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Abstract 
 

Medtronic Ablation Frontiers develops ablation catheters to treat atrial fibrillation.  The design of 

their catheters is unique in that it employs multiple electrodes to dramatically decrease surgery 

time and the quality of lesion during the ablation process whereas most competitors‟ catheters 

use a single tip electrode. 

 

The current design of Medtronic Ablation Frontier‟s catheter, TVAC, routes the signal wires, 

wiring necessary for delivery of energy to the electrodes and measurement of electrode 

temperature, through the central lumen of the shaft.  A competitive company, CathRx based in 

Australia, produces a similar catheter that incorporates the signal wires in a helical structure 

within the polymer wall surrounding the central lumen.   

 

The objective of the project is to incorporate the signal wires into the braid structure leaving the 

central lumen of the TVAC free for other features such as a liquid cooling system.  A secondary 

but crucial objective is the ability to expose the intersection of two wires within the polymer wall 

for attachment to the electrode and to be able to consistently identify each wire at the proximal 

end of the shaft for attachment to the connector. 

 

After the consideration of several concepts, a circular design that incorporates two braids, one of 

signal wires and another of stainless steel support wires, was determined as the most viable 

design.  The signal wire braid consists of eight bifilar wires, but only six of them are functional. 

 

A graphical user interface (GUI) has been developed to track the radial position of the signal 

wires along the length of the shaft based on the radial starting position of the wire.  It is able to 

take user inputs such as braid density and number of wires so that the interface can be adapted to 

other products or design changes. 

 

A number of test procedures are already in place by Ablation Frontiers to ensure that the product 

is fully functional, safe, and meets all design requirements.  Some of these tests include buckling, 

temperature, and fatigue.  However, a new procedure to verify the accuracy of the GUI was 

needed. 

 

Due to time and geometric constraints, certain aspects of the project were reduced to simplify the 

scope of the project.  Both the guide plate and the steering wires have been removed from the 

design of the required prototype catheters.  In addition, the new design complicates the 

manufacturing process for the T-VAC.  The cuts made in the catheter body to access the signal 

wires are no longer in a linear array.  Incorporating the signal wires into the body of the catheter 

in a braid structure inherently alters the access points for electrode attachment.  
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Chapter 1 – Introduction 

Sponsor Background 

Medtronic Ablation Frontiers has developed an RF ablation catheter, a surgical tool used to cure 

atrial fibrillation.  Due to the mechanical abilities and level of control in the current model, it is 

not limited strictly to use in one particular chamber of the heart.  The current model is unique in 

that it uses multiple RF electrodes in comparison to other catheters that only use one.  The use of 

multiple electrodes dramatically decreases the procedure time because clinicians do not have to 

ablate point to point.  The ability to ablate multiple locations at once creates a more consistent 

lesion compared to a single tip electrode catheter.  However the high number of electrodes 

requires an increased number of wires within the central lumen of the catheter which can be seen 

in Figure 1.   

 
Figure 1:(A) Current Catheter Model. (B) Design will remove the wiring from the center lumen and incorporate them into the 

braiding. 

Diagrams courtesy of Medtronic Project Presentation PowerPoint. 

Scope 
The scope of this project is to incorporate the signal wires as the braided structure to free up the 

center channel of the catheter and to develop a method of tracking the individual wires along the 

length of the shaft.  Medtronic Ablation Frontiers plans to utilize the newly emptied center 

channel by possibly running a saline solution or liquid nitrogen enclosed in a nitinol tube to cool 

the electrodes.  This will allow for the electrodes to be run at higher powers without excessive 

temperature for longer periods of time, it can also lead the way to the addition of more electrodes 

on the catheter shaft. 

Objectives 
 

The focus of this project is to develop an energy delivery structure incorporated into the braid 

structure of the TVAC shaft.  It will be necessary to redesign the braiding structure to achieve the 
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requirements for the functionality of the catheter and to leave room for the addition of new 

features for the ablation catheter.   

It requires that the materials used must be medical grade and compatible with E-beam radiation 

sterilization.  The catheter shaft must retain the two-directional steering capability and remain the 

same in diameter and length.  There will be signal wires capable of carrying the proper amount 

of power to perform RF ablation to each electrode  The catheter will be small enough and have a 

maximum bend radius smaller than the curves of the artery, 20 mm, to move through the 

cardiovascular system from the entry point to the atriums of the heart.  The tip of the shaft will 

be the steerable section with a full range of motion and it is necessary to be able to transmit a 

torque to the tip of the shaft to accomplish complete steering capability in all directions.  In 

addition, the tip must be able to buckle under a minimum compressive force to prevent 

puncturing or damaging the walls of the heart.  Upon manufacturing, it must be easy to 

determine the position of each thermocouple wire on the distal portion of the shaft.  The outer 

surface of the catheter shaft cannot exceed 41
o
 C to prevent thrombus formation within the 

sheath and must be measured within two degrees to help maintain the temperature.  All portions 

of the shaft must be able to withstand a tensile force greater than the force applied by the pull 

cables. 

 

The final deliverables for the project are a 3D model in SolidWorks, a listing of the shaft 

components, and manufacturing of a prototype.  Table 1 shows the formal engineering 

requirements for the project.  The diameter of the shaft is listed as high risk since a significantly 

higher amount of braid strands need to be included outside the center lumen, which may make it 

difficult to keep the diameter within the required range.  Increases in diameter facilitate the use 

of larger sheaths and are potentially detrimental effects on steering and mobility.  The 

maneuverability of the catheter is also a high risk area because we will need to focus on 

maintaining the pliable nature while still meeting our requirements for the braid structure. 

 

From the engineering requirements that are listed in Table 1 a Quality Function Deployment 

(QFD) chart was created for the T-VAC Catheter which can be seen in Appendix A.  The QFD is 

used to identify all customer requirements and engineering specifications.  The important 

features of the QFD are flexibility, ease of use, and short surgery time.  The flexibility of the 

catheter shaft is an integral part of the overall design because the catheter will have to flex and 

bend as it traverses through vascular vessels.  One of the main purposes of this project is to 

potentially extend the run time of the catheter.  The implementation of a cooling system would 

allow an increase in the electrodes duty cycle and reduce the surgery time. 
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Spec. # Parameter 

Description 

Requirement 

 

Tolerance Risk Compliance 

1 Diameter 7F (0.092”) Max H A, S 

2 Length 52” ±1.0” L S 

3 Steerable 

Length 

≈5” None 

Specified 

L S, I 

4 Steering 

Directions 

2 NA L S 

5 Tip Deflection  180
o
 Min M A, I 

 Bend Radius 10 mm    

6 Maneuverability 9.5F (0.125”) Min H A, S, I  

7 Wiring 12 Wires NA M S, I 

8 Power 45W tip 20W 

for electrode 

band 

Min L A, S 

9 Max Shaft 

Temperature 

41
o
C Max M A, T 

10 Tip Buckling 340 gf Min M A, T 

11 Shaft Tensile 

Force 

10 lb Min L A, T, S 

Table 1. Design Specification with Risk Factors. A=Analysis, T=Testing, I=Inspection, S=Similar to Previous Design 
 

As we developed the QFD chart it became apparent that the tip deflection, consisting of a 

minimum of 180° range of motion per direction, is a key area of the design of the shaft in that it 

highly correlates to a large portion of the engineering requirements.   The cooling system, wiring, 

and gage are also important areas that will determine a fair amount of the final design.  

Maneuverability is also an item that we discovered will have a major influence in the outcome of 

the final design.  One of the biggest challenges associated with any braid design will be the 

ability to determine the final position of the thermocouple wires in order to expose them to the 

corresponding electrode.  Incorporating the thermocouple wires into the braid structure causes 

individual thermocouple wires to change position around the cross section at different lengths 

along the shaft making it difficult to know which thermocouple wire corresponds to each 

electrode.  

Chapter 2 – Background 
 

Atrial fibrillation is a disease that affects over 2.2 million people in the United States making it 

one of the most common diseases in the country.  It is characterized by bouts of rapid heart 

beating where the atria can beat upwards of 250 beats per min.  This rapid rate prevents the atria 

from fully expanding and contracting which does not allow it to pump blood efficiently to the 

rest of the body.  It is caused by errant electrical pathways that disrupt the primary electrical 

impulses generated by the Atrio-Ventricular Node. 
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Radio Frequency (RF) ablation is a technique used to correct this defect.  When using a 

radiofrequency ablation catheter, a thin and flexible catheter is inserted through a blood vessel 

and directed to the heart muscle. Once in position the catheter delivers radiofrequency energy, 

this energy is used to burn the tissue so that it is no longer able to carry the errant signal.  A 

similar technique uses cryoablation to freeze the tissue to prevent the signal from being 

conducted along the wrong path instead of burning it. 

The success of the procedure is dependent on the continuity of the array of lesions burned onto 

the tissue.  The lesions must be continuous and transmural (spans from inside to outside surface 

of the muscle tissue) in order to isolate the signal causing the fibrillation.  The depth of the lesion 

is crucial to the subsurface continuity.    Multiple variables control the depth of the lesion 

including burn time and temperature of the electrodes.  Temperature is controlled by either 

regulating the voltage running through the electrodes or using a thermocouple to measure the 

temperature which is the method Medtronic Ablation Frontiers uses on its current model. 

Medtronic Ablation Frontiers produces an advanced radiofrequency ablation catheter which uses 

6 electrodes to deliver radiofrequency energy to the target sites in the atria.  The current design 

of this vascular catheter has all of the necessary thermocouple and signal wires for the electrodes 

running down the center of the catheter shaft, as well as a braided steel structure that helps 

support and stabilize the catheter shaft.  The braided strands are positioned outside of the center 

channel of the catheter where the thermocouple and signal wires run. 

Currently an Australian based company, CathRx, produces an ablation catheter which removes 

the signal wires from the center lumen.  Their design arranges the signal wires in a tight helical 

pattern around the center lumen leaving it free for additional features.  The signal wires are 

impregnated with a Pebax® matrix to form the outer coating of the catheter.  CathRx employs a 

unique manufacturing process in their electrode design.  The electrodes have a rough texture as a 

result of the electroless plating technique used to place the electrodes on the body of the catheter 

shaft. 

Control of the movement of an ablation catheter is crucial because of the severity of the 

consequences that can arise as a result of a false movement during the procedure.  Occurrences 

of catheter whipping have been found in some models of catheters resulting in puncturing the 

heart wall or inadvertently ablating the wrong site.  Whipping occurs when the tip of the catheter 

reacts to a torque applied by the operator by spinning rapidly and lashing the wall of the tissue.  

Whipping is eliminated by removing any eccentricities in the geometry of the shaft and by 

including a guide plate along the neutral axis of the catheter. 

Due to the complexity of the shaft and its many components, analysis requires the use of 

composite theories.  Flexibility and stress requirements are determined through this analysis and 

allow for the validation of the concept designs.  A combination of micromechanics and 

laminated plate theory are adapted to apply to the tubular shape of the catheter shaft. 

