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Abstract A point process, e.g., the seismic process, is

potentially predictable when it is non-stationary, internally

correlated or both. In this paper, an analysis of the occur-

rence process of mining-induced seismic events from

Rudna copper mine in Poland is presented. Stationarity and

internal correlation are investigated in complete seismic

time series and segmentally in subseries demonstrating

relatively stable seismicity rates. It is shown that the

complete seismic series are non-stationary; however, most

of their shorter subseries become stationary. In the sta-

tionary subseries, the distribution of interevent time is

closer to the exponential distribution, which is character-

istic for the Poisson process. However, in most of these

subseries, the differences between the interevent time and

Poisson distributions are still significant, revealing corre-

lations among seismic events.

Keywords Stationary seismic process � Mining-induced

seismicity � Internal correlations

Introduction

Among the various types of natural hazards, earthquakes

constitute a phenomenon responsible for numerous casu-

alties and huge socio-economic impact every year. The

study of earthquakes has routinely been performed in two

separate ways (e.g., Vere-Jones 2010): Physical modelling

is based on the underlying physics of the seismogenic

processes and accompanying effects, and stochastic

modelling. This latter family of models includes a vast

number of statistical algorithms and methodologies applied

in both natural (e.g., Gardner and Knopoff 1974;

Kiremidijan and Anagnos 1984) and induced (Baecher and

Keeney 1982; Lasocki 1992a, b; 1993) seismicity.

Stochastic models are increasingly applied since the last

decades because of the development and installation of

extensive and efficient networks resulting to high-quality

seismic data in many sites worldwide.

If a seismic process is to be predictable, then it must be

either non-stationary or internally correlated or both, i.e., it

cannot be fully random. Gardner and Knopoff (1974)

analysed the earthquake catalog of South California after

removing aftershocks. They found that whereas the original

catalog was non-Poissonian, after aftershock removal

through declustering, it became Poissonian. This means

that the seismic process of main-shocks occurrence was a

stationary Poisson process, whereas the aftershock gener-

ation was highly dependent on time as well as the after-

shock occurrences were correlated (interrelated). This

phenomenon is still investigated in global catalogs (e.g.,

Lombardi and Marzocchi 2007) or for local seismicity

(e.g., Gkarlaouni et al. 2015).

The need for improving the accuracy of seismic hazard

assessment increases the interest in earthquake occurrence

models, which assume some kind of time-dependence.

Undoubtedly, an increase of seismological data quality,

both in terms of completeness level and focal parameter

accuracy, helps investigating this feature. In the specific

case of mining-induced seismicity, the time-variation of

mining operations leads to the time variability of the

occurrence process of seismic events. Thus, its dependence

on time is expected and was already studied elsewhere

(e.g., Lasocki 1992a; Kijko 1997). The variability in time

of seismicity is also considered in many studies carried out
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for mining areas (e.g., Lasocki and Orlecka-Sikora 2008).

Lasocki (1992a) showed that mining seismic events do not

constitute a Poisson process. However, the seismicity rates

change slowly in time and the seismic process can be

considered as stationary for short time periods (*50 days).

In the present paper, we study in detail the time series of

seismic events from a mine for investigating properties of

the event occurrence process. The study mining area is the

Legnica-Głogów Copper District (LGCD) in southern

Poland, where approximately 3.5 thousand events above

local magnitude 1.0 (completeness of catalog is 1.2) are

annually recorded. Occasional strong events, which may

result in rockbursts, are a combined effect of the mining

operations, natural and human-induced stresses, and inter-

action among the seismic events. Therefore, the seismic

process due to time-varying mining activity is non-sta-

tionary and irregular, so the dependent fraction of seis-

micity is hard to be identified and removed by generic

declustering algorithms. For this reason, the seismic series

from specified time-space clusters of seismicity (in certain

zones defined by Orlecka-Sikora and Lasocki 2002) were

chosen and their stationary parts were selected for internal

correlation study. The results are complemented with an

uncertainty analysis.

Methods and data used

Methods

Interevent times of a stationary Poisson occurrence process

follow the exponential distribution. The corresponding

cumulative distribution function is:

FðsÞ ¼ 1 � expð�ksÞ; ð1Þ

where k is the constant mean event rate of the process.

