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Abstract Recent estimates suggest that 1 in 12 of the global
population suffers from diabetes mellitus. Approximately
40 % of those affected will go on to develop diabetes-related
chronic kidney disease or diabetic nephropathy (DN). DN is a
major cause of disability and premature death. Existing tests
for prognostic purposes are limited and can be invasive, and
interventions to delay progression are challenging.
MicroRNAs (miRNAs) are a recently described class of mo-
lecular regulators found ubiquitously in human tissues and
bodily fluids, where they are highly stable. Alterations in
miRNA expression profiles have been observed in numerous
diseases. Blood and tissue miRNAs are already established
cancer biomarkers, and cardiovascular, metabolic and im-
mune disease miRNA biomarkers are under development.
Urinary miRNAs represent a potential novel source of non-
invasive biomarkers for kidney diseases, including DN. In
addition, recent data suggest that miRNAs may have thera-
peutic applications. Here, we review the utility of miRNAs as
biomarkers for the early detection and progression of DN,

assess emerging data on miRNAs implicated in DN pathology
and discuss how the data from both fields may contribute to
the development of novel therapeutic agents.
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Introduction

Diabetic nephropathy (DN) is a complication of type 1
(T1DM) and type 2 diabetes mellitus (T2DM), the incidence
of which is increasing, with an estimated 9 % of the adult
population affected globally [1]. DN develops in approximate-
ly 40 % of patients with T1DM. DN is also common in those
with T2DM, who are also at risk of renal dysfunction from
other pathologies including ischaemic nephropathy. DN is the
leading cause of renal failure requiring renal replacement ther-
apy worldwide [2], but effective methods to identify and halt
progression of pathophysiological changes of DN remain
elusive.

Numerous risk factors for the development of DN have
been postulated, including ethnicity and inherited genetic dif-
ferences [3, 4]. Downstream contributors include
hyperglycaemia and insulin resistance, and aberrant
haemodynamics leading to intraglomerular hypertension and
hyperfiltration.

Hyperglycaemia is associated with the generation of ad-
vanced glycation end products, renin-angiotensin system ac-
tivation, increased cytokine production (most notably pro-
fibrotic transforming growth factor (TGF)-β), reactive oxygen
species and protein kinase C activity [5, 6]. Insulin resistance
is associated with loss of endothelial and vascular modulation
via nitric oxide and NF-κB beta pathways, with defects in
podocyte-specific insulin signalling recently implicated in
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early DN [7]. The histological consequences of such insults
i n c l u d e m e s a n g i a l h y p e r e x p a n s i o n , n o d u l a r
glomerulosclerosis and tubulointerstitial fibrosis [8], the de-
gree of which correlates to loss of glomerular filtration rate
and, ultimately, renal failure [9].

MicroRNAs

MicroRNAs (MiRNAs) are ubiquitous endogenous, non-
coding, single-stranded (ss)RNA transcripts, most fre-
quently of 19–25 nucleotides in length, that act as post-
transcriptional regulators of gene expression by blocking
protein translation and/or inducing messenger RNA
(mRNA) degradation. It is currently estimated that
miRNAs regulate the expression of at least 60 % of all
protein coding genes, and alterations in miRNA expres-
sion profiles have been observed in numerous pathologi-
cal processes. Consequently, there is much current interest
in miRNAs both as novel biomarkers and as potential
targets for therapeutic intervention.

The first miRNA, lin-4, was identified in 1993 in the nem-
atode Caenorhabditis elegans [10], the significance of this
finding becoming clearer when a second miRNA, let-7, was
also detected [11], and lin-4 and let-7 were found to be highly
conserved in eukaryotes, suggesting an important functional
role [12, 13]. Over 1000 human miRNAs have now been
identified through bioinformatic and molecular cloning ap-
proaches, although functional validation has not yet been
established in every case.