There are many intricacies that will have an impact on the future of this project.  A fair portion of 

these intricacies are related to the challenges of making a product that will enter the human body.  

Products that deal with the human body are subject to higher regulations and standards to make 

sure that the use of the product will be as safe as possible.  Vascular catheters are no exception to 

these rules and regulations.  Depending on where the catheter is to be used different certifications 
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are needed, i.e. in the European Union the product must receive the CE Mark, and in the United 

States the product must receive FDA approval.  The following are standards that the catheter 

design must abide by: 

 ISO 10555-1: 1995 Sterile, single-use intravascular catheters – Part 1: General 

requirements 

 ISO 10555-2: 1996 Sterile, single-use intravascular catheters – Part 2: Angiographic 

catheters 

 ISO 10993-1: 2003 Biological evaluation of medical devices – Part 1: Evaluation and 

testing 

 ISO 11137-2: 2006 Sterilization of health care products – Radiation – Part 2: Establishing 

the sterilization dose 

 ISO 11607-1: 2006 Packaging for terminally sterilized medical devices – Part 1: 

Requirements for materials, sterile barrier systems and packaging systems 

 ISO 11607-2: 2006 Packaging for terminally sterilized medical devices – Part 2: 

Validation requirements for forming, sealing, and assembly processes 

 ISO 15223-1; 2007 Medical Devices – Symbols to be used with medical device labels, 

labeling and information to be supplied – Part 1: General requirements 

 BS EN 552: 1994 Sterilization of medical devices – Validation and routine control of 

sterilization by irradiation 

 BS EN 556: 1995 Sterilization of medical devices – Requirements for terminally 

sterilized devices to be labeled „sterile‟ 

 BS EN 556-1: 2001 Sterilization of medical devices – Requirements for medical devices 

to be designated „Sterile‟ – Part 1: Requirements for terminally sterilized medical devices 

 BS EN 980: 2008 Symbols for use in the labeling of medical devices 

 BS EN 60601-2: 2006 Medical electrical equipment – Part 1: General requirements for 

basic safety and essential performance 

 BS EN 60601-2-2: 2009 Medical electrical equipment – Part 2-2: Particular requirements 

for the safety of high frequency surgical equipment 

 ASTM F1980-07 Standard Guide for Accelerated Aging of Sterile Barrier Systems for 

Medical Devices 

 ASTM D4169-04a Standard Practice for Performance Testing of Shipping Containers 

and Systems 

 ASTM D4332-01: 2006 Standard Practice for Conditioning Containers, Packages, or 

Packaging Components for Testing 

 

State of the Art 
 

The most difficult requirements to meet for the catheter shaft will be the flexibility and size 

requirements along with tracking the signal wires through the shaft.  The concepts developed are 

geared toward meeting these requirements first and foremost.  The concept designs were inspired 

by the electrical ribbons found in computers.  Variations in the amount wires in each ribbon 

allows for a variation in the stiffness of the overall structure. 
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The TVAC catheter shaft is really a composite of two different shafts that meet at a tapered 

section.  The main shaft of the catheter is a 9F (0.118 in) diameter shaft that contains a steel 

braid for support and stability along with the signal wires for the electrodes at the distal end of 

the catheter.  The other component of the catheter shaft is the distal end of the catheter which 

drops to 7F (0.09 in) in diameter and contains the six electrodes used for ablation.  The 

electrodes are 9F outer diameter rings of platinum that need to be attached to the outside of the 

7F shaft, this means that the distal portion of the catheter must run inside of the electrodes.  The 

inside diameter of the electrodes is 7F which is why the distal shaft drops to that diameter.   

The two sections of the catheter are joined by placing the 7F distal shaft inside of the 9F shaft.  

The joint between the two shafts is reinforced with a sleeve of Pebax® during the thermal 

bonding process.  The 7F shaft only exists from the joint to the distal end of the catheter; it is not 

in the proximal end of the catheter.  A plastic lumen runs in the proximal shaft to help keep the 

interior shape of the catheter, the lumen is the same size and shape as the 7F shaft.   

The interior portion of the shaft, both the 9F and 7F, houses the pairs of signal wires for the 

electrodes. The pairs of signal wires are combined into bifilar wire strands that are 36 gage in 

diameter.  These wire pairs are made up of one copper wire and one constantan wire.  Exterior to 

the plastic lumen but interior to the braid of the 9F shaft runs two pull wires that create the 

bidirectional steering capabilities of the catheter.  When the shaft steps down to the 7F diameter 

the pull wires are woven into the braiding structure. The proximal ends of the pull wires are 

anchored at the handle of the catheter on a cam that allows for one pull wire to be put in tension.  

The distal ends of the pull wires are anchored to an anchoring ring at the very distal tip of the 

shaft, directly underneath the tip electrode.  

In the distal portion of the shaft there is also a guide plate that helps the catheter retain its shape 

when it is bent by the pull wires.  This guide plate also helps to keep the electrodes in plane 

when the catheter is being dragged during ablation. 

The flexibility of the braid will be affected by the Pebax® casing that creates the exterior of the 

shaft.  The durometer, a hardness measurement, of the Pebax® that is used to create the exterior 

sheath of the catheter is varied for the different portions of the catheter shaft.  The 9F shaft of the 

catheter uses a Pebax® with a high durometer, around 70, to give the shaft more rigidity and 

strength.  The proximal portion of the shaft must remain rigid to allow the catheter to traverse 

through the veins to the heart.  The distal portion of the catheter shaft, the steerable section, uses 

a lower durometer Pebax® to allow for more flexibility since this is the portion of the shaft that 

needs to be manipulated.   
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Figure 2. Cross sectional view of current TVAC catheter design used by Medtronic. 

Chapter 3 – Design Development 

Conceptual Designs 
 

The first concept is a circular array of the signal wires.  The signal wires will be equally spaced 

around the circumference of the 7F shaft and run linearly down the length of the shaft.  This 

concept will be used as a baseline for the other concepts.  The analysis performed on this concept 

can be benchmarked to the theoretical results of the other concepts developed down the line.  

The upside to this linear concept is that the design can be easily manufactured and the signal 

pairs can be easily picked off.   The major downside of this design is that transmitting torque 

down the shaft will be difficult.  This difficulty in the torque transmission will increase the 

likelihood of whipping.  This concept will have issues with support and stability so the 

durometer of the Pebax® may have to be increased to accommodate for this effect.  The effective 

EI, where E is the effective Young‟s Modulus and I is the moment of inertia, has been found to 

be approximately 4.36 pound force per square foot. The effective EI is the effective stiffness of 

the catheter shaft.   The effective stiffness has been found using a combination of 

micromechanics and laminated plate theory.  Through buckling analysis using Euler‟s buckling 

method it has been found that the critical effective stiffness that our design needs to have to 

comply with the critical load of 340 grams force is .027 pounds per square foot.  The fact that the 

effective stiffness of this conceptual design is more than 150 times larger than our critical 

effective stiffness rules this out as a plausible avenue of design. 
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Figure 3. Linear array of 12 signal wires. This concept is to be used as a baseline for comapring other conceptual designs to. 

Another concept that has been developed is a braid that consists of the 12 signal wires.  This 

concept is very similar to the concept that is mentioned above only this design will incorporate 

the braiding where as the previous was a linear array.  This concept will braid the 12 wires 

together to provide the most structural support for the shaft.  One way to overcome these effects 

will be to alter the durometer of the Pebax® to create the optimal conditions.  This concept has the 

potential to be the most difficult to manufacture due to the amount of strands that need to be 

braided.  Tracking the signal wire pairs will be extremely difficult for this design.  It is essential 

to be able to quickly pick out the signal pairs for assembly purposes. 

 

Figure 4.  Conceptual design of 12 signal wires braided together.  Has potential problems in flexibility and manufactureability. 

The third concept is to have six strands consisting of 2 sets of signal wires.  The six strands will 

create larger gaps between each braid strand which will lower the amount of flexibility 

throughout the shaft.  Again the durometer of the Pebax® casing can be altered accordingly to get 

the optimum relationship between strength and flexibility.  This concept will increase the ease of 

picking off signal pairs.  The biggest shortcoming of this design is its difficulty in 

manufacturing.  The high amount of strands makes the braid process more difficult than a 

traditional two or three strand braid configuration. 
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Figure 5.  Conceptual design of 6 sets of signal wire pairs formed into braided structure. 

The primary design for the catheter shaft has three ribbons consisting of four signal wires.  This 

design is optimal because it allows for the stiffness of the shaft to stay low while maintaining a 

simple braid manufacturing technique.  The braid design contains more spacing between the 

different arcs of each set of wires which allows for more flexibility.  The thickness of the ribbons 

will help in the structural support of the shaft and will reduce the need to alter the durometer of 

the Pebax®.  Altering the durometer of the Pebax® is the simplest way to optimize the flexibility 

and strength of the shaft.   

This design also allows for the pull wires to be easily woven into the braid so that they will not 

pull out or distend the catheter body when force is applied. The torque transmission through this 

conceptual design will be much easier than through the non-braided concept.  The structure of 

this braid will allow the transmission of the torque to occur close to a 1 to 1 ratio.  One difficulty 

that may arise in any design is keeping track of the specific signal wires to correspond to the 

individual electrodes; however this design will be easier than the 12 wire braid. The helix angle 

for this concept can be optimized during our analysis to create the best possible braid structure. 

 

Figure 6.  Three strand braid concept.  Contains three strands that are made up of ribbons of signal wires.  Each ribbon contains 
4 sets of signal wires.  This design potentially has the best flexibility to strength ratio of the concepts listed. 
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The last concept is dramatically different from the rest of the concepts.  The cross section of the 

catheter is elliptical and only the signal wires make up the braid.  The pull wires are aligned on 

the minor axis of the ellipse making it easier to deflect in the steering directions 

If temperature change to the surface of the catheter is determined as a major issue, this design 

buries the signal wires, the heat producing elements, deeper in the insulation to minimize the any 

heat loss to the surroundings. 

 

Accessibility of individual wires is an issue in this design.  Aligning the signal wires along the 

major axis makes it difficult to access the wires close to the center of the shaft.  Accessing the 

individual strands of the signal wires will again provide a challenge in this design since the 

change position in the cross section along the length of the shaft. 

 

Figure 7 :  Elliptical Concept.  The signal wires make up the braid structure and the pull wires are aligned along the minor axis of 
the ellipse.   

 

Concept Selection 
 

The selection of a concept is based upon the concepts ability to meet the performance 

requirements set by Medtronic Ablation Frontiers.  Composite models were developed in 

MatLab to analyze the concepts pertaining to their flexibility and ability to transmit torque, as 

detailed above in the QFD table.  The MatLab program was originally developed by Dr. Mello 

and is has been adapted to the catheter structure.  Concepts that meet the minimum requirements 

in these areas will be considered. 