We study here the coefficient of randomness in one-

dimensional space, m (Matsumura 1984):

m ¼ E½X�2

E½X2� ; ð2Þ

where E[X] is the first raw moment and E[X2] is the second

raw moment of the interevent time distribution. For fully

random occurrence process (a Poisson process), the ratio, m
equals:

m ¼
Rþ1
�1 s expð�ksÞds

Rþ1
�1 s2 expð�ksÞds

¼
1
k

� �2

2
k2

� � ¼ 1

2
: ð3Þ

The process is regular when m is greater than 0.5 and

clustered when m is smaller than 0.5. In these cases, the

interaction between events is present. In general, a repel-

ling interaction leads to a regular pattern and attractive

interaction leads to clustered pattern.

Confidence intervals of m are assessed from estimates of

this parameter from 1000 bootstrap replicas of the original

data samples of interevent times. The limits of confidence

intervals are evaluated as 5 and 95% percentiles. Thus, the

analysis is performed on 95% confidence level.

The null hypothesis that the interevent time distribution

is exponential is studied by means of the Anderson–Darling

test (Stephens 1974). Its rejection indicates that the

occurrence process in not a Poisson one.

The next estimated parameter is the Hurst exponent,

H (Hurst 1951), based on the classical rescaled range (R/S)

analysis (for a detailed description of the method, see

Lomnitz 1994 and the references therein). When a process

does not possess long memory (has independent incre-

ments), H equals 0.5. The process has long memory and is

persistent, when H is greater than 0.5, and is anti-persistent

when H is smaller than 0.5. This parameter has been used

to analyse long memory of natural (e.g., Correig et al.

1997; Xu and Burton 2006; Gkarlaouni et al. 2017) and

induced seismic processes (e.g., Węglarczyk and Lasocki

2009). Here, we investigate the long memory property in

the interevent time series. The statistical significance of the

estimate H is obtained, using the method from Węglarczyk

and Lasocki (2009).

Table 1 Parameters of the analysed series of mining events

Event series Time period of the series Magnitude median

and range

No. of events Activity rate (event

per month)

Z_20.1 04 Apr. 1985–05 Sep. 2004 1.6 [1.2–4.1] 1245 5.4

Z_23.1 12 Apr. 1980–23 Sep. 2004 1.7 [1.2–4.1] 1592 5.4

Z_26 20 Nov. 1984–16 Sep. 2004 1.6 [1.2–3.8] 2678 11.3

Z_27 19 Apr. 1986–22 Sep. 2004 1.6 [1.2–3.7] 2207 10.0

Z_28 28 Mar. 1988–19 Sep. 2004 1.6 [1.2–3.7] 620 3.1

Z_30.1 27 Apr. 1990–18 May 2002 1.7 [1.2–3.6] 817 5.7

Z_31 01 Jan. 1980–20 Oct. 1990 1.5 [1.2–3.5] 2664 20.6

Z_35 26 Nov. 1991–11 Sep. 2004 1.7 [1.2–3.7] 711 4.6
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Data

The seismic catalog from 1984 up to 2004 of Rudna mine

from Legnica Glogow Copper District (LGCD) of Poland

was analysed. LGCD is a region in south-west of Poland

where copper-ore is exploited from ore bearing layers at

the depths between 900–1100 m. The underground mining

in Rudna mine in the studied period induced 15.8 thousand

of registered events from magnitude 0.9 up to 4.2, so there

were about 800 events per year.

Seismicity induced by mining forms distinct space-time

clusters or space-time zones (Orlecka-Sikora and Lasocki

2002). In this paper, the analysis was done for 8 such

clusters, which had different activity rates, maximum

magnitudes, locations, and occurrence time periods (see

Table 1; Figs. 1 and 2).

Non-stationarity of the seismic event occurrence
process

Anderson–Darling (A–D) test was performed to test the

null hypothesis that the distribution of interevent time was

exponential. This distribution was significantly different

than the exponential distribution in all analysed event

series; in all cases, the p values of the null hypothesis of A–

D test are smaller than 5 9 10-4. This indicates that the

background seismic processes were not Poissonian.

Next, the coefficients of randomness, m, were calculated

and the Hurst exponents, H, were estimated for the analysed

event series (Table 2). The coefficients of randomness are

smaller than 0.5 for all series at the significance level 0.95.