Biogenesis and Functional Mechanism
of MicroRNA-Mediated Translational Repression

As shown in Fig. 1, canonical miRNA biogenesis begins
with nuclear transcription, most frequently by RNA poly-
merase II, into transcripts known as primary miRNAs
(pri-miRNAs). Pri-miRNAs vary in length, in some cases
spanning kilobases, and have a distinctive stem-loop
structure. They are cleaved within the nucleus into precur-
sor miRNAs (pre-miRNAs) by a multiprotein complex
that includes the ribonuclease III (RNase III) enzyme
drosha and the cofactor Di George syndrome critical re-
gion gene 8 (DGCR8). DGCR8 binds to pri-miRNAs at a
specific distance from the ssRNA-double-stranded
(dsRNA) junction at the base of the stem-loop [14] and
directs drosha to cleave the pri-miRNA 11 nucleotides
from the ssRNA-dsRNA junction to form a 70–100 bp
pre-miRNA [15]. Pre-miRNAs have a distinctive hairpin
structure that is recognised by exportin-5, a dsRNA-
binding protein that facilitates egression of pre-miRNAs
from nucleus to cytoplasm. Subsequent cytoplasmic mod-
ification involves pre-miRNA cleavage to form mature ds

miRNAs in a miRNA/miRNA* duplex consisting of two
ss miRNAs referred to as the guide strand (miRNA) and
the passenger strand (miRNA*). Pre-miRNA cleavage is
facilitated by dicer, another RNase III enzyme within a
large multiprotein complex that, in this case, contains
the TAR RNA-binding protein (TRBP), which binds
dsRNA and guides dicer to the correct cleavage site.

The function of miRNAs in silencing gene expression
follows incorporation into the RNA-induced silencing
complex (RISC), which includes the argonaute (AGO)
proteins, after which the miRNA* is typically degraded.
The RISC-bound miRNA then associates with the 3′-un-
translated region (3′-UTR) of its target mRNA via classi-
cal Watson-Crick base pairing. Perfect sequence comple-
mentarity between miRNA and target mRNA 3′-UTR re-
sults in mRNA cleavage by AGO2, and imperfect com-
plementarity results in translational repression and/or deg-
radation of the mRNA target [16].

Utility of MicroRNAs as Diabetic Nephropathy
Biomarkers

Existing Diabetic Nephropathy Biomarkers

Current DN diagnosis and monitoring of disease progression
rely heavily on the detection of urinary microalbuminuria.
However, not all patients with microalbuminuria progress to
overt proteinuria and nephropathy, complicating prognosis. In
addition, tissue damage and induction of inflammation have
already occurred by the time that microalbuminuria is detect-
able. Furthermore, microalbuminuria is not specific to DN but
is merely a hallmark of glomerular, and more specifically
podocyte, dysfunction. Biopsy is the present diagnostic and
prognostic test for intrinsic renal disease, but this highly inva-
sive and expensive procedure has a 3 % risk of major
complications.

There is therefore powerful incentive for research teams
and industrial collaborators to develop improved prognos-
tic and diagnostic tests for DN based on new biomarkers
that provide earlier warning, more specific information on
disease progression and, ideally, response to treatment.
Pragmatism must be exercised in any biomarker screening
programme, with downstream applicability borne in mind
throughout. Consideration of test cost, speed and feasibil-
ity of entry into existing treatment pathways is essential to
optimise use of resources. Nevertheless, the identification
of differences in miRNA expression that do not have utility
for biomarker analyses may still provide important infor-
mation on disease mechanism, DN pathology and the iden-
tification of potential targets for therapy. The latter areas
will be discussed later in this review.
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Disease-Specific MicroRNA Signatures and Tissue
Specificity

Expression profiling of miRNAs was first carried out in stud-
ies on carcinogenesis. Calin and colleagues showed that spe-
cific miRNAs were downregulated in circulating mononucle-
ar cells from chronic lymphocytic leukaemia patients and
identified a 13-miRNA expression profile associated with
prognostic factors and disease progression [17, 18]. Tissue-
specific miRNA expression has been reported, with perhaps
the best-known example being the discovery that miR-122
expression issue was restricted to the mouse liver [19].
Mapping of miRNA expression in human tissues has since
been reported, including profiles from cells in the different
nephron regions [20].

