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Abstract The part of the Internet of Things composed of

devices that directly interact with users has grown con-

siderably in the past years. With new smartphones, tablets

and other Internet-enabled devices that appear on the

market, this trend is still increasing. However, existing

application development processes and tools, designed for

single device applications, do not allow developers to fully

and efficiently address this opportunity. Applications are

developed for a particular type of devices or a particular

programming platform. This limits the number of potential

users and makes it difficult to seamlessly use an application

on multiple devices owned by users. To take full advantage

of the Internet of Things, applications should be able to run

on any device—they should be ubiquitous. In this paper,

we present a concept of Device-Independent Architecture,

which provides separation of applications from devices and

facilitates development of device-independent applications.

Additionally, the separation introduced by the Device-

Independent Architecture enables implementation of multi-

device scenarios where a single application employs mul-

tiple devices at the same time. The experiment described in

the paper proves that such device-independent applications

indeed may be used on any suitable device—they have a

chance to become ubiquitous.

Keywords Device independence � Multi-device

applications � User interface adaptation � Context-aware

applications � Internet of Things � Internet of Services

1 Introduction

The term Internet of Things (IoT) is usually used to

describe systems composed of multiple sensors and actu-

ators. According to Marc Weiser’s [1, 2] ‘invisible servant’

rule, these devices should operate in the invisible (calm)

way influencing the real world, but not interacting directly

with people. People only notice the results of device

activities rather than the devices themselves. However, this

is not the only side of the IoT. According to the definition

provided by EC [3], the IoT also includes all the devices

used directly by people: smartphones, tablets, smart TV,

intelligent home appliances, public interactive touch pan-

els, etc; essentially, any electronic device connected to the

Internet and used to interact with a user. Such devices may

provide a number of sensors, but the main differentiator is

that they provide user interaction channels (UICs) that

allow interacting directly with a user, not only with the

environment surrounding the user. In this paper, we focus

on this side of the IoT, and to differentiate from sensors

and actuators, we call these devices end-devices. End-

devices are used by users to access applications that expose

their functions using user interfaces (e.g., visual represen-

tation of buttons on a touch screen or vibration as a tactile

feedback). In this paper, users of these applications are

called end-users, and consequently the applications are

called end-user applications.

The growing number of software platforms and

increasing diversity of end-devices [4, 5] make the devel-

opment of end-user applications a difficult and time-con-

suming task. Developers can either target only a few most

popular platforms excluding some end-users and limiting

the reach of their end-user applications or develop a

large set of separate end-user applications targeting dif-

ferent platforms and end-device classes. Despite being
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economically hard to justify, the provision of application

functionality to end-users using a wide range of end-

devices will become even more difficult as new software

platforms emerge and gain acceptance (Windows Phone,

bada, Firefox OS, Tizen) and new classes of end-devices

connect to the Internet—not only smartphones and tablets,

but also car infotainment systems (BMW ConnectedDrive),

smart TVs (Samsung SmartTV), intelligent home appli-

ances (LG Smart ThinQ series), interactive coffee tables

(MS PixelSense), etc. In consequence, there is a need for a

more universal approach to the implementation of end-user

applications—an approach that will lower the development

effort and will make end-user applications easily accessible

to end-users despite the diversity of end-devices. One way

to make it possible is to build applications that are inde-

pendent of end-devices. With such a device-independent

approach, developers need to implement only a single

version of an application and end-users are not tied to a

specific device—they may use their applications on any

suitable end-device. Essentially, the device independence

would help make end-user applications ubiquitous.

The remainder of this paper is organized as follows.

Section 2 contains some background information on how

device independence is addressed in today’s solutions. In

Sect. 3, the Device-Independent Architecture (DIA) is

introduced and described. Section 4 contains a description

of an experiment verifying the feasibility of the Device-

Independent Architecture. Section 5 concludes the paper

and provides an overview of future research directions.

2 Device independence

Device independence means that functions of an end-user

application are available on any suitable end-device with-

out the need to modify the application itself. Commonly,

the device independence is achieved by separating the

application from lower layers of the device.

