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INTRODUCTION

Cardiovascular diseases remain the number one

cause of morbidity and mortality, both in the Western

world and developing countries and in men and women

alike.1 In 2005, the main cause of death in the USA due

to disease of the heart alone was more than of all neo-

plastic disease combined. It is expected that these

numbers will continue to increase in the coming decades

due to escalating proportions of obesity and the aging

population. In addition to cardiac disease, cerebrovas-

cular disease, diabetes, and hypertension result in

substantial morbidity and mortality. Therefore, cardio-

vascular diseases as a whole are killer number one in the

Western world, and will most likely remain to be so due

to adverse lifestyle changes, including unhealthy diets

and lack of exercise.

Myocardial infarction (MI) is the number one car-

diac disease and often strikes the individual

unexpectedly; in 50% of cases MI is the first symptom of

coronary atherosclerosis. Atherosclerosis is character-

ized by a chronic inflammatory response resulting in the

formation of multiple plaques in the lumen of the artery.

This can happen gradually as a result of progressive

plaque growth or suddenly as a result of plaque rupture

and, subsequently, thrombosis causing acute MI (AMI).

The improvements in treatment of AMI have

resulted in better survival and a decrease in the acute

complications of MI, such as acute congestive heart

failure (CHF), myocardial rupture, arrhythmias, and

conduction system disorders. However, with more

patients surviving the initial stage of AMI, the devel-

opment of late complications of AMI become a more

prominent health care problem.

The development of left ventricular dilatation and

loss of pump function in the years following the acute

myocardial injury, induced by the formation of the scar,

and the impact of the local loss of function on pressure

and tensile forces in the noninfarcted left ventricle, are

the subject of intense research. Many trials in this area

have convincingly shown that inhibition of the renin–

angiotensin system, through either ACE inhibitors and/

or angiotensin receptor 1 blockers, preserve cardiac

function and decrease mortality post MI.2 In addition,

intervention in mineralocorticoid signaling has proven to

preserve cardiac function and decrease mortality sig-

nificantly.3,4 Despite these advances, still a substantial

fraction, about one-third of AMI patients, will develop

pump function disorders of the left ventricle in the long

run. The outcome of a relatively recent biomarker

known as NT-pro Brain Natriuretic Peptide (NT pro-

BNP), which is released by cardiomyocytes after the

occurrence of ventricular malfunction, has proven its

usefulness in diagnosing heart failure.5 Nevertheless, it

is hard to predict in which individual patient CHF will

occur. Therefore, there is still a lot to be learned and to

be gained from research in cardiac infarct healing and

adverse left ventricular remodeling.

An upcoming diagnostic tool in analyzing the risk of

cardiovascular disease in patients is cardiac imaging.6 The

capability to visualize macroscopic cardiovascular struc-

tures and the anatomical and functional consequences of

cardiac diseases in patients has made a remarkable pro-

gression in the last decades. The development of coronary

angiography (CAG), echocardiography, magnetic reso-

nance imaging (MRI), and multi-detector CT (MDCT) has

improved our approach in diagnosing cardiovascular dis-

ease such as atherosclerosis or left ventricular function.

However, most of these imaging technologies are able to

diagnose the end stage of the disease, rather than the

beginning of the disease or even pre-disease states. The

next frontier in imaging will be the development of the

capability to image fundamental biological or molecular

changes which cause cardiovascular disease and are able to

predict disease outcome at an early stage. For this purpose,

imaging tools other than those mentioned above have to be

developed.7

Imaging techniques, which visualize the fundamental

biological characteristics resulting in cardiovascular dis-

ease, may provide the potential to predict cardiovascular

catastrophe as an early diagnostic tool.8 With the intro-

duction of molecular imaging, the opportunities to detect

changes in biology of infarcted hearts and, therefore,
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cardiac remodeling in vivo have increased significantly in

the past decade.

It can be hypothesized that the ability to visualize

interstitial processes on a molecular level, which pre-

cede the geometric and functional deterioration of the

left ventricle, should help to better predict the likelihood

and rate of remodeling and development of HF.9 Several

key biological features provide attractive targets for

molecular imaging in heart failure. First, the develop-

ment of imaging techniques visualizing the biological

events of angiogenesis and fibrogenesis, which are

considered key processes in myocardial scar formation

and left ventricular remodeling, may provide attractive

targets for the identification of patients at risk to develop

a failing heart. The use of agents targeted to the integrin

alpha v beta 3 (avB3) may offer diagnostic means to

achieve this goal.