Circulating MicroRNAs

Detection of circulating miRNAs offers a quicker, potentially
automatable alternative method for DN diagnosis to biopsy
and tissue analysis. Extracellular miRNAs were first reported
in cell culture medium in an in vitro study that identified
exosomal miRNAs that were transferred between mast cells,
suggesting that cell-cell communication could be facilitated
by fluid-borne miRNAs [21].

Significant differences in biological fluid miRNA
expression profiles have now been observed in numerous dis-
ease states. In 2008, miRNAs were first detected in plasma
and serum [22, 23]. Mitchell and colleagues identified circu-
lating stable, readily detectable miRNAs in the blood of
healthy human donors and patients with metastatic prostate
cancer [22]. Detection of miR-141 in serum differentiated
these two groups, underlining the potential of miRNAs for
use as high-throughput diagnostic biomarkers [22].
Similarly, Lawrie and co-workers demonstrated the diagnostic
potential of a miRNA panel composed of miR-21, miR-155
and miR-210 in diffuse large B cell lymphoma patients [23].
As reviewed by Allegra and colleagues, blood miRNAs are
already established cancer biomarkers, and cardiovascular,
metabolic and immune disease miRNA biomarkers are under
development [24].

Stability is a key consideration when evaluating the use of
any potential biomarker. Characterisation of blood-borne
miRNAs by centrifugation and size exclusion chromatogra-
phy identified two populations of circulating miRNAs: extra-
cellular vesicle-associated (EVA-) and non-vesicle-associated
(NVA-) miRNAs [25•], and much work has since been devot-
ed to identifying the factors stabilising fluid-borne miRNAs,
as well as the functions of these transcripts.

In human plasma, association of extracellular miRNAs
with AGO prote ins resu l t s in the format ion of

Fig. 1 MicroRNA biogenesis and repression of gene expression
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ribonucleoprotein complexes with the RISC that stabilise
these transcripts (Fig. 1), and specific association of select-
ed miRNAs with AGO2 has been demonstrated in plasma
[26]. This association protects miRNAs from degradation
in RNase-rich biological fluids such as blood [25•, 26, 27].

The role of extracellular vesicles as miRNA trans-
porters that mediate signalling has been proposed [28].
Studies by Wang et al. correlated an increase in detect-
able NVA-miRNAs during serum-deprived cellular
stress, and suggested that their secretion might drive
cell regulatory mechanisms via miRNA-regulated cell-
cell signalling [29]. The role of high-density lipopro-
teins in transporting functional NVA-miRNAs has also
been posited [30].

Urinary MicroRNAs

The use of urinary miRNAs as disease biomarkers pro-
vides the additional advantages of non-invasive testing
for which samples can be collected remotely and mailed
to the test laboratory, as well as the possibility of a
rapid point-of-care test. Recent in-depth studies have
analysed the stability of urinary miRNAs [31–33].
Extremes of pH, prolonged storage at room temperature,
multiple freeze-thaw cycles and subjection to RNase ac-
tivity have all been used in these assessments, and we
have recently demonstrated that urinary miRNAs are
stabilised by association with AGO2 and exosomes
[33]. Robust techniques for detection of miRNAs in
urine and in urinary sediment have now been
established [31–33], but more rapid and higher-
throughput protocols are likely to be required for rou-
tine clinical testing.

Differential urinary miRNA expression profiles have been
reported in kidney disease. One study showed decreased de-
tection of miR-21 and miR-29, and increased miR-93 detec-
tion, in urine samples from IgA nephropathy patients com-
pared to controls [32]. Argyropoulos et al. identified a panel
of 27 differentially regulated urinary miRNAs that varied with
DN progression [34].