Separation from the hardware can be provided by an

operating system (OS) [6]. An OS abstracts device hard-

ware features using device drivers and delivering hard-

ware-related functions in a form of an API. Applications

using the API are hardware independent, but become OS

dependent. There is large number of different OSs avail-

able on the market, and each OS has its own API and its

own limitations to software platforms that can be used by

developers. Therefore, the introduction of the OS as a

separation layer does not provide true device indepen-

dence—it does not allow building ubiquitous end-user

applications.

Separation from the diversity of OSs can be provided by

an additional layer—universal runtime environment (URE)

such as Java Virtual Machine, Flash engine or a Web

browser. UREs are available on multiple different OSs and

are characterized by the fact that they wrap the OS API

with their own API. Also, UREs usually limit development

options to a specific programming language (e.g., Java,

ActionScript, HTML5/JavaScript). Applications developed

for a particular URE are hardware and OS independent, but

become dependent on the availability of the URE. With the

increasing number of mobile devices such as smartphones

and tablets [4] and declining support for many once-pop-

ular universal runtime environments [7], the Web emerges

as a leading platform for device-independent applications

[8, 9]. Therefore, most of the current research on device-

independent applications is focused on various aspects of

Web applications: from differences among Web browsers

[10], to new HTML5 APIs, CSS3 properties and cross-

browser Java Script libraries that try to unify [11] and

enhance Web browser behavior [12], to new server-side

frameworks [13].

However, the main problem with the Web-based

approach is that it requires powerful end-devices capable of

supporting all separation layers, Web runtime and addi-

tional JavaScript libraries. The resource constraints are

especially important for embedded and mobile devices.

Embedded devices usually have limited processing capa-

bilities, which makes them a hard target for Web applica-

tions (cf. webinos efforts to put their runtime on Arduino-

based devices [12]). On the other hand, mobile devices

may have powerful processors, but they depend on battery

life which can be significantly limited by increased pro-

cessing requirements of Web applications. This is one of

the reasons why Apple mobile devices never supported

Flash technology [14].

Achieving the device independence of end-user appli-

cations by introduction of additional separation layers

seems to be a dead-end—especially for the billions of

mobile and embedded IoT end-devices. To get past those

limitations, we propose a new architecture for device-

independent applications, which ensures application-device

separation also in the field of constrained device resources.

3 Device-Independent Architecture

To make it possible to build device-independent, ubiqui-

tous end-user applications, we propose to approach the

problem in a different manner. Since applications are

constrained by limited capabilities of end-devices (pro-

cessing power, battery life, etc.), we see the solution in

running applications outside of the device.

Additionally, to avoid adding new separation layers that

increase the complexity of the solution, we want to main-

tain the link between an application and a device via a

generic protocol—reusing proven strategies from the

482 Pers Ubiquit Comput (2014) 18:481–488

123



computer network domain where well-defined protocols

enabled multiple heterogeneous network nodes to cooper-

ate and form the Internet [15]. This is the basis of the DIA.

3.1 Running outside of the device

Application running on a device uses a number of features

provided by the device (see Fig. 1). All these features can

be assigned to one of three groups: (1) processing

resources—CPU, memory, storage; (2) information sour-

ces—device sensors providing data such as location, tem-

perature, light intensity; (3) UICs (input and output)—

screen, speakers, vibration, keyboard, mouse or another

pointing solution, touchscreen, orientation sensors (e.g., for

gestures), microphone, camera, etc.

To make it possible to run an application outside of a

device, we have to provide replacement for these three

classes of device features. The idea behind the DIA

originates from Service-Oriented Architecture [16],

where software systems are decomposed into atomic

services, while processes use necessary services without

knowing implementation details of systems that provide

these services. Similar approach can be used to func-

tionally decompose devices and provide their features to

applications as services. To maintain device indepen-

dence of applications, applications should not rely on

how these services are implemented. The only thing that

should be known to applications is how to use these

services.

Processing resources can be provided as cloud-based

services in the form of a Platform as a Service [17] (PaaS).