Second, apoptosis, a form of programmed cell death

(PCD), has shown to play a key role in the process of

gradual loss of pump function in animal models of heart

failure, caused by different triggers. Therefore, imaging

apoptosis may provide a means to identify hearts that are

in the process of substantial cardiomyocyte loss and

subsequent loss of pump function. The use of radiola-

beled Annexin A5, which shows strong affinity to

apoptotic cells which have externalized phosphatidyl

serine, may provide an opportunity to develop such a

heart failure imaging diagnostic test.

Finally, it is well known that the activation of the

renin–angiotensin axis plays a pivotal role in the

development of heart failure post AMI. Therefore,

imaging of the different components of renin–angio-

tensin neurohumoral axis may give an additional

diagnostic tool for better identification of patients prone

to develop heart failure. This brief review will discuss

the recent progresses made in molecular cardiac imag-

ing, focusing mainly on the achievements made in avB3

imaging, apoptosis imaging, and imaging of the activa-

tion of the renin–angiotensin system.

AVB3 IMAGING AS A TOOL TO IDENTIFY POST
MI REMODELING

As described above, early diagnosis of the impact of

the infarct on adverse left ventricular remodeling in the

individual patient could prevent worsening of left ven-

tricular pump function by adapting treatment to the

individual needs and risks. Two main events that occur

in the infarcted area are angiogenesis and collagen

deposition. The formation of new blood vessels is cru-

cial for infarct healing, and is induced by several factors,

such as basic fibroblast growth factor (bFGF) and vas-

cular endothelial growth factor (VEGF).10 Among other

regulators of angiogenesis, the avB3 integrin has been

identified as a critical angiogenic modulator. Angiogenic

vessels display increased expression of this critical

integrin.11 This discovery led to the development of

imaging tools to detect tumor angiogenesis with the use

of avB3 integrin targeting agents.12,13

Figure 1. Short axis imaging data 3 weeks after induction of LAD infarction in a dog model. At the site of the
perfusion defect (left panel), uptake of the indium-labeled avB3 RP 748 targeting tracer was observed (middle panel).
Left panel shows the fusion data.

Journal of Nuclear Cardiology Zandbergen and Schellings 457

Volume 16, Number 3;456–65 Molecular imaging of ventricular remodeling



In addition, imaging of avB3 integrin has been used

to noninvasively visualize angiogenesis in infarcted

hearts. Meoli et al used indium-111-RP748 (111In-

RP748), a radiolabeled avB3 targeted compound, to

image angiogenesis in infarcted canine hearts with

SPECT imaging.14 111In-RP748 uptake peaked at

1 week after reperfusion and was associated with avB3

integrin expression on endothelial and vascular smooth

muscle cells. In addition, they used the same targeting

agent in infarcted dog hearts which showed uptake of
111In-RP748 at the side of the perfusion defect using

SPECT imaging (Figure 1).

Recently, 18F-Galacto-RGD, a PET tracer targeting

specifically avB3 integrin expression, has been intro-

duced.15 Higuchi et al used this tracer to monitor avB3

integrin expression in rat hearts after ischemia/

reperfusion, and reported results comparable with
111In-RP748 imaging.16 Clinical use of the 18F-Galacto-

RGD PET tracer in a patient with MI was reported

shortly.17

Apart from its crucial involvement in angiogenesis,

avB3 integrin also has been linked to the development of

fibrosis,18,19 which led our group to evaluate whether

avB3 integrin imaging could be used to visualize
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Figure 2. A, Nuclear imaging showed that no uptake was seen of the avB3 targeted tracer was seen
in normal controls and in mice with infarcted hearts injected with a scrambled variant of the
targeting peptide. Uptake of the tracer peaked at 2 weeks post MI, and decreased gradually at
4 weeks and 12 weeks, respectively. B, The in vivo imaging data are confirmed by quantitative
measurement (% injected dose per gram) in the infarct zone (left panel). In the mid sections and
base sections no significant uptake of the tracer was observed.
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fibrogenesis in the infarcted heart.20 MI was induced in

mice, which received a 99mTc-labeled Cy5.5-RGD

imaging peptide (CRIP) intravenously for microSPECT

imaging of integrin at 2, 4, and 12 weeks after MI

(Figure 2).

