assuming that the flow 
behind the nearly normal shock of the probe is subsonic in the region of interest. For the derivation, all lengths are 
made non-dimensional by reference to the radius of curvature at the stagnation point, Ro. Velocities are referenced to 

the free steam velocity, and pressures to ρU∞ 
2 . For details of the derivation, the reader is referred to Refs. 13 and 

16. 
Schlichting describes a simple second-order theory solution to Eqn. 8 as: 

1 
c = (9) 

p 1 + 1.38 x * 

* where x = x′ / R and x′ is the Cartesian x-axis. The theoretical results from Eqn. 9 are plotted versus the o

desired and experimental distributions in Figure 6 for a stream thrust probe that was tested at the U.S. Air Force 
Academy’s Tri-Sonic Wind Tunnel. 
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Figure 6. Schlichting second-order theory comparison. 
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As can be seen in the above figure, the theory agrees very well with the experimental and desired results up to an 
angle of attack of 7 degrees, after which it deviates greatly. This is caused by the fact that K (which is defined as 

K = R / R(x) and is a measure of the surface curvature away from the stagnation point) is not included in theo 

derivation of the theory. A new second-order theory therefore had to be derived, to include K. The derivation is 
summarized here, and for further details of this derivation the reader is referred to Ref. 16. 

To re-derive the pressure coefficient equation, the same procedure was used as in Schlichting (Ref. 13) following 
the methods of Ref. 14. The following assumptions were made for U, u and v: 

2U (x,0) = U x + εU x + O(ε )11 21 

2′( ) ′ η ′( )] ε (10)u(x, y,ε ) = U xf η + ε [ U xF ( )+U xF η + O( )11 11 c 21 d 

2 3( ) η ( )  η U ]+ O εv(x, y,e) = −ε U f η −ε [F ( )−ηf η +U F ( )/ ( )11 c 21 d 11 

Where the new variable is defined as:η = U N = U y /ε , since N = y /ε .11 11 

When these assumptions are substituted into the second-order boundary layer equations, and K is left as a 
variable, the following equations result: 

f ′′′ + ff ′′ +1− f ′2 = 0 

F ′′′+ fF ′′ − 2 f ′F ′ + f ′′F = Kηf ′′′ + Kf ′′ + Kηff ′′ + Kff ′ −ηff ′′ (11)c c c c 

F ′′′+ fF ′′− 2 f ′F ′ + f ′′F = −2d d d d 

The first-order equation is unchanged. The second-order solutions have again been split into two partial 
solutions. The Fc equation can be further simplified using the first-order equation: 

⎛ f ′′ ff ′ ff ′′ ⎞
F ′′′+ fF ′′− 2 f ′F ′ + f ′′F = Kη⎜⎜1− f ′2 − − + ⎟⎟ (12)c c c c η η K⎝ ⎠ 

These equations were solved using a fourth-order Runge-Kutta solver, using the Bisection method to determine 
the missing boundary conditions. Using the results from the solver allowed the pressure coefficient equation to be 
expressed in a form that included K: 

⎛ ⎛ ⎞⎞2K * A 2U2 2 ⎜ 21 ⎟cp = 1− U11x 1+ ε⎜ 
U 

− 
U ⎟

⎟
⎟ 

(13)
⎜ ⎜

11 11⎝ ⎝ ⎠⎠ 

where A is a constant determined by a fourth-order Runge-Kutta solver (for the current problem A=1.8805). U11 and 
U21 are two constants whose numerical value depends on the shape of the nose of the probe. The x value in this 
equation is the curvilinear x, which is tangent to the surface of the probe. This value can be determined from the 
Cartesian x and y coordinates using Pythagorean’s Theorem. The x values are then non-dimensionalized with the 
nose radius of curvature, Ro. 

This equation is derived from the incompressible Navier-Stokes equation. To correct for compressibility, the 
Prandtl-Glauert correction was used. The values for the coefficient U11 and U21 are also different for the current 
probe, compared to those for the more slender probe analyzed by Schlichting. With U11=3.0 and U21=-0.61, the 
pressure distribution shown in Figure 7 results for a freestream Mach number of 1.67. 
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Figure 7. New second-order pressure distribution. 

As seen in Figure 7, the newly derived second-order theory agrees well with the experimental results. 
Two notes on the theory must be made. First, the value of U11 must be determined for a specific shape. Neither 

Schlichting13 nor Devan15 provide any guidance as to how to select the appropriate value of U11 for an arbitrary 
shape. A comparison of several different shapes and their published U11 values can begin to establish guidelines to 
selecting an appropriate constant. The two shapes for which Schlichting13 gives U11 values are the parabola solved in 
Schlichting,13 and the Rankine Oval analyzed in Devan.15 One of the differences between the three nose shapes is 
the radius of curvature at the nose, Ro. The current stream thrust probe design is the bluntest, whereas Schlichting’s 
parabola is the sharpest. Based on the nose radius of curvature and given U11 values, a relationship can be 
determined to predict U11 values for a given shape, as shown in Figure 8. 
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Figure 8. Relationship for U11. 

For a first approximation, a simple linear relation between the two known points was established, and additional 
points were extrapolated from it. 