To maintain device independence of applications it is not

necessary to specify a protocol for accessing a PaaS

infrastructure. Each PaaS implementation has its own

requirements and API, but the selection of a particular

PaaS will only influence the choice of a programming

language and development patterns. It will not hinder the

device independence of an application developed on the

selected platform. Therefore, it is up to the developer to

decide which PaaS will be used to develop and run his

applications.

Information sources cannot exist without a device, but

can be exposed as services accessible with a simple REST

GET method (for one time access) or a protocol based on a

subscriber/provider pattern [18] (for continuous access).

Such generic protocol ensures proper application-device

separation while maintaining the ability to use data pro-

vided by device sensors. The types of data provided by

information sources can be described using syntactic and

semantic service description languages such as WSDL or

USDL [19].

User interaction channels can be divided into output

interaction channels provided to applications as data sinks

accepting specific data formats (e.g., visual data for screen,

audio stream for speakers, etc.) and input interaction

channels exposed as services accessible according to a

protocol based on the observer pattern [20]. Again, types of

interaction events provided by these services can be

described using appropriate service description languages.

The overall diagram of the DIA is presented in Fig. 2. It

maintains all components necessary to run an application

presented in Fig. 1. In traditional approaches, the applica-

tion device separation was hindered by different APIs

provided by different OSs and UREs. The decomposition

into atomic services makes it easier to define self-contained

access protocols that could be standardized and natively

implemented in end-devices or added to end-devices in a

form of a universal native application (device-indepen-

dency driver).

One could argue that the proposed DIA is merely an

implementation of the cloud computing concept already

adopted by initiatives such as Google’s Chrome OS or

Mozilla’s Boot to Gecko (now Firefox OS). But the key

point of the DIA is not in just running an application in the

cloud. Almost all Web applications follow this approach.

The key point of the DIA is to enable an application run-

ning in the cloud to use device-specific features of an end-

Fig. 1 Device features used by application running on a device

Fig. 2 Device-Independent Architecture
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device without making any compromises on the device

independence of the application.

3.2 Multi-device capabilities

Provision of device features in a form of services has

additional advantages. From the point of view of an

application, an end-device is seen not as a monolithic

device, but rather as a set of services. Such a set may

include services provided by multiple end-devices. This

fact opens a wide range of scenarios in which a single

application becomes a multi-device application:

• Complementary services scenario An application inter-

acts with a user using a single device, but employs

information sources from other devices. For example, a

photo capture application could provide its UI on a

digital camera, but retrieve user location information

from a smartphone.

• Redundant services scenario With similar services

provided by multiple devices an application may

choose services providing the best data (e.g., the most

accurate location) or interaction channels best suited for

interaction with a particular user in a given usage

context (e.g., display information on a car dashboard

instead of a smartphone screen while the user is

driving).

• Multi-device UI scenario If multiple devices provide

output and input UICs, an application may distribute

fragments of its UI to separate devices choosing the

best composition of available interaction channels. For

example, an electronic program guide application could

present visual information on a TV, but interact with a

user using input interaction channels on a smartphone

(e.g., gestures detected by smartphone g-sensor or

gyroscope).

Implementation of multi-device scenarios require that

applications know what end-devices (and what services

provided by these devices) are available at a given

moment. Therefore, the DIA includes a register of end-

devices and a corresponding service that can be queried by

applications [21].

3.3 Interaction with the user

The device independence brings multiple benefits. How-

ever, to provide application functionality in a usable

manner, a user interface of an application has to be adapted

to capabilities of a set of available output and input user

interaction channels. There are two general approaches to

this problem: (1) An application provides only an abstract

model-based UI description that is used at runtime by a

generic UI generation service to generate a final UI for a

particular interaction channel [13, 22–24], and (2) gener-

ation of a final UI is done directly by an application sup-

ported by services that provide information about

capabilities of targeted user interaction channel. The first

approach is suitable for typical CRUD applications, but it

is difficult to implement for complex interactive systems

[25]. The second approach is best suited for custom and

complex UI (e.g., games). In the second approach, an end-

device does not have to interpret the UI and is responsible

only for presenting the final UI (e.g., for complex visual

UI, it can have a form of an image or a video stream). This

approach is already used by OnLive [26, 27] and Gaikai

[28] cloud gaming platforms.