 

Because a large portion of the assembly of the current TVAC catheter is done manually, ease of 

assembly has become a major criterion for selecting a concept.  After visiting the facility and 

observing the assembly process in the clean room, judgment of the ease of assembly using the 

current assembly process and techniques can be made for each concept.  Although some process 
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may need to be changed to accommodate the requirements set for the project, stages of the 

assembly need to be considered such as accessing the energy wires and determining the location 

of each wire and either end of the shaft. 

 

Preliminary Analysis 
 

The only preliminary analysis that was relevant for the concepts is the shaft geometry.  Because 

of the severe size constraints, it is important to make sure that the braid design fits within the 

required limits.  The desired center lumen diameter is 0.05 in and the maximum out diameter is 

7F (0.09 in).  After determining the minimum circumference that can be made by the braid 

design based on the size of the 36 gage wire major axis, all concepts fit within the space 

limitations.  Some concepts used more of the allotted space than others, but all of them satisfied 

the size requirement. 

 

Other forms of analysis are in the process of being developed to further test the validity of the 

concepts.  A MatLab model of the composite structure is being tested which will output the 

effective modulus of elasticity (Exeff), effective flexural modulus (Geff), and effective stiffness 

(EIeff).  Preliminary analysis has also been done on the buckling requirement for this design 

project using Euler‟s buckling model.  For this analysis the critical load has been given in the 

form of a design requirement in that the catheter shaft must buckle before reaching 340 grams 

force.  Using this critical load it is possible to calculate a critical stiffness, EIcrit, of 0.027 pounds 

per square foot.  This means that as long as the effective stiffness calculated by the MatLab 

program discussed above is equal to or less than EIcrit then the catheter shaft will buckle in an 

acceptable manner. 

Chapter 4 – Final Design 
 

The final design is based on the elliptical concept, however the overall shape of the catheter shaft 

will be circular due to size constraints.  After preliminary analysis and sketches were completed 

it was found that if an elliptical cross section were to be used the minor diameter would be so 

similar to the major diameter that there would be no significant impact.  This discovery lead to 

the implementation of a circular cross section which will allow for more spacing options and 

larger tolerances/clearances on the placement of wires within the shaft.  The 

tolerances/clearances that are of importance are the distance from the outer wires to the outer 

wall of the catheter shaft.  An eight strand stainless steel braid has been included to provide 

restitution to the catheter that copper wiring cannot provide on its own.  The six signal wires are 

arranged in the braid pattern around the center lumen, however two more signal wires had to be 

added due to manufacturing limitations.  A Pebax
®
 matrix will be placed and impregnated 

around the braid to provide more structural support and biocompatibility.  A diagram of the basic 

design geometry can be seen in Figure 8 below. 
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Figure 8: Final design with the inner stainless steel braid surrounded by the signal wire braid.  The braids are represented by 

two layers of concentric helical structures each due to limitations in computing the model 

A major objective of the project is to develop a method of tracking the position of the individual 

signal wires along the length of the shaft.  A Graphical User Interface (GUI) has been developed 

in MatLab which determines the final radial position of the individual strands based on the 

starting position of the strand and the distance along the shaft the user is interested in.  The 

algorithm for the GUI is based on a helical pattern of the strands that incorporates the variation 

in diameter during the over-under pattern that occurs in a braid.  The GUI was created using a 

GUI creator in MatLab that will allow for easy implementation of the algorithms that have been 

created for the other design portions.  The ultimate goal of the GUI is to have the user input a 

desired wire they are wishing to connect an electrode to and the length down the catheter shaft 

where the electrode needs to be positioned.  From this data the GUI determines and presents the 

end position of the wire strand in question  

 

Detailed Design 
 

A labeled cross section of the design geometry can be seen in Figure 9.  The signal wires are 

bifilar 36 gage (component specification in Appendix C) consisting of copper and constantan.  

The signal wires must be large to hold the current that runs through them.  The braid has eight 

strands consisting of the 36 gage signal wires with a density of 30 ppi.  The average diameter of 

the braid is 0.068 in (detailed drawings can be seen in Appendix B).  The outer coating of the 

shaft will be made of Pebax
®
 3533 with a durometer that will be softer than the current TVAC 

design.  The logic behind keeping the durometer of the Pebax
® 

is that the majority of the analysis 

performed for this project is on the braid structure.  An assumption has been made that the matrix 

material will not contribute a large enough amount to affect the effective stiffness of the braid, 

which analysis listed below has confirmed.  Because of limitations in manufacturing, the braids 

are forced to be stiffer than the original design, so a lower durometer will be needed to keep the 
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overall stiffness low.  The durometer of the 7F section will be less than that of the main body of 

the shaft (9F) to allow the required amount of tip deflection.  The center lumen of the catheter 

shaft has be downsized from the current TVAC diameter of .05 inches to .04 inches to allow for 

more internal space for the signal wire braid as well as the signal wires. 

 
Figure 9: Labeled two braid design.  The signal wires are braided around the stainless steel braid.  The stainless steel braid 

provides structural support and spring properties that signal wire braid does not have. 

The GUI (Figure 10) will be able to let the user input the starting position and the distance along 

the shaft toward the distal end where they would like to know the radial position of the wire.  

Other parameters are the signal wire braid density, number of wires in the braid, catheter outer 

diameter of the selected distal location, and selected wire that user inputs to fully define the 

braid.  The ability to quickly change the catheter signal braid parameters lets the program 

determine the location of any braid structure for any catheter where Medtronic Ablation 

Frontiers chooses to adapt a similar design. 

Due to time and geometric constraints, the requirements of the project were reduced.  Medronic 

Ablation Frontiers has decided to remove the steering wires and guideplate from the prototype 

catheters that are being produced.  The steering wires and guideplate would further complicate 

the design process than there is time for. 
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Figure 10: GUI panel.  The line between the outer edge of the catheter perimeter and the center represents the position of the 
desired wire.  Location of cut gives the circumferential distance from the top position of the catheter, and a negative number 

designates a clockwise direction from that position.  

Analysis 
 

The composite and micromechanics analysis used to verify concepts is used to optimize the braid 

angle and materials.  To correctly utilize these forms of analysis the critical data must first be 

found.  One key for micromechanics is what is called the volume fraction.  The volume fraction 

is a ratio of either the fiber material or matrix material to the overall amount of material in the 

composite structure.  In this case the fiber material is the signal and signal wires where as the 

matrix material is the Pebax
®
 shell.   

 

The calculation for the volume fraction is the cross section area of the material in question, either 

the fiber or matrix, divided by the entire cross sectional area of the composite structure, in this 

case a tube.  Once the volume fractions have been found the effective Young‟s modulus, Eeff, can 

be found.  For the design that is being developed the composite structure has been broken into 

two different subsections or parts.  The first part is the helical braid composed of the signal 

wires, named helical layer, where the second portion is the signal and pull wires, named unilayer. 

 

 

Once the Eeff of both layers was determined they could then be input into a MatLab program that 

performs the composite analysis for the structure, based on Laminated Plate Theory.  This 

program outputs the Ex, G12, and EIeff.  The EIeff is the stiffness of the composite structure and 

will determine the flexibility and maneuverability of the catheter design.  Since many large 

assumptions had to be made in order to model the catheter design this way the goal is to create a 
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relative scale between the current TVAC design and the proposed design.  The current TVAC 

design is modeled in the same way as the proposed design with this MatLab program in order to 

give a baseline EIeff.  This will allow for the logical argument to be made that if the proposed 

design has a lower stiffness than the current TVAC design then the proposed design will buckle 

before the critical load of 340 grams force has been reached.  

 

Heat transfer analysis of the catheter is being done to ensure that the surface of the catheter does 

not exceed 41
o
C.  The Biot Number was calculated (details of the calculation can be seen in 

Appendix D) to be 0.693 which makes the lumped capacitance assumption invalid.  Because 

lumped capacitance cannot be assumed, an elemental model of the catheter determining the heat 

distribution across the Pebax
®
 coating will need to be developed to verify this specification.  

Medtronic Ablation Frontiers has a standard test method for gathering empirical data for this 

specification which involves measuring the shaft temperature during energy delivery.  

Unfortunately this is as far as we can take the heat transfer analysis due to the fact that it is not 

plausible to develop a realistic elemental model for the design, 

 

Safety Considerations 
 

The product specifications set by Medtronic Ablation Frontiers have been developed to either 

satisfy a performance standard or a safety standard necessary for the use of a vascular catheter. 

 

One important electrical specification for the design is specification 8.3.2 (Appendix C) which 

states that the catheter must be able to withstand a two kilovolt DC defibrillator pulse and 

demonstrate no breakdown of insulation and/or loss of functional or safety performance.  This 

specification has only been taken in consideration in material selection in regards to insulation 

breakdown voltage.  It will be important to make sure that the catheter is independently grounded 

from the patient during a defibrillator pulse to avoid an electrical current surge and heat buildup 

on the catheter while it is inside heart. 

 

Specification 9.2.5 (Appendix C) is crucial to the safety of the patient as well.  It ensures that the 

catheter will buckle under 340 grams force, the force it would take the catheter to puncture the 

heart, when gripped two inches from the distal end.  Analysis using the composite structure 

MatLab program (Appendix D) will use the buckling specification as the driving force to 

determine the braid angle which in turn will determine the braid density. 

Chapter 5 – Design Verification Plan 
 

Ablation Frontiers has a set of tests in place from the previous iteration of the TVAC to test the 

specifications for the catheter.  The most important test will be the verification of the GUI wire 

tracking program.  To test the GUI, a wire and distance down the shaft will be chosen and run 

through the program with the given prototype dimensions.  Using the output from the program 

the predicted wire will be exposed and a resistance will be measured using a multi-meter.  A 

measured resistance results in a passing test and an infinite resistance results in a failing test. 
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The buckling requirement will be tested on an Instron machine against a flat plate with a force 

transducer.  The tip of the catheter will be pressed to the plate until it buckles (max compressive 

force) which is then compared to the 340 grams force specification.  An acceptable design will 

buckle before 340 grams force is reached. 

 

Testing the catheter‟s ability to withstand a 2 kV defibrillator pulse is crucial for the safety of the 

product.  A standard test for this has been developed and will be completed at an outside testing 

facility.  This test will determine if the catheter insulation breaks down or loses any functionality.  

The catheter may need to be inserted into a test heart to completely simulate the environment 

during the surgical procedure.   

 

The rise in surface temperature of the shaft will be tested as well.  Medtronic currently tests this 

specification by submerging the catheter in 37
o
C and running the catheter for 120 seconds.  The 

surface temperature of the body of the catheter cannot exceed 41
o
C during the test for an 

acceptable design. 

 

A steering compliance test will also be performed.  The catheter‟s steering section will be 

wrapped around a 20 mm test gage to mimic the curvature it might need to take in the human 

body.  No kinking in the steering section can be observed for a passing catheter. 