The Hurst exponents for all cases are significantly greater

than 0.5. However, these features as well as the misfit of the

exponential distribution are most likely due to non-station-

arity of the processes, which is clearly visible in Fig. 2.

To have a better insight into the process properties, we

calculated the coefficients of randomness for the subseries

formed by gradually removing smaller events from the initial

event series. Figure 3 shows the changes of m and the cor-

responding 90% confidence intervals as functions of the cut-

off magnitude levels for the studied series. The minimum

number of samples, for which m were calculated, was set

equal to 10 events. The coefficient of randomness tended to

the value 0.5 when smaller events were removed. These

results suggest that the process of generating stronger events

is a stationary Poisson process or at least it is close to the

Poisson process. Similar results and the same conclusion

were presented by Lasocki (1992a). Such a ‘self-random-

ization’ of the series takes place for different cut-off mag-

nitudes between 2.05 and 3.2. In two cases of Z_31 and Z_35

series, when the greatest cutoffs were applied, the coefficient

of randomness became significantly greater than 0.5, sug-

gesting a regular behavior of the subseries.

The next part of the study was to check the extent of

non-randomness in the studied data sets. For this purpose,

the coefficient of randomness was calculated in sliding data

windows which were being moved over the initial data

series. The lengths of the windows were 300, 200, 100, and

50 events, consecutively, and the windows were advanced

of 10 events in the first three cases of the window lengths

and of 5 events for 50-event windows. Figure 4 shows m
and 90% confidence intervals calculated in the aforemen-

tioned sliding windows for series Z_27 and Z_28, as

examples. The interevent times for shorter subseries tended

to follow the exponential distribution; the shorter subseries

were, the more of them exhibited the Poisson process

property. However, even for the shortest considered sub-

series of 50 events, some traces of clustered or regular

behavior remained. This indicates that some parts of the

analysed series were so strongly non-stationary that they

still exposed this feature even in the shortest fragments of

the initial series. One can see in Fig. 4 that the 50 element

subseries exhibited a regular behavior when the activity

rate was growing and a clustered behavior when the

activity rate was considerably irregular.

Internal correlation of the tremors occurrence
process

The stationarity of the event series is an essential prereq-

uisite for the studies of internal correlations, which occur

when data show internal dependency like stress transfer,

Fig. 1 Spatial distribution of the analysed clusters of mining events

(both axes are in local coordinate system)
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seasonality, etc. Therefore, to get insight into internal

correlations of the studied seismic processes, we had to

extract stationary subseries from the clearly non-stationary

initial series. First, to do this, we made use of the results of

above presented analysis of Matsumura coefficient of

randomness in sliding windows. We extracted those frag-

ments, for which the coefficients of randomness in

consecutive windows did not deviate from the value 0.5

(under 90% confidence probability). The examples of such

an extraction from series Z_27 and Z_28 are presented in

Fig. 4 as light pink fields. The basic parameters of the

extracted subseries are given in Table 3.

The value 0.5 of the coefficient of randomness indicates

fully random, that is also stationary behavior; therefore, the

Fig. 2 Monthly activity rates (bars) and cumulative numbers of events (solid black) for the analysed event series

Table 2 Results of the analysis

of the complete event series and

the subseries created by

removing smaller events

Event

series

The coefficient of

randomness m and 90%

confidence intervals

Estimates of

Hurst

coefficient

(H)

The lowest left-hand side limit of magnitude

range, in which the seismic process became a

stationary Poisson process

Z_20.1 0.31 [0.27; 0.36] 0.81 2.75

Z_23.1 0.05 [0.04; 0.08] 0.77 3.05

Z_26 0.35 [0.31; 0.38] 0.77 2.95

Z_27 0.31 [0.27; 0.37] 0.73 3.20

Z_28 0.36 [0.33; 0.40] 0.83 2.55

Z_30.1 0.32 [0,28; 0,36] 0.72 2.05

Z_31 0.42 [0.37; 0.47] 0.62 2.65

Z_35 0.38 [0.35; 0.41] 0.68 2.30

The values of coefficient of randomness and Hurst exponent, which significantly deviate from 0.5, are in

bold
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selected subseries were expected to be stationary. To

confirm this conclusion, we tested the stationarity of the

selected subseries be means of the Priestley–Subba Rao

(PSR) test (Priestley and Subba Rao 1969). Contrary to the

expectations, the test showed that the subseries were still

non-stationary. The test p value for the null hypothesis of

stationarity was in all cases less than 0.015. These results

evidence that the Matsumura coefficient of randomness is

not sufficient to indicate by itself randomness of an event

series in a one-dimensional case.