4 Feasibility experiment

The goal of this experiment is to find out whether the

presented approach to device independence allows main-

taining functionality and usability of a native mobile

application. Consider a crowdsourcing [29] application

which exploits gamification ideas [30]. The application is

implemented as a game where a player gains credibility

points by performing quests. The quests are designed to

gather real-life data at specific locations. Therefore, a

player has to travel to a specific location and provide

requested information (a photo or a sound recording). The

application is implemented as a native Windows Phone

application and is available only for smartphones with the

Microsoft mobile OS. Such application may gain a lot by

becoming ubiquitous—i.e., independent of end-devices

used by users. Therefore, it is a great test case for the

Device-Independent Architecture.

The application prototype used in this experiment uses a

static UI composed of three main screens (see Fig. 3). The

first screen presents a credibility ranking (Credibility

Stack) and provides a link (See quests…) to available

quests (Quests list). Quests list screen presents a list of

available quests and a list of quests completed by the user.

Selecting a quest opens the third screen (Quest details) with

detailed description of the quest and quest location. The

second variant of the Quest details screen (rightmost image

in Fig. 3) is presented only if the user is at the required

location. It provides an interface for submitting the

requested data.

4.1 Device-independent prototype

With DIA, the selection of a backend technology used to

implement the application is not limited. The native

application is implemented in MS C# and is using MS

WCF Data Services running on a Windows Server 2008. It

was decided to reuse most of the code and retain the
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backend infrastructure. The application code was moved to

the server and modified to use HTTP protocol to commu-

nicate with services exposed on end-devices. Services on

end-devices were implemented within a universal device-

independency driver (native) and may be accessed via

HTTP using the REST approach.

The API calls used by the native application to access

geolocation information, device touchscreen, camera and

microphone were replaced by calls to equivalent services.

In the case of the geolocation function, the application

needs the information only to check whether a user is

allowed to complete a quest (i.e., a user is at the required

location). Therefore, it was enough to implement a REST

GET method for accessing this information source. The

touchscreen, camera and microphone input UICs were

implemented following the observer pattern.

The last step is a modification of the application user

interface presented to a user into a format that is device-

independent. The application uses only graphical UI

(GUI), which is simple enough to employ one of model-

driven UI approaches, but for this experiment, it was

implemented using the second approach. The final GUI is

generated by the application itself according to capabili-

ties of an output interaction channel (i.e., a device

screen). The capabilities of the interaction channel nec-

essary for GUI generation are device screen width and

height in pixels and screen density in pixels per inch. The

information provided as metadata of the output UIC ser-

vice allows the application to render an appropriate GUI

view and send it to the visual output UIC in a form of a

GIF image (GIF provides best compression for this type

of graphics). Using the same set of graphical resources

and fonts as in the native application, it is possible to

provide a pre-rendered GUI that mirrors the GUI of the

original application.

The usage of the application involves a number of

interactions. Assuming that the application is initiated from

a default launcher application, the first interactions are the

following:

1. The application gathers information on services

exposed by the end-device used to initiate it and

decides whether all required services are available.

Almost all modern smartphones and tablets are

equipped with a screen, geolocation, touchscreen,

camera and microphone, so each such device is

compatible.

2. The application retrieves capabilities of the visual

output UIC, renders the main screen and sends it to the

visual output UIC service. At the same time, the

application registers as an observer using the touch-

screen service.

3. The visual output UIC service running on the device

displays the received image on the screen.

4. When the user touches the screen, the event is captured

by the touchscreen input UIC service and the appli-

cation is notified.

5. The application decides if the touch event corresponds

to any actions, renders a new or updated GUI and

sends it to the visual output UIC. For example, if the

user touched the ‘See quests…’ button on the main

screen, the application renders the Quests screen and

sends it back to the device.

Fig. 3 User interface of the crowdsourcing application
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4.2 Performance comparison

The internal logic of the application, the data source and

client–server communication overheads are comparable in

both versions of the application. Therefore, the main issue

that could deteriorate the usability of the device-indepen-

dent version of the application is GUI response time. It

could worsen due to server-side GUI generation and

increased amount of data that have to be transferred to

handle a GUI state change. Taking into account a typical

interaction loop (cf. points 3–5 of the interaction sequence

presented in 4.1), the GUI response time measurement

begins with a user action that causes a GUI state change

and ends with a presentation of a new GUI view on the

screen. Sequence diagrams with communication delay for

both versions of the application are presented in Fig. 4.