Chapter 6 – Project Management Plan 
 

Due to the limited number of individuals that will be participating in the project, a majority of 

the tasks that must be completed will be split between the two team members.  For example 

information gathering has been equally divided between both team individuals; this will help to 

ensure that both will have an equal understanding of the complexities involved with this project.  

However, a team member will be assigned one of the two major sections of the catheter design to 

focus on.  The two major sections of the project are the steerable length of the shaft and the 

tracking of the individual braid strands. 

This senior project will cover three 10 week quarters, with different milestones due at different 

points along the way.  We plan to use a Gantt chart to help organize tasks and track progress; the 

initial Gantt chart is attached in Appendix E.   The different responsibilities that will be 

encountered throughout this project will be grouped into corresponding areas and will be 

assigned to one of the two team members.   

The second quarter main deliverable is the Final Design Report due January 21
st
 which will be 

sent to both the project advisor and project sponsor.  At this point in the process there will be a 

design freeze to try to ensure successful completion of the project.  On February 4
th

 the draft 

design status report will be completed and a status meeting will be held with Medtronic Ablation 

Frontiers.  In the first weeks of March a prototype and test plan review will be held along with a 

project update report to Medtronic Ablation Frontiers on March 11
th

. 

During the final quarter of this project there are only two main milestones that must be met.  

Then in the first week of June the senior project design expo will be held with the Final Project 
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Report due the next day.  Although there are only two milestones during this quarter, these have 

the potential to be the hardest to fulfill. 

Chapter 7 – Manufacturing 
 

Because of the overall size and intricacy of the catheter, it is impossible for the catheter to be 

produced onsite at Cal Poly.  An external manufacturer, previously used by Medtronic Ablation 

Frontiers, has been contracted to produce the prototypes.  The manufacturer is CMD (Catheter & 

Medical Design) which is located in Roseville Minnesota. 

After presenting the proposed design to CMD, some manufacturing limitations became apparent.  

Preliminary analysis determined that for a six strand signal wire braid, a four strand stainless 

steel braid was needed.  Braid machines that CMD has are limited to eight or sixteen carrier.  

Because of the braid machine limitations, the design had to use an eight strand bifilar signal wire 

braid and an eight strand stainless steel braid.  To compensate for the dummy wires that needed 

to be included, the braid diameters were reduced to be adjacent to the center lumen with no 

separating Pebax
®
.  Due to time limitations and the additional complexity it would add to the 

design the steering wires were decided to be omitted from the prototype design by Medtronic 

Ablation Frontiers.  

Due to the relatively large size of the signal wire, CMD could not braid the wires at the 

designated braid density of 60 ppi.  The braid density had to be reduced to 30 ppi.  After 

investigating the effect of the change in braid density on the stiffness of the shaft, it was 

determined that the change would have an insignificant effect to the stiffness. 

The initial catheter design only had the signal wires braided through the steering section (7F 

section) to minimize the amount of wire used to produce the catheter and to reduce any error 

propagation arising from any inaccuracies in the tracking program.  CMD recommended 

braiding the entire length of the catheter for ease of manufacturing.  CMD also could not 

guarantee that the signal wires would lay straight along the rest of the length of the shaft, which 

would produce inaccuracies in the wire tracking program. 

Once a final design was agreed upon, a purchase order (Appendix C) for a lot of 25 prototypes 

was put in motion through Medtronic Ablation Frontiers.  Two variations in the design were 

ordered; one variation has a center lumen diameter of 0.04 inches and the other has a center 

lumen diameter of 0.05 inches.  The prototypes are shipped to Medtronic Ablation Frontiers with 

no handle or electrodes attached. 

Chapter 8 – Testing 
 

The most critical test performed was the test for the accuracy of the GUI wire tracker.  Seven 

different catheters were tested with different distances and wires on each catheter.  Six catheters 

with a 0.04 inch diameter center lumen were tested and time only permitted for one catheter with 

a 0.05 inch diameter center lumen to be tested.  A resistance was measured for each test 

performed, resulting in a passing test for each catheter.  Table 2 shows a summary of the results 
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for both the GUI test and the steering compliance test.  The resistance of the 0.05 in diameter 

center lumen catheter was larger than the resistances from the other catheters, due to the larger 

amount of wire needed to travel around the larger center lumen. 

Table 2:Summary of GUI and steering compliance test.  All tested catheters passed both tests. 

Catheter 
Number 

Center 
Lumen 
Size [in] 

Linear 
Distance [in] 

Wire 
Number 

Resistance 
[Ω] 

Steering 
Compliance  

Run 

1 0.04 58.6875 1 48.5 Yes 1 

1 0.04 58.6875 2 61.5 Yes 2 

2 0.04 60.5 1 52.2 Yes 3 

3 0.04 61.0625 1 34 Yes 4 

4 0.04 58.9375 1 32 Yes 5 

5 0.04 57.3125 1 79.2 Yes 6 

6 0.04 59 2 63 Yes 7 

7 0.05 58.6875 1 97 Yes 8 

 

 

Each of these catheters was tested for steering compliance as well.  All catheters were observed 

to wrap around the test gage without kinking.  Figure 11 shows a passing catheter around the test 

gage. 
 

In order to perform the buckling, defibrillator, and surface temperature test, a fully built and 

functional catheter must be available.  Because the process for connecting an electrode to the 

bifilar wires is unknown, these tests were not performed.  

 

Figure 11: Catheter during steering compliance test.  There are no sections of the catheter that have kinks as a result of 
wrapping around the test gage. 



 

20 | P a g e  
 

One area of concern for the ease of manufacturing is that the cuts made in the catheter body to 

access the signal wires are no longer along the top of the catheter.  On the current T-VAC 

catheter the cuts to access the wires are in made in an orderly fashion along the top of the 

catheter due to all of the wires being in roughly the same location in the center lumen.  The 

prototype catheters that were tested have the signal wires in a helical braid through the body of 

the catheter and therefore the wires are not guaranteed to be on the top of the catheter at the point 

of interest.  If a specific wire and distal location down the shaft are defined, there is the 

possibility that the wire will be located in another plane on the surface of the catheter. 

Chapter 9 – Conclusions and Recommendations 
 

The wire tracking GUI accurately predicted the location of the signal wires on the distal end of 

the catheter during testing.  The success of the GUI shows that it is possible to incorporate the 

signal wires in a braid outside of the center lumen and find the proper signal wire when attaching 

electrodes.  The process to locate and expose the proper signal is time consuming, and the 

process can be improved. 

 

The wire tracking GUI assumes that the topmost wire is braided in a counterclockwise direction 

and identifying this wire as counterclockwise is crucial to using the GUI.  It was difficult to 

initially identify the direction in which the wires were braided on the proximal end of the 

catheter.  To avoid errors in the identification of the topmost wire, it is advantageous for the 

manufacturer to provide a marker on each catheter that would identify a counterclockwise signal 

wire for the technicians. 

 

The mechanical functionality of the catheter was not fully tested, but all tested catheters passed 

the steering compliance test.  This suggests that the tested catheter‟s steering sections are flexible 

enough to navigate the path through the human body to ablate the targeted site in the heart.  The 

remaining tests still need to be completed, in order to carry out the remaining tests fully 

functioning catheters need to be assembled.  The remaining structural, electrical, and thermal 

tests were not initially done because the process and materials required to electrically connect the 

electrodes to the signal wires are still unknown.  The signal wires cannot be pulled out and 

soldered to the electrode like the current T-VAC because of the helical braid pattern they are in. 

 

A process similar to the process CathRx uses could be adopted for this design.  CathRx laser cuts 

a precision hole to expose the desired wire and injects conductive silver epoxy in the hole to 

establish the connection between the signal wire and the electrode.  This process is applicable for 

the designed catheter and can be adopted with relative ease.  Further development needs to be 

done on this topic due to the wide range of potential solutions involved.   

 

Consistency in manufacturing can potentially develop into a complication in the accuracy of the 

GUI.  During testing, it was observed that the braid density of the signal wire changed for a brief 

length at the proximal end of the catheter (Figure 12).  The algorithm used to predict the location 

of the signal wires depends on a constant braid density and inconsistencies will cause the GUI to 

output the wrong radial cut location.  Though the change in braid density can raise a serious 
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issue, it was observed that only a minimal amount of prototype catheters exhibited this behavior.  

Unfortunately the technicians cannot adjust the catheters that display this behavior on site, the 

catheters have a tail of extruded wires that connect in the handle of the device.  The technicians 

cannot simply trim off the affected portion of the catheter and continue through the 

manufacturing process, the affected catheters must be discarded.   

 

 
Figure 12: Change in braid density at proximal end of catheter.  The variation in the braid density will affect the accuracy of the 

wire tracking GUI. 

 

Because the location of the signal wire access point is no longer coplanar for all electrodes, a 

different braid density might be advantageous to use.  A different braid density where signal wire 

crossings occur on a multiple 3.5 mm, the distance between electrodes, might allow for the 

access points to the signal wire to be on the same plane.  Forcing the access points to the signal 

wire to occur on the least amount of planes possible can be better controlled if the distance 

between electrodes can be altered as well. This will require further research on both fronts to 

ensure that the ablation lesion remains consistent. The consistency of the lesion is crucial to 

maintaining the quality of care that the patient receives from this medical device.  The ease of 

access to the signal wires in a coplanar fashion is ideal, however with the electrode attachment 

process still being unknown there is a large area for adaption to optimize this area of the design. 

 

The final design of the catheter uses an eight strand signal wire braid to supply power to six 

electrodes.  The two extra wires are nonfunctioning and could be used to add more electrodes to 

the array.  This would allow the catheter to ablate a larger area during surgery and potentially 

reduce surgery time.  Surgery time can be reduced by incorporating a cooling system in the 

newly vacated center lumen.  Two possible cooling systems that could be incorporated into the 

catheter are a saline solution run by capillary action through the center lumen or a liquid nitrogen 

system run through a nitinol tube in the vacated center lumen.  Incorporating a cooling system 

not only allows for the surgery time to be reduced, but the catheter would also be able to be used 

in the low flow areas of the heart.  The blood in the low flow areas of the heart is more stagnant 

and thus is more susceptible to higher temperatures.  Since the blood is more stagnant it is 

exposed to the heat from the electrodes for a longer period of time, an internal cooling system 

could negate these effects.  The ability to vacate the center lumen for additional features like a 

cooling system or additional electrodes was the driving force for the proposal of this project.  
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Having accomplished this task opens up many more avenues for further research as well as 

development. 
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Appendix A – QFD 
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Appendix B – Technical Drawings 
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Appendix C- Prototype Purchase Order 
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Appendix D – Supplied Component Specification and Data Sheets 

Project Specifications 
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Energy Delivery Wire Specification 

COMPONENT SPECIFICATION 

Part No.:  

 

 

Title: Signal wire, 36ga, Bi-filer, 

copper/ constantan 

Rev   Page 42 of 

82 

 

Description:  Signal wire, 36ga, Bi-filar, Copper Alloy / Constantan, Double Pass Heavy Polyimide 

Coating.  Colored: Constantan: Green. Alloy11: Red. 