The definition of the relative contributions of EVA-
and NVA-miRNA populations to the total miRNA com-
plement of each body fluid, the miRNA composition of
these populations, and the functionality of miRNAs in
each population is presently the subject of much ongo-
ing research. It has been reported that serum and sali-
vary miRNAs reside primarily in exosomes [35].
However, studies on plasma [25•, 26] as well as seminal
fluid, dendritic cells, mast cells and ovarian cancer cells
[36] contend that the majority of extracellular miRNAs
are NVA. Furthermore, it has been suggested that the
numbers of EVA-miRNAs are insufficient to mediate
signalling [36]. Our recent work has provided definitive

evidence of association of EVA urinary miR-16 and
miR-192 with exosomes and NVA miR-16 and miR-
192 with AGO2 [33].

MicroRNAs in Fibrosis and Diabetic Nephropathy
Pathogenesis

MiR-192 and Fibrosis

As mentioned above, TGF-β is a key cytokine with funda-
mental importance in DN due to its roles in fibrosis and scar-
ring. TGF-β signalling is regulated by miR-21, which can in
turn regulate mature miR-21 expression [37], while our anal-
ysis of the TGF-β1 3′-UTR has shown evidence of post-
transcriptional regulation by miR-744 [38].

An early step in fibrogenesis in DN involves the repression
of E-cadherin by TGF-β1. Kato and colleagues observed that,
in the early stages of renal injury, mouse mesangial cells treat-
ed with TGF-β1 showed upregulated expression of miR-192
and collagen alpha-2(I) [39]. Conversely, studies from this
laboratory found decreased miR-192 expression in
advanced-stage human DN renal biopsy samples accompa-
nied by low estimated glomerular filtration rate and
tubulointerstitial fibrosis [40]. In cultured human proximal
tubular cells, we showed a similar TGF-β1-driven downreg-
ulation of miR-192 expression, while forced expression of this
transcript repressed ZEB1 and ZEB2 expression, thereby
derepressing E-cadherin and exerting an anti-fibrotic effect
[40]. Further studies in diabetic apoE mice by Wang et al.
identified a similar pattern of TGF-β1-mediated downregula-
tion of miR-192 leading to E-cadherin inhibition [41]. We
have since reviewed the pleiotropic roles of miR-192 in the
kidney, with both anti- and pro-fibrotic effects that are appar-
ently cell-type dependent [42].

MiR-21, miR-200 and miR-29 Families in Diabetic
Nephropathy

One of the most abundant miRNAs in human tissues, miR-21,
has been studied extensively and implicated in the pathogen-
esis of a number of malignancies. Similarities of these pathol-
ogies with fibrogenesis highlight miR-21 and its mRNA tar-
gets as possible candidates for DN progression, and renal
miR-21 knockdown suppressed TGF-β1 signalling in a
mouse model of T2DM [43•]. Increased miR-21 expression
has also been identified in renal transplant patients with fibrot-
ic kidney disease and in the urine of fibrotic patients with IgA
nephropathy [32].

Lin and co-workers have recently reported functional inter-
actions of miR-21 and TGF-β signalling by confirming that
SMAD7, an inhibitor of TGF-β signalling, is a direct target of
miR-21 and targets TGF-β by repressing SMAD7 expression,
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thus preventing rat renal tubular epithelial cell proliferation in
an in vitro DN model [44].

The miR-200 family of miR-200a, miR-200b, miR-
200c, miR-429 and miR-141 has been ascribed roles in
maintaining epithelial differentiation, suggesting anti-
fibrotic functions in DN [45]. Downregulated expression
of these transcripts by TGF-β has been shown in cancer
cell epithelial-to-mesenchymal transition (EMT) [46].
Conversely, upregulated miR-200b, miR-200c and miR-
192 expression was observed in TGF-β-treated mouse
mesangial cells [47].