The uptake of CRIP was most pronounced in the

infarcted area, and peaked at 2 weeks after MI.

Immunological analysis linked CRIP uptake to myofi-

broblasts, and CRIP uptake paralleled with the

production of newly formed collagen, with a yellow/

green birefringence. In addition, several mice were

treated with antagonists of the renin–angiotensin sys-

tem, which is known to be involved in pathological

myocardial remodeling. Interestingly, mice treated with

captopril or with captopril and losartan displayed sig-

nificantly reduced uptake of the CRIP (Figure 3). Thus,

apart from the potential value of radiolabeled CRIP in

visualizing collagen formation, it may also fulfill the

need for a surrogate endpoint marker for therapeutic

interventions.

In conclusion, imaging of avB3 integrin has the

potential to identify HF-prone patients early after MI,
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Figure 3. A, The effect of treatment with captopril and/or losartan post MI. In the treated groups,
less uptake of the avB3 targeting tracer was observed using captopril and an even more extensive
reduction when the treatment of captopril was combined with losartan. B, The imaging data were
confirmed by quantitative measurement (% injected dose per gram).
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and thereby will help to optimize medical treatment.

However, prospective clinical trials are needed to

investigate whether the potential of integrin imaging

translate into clinically useful diagnostic tests.

APOPTOSIS AS A TARGET FOR MOLECULAR
IMAGING IN CHF

Apoptosis plays a key role in the process of deg-

radation of cardiomyocytes resulting in ventricular

dysfunction.21-24 Research in animal models of CHF has

demonstrated that interference in apoptosis pathways

delays the ongoing process of pump function disorders

resulting in heart failure.25

One of the main biochemical characteristics of

apoptosis is caspase 3 activation. The process of acti-

vation of caspase 3, an apoptosis-related cysteine

protease, begins with the release of cytochrome C into

the cytoplasmic area, mainly caused by oxidative stress

and cytokinemia. Caspases have numerous substrates,

including contractile proteins, such as troponin-T. In

addition, in most cells, caspase activation results in

Figure 4. Uptake of 99mTc-labeled Annexin A5 in advanced cardiomyopathy. A, Patient with dilated cardiomyopathy (DCMP) and
reduced left ventricular function showing focal uptake in the anterolateral region of the heart. B, Patient with DCMP in acute heart
failure showing global uptake. C, DCMP in a patient with no symptoms of heart failure, notice no uptake is present. In D, relative of
DCMP patient, absence of uptake of 99mTc-labeled Annexin A5 (adapted from Kietselaer et al30).
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activation of DNA fragmentation enzymes. However, it

is thought that the activation of DNA fragmentation

enzymes in heart muscle cells is compensated for by

different antiapoptotic pathways. The consequence of

apoptosis activation in cardiomyocytes is that these cells

become dysfunctional, but still survive due to the pres-

ervation of DNA. This means that restoration of a

healthy environment could potentially restore individual

cardiomyocyte function. Another consequence of cas-

pase 3 activation is that it results in alterations in

phospholipid distribution in the sarcolemmal lipid

bilayer, causing revelation of phosphatidyl serine (PS) to

the surface of the cell membrane.26,27 Theoretically, the

extent of PS externalization reveals an indication of the

degree of apoptosis in the heart. Accordingly, it is

plausible that PS can be a used as a target to detect

activated cell death in heart failure. The detection of PS

exposure has been proven extensively by radionuclide

imaging using 99mTc-labeled Annexin A5.28,29

Kietselaer et al recently demonstrated the feasi-

bility of Annexin A5 imaging to reveal PCD in a small

group of patients with recently diagnosed advanced

heart failure. Imaging of 99mTc-labeled Annexin A5

was performed using a SPECT in nine CHF patients

with advanced nonischemic cardiomyopathy (hyper-

trophic, N = 1, dilated, N = 8). To include a similar

genetic background as the hypertrophic cardiomyopa-

thy patient, the same imaging procedure was performed

on two relatives who did not suffer from CHF. Left

ventricular uptake of Annexin 5 was demonstrated

focal, multifocal, or diffuse in a total of five patients.30

All patients in whom 99mTc-labeled Annexin A5

uptake was present in the left ventricle were diagnosed

with a significant decrease of left ventricular function

as demonstrated by follow-up echocardiography 1 year

later (Figure 4).