 

Specifications: CONST. TC T SPEC, Copper Alloy, Size:.005 H-ML, BIFILAR, DOUBLE PASS 

COATING (Material: Pyre-ML RC5019, ML-101)  Colored: Constantan: Green. Alloy11: Red. 

Construction: The bifilar signal wire shall be constructed of one insulated conductor of Copper 

Alloy and one insulated conductor of Constantan, bonded together by a single bonding coat. 

The conductor pair shall be parallel to each other with no twist greater than one (1) full twist per 

linear foot.   

Dimensional: The individual conductors shall be 36 AWG, 0.0049/0.0051” diameter.  The final 

maximum dimension of the minor axis shall be 0.0066” after application of the insulation.  The 

final maximum dimension of the major axis shall be 0.0128” after application of the insulation. 

Electrical:  The resistance of the conductors shall be:   

Copper Alloy: 1.18 ohms/foot ± 15% 
Constantan: 12.59 ohms/foot ± 15% 
 

Insulation: The insulator of the bifilar pair shall provide a minimum insulation voltage breakdown 

of 900 VDC. 

Voids: The insulation shall contain no voids that cause the insulation protection to fall below the 

minimum voltage insulation limit of 900 VDC.   

Holes: The insulation shall contain no holes.  A hole shall be defined as a breach of the 

insulation layer that exposes any conductor.   

Material Conductor, Copper Alloy consisting of 1.0±0.1% Nickel, 0.5% maximum Manganese, 
 Balance Copper (Alloy 11).  Presence of other trace elements shall not exceed 0.1%   
 per element, 0.5% collectively. 
  Conductor, Constantan TC Type T (Reference only: 45% Nickel, 55% Copper) 
             Insulation, Polyimide rated at 240 C as per NEMA MW-1000,  MW-16C 
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Matrix Material Data Sheet 

Arkema Group Pebax® 3533 Polyether Block Amide (PEBA)  

Categories:  Polymer; Thermoplastic; Elastomer, TPE; Polyether Block Amide (PEBA) 

Material 
Notes:  Information provided by Arkema Group 

Vendors:  No vendors are listed for this material. Please click here if you are a supplier and would 
like information on how to add your listing to this material. 

Physical Properties Metric English Comments 

Density  1.01 g/cc 0.0365 lb/in³ ASTM D792 

Water Absorption  1.20 % 1.20 % 24 hr in water at 20°C; ASTM 
D570 

Water Absorption at 
Saturation  

0.500 % 0.500 % 20°C and 65% RH; ASTM D570 

Melt Flow  8.00 g/10 min 8.00 g/10 min ASTM D1238 

Mechanical Properties Metric English Comments 

Hardness, Shore A  83 83 ASTM D2240 

Hardness, Shore D  33 33 ASTM D2240 

Tensile Strength at Break  30.0 MPa 4350 psi ASTM D638 

Elongation at Break  670 % 670 % ASTM D638 

Modulus of Elasticity  0.0146 GPa 2.12 ksi ASTM D638 

Flexural Modulus  0.0250 GPa 3.63 ksi ASTM D790 

Resilience  0.700 0.700 BS 903 par: A 8 

Flex Crack Resistance  2.00 2.00 [mm] 20°C / 100000 flexures; 
ASTM D813 

  2.50 2.50 [mm] -20°C / 50000 flexures; 
ASTM D813 

Izod Impact, Unnotched  NB NB ASTM D256-A 

http://www.matweb.com/Search/MaterialGroupSearch.aspx?GroupID=10
http://www.matweb.com/Search/MaterialGroupSearch.aspx?GroupID=12
http://www.matweb.com/Search/MaterialGroupSearch.aspx?GroupID=18
http://www.matweb.com/Search/MaterialGroupSearch.aspx?GroupID=51
http://www.matweb.com/services/advertising.aspx
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Tear Strength  45.0 kN/m 257 pli notched; ASTM D624 (C) 

  71.0 kN/m 405 pli unnotched; ASTM D624 (C) 

Taber Abrasion, mg/1000 
Cycles  

81.0 81.0 ASTM D1242 

Abrasion  96.0 96.0 mm3; DIN 53516 

Compression Set  54.0 % 54.0 % Load = 9.3 MPa (22 hr / 70°C); 
ASTM D395 Method A 

Izod Impact, Notched @ -
40°C  

NB NB ASTM D256-A 

Izod Impact, Unnotched @ -
40°C  

NB NB ASTM D256-A 

Izod Impact, Notched  NB NB ASTM D256-A 

  

Electrical Properties Metric English Comments 

Surface Resistance  2.00e+12 ohm 
@Temperature 20.0 
°C 

2.00e+12 ohm 
@Temperature 68.0 
°F 

65% RH; ASTM D257 

Thermal Properties Metric English Comments 

Heat of Fusion  11.0 J/g 4.73 BTU/lb ASTM D3417 

CTE, linear  210 µm/m-°C 
@Temperature -40.0 
- 140 °C 

117 µin/in-°F 
@Temperature -40.0 
- 284 °F 

ASTM D696 

Melting Point  143.5 °C 290.3 °F ASTM D3418 

Deflection Temperature at 
0.46 MPa (66 psi)  

46.0 °C 115 °F ASTM D648 

Vicat Softening Point  74.0 °C 165 °F under 1 daN; ASTM D1525 

Some of the values displayed above may have been converted from their original units and/or rounded in order to display the information in a consistant 
format. Users requiring more precise data for scientific or engineering calculations can click on the property value to see the original value as well as raw 
conversions to equivalent units. We advise that you only use the original value or one of its raw conversions in your calculations to minimize rounding 
error. We also ask that you refer to MatWeb's disclaimer and terms of use regarding this information. Click here to view all the property values for this 
datasheet as they were originally entered into MatWeb.  

 

 

http://www.matweb.com/search/datasheet.aspx?matguid=b59c0ba6e9a9409fa050e0782f423342&n=1
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Appendix E – Analysis 

PPI Calculation
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Micromechanics 
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Heat Transfer Analysis 
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APPENDIX F – Coding 

Braid Geometry 
function [circ_d] = Medtronic_Helix_Code(totalstrands, ppiG, ODG, location, 

wirenumber) 
clc 

  
%strands = 8;                %number of strands 
strands = totalstrands; 
OD      = 0.0844;           %Outer Diameter of Braid 
dm      = 0.0066;           %Minor Diameter of Strand 
d_avg   = OD - dm;          %Nominal Diameter of Braid 
res     = 4;                %# Points/Degree 
%ppi     = 60;               %input picks per inch 
ppi     = ppiG; 
picsperperiod = strands; 
periods = ppi/picsperperiod;%# of periods per inch 
h       = 1/periods;        %height of 1 period 
d_major = 0.0128; 
%user_s  = 1;                %electrical strand picked by user 
user_s  = wirenumber; 
                            %prompted to user later on 
%cut_length = 43;            %distance along shaft for desired exposure point 

in inches 
cut_length = location; 
                            %prompted to user later on 
%cath_OD    = 0.09;          %outer diameter of fully made catheter 
cath_OD    = ODG; 
                            %maybe prompt to user later on 

  
pts     = 361*res;          %total number of data points 
i = 1;                      %sets point index to 1 
s = 1;                      %strand index variable 
s_test = s;                 %strand index for test condition 
counter = 0; 
jumpflg = 0; 
count = 0; 

  

  
x = zeros(pts-(res-1),strands); 
y = zeros(pts-(res-1),strands); 
z = zeros(pts-(res-1),strands); 
angle = zeros(pts-(res-1),strands); 

  

  

  

  

  
%fills x,y,z coordinates of each strand 

  
for s = 1:strands 
   for theta = 0:1/res:360 
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        phi = 360/strands*(s-1);     %phase shift of each strand 
        if rem(s,2)                  %counterclockwise for odd # strands 

             
            angle(i,s) = phi+(i-1)/res; 

             
            x(i,s) = d_avg/2*cosd(theta+phi); 
            y(i,s) = d_avg/2*sind(theta+phi); 
            z(i,s) = (i-1)*h/pts;        %point evenly along shaft length... 
                                         %starting from 0 

  
        else                             %clockwise for even # strands 

             
            angle(i,s) = phi-(i-1)/res; 

             
            x(i,s) = d_avg/2*cosd(angle(i,s)); %cos and sin 90 deg out of 

phase 
            y(i,s) = d_avg/2*sind(angle(i,s)); 
            z(i,s) = (i-1)*h/pts; 

             
        end 
        i = i + 1; 
   end 
   i = 1; 
end 

  
x_jump = x; 
y_jump = y; 
z_jump = z; 

  
chord = sqrt((x(2,1)-x(1,1))^2+(y(2,1)-y(1,1))^2+(z(2,1)-z(1,1))^2) %find 

distance for a chord from pt to pt 
psi = atand(chord/(z(2,1)-z(1,1)))                                  

%calculate braid angle 

  
theta_data = xlsread('Medtronic','Modified','a1:a43');              %load in 

data for jump profile 
delta_r = dm*xlsread('Medtronic','Modified','b1:b43'); 
xtol = 1e-4; 

  
for s = 1:strands 
   if rem(s,2) 
       jumpflg = 0; 
   else 
       jumpflg = 1; 
   end 
   for i = 1:pts-(res-1) 
       for s_test = 1:strands           %compare one strand to all other 

strands 
           if s ~= s_test 
%               if x(i,s) == x(i,s_test) && y(i,s) == y(i,s_test) %finds 

intersection points that need to be altered 
              if ( norm( [x(i,s)-x(i,s_test) y(i,s)-y(i,s_test)]) <= xtol ) 
                 counter = counter + 1; 
                 d_theta = round((d_major/sind(psi)+dm)/(d_avg/2)*180/pi); 

%arc  = r*theta, 180/pi to put in degrees 
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                 [x_jump, y_jump, jumpflg] = data_change(x_jump, y_jump,... 
                     i, s, res, jumpflg, angle, theta_data,... 
                     delta_r, strands, d_theta);    %call data_change 

function 
              end 
          end 
       end 
   end 
   jumpflg = 0;         %set jumpflg to 0 before starting new strand 
end 