In both versions of the application, the total GUI

response time is composed of time required to prepare data

(Sd), time required to generate and render the GUI (Cr, Sr)

and communication delay. The ‘Cw’ is an idle state in

which the application waits for a server response. The

communication delay of the initial request and data prep-

aration time are comparable in both cases and can be

omitted. Therefore, to show how the device-independent

approach increases the GUI response time, it is enough to

compare GUI generation times and response transfer times.

To test this issue in a controlled environment, both

versions of the application were executed on a MS Win-

dows Phone 7 emulator provided by MS Visual Studio

2010 Express for Windows Phone. The delay introduced by

the communication channel was estimated by calculating

time required to transfer exchanged data through typical

mobile communication channels such as GPRS (assumed

throughput 56 Kbps), EDGE (236 Kbps) and HSDPA

(7.2 Mbps).

Results of the GUI generation measurements are pre-

sented in Fig. 5. Average GUI generation time for the

native application version is 9.3 ms and for the device-

independent version is 45.7 ms. The increase is 36.4 ms.

To estimate the delay introduced by the communication

channel, it was necessary to measure the size of data

transferred from the server to the application. The size of

data depends on which application view is presented.

Table 1 presents average data sizes for each view of the

prototype application and estimated delays for different

channel speeds.

4.3 Summary

The presented experiment shows that applications imple-

mented according to the DIA may indeed maintain full

functionality and usability of a native application. All

functions of the original application were recreated in the

device-independent version of the application, and the UI

of the application remained unchanged. The results of

performance evaluation show that the device-independent

version of the application requires more time to provide a

new GUI view after a state change. The delay caused by

server-side GUI generation is very small, but the device-

independent version is more susceptible to communication

channel throughput. Nevertheless, with broadband mobile

communication channels, the total delay is well below 1 s,

Fig. 4 Sequence diagrams of

GUI state change in both

versions of the application

Fig. 5 Sequence diagrams of GUI state change in both versions of

the application
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which is assumed to be a reasonable limit for a static GUI

response time [31]. Therefore, the overall application

usability is not deteriorated by the increased GUI response

time.

5 Conclusions and future research

The DIA, presented in this paper, is a response to the

opportunity provided by the multitude of smart end-devices

that compose the IoT—an opportunity that can result in

development of truly device-independent and ubiquitous

applications. The main idea behind the DIA is to move the

processing out of end-devices to a cloud-based infrastruc-

ture and to introduce a set of protocols and services that

separate applications from end-devices and provide support

for development of multi-device applications. The pre-

sented experiment confirms that the DIA is a viable con-

cept and that it provides the assumed benefits. The original

application analyzed in the experiment was limited to

smartphones running the MS Windows Phone 7 OS and the

transformation into a device-independent application

according to the DIA concept made the application avail-

able on any end-device featuring the set of necessary, but

common, features: a screen, a geolocation service, a

touchscreen, a camera and a microphone.

The DIA approaches the problem of application device

independence from a new perspective and opens a wide

range of new research topics. From provision of continuous

and stable device connectivity, to detection of device

availability crucial for multi-device usage scenarios, to UI

abstraction, adaptation and distribution issues.

The presented DIA is an extensible solution and enables

enhancements that provide additional functions. This cre-

ates an opportunity for new services that would help better

support device-independent and multi-device applications:

application markets and catalogs, private application

repositories, third party services for gathering and sharing

user preferences, device usage billing and micropayment

services (provided, for example, by telecom operators), etc.

Each of these topics is a challenging task on its own. To

succeed in this broad field, a coordinated research effort is

required. We believe that the concept presented in this

paper provides a solid framework for future research in the

field of device-independent applications and will eventu-

ally ease the burden of developing truly ubiquitous appli-

cations that efficiently use capabilities of multiple devices.
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