Anti-fibrotic effects in DN have also been reported for
miR-29 family members miR-29a, miR-29b and miR-29c.
For example, diabetic mice expressing a miR-29a transgene
showed improved renal function and better podocyte viability
compared to wild-type diabetic mice [48]. Knockdown of
miR-29a promoted histone deacetylase activity that lead to
podocyte apoptosis, proteinuria and subsequent renal dys-
function [48].

Above, we have summarised studies on expression
changes in DN and other renal diseases for the most
widely studied miRNAs to date. The identification of
miRNAs from biomarker screening studies and from
disease model studies both have potential for use as
therapeutic targets.

MicroRNAs as Therapeutic Targets

The majority of therapeutic studies investigating miRNAs
have so far focussed on cancer, and miRNAs that regulate
oncogene expression are often known as oncomiRs.
Therapies targeting repression of single oncogenes using
small molecule inhibitors have had limited therapeutic re-
sponse due to the complexity of carcinogenesis, and this com-
plexity is likely to be mirrored in other multifactorial diseases
such as DN.

Targeting oncomiRs has the potential benefit of af-
fecting the expression of multiple mRNAs that are
oncomiR targets and therefore may target multiple path-
ways. For example, miR-34a has multiple target
mRNAs that include proto-oncogene c-Met, cell cycle
regulator cyclin-dependent kinase 4 and B cell lympho-
ma 2, an anti-apoptotic oncogenic protein [49]. A miR-
34 mimic has been used in mouse models of lung can-
cer resulting in amelioration of disease progression cor-
related with a repression of all three targets [50].
Clearly, the possibility of deleterious off-target effects
must also be considered.

Recent advances in the treatment of hepatitis C virus
(HCV) infection represent the best example to date of a
miRNA-based therapy. Chimpanzees treated with a miR-122

antagonist conferred long-lasting repression in HCV viraemia
[51].

The need for more successful early-stage treatment
options for DN patients remains. As discussed above,
many studies are now investigating the potential of
miRNAs as DN biomarkers. Identification of these
miRNAs and other candidates selected on the basis of
function and/or GWAS study outputs will allow investi-
gation of their utility as targets to intervene in disease
progression.

Several studies have manipulated miRNA expression in
in vivo diabetic models. For example, in streptozotocin-
treated diabetic mice, miR-192 was downregulated by a
locked nucleic acid-modified anti-miRNA in the renal cor-
tex to improve renal fibrosis symptoms [52, 53]. Similarly,
knockdown of miR-29c resulted in the prevention of DN
progression in db/db mice [54]. In a rat remnant kidney
model of renal fibrosis, low-dose treatment with anti-
cancer agent paclitaxel improved renal function, inhibited
Smad2/3 activation and downregulated miR-192 expres-
sion [55].

Unlike liver-specific expression of miR-122, there
are no renal-specific miRNAs, but ready uptake from
the circulation by renal proximal tubular epithelial cells
facilitates targeted delivery to the kidney. Ultrasound-
microbubble-mediated gene transfer has been used to de-
liver plasmids to mammalian kidneys [56]. Developed first
as ultrasound contrast agents, microbubbles have since
been described as ‘theranostic’ agents, with uses in diag-
nostics and now in therapeutics, depending on the ultra-
sound parameters used [57]. High-intensity ultrasound
causes microbubble oscillation, resulting in ‘inertial cavi-
tation’ and release of the therapeutic agent(s) attached to,
or contained within, the microbubbles [57]. Microbubble
technology has been used to knockdown miR-21 expres-
sion in db/db mice, ameliorating microalbuminuria, renal
fibrosis and inflammation [43•].

Conclusion

Emerging miRNA analyses continue to show promise for
these transcripts as both biomarkers and as therapies in renal
pathologies [58]. However, considerably more work will be
required to consolidate and translate these findings.
Biomarker studies of appropriate size and power will be re-
quired to augment the studies carried out to date, and animal
model studies on mechanism represent the first stage on the
long road to therapy. Nevertheless, the identification of
miRNAs as novel targets for the improvement of DN patient
outcomes provides hope for significant future clinical
developments.
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