  

  
    figure(2) 
    %for s = 1:strands 
        s = 2; 
        hold on 
        plot3(x_jump(:,s),y_jump(:,s),z_jump(:,s)) 
        xlabel('X') 
        ylabel('Y') 
        zlabel('Z') 
    %end 

  
hold off 

  

  
counter; 
                        %calculate cut position 
num_periods = cut_length/h 
pos_len = (num_periods - floor(num_periods))*h; 
i = 1; 
while z(i,user_s) < pos_len 
    i = i + 1;          %finds point just above desired position along shaft 
end 
if i > 1 
    pt_i = (1/(z(i,user_s)-z(i-1,user_s)))*(pos_len-(z(i-1,user_s)))+i-1; 

  
    x_return = (x_jump(i,user_s)-x_jump(i-1,user_s))*(pt_i-(i-1))+x_jump(i-

1,user_s);  %returns interpolated x, y and angle coordinates 
    y_return = (y_jump(i,user_s)-y_jump(i-1,user_s))*(pt_i-(i-1))+y_jump(i-

1,user_s);  %of strand at distance z along shaft 
    angle_return = (angle(i,user_s)-angle(i-1,user_s))*(pt_i-(i-1))+angle(i-

1,user_s); 
else 
    x_return = x_jump(1,user_s); 
    y_return = y_jump(1,user_s); 
    angle_return = angle(1,user_s); 
end 

  
circ_d = (cath_OD/2)*angle_return*pi/180; %circumfrential distance from datum 
if circ_d > pi*cath_OD/2 
    circ_d = -(pi/2*cath_OD-(circ_d-pi/2*cath_OD)); 
end 
circ_d 
end 
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function [x_jump,y_jump,jumpflg] = data_change(x_jump, y_jump, i, s, res, 

jumpflg, angle, theta_data, delta_r , strands, d_theta) 

  
 OD    = 0.0844;                %outer diameter of braid 
 dm    = 0.0066;                %minor diameter of strands 
 d_avg = OD-dm; 
m = 1;                          %initialize jump curve index 
theta_int = angle(i,s);         %store theta position of intersection 

  
j = 1; 
d_beta = 180/(d_theta*res);     %change in angle through excel sheet   
beta = 0;                       %initialize jump curve angle 
phi  = 360/strands*(s-1);       %calculate phase shift 

  
if jumpflg == 0                 %test to see if strand has just had a jump 
   if rem(s,2)  
     if i > round(d_theta*res/2) && i < 361*res - round(d_theta*res/2)    

%for pts where full data range applies 

          
         i  = i - round(d_theta/2*res);  %move index to starting index at 

beginning of jump 

          
        for theta = (angle(i,s)):1/res:(angle(i,s)+d_theta)  

        
            angle_diff = abs(theta_int - theta); 

         
            while theta_data(j) < beta %finds proper spot in excel data to 

interpolate data 
                if j<43 
                 m = j+1;            
                 j = j+1;           %find proper point to interpolate in 

excel data 
                else 
                 m = j;              
                 beta = 180;         
                end 
            end 
            if m == 1 || m == 43  %avoids interpolation of end points of data 

               
              d_r_rel = delta_r(m)*sind(beta);      %project onto theta_int 

vector 
              d_r     = d_r_rel/cosd(angle_diff);   %project onto theta(i,s) 

               
            else 

               
              d_r_rel = (delta_r(m-1)+((delta_r(m)-delta_r(m-1))/...            

%interpolate data for designated beta angle 
                  (theta_data(m)-theta_data(m-1))*(beta-theta_data(m-1))))...   

%project onto theta_int vector 
                  *sind(beta); 
              d_r     = d_r_rel/abs(cosd(angle_diff)); 

  
            end 
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            d_x_jump = d_r*cosd(theta);         %convert to rectangular 

coordinates 
            d_y_jump = d_r*sind(theta); 

           
            x_jump(i,s) = x_jump(i,s) + d_x_jump;       %add jump distance 
            y_jump(i,s) = y_jump(i,s) + d_y_jump;       %to original data 

        
            beta = beta + d_beta; 
            i = i + 1; 
        end 

             
        beta = 0; 
        m = 1; 
        jumpflg = 1; 
        j = 1; 
    else if i >= 361*res - round(d_theta*res/2)   %for pts near end of period 

             
        i  = i - round(d_theta/2*res);          %move index to starting index 

at beginning of jump 
        pts = 361*res-(res-1) - i;                      %finds pts available 

for change 

         
        %for theta = (angle(i,s)):1/res:angle(i+pts,s) %step back to change 

to 43 excel points 
        for i = i:(i+pts) 
            angle_diff = abs(theta_int - theta); 

             
            while theta_data(j) < beta 
              m = j; 
              j = j+1; 
            end 
            if m == 1 || m == 43  %avoids interpolation of end points of data 
              d_r_rel = delta_r(m)*sind(beta); 
              d_r     = d_r_rel/cosd(angle_diff); 

           
            else 
              d_r_rel = (delta_r(m-1)+((delta_r(m)-delta_r(m-1))/... 
                  (theta_data(m)-theta_data(m-1))*(beta-theta_data(m-1))))... 
                  *sind(beta); 
              d_r     = d_r_rel/abs(cosd(angle_diff)); 
            end 

             
            d_x_jump = d_r*cosd(theta); 
            d_y_jump = d_r*sind(theta); 

           
            x_jump(i,s) = x_jump(i,s) + d_x_jump; 
            y_jump(i,s) = y_jump(i,s) + d_y_jump; 

             
            beta = beta + d_beta; 
            %i = i + 1; 
        end 
        beta = 0; 
        m = 1; 
        jumpflg = 1; 
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        j = 1; 

            
        else                %for pts near beginning of period     
        pts = i - 1;        %# of points away from intersection point 
        i = 1; 
        pt_shift = (round(d_theta*res/2)-pts); 
        beta = d_beta*pt_shift; 

        
        for theta = (angle(i,s)):1/res:(angle(i,s)+(d_theta-pt_shift/res)) 

%step back to change to 43 excel points 

        
            angle_diff = abs(theta_int - theta); 

             
            while theta_data(j) < beta 
              m = j; 
              j = j+1; 
            end 
            if m == 1 || m == 43  %avoids interpolation of end points of data 

                 
              d_r_rel = delta_r(m)*sind(beta); 
              d_r     = d_r_rel/cosd(angle_diff); 

               
            else 

                 
              d_r_rel = (delta_r(m-1)+((delta_r(m)-delta_r(m-1))/... 
                  (theta_data(m)-theta_data(m-1))*(beta-theta_data(m-1))))... 
                  *sind(beta); 
              d_r     = d_r_rel/abs(cosd(angle_diff)); 

               
            end 

             
            d_x_jump = d_r*cosd(theta); 
            d_y_jump = d_r*sind(theta); 

           
            x_jump(i,s) = x_jump(i,s) + d_x_jump; 
            y_jump(i,s) = y_jump(i,s) + d_y_jump;            
            beta = beta + d_beta; 
            i = i + 1; 
        end 
        end 

     
        beta = 0; 
        m = 1; 
        jumpflg = 1; 
        j = 1;         

        

        

     
    end 

     
   else                            %repeat of above code for counterclockwise 

strands 
      if i > round(d_theta*res/2) && i <= 361*res - round(d_theta*res/2)    

%for pts where full data range applies 
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          i  = i - round(d_theta/2*res);  %move index to starting index at 

beginning of jump 

           
        for theta = (angle(i,s)):-1/res:(angle(i,s)-d_theta) %counter 

clockwise strands count down since 
                                                                            

%drawn in opposite direction 
            angle_diff = abs(theta_int - theta); 

         
            while theta_data(j) < beta %finds proper spot in excel data to 

interpolate data 
                if j<43 
                 m = j+1; 
                 j = j+1; 
                else 
                 m = j; 
                 beta = 180; 
                end 
            end 
            if m == 1 || m == 43  %avoids interpolation of end points of data 

               
              d_r_rel = delta_r(m)*sind(beta); 
              d_r     = d_r_rel/cosd(angle_diff); 

               
            else 

               
              d_r_rel = (delta_r(m-1)+((delta_r(m)-delta_r(m-1))/... 
                  (theta_data(m)-theta_data(m-1))*(beta-theta_data(m-1))))... 
                  *sind(beta); 
              d_r     = d_r_rel/abs(cosd(angle_diff)); 

  
            end 

           
            d_x_jump = d_r*cosd(theta); 
            d_y_jump = d_r*sind(theta); 

           
            x_jump(i,s) = x_jump(i,s) + d_x_jump; 
            y_jump(i,s) = y_jump(i,s) + d_y_jump; 

        
            beta = beta + d_beta; 
            i = i + 1; 
            %j = 1; 
        end 

             
        beta = 0; 
        m = 1; 
        jumpflg = 1; 
        j = 1;     

         
    else if i > 361*res - round(d_theta*res/2)   %for pts near end of period 

             
        i  = i - round(d_theta/2*res);  %move index to starting index at 

beginning of jump 
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        pts = 361*res - (res-1)- i;                      %finds pts available 

for change 

         
%         for theta = (angle(i,s)):-1/res:(angle(i+pts,s)) %step back to 

change points within d_theta 
          for i = i:i+pts 

        
            angle_diff = abs(theta_int - angle(i,s)); %theta); 

             
            while theta_data(j) < beta 
              m = j; 
              j = j+1; 
            end 
            if m == 1 || m == 43  %avoids interpolation of end points of data 

                 
              d_r_rel = delta_r(m)*sind(beta); 
              d_r     = d_r_rel/cosd(angle_diff); 

           
            else 
                d_r_rel = (delta_r(m-1)+((delta_r(m)-delta_r(m-1))/... 
                  (theta_data(m)-theta_data(m-1))*(beta-theta_data(m-1))))... 
                  *sind(beta); 

               
                d_r     = d_r_rel/abs(cosd(angle_diff)); 
            end 

             
            d_x_jump = d_r*cosd(angle(i,s));    %go back to theta if doesn't 

work 
            d_y_jump = d_r*sind(angle(i,s)); 

           
            x_jump(i,s) = x_jump(i,s) + d_x_jump; 
            y_jump(i,s) = y_jump(i,s) + d_y_jump; 

             
            beta = beta + d_beta; 
%             i = i + 1; 
        end 
        beta = 0; 
        m = 1; 
        jumpflg = 1; 
        j = 1; 

            
        else                %for pts near beginning of period     
        pts = i - 1; 
        i = i - pts; 

        
        for theta = (angle(i,s)):-1/res:(angle(i+pts,s)) %step back to change 

to 43 excel points 

        
            angle_diff = abs(theta_int - theta); 

             
            while theta_data(j) < beta 
              m = j; 
              j = j+1; 
            end 
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            if m == 1 || m == 43  %avoids interpolation of end points of data 

                 
              d_r_rel = delta_r(m)*sind(beta); 
              d_r     = d_r_rel/cosd(angle_diff); 

               
            else 

               
               d_r_rel = (delta_r(m-1)+((delta_r(m)-delta_r(m-1))/... 
                (theta_data(m)-theta_data(m-1))*(beta-theta_data(m-1))))... 
                *sind(beta); 

               
               d_r     = d_r_rel/abs(cosd(angle_diff));                 
            end 

             
            d_x_jump = d_r*cosd(theta); 
            d_y_jump = d_r*sind(theta); 