In this connection, we continued the selection of sta-

tionary subseries. Now, as a possible candidate for the

stationary subseries, we were taking that fragment of the

initial series, for which the coefficient of randomness was

Fig. 3 Coefficient of randomness as a function of magnitude cut-off

levels determining subseries of the initial event series. The vertical

bars represent 90% confidence intervals of the coefficient and are in

blue for a clustered process, in red for a random process, and in green

for a regular process

Acta Geophys. (2017) 65:507–515 511

123



close to 0.5 but also maintained relatively stable values.

The candidate could not have also gaps in the seismic

activity, which we ascertained through a visual inspection

of the histogram of seismic activity for the candidate.

Finally, we checked the stationarity of the newly selected

subseries by means of the PSR test. All the newly selected

subseries turned to be stationary. However, the sizes of the

subseries were considerably reduced, which is illustrated

by magenta fields in Fig. 4. Basic parameters of these

newly selected stationary subseries are given in Table 4.

The A–D test was applied to the stationary subseries to

check the exponentiality of the interevent time distribution.

The test results are shown in Table 5. In six out of eight

studied cases, the null hypothesis on exponentiality was

turned down at the significance level 0.05. In the remaining

two cases of the subseries ssZ_20.1 and ssZ_28, the A–D

test did not indicate significant deviations of interevent

time distribution from the exponential distribution at the

prescribed significance level.

As shown in Table 5, in all eight cases, the 90% con-

fidence intervals of m included 0.5—the value characteristic

for a fully random Poisson process. It, therefore, could not

be excluded that the event occurrence process was Pois-

sonian. At the same time, the A–D test rejected the

hypothesis on exponentiality of the interevent time, i.e.,

turned down the hypothesis that the occurrence process was

Poissonian in six out of eight cases. To interpret these

seemingly ambiguous results, we recall the inherent prop-

erty of hypotheses testing. A null hypothesis can be either

rejected at a prescribed significance level—the alternative

hypothesis is true, or the null hypothesis cannot be rejected,

which does not mean that the null hypothesis is true. In

Fig. 4 Monthly activity rate of

the event series Z_27 and Z_28

with coefficient of randomness

for sliding windows comprising

300, 200, 100, and 50-event

subseries, respectively. The

vertical bars represent 90%

confidence intervals of the

coefficient, and are in blue for a

clustered process, in red for a

random process, and in green

for a regular process. Pink fields

indicate the considered

candidates for stationary

subseries; magenta fields

indicate the finally selected

stationary subseries See: text for

further explanations
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case when it cannot be rejected, it is either true or a

combination of the sample representativeness and the

verification method is not powerful enough to reject this

hypothesis. Only the rejection of the null hypothesis is truly

conclusive, the opposite leaves the inference in an ‘un-

known’ state. In this connection, we accept the results of

Table 3 Parameters of the subseries, which were thought to be stationary based on the results of coefficient of randomness analysis in sliding

windows

Subseries

name

Time period of the subseries Magnitude median

and range

No. of

events

Activity rate (events

per month)

sZ_20.1 31 Oct. 1989–22 Nov. 1992 1.6 [1.2–2.8] 193 5.3

sZ_23.1 03 Mar. 1998–09 Sep. 2003 1.7 [1.2–4.1] 910 14.0

sZ_26 09 Oct. 1988–28 Aug. 1995 1.7 [1.2–3.6] 658 8.0

sZ_27 17 Sep. 1992–28 Sep. 2000 1.7 [1.2–3.7] 854 8.9

sZ_28 03 Fab. 1994–07 Oct. 2002 1.6 [1.2–3.6] 287 2.8

sZ_30.1 03 Aug. 1991–04 Sep. 1998 1.8 [1.2–3.3] 364 4.3

sZ_31 09 Jan. 1985–20 Oct. 1990 1.7 [1.2–3.5] 1074 15.5

sZ_35 26 Nov. 1991–24 Sep. 1998 1.8 [1.2–3.7] 254 3.1

Table 4 Parameters of the

finally selected stationary

subseries, which were used in

the internal correlation study

Sub series

name

Time period of the

subseries

Magnitude median and

range

No. of

events

Activity rate (events per

month)

ssZ_20.1 25 Sep. 1991–16 May.