The five patients who demonstrated no uptake of

Annexin A5 remained in a stable clinical state or even

showed improvement of left ventricular function (Fig-

ure 5). In line with the data in animal models of CHF,

these data suggest that Annexin A5 uptake is related to

dysfunction of the left ventricle. Annexin A5 may pro-

vide the potential to become a useful imaging tool to

identify patients with active apoptosis in the myocar-

dium, which most likely indicates a transition to overt

heart failure. The question remains what Annexin A5

binding into the myocardium indicates, since it was

suggested that cardiomyocytes activate caspases during

apoptosis, but that DNAses are not activated, resulting in

the concept of apoptosis interruptus.

Figure 6 shows a possible explanation for uptake of
99mTc-labeled Annexin A5 after apoptosis is stimulated.

The revelation of PS is a response of caspase 3 activa-

tion. As mentioned above, different antiapoptotic

Figure 5. Differences in left ventricular ejection fraction after
1 year follow-up in CDMP patients with uptake of Annexin A5
and no uptake of Annexin A5 on SPECT (adapted from
Kietselaer et al30.

Figure 6. The concept of PS externalization in heart failure.
Cytokine and oxidative stress (reactive oxygen species)
inducing release of cytochrome c out of the mitochondria
lead to caspase 3 activation. This results in cytoplasmic
proteolysis and DNA fragmentation, ultimately leading to
apoptosis. The increase of BC12- and XIAP proteins and the
loss of DNAses prevent the so-called apoptosis interruptus and
activate caspase 3.
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pathways, preventing the degradation of DNA, com-

pensate for the activation of DNA fragmentation

enzymes in heart muscle cells. It is assumed that the

quantity of PS, which manifests externally, is an indi-

cation of the amount of activated of caspase 3.

Therefore, it is believed that Annexin 5 uptake not

necessarily indicates loss of cardiomyocytes, but is a

reflection of the activation level of caspase-3.

THE AT-1 RECEPTOR AS A TARGET
FOR MOLECULAR IMAGING IN CHF

The essential role of the renin–angiotensin system

in ventricular remodeling following AMI has been

established in many experimental and clinical studies.

Rather than circulating renin–angiotensin levels, it

believed that myocardial upregulation of angiotensin

converting enzyme, angiotensin II, and its receptors

determine the likelihood of ventricular remodeling.31,32

In an experimental study in mice, it was shown that

transgenic mice with deficient angiotensin II type 1

receptor expression revealed negligible remodeling post

MI. Moreover, a lower expression of fibrosis and

transforming growth factor (TGF-B1) was demon-

strated.31 These insights from experimental models have

been translated to clinical studies showing that patients

with CHF patients using angiotensin receptor block-

ers33,34 and/or ACE-inhibitors35-37 have substantially

improved survival. It has been suggested that maximi-

zation of antiangiotensin therapy, including increase in

ACE-inhibitor dose or addition of ARB over ACE-

inhibitor therapy, could further reduce morbidity33,38

and mortality39 in HF. It is, therefore, imaginable that

accurate assessment of myocardial angiotensin receptor

expression could potentially guide optimization of an-

tiangiotensin therapy. Nowadays, diagnostic imaging of

HF is focused on geometric and structural cardiac

imaging.40,41

As mentioned above, it is well known that inhibition

of the renin–angiotensin system, through either ACE

inhibitors and/or angiotensin receptor 1 blockers, pre-

serve cardiac function and decrease mortality post MI.2

Verjans et al investigated the potential of angiotensin

receptor II type 1 imaging in an animal model of post MI

left ventricular remodeling.42 A fluorescent label was

marked to an angiotensin peptide analogue (APA),

which traced angiotensin type 1 and 2 receptors for

imaging purposes. The data from the study showed

distinct uptake of the fluorescent tracer in the infarct and

border zone of the mouse hearts between 1 and 6 weeks

post MI (Figure 7).

At time point of 12 weeks, the uptake was markedly

reduced. Immunohistochemical analysis and 2-photon

microscopy showed co-localization of the tracer with

both myofibroblasts and collagen. No uptake of the

fluorescent tracer was observed in cardiomyocytes.