           
            x_jump(i,s) = x_jump(i,s) + d_x_jump; 
            y_jump(i,s) = y_jump(i,s) + d_y_jump;             

             
            beta = beta + d_beta; 
            i = i + 1; 
        end 
        end 
        beta = 0; 
        m = 1; 
        jumpflg = 1; 
        j = 1;         
      end 

     
   end 
else 
   jumpflg = 0; 
end 
end 
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GUI Code 
function varargout = Medtronic_GUI1(varargin) 
% MEDTRONIC_GUI1 M-file for Medtronic_GUI1.fig 
%      MEDTRONIC_GUI1, by itself, creates a new MEDTRONIC_GUI1 or raises the 

existing 
%      singleton*. 
% 
%      H = MEDTRONIC_GUI1 returns the handle to a new MEDTRONIC_GUI1 or the 

handle to 
%      the existing singleton*. 
% 
%      MEDTRONIC_GUI1('CALLBACK',hObject,eventData,handles,...) calls the 

local 
%      function named CALLBACK in MEDTRONIC_GUI1.M with the given input 

arguments. 
% 
%      MEDTRONIC_GUI1('Property','Value',...) creates a new MEDTRONIC_GUI1 or 

raises the 
%      existing singleton*.  Starting from the left, property value pairs are 
%      applied to the GUI before Medtronic_GUI1_OpeningFcn gets called.  An 
%      unrecognized property name or invalid value makes property application 
%      stop.  All inputs are passed to Medtronic_GUI1_OpeningFcn via 

varargin. 
% 
%      *See GUI Options on GUIDE's Tools menu.  Choose "GUI allows only one 
%      instance to run (singleton)". 
% 
% See also: GUIDE, GUIDATA, GUIHANDLES 

  
% Edit the above text to modify the response to help Medtronic_GUI1 

  
% Last Modified by GUIDE v2.5 04-Mar-2010 19:45:36 

  
% Begin initialization code - DO NOT EDIT 
gui_Singleton = 1; 
gui_State = struct('gui_Name',       mfilename, ... 
                   'gui_Singleton',  gui_Singleton, ... 
                   'gui_OpeningFcn', @Medtronic_GUI1_OpeningFcn, ... 
                   'gui_OutputFcn',  @Medtronic_GUI1_OutputFcn, ... 
                   'gui_LayoutFcn',  [] , ... 
                   'gui_Callback',   []); 
if nargin && ischar(varargin{1}) 
    gui_State.gui_Callback = str2func(varargin{1}); 
end 

  
if nargout 
    [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:}); 
else 
    gui_mainfcn(gui_State, varargin{:}); 
end 
% End initialization code - DO NOT EDIT 

  

  
% --- Executes just before Medtronic_GUI1 is made visible. 
function Medtronic_GUI1_OpeningFcn(hObject, eventdata, handles, varargin) 
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% This function has no output args, see OutputFcn. 
% hObject    handle to figure 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
% varargin   command line arguments to Medtronic_GUI1 (see VARARGIN) 

  
% Choose default command line output for Medtronic_GUI1 
handles.output = hObject; 

  
% Update handles structure 
guidata(hObject, handles); 

  
% UIWAIT makes Medtronic_GUI1 wait for user response (see UIRESUME) 
% uiwait(handles.figure1); 

  

  
% --- Outputs from this function are returned to the command line. 
function varargout = Medtronic_GUI1_OutputFcn(hObject, eventdata, handles)  
% varargout  cell array for returning output args (see VARARGOUT); 
% hObject    handle to figure 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 

  
% Get default command line output from handles structure 
varargout{1} = handles.output; 

  

  

  
function totalstrands_Callback(hObject, eventdata, handles) 
% hObject    handle to totalstrands (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 

  
% Hints: get(hObject,'String') returns contents of totalstrands as text 
%        str2double(get(hObject,'String')) returns contents of totalstrands 
%        as a double 

  

  
% --- Executes during object creation, after setting all properties. 
function totalstrands_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to totalstrands (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 

  
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 

  

  

  
function ppi_Callback(hObject, eventdata, handles) 
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% hObject    handle to ppi (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 

  

  
% Hints: get(hObject,'String') returns contents of ppi as text 
%        str2double(get(hObject,'String')) returns contents of ppi as a 

double 

  

  

  
% --- Executes during object creation, after setting all properties. 
function ppi_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to ppi (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 

  
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 

  

  

  
function OD_Callback(hObject, eventdata, handles) 
% hObject    handle to OD (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 

  
% Hints: get(hObject,'String') returns contents of OD as text 
%        str2double(get(hObject,'String')) returns contents of OD as a double 

  

  

  
% --- Executes during object creation, after setting all properties. 
function OD_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to OD (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 

  
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 

  

  
% --- Executes on button press in Go. 
function Go_Callback(hObject, eventdata, handles) 
% hObject    handle to Go (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
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% handles    structure with handles and user data (see GUIDATA) 
ODG = str2double(get(handles.OD, 'String')); 
location = str2double(get(handles.location, 'String')); 
ppiG = str2double(get(handles.ppi, 'String')); 
wirenumber = str2double(get(handles.wirenumber, 'String')); 
totalstrands = str2double(get(handles.totalstrands, 'String')); 
[circ_d] = Medtronic_Helix_Code(totalstrands, ppiG, ODG, location, 

wirenumber); 
axes(handles.Plot) 
theta  = 0:.5/180*pi():2*pi(); 
x = ODG/2*sin(theta); 
y = ODG/2*cos(theta); 
hold on 
plot(x ,y); 
xp = (ODG/2)*sin(circ_d/(ODG/2)); %find coordinates of cut point around 

circle 
yp = (ODG/2)*cos(circ_d/(ODG/2)); 
temp = xp; 
if circ_d<0 
    for i=1:20 
        xline(i) = temp; 
        temp = temp - xp/20; 
    end 
else 
    xline = 0:xp/20:xp; 
end 
yline = yp/xp*xline; 
plot(xline,yline,'r') 
hold off 
set(handles.display,'String',circ_d); 
guidata(hObject, handles); 

  

  

  
function location_Callback(hObject, eventdata, handles) 
% hObject    handle to location (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
% Hints: get(hObject,'String') returns contents of location as text 
%        str2double(get(hObject,'String')) returns contents of location as a 

double 

  

  
% --- Executes during object creation, after setting all properties. 
function location_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to location (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 

  
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
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function wirenumber_Callback(hObject, eventdata, handles) 
% hObject    handle to wirenumber (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 

  
% Hints: get(hObject,'String') returns contents of wirenumber as text 
%        str2double(get(hObject,'String')) returns contents of wirenumber as 

a double 
e = str2double(get(hObject,'String')); 

  

  
% --- Executes during object creation, after setting all properties. 
function wirenumber_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to wirenumber (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 

  
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 

  

  

  
function display_Callback(hObject, eventdata, handles) 
% hObject    handle to display (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 

  
% Hints: get(hObject,'String') returns contents of display as text 
%        str2double(get(hObject,'String')) returns contents of display as a 

double 

  

  
% --- Executes during object creation, after setting all properties. 
function display_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to display (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 

  
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
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MatLab Wire Tracking GUI Instructions 
 

1. Before opening MatLab, make sure the files Medtronic_Helix_Code.m, Medtronic_GUI1.fig, 

Medtronic_GUI1.m, and Medtronic.xls are in the same folder 

2. Open Matlab 

 

3. Enter “guide” into the command line 

 

4. Click on “Open Existing GUI” tab 

 

5. Navigate to and select Medtronic_GUI1.fig 

 

6. On the opened GUI template, press the green run button.  If a pop-up window opens  

 

7. Enter in the parameters for the catheter and press GO 

 Wire Number: The number of the signal wire of interest.  Wires are number from 1 

to 8 clockwise around the cross section of the catheter with 1 being the topmost wire.  

All odd numbered wires are braided counterclockwise and even numbered wires are 

braided clockwise. 

 Connecting Wires: The number of signal wires in the braid structure. (8 for the 

designed TVAC) 

 PPI: The designated braid density of the signal wire braid in picks per inch.  (30 for 

the designed TVAC) 

 Cather OD: The out diameter of the catheter steering section.  (0.09 for the designed 

TVAC) 

 Location along Shaft: The distal location where the electrode is to be attached 

measured from the proximal end of the catheter. 

 Location of Cut: The circumferential distance around the surface of the catheter 

where the signal wire should be accessed measured from the top of the catheter in 

inches.  A positive value indicates measurement in a clockwise direction and a 

negative value indicates measurement in a counterclockwise direction. 

 

8. A graphical representation of the radial position of the signal wire at the desired distal 

location will appear on the axes on the right 

 

NOTE: The GUI assumes that the topmost signal wire on the proximal end is braided in a 

counterclockwise orientation so the tested catheter must be oriented in the same way. 
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Composite Analysis 
% 
% Simple CLT File 
% This one includes hygrothermal 
% 
% this things has plots and pauses hit return play with scaling factors 
% 

  
clear all 
close all 

  
%set up a diary file 
diary Braid.dat 

  

  
%units are US customary (lb, in, E in psi) 

  
% total laminate definition in matrix below 
% [ply angles, thicknesses, matl. #] 

  
%Set up for two materials 

  
% Data in there now is 
%1-Uni Layer 
%2-Helix Layer 

  
psi = 52.25 

  
%Laminate is defined in this matrix l (sorry it looks like a one) 
% [ angle  thick  matl #] 
l=[   psi    .0422-.02      2; 
      -psi   .0422-.02      2; 
      0      .046-.0311     1; 
      -psi   .0422-.02      2; 
      psi    .0422-.02      2]; 

     
% this is the total laminate 
% cut, paste, edit above to study your laminate of choice 

  
%delta temp 
DT = 0.1; 

  

  
% size command to get number of plies  
n = size(l,1);  

  
%      Lamina Properties 

  
%For Helix Layer volume fraction 
vfh = (1.991e-4)/((.2651*sind(psi))*.0222) 
vmh = ((.2651*sind(psi)*0.0222-(1.99e-4))/(.2651*sind(psi)*0.0222)) 
Epebax = 2760; %psi 
Efiber = 16e6; %psi 
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E1h = vfh*Efiber+vmh*Epebax; 
%      matrix for engineering constants 
      %E1      E2     v12   G12     a11      a22 
 E = [4.445e6  815.4  .30   815.4   0.0e-6   0.0e-6; %Uni Layer 
      E1h      815.4  .30   815.4   0.0e-6   0.0e-6] %Helix Layer  
 % a's are CTE's  

  

  
%intiialize the ply distance and ABD matrices 
NT = zeros(3,1); 
MT = zeros(3,1); 

  
h = zeros(n+1,1); 
A = zeros(3); 
B = zeros(3); 
D = zeros(3); 
% Form R matrix which relates engineering to tensor strain 
R = [1  0  0; 
     0  1  0; 
     0  0  2]; 