1994

1.6 [1.2–3.5] 121 3.8

ssZ_23.1 01 Oct. 1990–14 Aug.

2000

1.7 [1.2–3.7] 265 13.9

ssZ_26 04 Apr. 1989–13 Feb.

1991

1.7 [1.2–3.4] 197 8.8

ssZ_27 08 Feb. 1995–09 Mar.

1996

1.7 [1.2–3.6] 79 6.1

ssZ_28 20 Jan. 1999–18 Nov.

2000

1.5 [1.2–3.2] 97 4.4

ssZ_30.1 16 Jun. 1994–14 Jun.

1995

1.6 [1.2–3.2] 64 5.4

ssZ_31 10 Jan. 1985–25 May

1986

1.5 [1.2–3.1] 348 21.2

ssZ_35 27 Aug. 1995–26 Apr.

1997

1.9 [1.2–3.1] 76 3.8

Table 5 Results of the analyses of the stationary parts of event series

Event

series

PSR test results

p value for H0:

stationarity

A–D test results

p value for H0:

exponentiality

The coefficient of

randomness m and its

90% confidence intervals

Hurst coefficient, H and the 5%

critical value for H0: the process

does not have long memory

ssZ_20.1 0.23 0.1408 0.46 [0.40; 0.54] 0.70; 0.72

ssZ_23.1 0.12 0.0005 0.49 [0.45; 0.52] 0.57; 0.67

ssZ_26 0.62 0.0005 0.47 [0.42; 0.52] 0.60; 0.69

ssZ_27 0.26 0.0089 0.45 [0.36; 0.58] 0.63; 0.77

ssZ_28 0.19 0.9836 0.50 [0.44; 0.58] 0.51; 0.75

ssZ_30.1 0.53 0.0005 0.50 [0.44; 0.58] 0.55; 0.83

ssZ_31 0.21 0.0039 0.52 [0.49; 0.55] 0.55; 0.66

ssZ_35 0.12 0.0336 0.48 [0.43; 0.57] 0.45; 0.38

The values, which lead to rejection of the respective null hypothesis, are in bold
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the A–D test. Based on its results, we conclude that the

earthquake occurrence process in mines even in its sta-

tionary parts can be and more often is non-Poissonian (not

fully random).

In the last part of the analysis, we estimated Hurst

exponent and the 95% critical values for the null hypoth-

esis that the interevent time series did not have long

memory. The values of Hurst exponent, shown in Table 5,

in neither case differed significantly from the respective

values indicating lack of the long memory property.

However, this might be due to shortness of the stationary

subseries.

Conclusions

Our analysis evidences that interevent times in the studied

series of seismic events induced by mining do not follow

an exponential distribution. The background seismic pro-

cess is not a stationary Poisson process.

The time dependency of the seismic process is visible in

series, which contain smaller, numerous events. Series

comprising only stronger events exhibit stationarity. This

indicates the importance of keeping the completeness

levels of seismic systems as low as possible, because

information on variability of a seismic process in time is

the necessary condition for prediction.

The studied seismic process turns out to be non-station-

ary, but its time variability is slow. Shorter subseries of the

initial series cease to exhibit this non-stationarity, and most

of the 50 elements subseries look like drawn from stationary

processes. The slow variability in time of the seismic process

makes it possible to estimate time-dependent process

parameters by means of moving data windows technique.

In stationary segments of the initial seismic series, the

interevent time distributions are closer to the exponential

distribution, but most of them are still not exponential. The

occurrence process is not a Poisson process, which suggests

indirectly that the process is internally correlated. These

internal correlations do not seem to have a long range—

they are not confirmed by the R/S analysis. However, the

results of R/S analysis are uncertain, because the stationary

segments were short.

In overall, in seismic hazard assessments in the first

approximation, such stationary segments (windows) can be

regarded as outcomes of Poisson processes. However, more

detailed insights into the seismic hazard in mines require

further studies of the nature of correlations among seismic

events to account for these correlations in hazard analyses.
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