Upregulation of the AT1 receptor on myofibroblasts

allows for growth factor (such as angiotensin-II)-

induced proliferation and collagen production, which is

believed to contribute to healing and the remodeling

process following MI.43,44

The same research group created a radiolabeled

imaging tracer of a well-known angiotensin II antagonist

named Losartan. With the use of this analogue, SPECT-

CT imaging was performed after left ventricular func-

tion was evaluated by echocardiography. These imaging

studies showed that uptake of the radiolabeled Losartan

product co-localized to the infarct area on SPECT-CT

imaging, and that the uptake of the radiolabeled product

in the infarct area was 2.4-fold higher as compared to

control hearts (Figure 8). Together, these data demon-

strate the feasibility of in vivo imaging through targeting

of angiotensin receptors in an experimental HF model.

Furthermore, the data showed that upregulation of

angiotensin receptor preceded the development of left

ventricular remodeling, as detected by echocardiogra-

phy. Currently, significant emphasis is being placed on

the recognition of stage A and B HF patients as a

strategy of prevention of more advanced HF.45

Accordingly, development of a technology that predicts

occurrence of cardiac remodeling, such as AT-1 receptor

imaging, is of crucial importance, especially since the

clinical practice nowadays allows diagnosis of HF only

after the left ventricle has undergone adverse

remodeling.

This concept is further emphasized by the recent

demonstration of another strategy for imaging renin–

angiotensin axis with the use of radiolabeled benzoyl

lisinopril. Dilsizian et al incubated short-axis myocardial

slices explanted from patients undergoing cardiac

transplantation for end-stage ischemic cardiomyopathy

with F-18 fluoro-benzoyl lisinopril.46 There was specific

binding of radiotracer to ACE; mean binding was

6.6 ± 5.2 compared with 3.4 ± 2.5 luminescence/mm2

in segments pre-incubated with cold lisinopril

(P \ 0.0001). Furthermore, mean radiotracer binding

was 6.3 ± 4.5 in infarcted, 7.6 ± 4.7 in peri-infarcted,

and 5.0 ± 1.0 luminescence/mm2 remote noninfarcted

(P \ 0.02) segments. Together, these imaging studies

demonstrate that activation of the renin–angiotensin

system can be visualized using molecular imaging

technology. Both studies also showed that the compo-

nents of the tissue renin–angiotensin cascade are

upregulated only about 2- to 3-fold. It remains unclear

whether such relatively small difference between

remodeling cardiac tissue and control hearts could pro-

vide a clinically robust diagnostic strategy for imaging

targeted to ATR and/or ACE.
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Figure 7. A, Imaging data show the uptake of the fluorescent AT1 receptor-targeted tracer at
different time points after MI. The uptake peaks at 1 week post AMI, and then gradually decreases
over time. In B, the concomitant echocardiographic data are shown, indicating a clear increase in
LV end diastolic diameter.

Figure 8. In A, the control mouse does not show uptake of the technetium-labeled losartan product on SPECT-CT
imaging. In B, in a mouse 3 week post MI clear uptake of the tracer can be seen on SPECT-CT imaging. In C,
quantitative analysis (% injected dose per gram) shows a 2.4-fold uptake of the tracer in the infarct area. In the border
zone and remote zone no significant differences were seen.
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OUTLOOK

Based on the preclinical and clinical data obtained

in molecular imaging of adverse left ventricular

remodeling, the current outlook for the development of

such an imaging technology is promising. For both the

imaging of avB3 integrin and imaging of phosphatidyl

serine expression as a reflection of caspase 3 activa-

tion, the preliminary data provide a sufficient basis for

the design and execution of novel studies. For imaging

of the components of the renin–angiotensin system, the

extent of uptake may be insufficient to form a basis for

clinical applications. However, before one of these

technologies could be adopted as diagnostic tests for

routine clinical use, large clinical studies need to be

conducted to address key questions. For instance, it is

still unknown whether the uptake of avB3 targeting

tracers is robust enough to uncover patients that are at

the brink of developing adverse remodeling post MI. In

addition, it remains to be seen whether the extent of

the uptake of the tracer can be modulated by treatment

with different regimes of CHF treating compounds.

Studies focused on addressing these questions are

under way.

For imaging phosphatidyl serine exposure in the

heart using Annexin A5, as a reflection of caspase-3

activation, the outlook depends largely on the avail-

ability of clinically graded Annexin A5 imaging

diagnostic kits. With the availability of clinical Annexin

A5 imaging kits, studies could be designed to further

explore the predictive value of Annexin A5 in patients

with failing hearts and to study the effect of therapeutic

interventions.
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