  
% find the total thickness 
total = sum(l,1); 
thick = total(1,2); 

  

  

  
% locate the bottom of the first ply 
h(1) = -thick/2.; 
imax = n + 1;    
%loop for rest of the ply distances from midsurf 
for i = 2 : imax  
   h(i) = h(i-1) + l(i-1,2);  
end 

  
%loop over each ply to integrate the ABD matrices 
for i = 1:n 

    
   %ply material ID 
   mi=l(i,3); 
   v21 = E(mi,2)*E(mi,3)/E(mi,1); 
   d = 1 - E(mi,3)*v21; 

  
   %Q12 matrix 
   Q = [E(mi,1)/d          v21*E(mi,1)/d      0; 
        E(mi,3)*E(mi,2)/d   E(mi,2)/d          0; 
        0                 0               E(mi,4)]; 

    

    
   %ply angle in radians 
   a1=l(i,1)*pi/180; 

    
    %Form transformation matrices T1 for ply 
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    T1 = [(cos(a1))^2       (sin(a1))^2               2*sin(a1)*cos(a1); 
        (sin(a1))^2        (cos(a1))^2              -2*sin(a1)*cos(a1); 
        -sin(a1)*cos(a1)    sin(a1)*cos(a1)  (cos(a1))^2-(sin(a1))^2 ]; 

  

  
   %Form Qxy 
   Qxy = inv(T1)*Q*R*T1*inv(R); 

    
    % build up the laminate stiffness matrices    
   A = A + Qxy*(h(i+1)-h(i)); 
   B = B + Qxy*(h(i+1)^2 - h(i)^2); 
   D = D + Qxy*(h(i+1)^3 - h(i)^3); 

    
   %load alphs into and array 
   a=[E(mi,5); E(mi,6); 0.0]; 

    
   %transform cte's mult by DT to get thermal strain exy 
   exy = (R*inv(T1)*inv(R)*a)*DT; 
   %build up thermal load as well now 
   NT = NT +  Qxy*exy*(h(i+1)-h(i)); 
   MT = MT + .5*(Qxy*exy*(h(i+1)^2 - h(i)^2)); 

  

  

    
%end of stiffness loop   
end  

  
%change the display format for compliance matrix 
format short e 

  
A = 1.0*A; 
B = .5*B; 
D = (1/3)*D; 

  
% 
% 
%Braid Tube Meas Radius 
Ro=.045; 
Ri=.02; 
% 
% Stiffness Terms for Braid Tube Analysis 
ac=inv(A); 
%Axial Stifness for P/A type problem 
Ex=1/(ac(1,1)*thick) %psi 
% 
%Bending Effective EI 
EI=(pi*(Ro^3-Ri^3)/ac(1,1))/144 %lb*ft^2 
% 

  
%Tube Torsion effective G 
G=1/(ac(3,3)*thick) %psi 

  

  
K = [A, B; 
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     B, D]; 

  
%put in mechanical loads here 
%mech loads   
  Nx=1.0; 
  Ny=0.0; 
  Ns=0.0; 
  Mx=0.0; 
  My=0.0; 
  Ms=0.0; 
%   
% superimpose mech and thermal loads 
load = [ NT(1) + Nx; 
         NT(2) + Ny; 
         NT(3) + Ns; 
         MT(1) + Mx; 
         MT(2) + My; 
         MT(3) + Ms]; 

  

   

   
C = inv(K); 
% 
%compute the strains = compliance times load 
e = C*load; 
% 
% calc radii of curvature 
Rx = 1/e(4); 
Ry = 1/e(5); 
Rxy= 1/e(6); 

  
%______________________________________________________________________ 
% Now calc stress and strain and failure index using Max strain 
% 
% reduction factor for ultimate (pseudo A-basis use .80 
RF=.80; 
% 
%  
% allowable strains reduced to account for ultimate strength after impact 
% row1 is carbon 
% row2 is E-glass 
% transverse prperties assumed same 
% load allowable strains into array 
%     ELU        ELUP       ETU      ETUP     ELTU 
ea = [RF*.014   RF*.012   RF*.007   RF*.031  RF*.0296; 
      RF*.02    RF*.018   RF*.0067  RF*.031  RF*.0296]; 
% 
% 
%zero out results array 
ERES = zeros(2*n,6); 
SRES = zeros(2*n,6); 

  
% loop over each ply and calculate strain 
for i=1 : n; 
   %loop over top and bottom of each ply 
   for j=1 : 2; 
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   % one is bottom two is top for loc 
   ply = i; 
   loc = j; 

    
   z = h(i-1+j); 

    
   %ply strain from midplane strain 
   el= [ e(1)+z*e(4);  e(2)+z*e(5);  e(3)+z*e(6)]; 

       
   %ply material ID 
   mi=l(i,3); 
   v21 = E(mi,2)*E(mi,3)/E(mi,1); 
   d = 1 - E(mi,3)*v21; 

  
   %Q12 matrix 
   Q = [E(mi,1)/d          v21*E(mi,1)/d      0; 
        E(mi,3)*E(mi,2)/d   E(mi,2)/d          0; 
        0                 0               E(mi,4)]; 

  
   % 
   %ply angle in radians 
   a1=l(i,1)*pi/180; 

    
    %Form transformation matrices T1 for ply 
    T1 = [(cos(a1))^2       (sin(a1))^2               2*sin(a1)*cos(a1); 
        (sin(a1))^2        (cos(a1))^2              -2*sin(a1)*cos(a1); 
        -sin(a1)*cos(a1)    sin(a1)*cos(a1)  (cos(a1))^2-(sin(a1))^2 ]; 

  
   % load alpha for the ply 
   a=[E(mi,5); E(mi,6); 0.0]; 

    
   % tranform to 1,2  
   % subtract off alpha delta T to get mech strain that causes stress 
   ep = R*T1*inv(R)*el - a*DT; 

    
   %calculate stress in 1,2 coords 
   sp = Q*ep; 

  
%failure index now looks at two different materials 

    
   if ep(1) > 0.0; 
      FI = ep(1)/ea(mi,1); 
      FIF=FI; 
     elseif ep(1) < 0.0; 
        FI = abs( ep(1) )/ea(mi,2); 
        FIF=FI; 
   end 

   
   if ep(2) > 0.0; 
     F1 = ep(2)/ea(mi,3); 
   elseif ep(2) < 0.0; 
     F1 = abs( ep(2) )/ea(mi,4); 
   end 
% 
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  if F1 > FI; 
   FI = F1; 
  end 
% 
% 
   F1 = abs( ep(3) )/ea(mi,5);  
  if F1 > FI ; 
   FIe = F1; 
  elseif F1 < FI; 
   FIe = FI; 
  end 

  

    
   %load the results array 
   % note top and botom of every ply! 

    
   %strain results, FI based on Max Strain 
   %angle,eps1,eps2,gamma12,FI, FIfiber 
    ERES(2*i+j-2,1)=l(i); 
    ERES(2*i+j-2,2)=ep(1); 
    ERES(2*i+j-2,3)=ep(2); 
    ERES(2*i+j-2,4)=ep(3); 
    ERES(2*i+j-2,5)=FIe; 
    ERES(2*i+j-2,6)=FIF; 

    
   %stress results, FI based on max strain 
   %angle,Sigma1,Sigma2,Tau12, FI, FIfiber 
    SRES(2*i+j-2,1)=l(i); 
    SRES(2*i+j-2,2)=sp(1); 
    SRES(2*i+j-2,3)=sp(2); 
    SRES(2*i+j-2,4)=sp(3); 
    SRES(2*i+j-2,5)=FIe; 
    SRES(2*i+j-2,6)=FIF; 

  

  
end 
% 
end 
ERES=ERES*1; 
SRES=SRES*1; 

  

  
diary off 
% 
% 
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Unilayer Moment of Inertia Balance 
"Un ilayer  Balance" 

"Creat ed  1-14-10" 

"By: Am and  Kasim at is, Ryan  Razzar i"  

 

 

"Const an t s" 

D_PW =  .009  "Diam et er  o r  Pullw ire, [in ]" 

D_CL =  .04 "Diam et er  o f  Cen t er  Lum en , [in ]"  

D_Mino r  =  .0066 "Mino r  Diam et er  o f  Braid  Wire, [in ]"  

D_Majo r  =  .0128 "Majo r  Diam et er  o f  Braid  Wire, [in ]"  

{ r  =  .04 "Rad ial Dist ance t o  Linear  Fib ers, [in ]"}  

{ t het a =  30 "Angle t o  Linear  Fib ers, [d eg]"}  

 

 

"Fo r  XX Direct ion " 

"4 Linear  Fib ers an d  2 Pullw ires Con t r ib u t e"  

"Fo r  Pullw ires" 

A_PW =  (p i/4)* D_PW^2 "Area o f  Pullw ire, [in ^2]" 

d _i_PW =  D_CL/2+ D_Minor+ .5* D_PW "Dist ance f rom  axis t o  Pullw ire,[in ]"  

I_PW =  (p i/64)* D_PW^4 "Mom en t  o f  Iner t ia f o r  Pullw ire, [in ^4]"  

 

I_xx_PW =  I_PW+ A_PW* d _i_PW^2 "To t al Mom en t  o f  Inet r ia f o r  Pullw ire, 

[in ^4" 

 

"Fo r  Lin ear  Fib ers" 

A_LF =  (p i/4)* D_Majo r ^2 "Area o f  Linear  Fib er , [in^2]"  

d _i_LF =  r * sin (t het a) "Dist ance f rom  axis t o  Linear  Fib er ,[in ]"  

I_LF =  (p i/64)* D_Majo r^4 "Mom en t  o f  Iner t ia f o r  Linear  Fib er , 

[in ^4]" 

 

I_xx_LF =  I_LF+ A_LF* d _i_LF^2 "To t al Mom en t  o f  Inet r ia f o r  Linear  Fib er , 

[in ^4" 

 

I_xx_Un i =  2* I_xx_PW+ 4* I_xx_LF "To t al Mom en t  o f  Iner t ia f o r  Un ilayer  f o r  

XX d irect ion " 

 

 

"Fo r  YY Direct ion " 

"6 Linear  and  0 Pullw ires Con t r ib ut e" 

"Fo r  Lin ear  Fib ers" 

d _ist ar_LF =  r * cos(t het a) "Dist ance f rom  axis t o  Linear  Fib er ,[in ]"  

 

I_yy_LF =  I_LF+ A_LF* d _ist ar_LF^2 "To t al Mom en t  o f  Inet r ia f o r  Linear  Fib er , 

[in ^4" 

 

I_yy_Un i =  6* I_yy_LF "To t al Mom en t  o f  Iner t ia f o r  Un ilayer  f o r  

YY d irect ion " 

Balance = I_yy_Uni - I_xx_Uni "Will be zero for balanced design"  
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Appendix G – Gantt Chart 
 

 