The second note which must be made relates to the incompressible nature of the theory. To justify using an 
incompressible theory in a flow field that is clearly compressible, it is necessary to consider the flow field directly in 
front of the probe nose. A bow shock forms in front of the probe as the freestream flow goes supersonic. The bow 
shock is detached from the surface of the probe, due to the blunt nose. The flow at the probe nose, and the pressure 
sensing orifice encounters, is therefore subsonic. This infers that the flow behavior may be due more to subsonic 
effects than supersonic effects. Following this line of thinking, the curvature of the probe tip takes on special 
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(Fig 1.18)

significance, since subsonic flow is known to be very sensitive to surface curvature. Then as the shock curves, it 
becomes weaker, and the flow the probe encounters becomes supersonic. However, because the area of interest falls 
only at plus/minus 15 degrees angle of attack, it is assumed the flow behind the shock in this area is subsonic. 

IV. Comparison to Experimental Results 
To test the results of the current second-order theory, comparisons were made to other existing experimental data 

sets. The first was a hemispherical probe nose, and the second an infinite circular cylinder. For more details on these 
cases, the reader is referred to Pasman.16 

A. Hemispherical Probe Nose 
In 1954, Stalder and Nielsen published experimental heat transfer results for a hemispherical probe with spikes 

of different lengths.18 Their results, along with the second-order theory results are shown in Fig. 9. 
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Figure 9. Comparison of Stalder and Nielsen results. 

As seen, for the desired angle of attack range of zero to 20 degrees, the two distributions agree very well. Even for 
angles of attack higher than 20, the distributions are very similar. 

B. Circular Cylinder 
In Schlichting’s 8th edition, Figure 1.18 gives the surface pressure distribution for an infinite circular cylinder in 

near-hypersonic flow (M=4.02). These results, along with the second-order theory results are shown in Figure 10. 
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Figure 10. Comparison of Schlichting results. 
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For both these experimental data sets, the second-order theory compares well with the experimental results. In 
Spring 2005, a second round of experimental testing was conducted at the Air Force Academy, on a new stream 
thrust probe, with a nose geometry based on inviscid CFD predictions. The results were found to not be in close 
agreement with the desired distribution. As seen in Figure 11 below, second-order theory predicted this outcome for 
this shape. 
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Figure 11. Comparison with USAFA experiments. 

⎢
⎢⎣

Overall, second-order theory agrees well with the experimental datasets. With the overall accuracy of the theory 
confirmed, the theory can be used to predict the optimum shape for a stream thrust probe. 

V. Application to Stream Thrust Probe 
The second-order theory can also be used to predict the optimum shape for the stream thrust probe. Assume that 

the stream thrust probe nose geometry is described by the super-ellipse equation:19 

1 

1
⎡
 ⎤
m n−
x a (14) = ±
 +
 ⎥

⎥⎦

y r 

a 

The variables m and n control the shape of the nose. By varying these two geometric factors, a large number of 
candidate shapes can be evaluated fairly quickly. To determine the optimum probe shape, first the effects of m and n 
on the bluntness of the probe were studied. Next, the effects of changing the bluntness of the probe on the pressure 
distribution over the probe were studied. By automating a large part of this process, many different probe shapes 
could be studied and compared. Based on these trends, one optimized probe was found at m=3.55, n=2.2. The 
resulting shape and pressure distribution is shown in Figure 12, where the comparison to the desired trend from Eqn. 
5 is excellent. 
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Figure 12. Optimized probe shape and pressure distribution. 
Besides this probe, several other combinations of m and n were found to give close agreement to the desired 

distribution. These results are summarized in Table 1 below. 

Table 1. Additional optimized probes compared to desired distribution. 
m 3.55 3.43 3.5 
n 2.165 2.23 2.2 
Max error 0.1366% 0.1639% 0.1532% 
Avg error -0.0468% -0.0110% -0.0397% 

The error given in the above table shows the maximum and average deviation from the desired distribution. All 
of these probes have a maximum error of approximately 0.15% of the desired distribution, and a average error of 
less than 0.05%, meaning they would allow for accurate thrust measurements. Further tests are required to determine 
which of these probes is the “most optimum”. Factors such as manufacturability must also be considered. Wind 
tunnel tests would probably be required to determine the best probe. 

VI. Conclusions 
The purpose of this paper was to present a second-order boundary layer theory to determine the pressure 

distribution over a highly curved stream thrust probe. After the accuracy of the theory was confirmed by comparing 
its results to known experimental data sets, the theory was used to predict a family of stream thrust probes which 
closely match the previously determined desired distribution. 

Recommendations for future work fall into two categories: further work on the theory, and further work on the 
stream thrust project. The theory currently used is adapted from an incompressible, laminar second-order theory. A 
compressibility correction is used to account for compressible flow, and turbulence is not addressed. A better 
solution would be to develop a compressible second-order theory and to find some way to account for turbulence. 
Also, further work could be put into determining the constants required for the various shapes. While the current 
linear method is adequate, it is simplistic. A more precise method would improve the accuracy of the overall theory. 

Based on the second-order theory presented here, several new probe shapes have been put forward for 
consideration. These probe shapes should be tested, both in CFD and experimentally. If the greater accuracy 
predicted continues to be seen in these tests, one or several of these shapes should be considered for the final stream 
thrust probe. Attention needs to be paid to the feasibility of constructing these probes to the desired precision needed 
to produce the correct shape. The difficulty of producing the probe accurately may become a limiting factor in which 
probe shape is finally chosen. 

Overall, the second-order theory appears to correctly predict the surface pressure distribution on the stream 
thrust probe. Accounting for viscosity and the curvature of the probe tip, and the resulting changes in the flow field 
give the correct theoretical results, with a maximum error of approximately 0.1% compared to the experimental 
results. 
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