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ABSTRACT 

HTTP 1.2: DISTRIBUTED HTTP FOR LOAD BALANCING SERVER SYSTEMS 

Graham Michael O’Daniel 

 

Content hosted on the Internet must appear robust and reliable to clients relying on such 

content.  As more clients come to rely on content from a source, that source can be 

subjected to high levels of load.  There are a number of solutions, collectively called load 

balancers, which try to solve the load problem through various means.  All of these 

solutions are workarounds for dealing with problems inherent in the medium by which 

content is served thereby limiting their effectiveness.  HTTP, or Hypertext Transport 

Protocol, is the dominant mechanism behind hosting content on the Internet through 

websites.  The entirety of the Internet has changed drastically over its history, with the 

invention of new protocols, distribution methods, and technological improvements.  

However, HTTP has undergone only three versions since its inception in 1991, and all 

three versions serve content as a text stream that cannot be interrupted to allow for load 

balancing decisions.  We propose a solution that takes existing portions of HTTP, 

augments them, and includes some new features in order to increase usability and 

management of serving content over the Internet by allowing redirection of content in-

stream.  This in-stream redirection introduces a new step into the client-server connection 

where servers can make decisions while continuing to serve content to the client.  Load 

balancing methods can then use the new version of HTTP to make better decisions when 

applied to multi-server systems making load balancing more robust, with more control 

over the client-server interaction. 
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1 INTRODUCTION 
Internet sites like CNN[5] often provide content that is in very high demand.  High 

demand content introduces loads on servers that provide the content as the number of 

clients wanting the content increases.  An increased load can lead to problems 

encountered at clients’ sides including lost connections, slow downloads, and slow 

response times, all of which reflect negatively on content providers. 

 

It did not take long to realize that something had to be done in order to reduce the 

problems introduced by such scenarios, which led to the idea of load balancing.  The 

basic idea behind load balancing is to provide multiple servers with identical content and 

distributing clients to servers in a fashion that avoids requiring a server to deal with too 

many clients at one time.  Load balancing of Internet sites has become a critical field of 

study[17].  As the Internet hosts more and more large files such as video, software, and 

scientific data sets it is crucial that load balancing mechanisms account for long, 

persistent downloads. 

 

There are a few commonly used load balancing methods, which have been implemented 

by various content providers over the years.  Some rely on DNS (Domain Name Service) 

to provide clients with the IP of an unloaded server from a pool of servers defined as the 

multi-server system[6].  Another common method involves rewriting URLs (Unique 

Resource Locators) to point to unloaded servers from the multi-server system[2].  Yet 

another common method involves clusters of servers with one or many points of entry to 

serve as dispatchers to back-end content servers[17]. 
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The three common methods of load balancing provide a substantial level of beneficial 

load balancing, but each comes with disadvantages.  Relying on DNS-based methods 

means very coarse grained control with potential delays in response times due to the 

nature of DNS.  Using a URL-rewriting method means creating and modifying links 

throughout a webpage, which provides coarse grained control and links that are not 

humanly decipherable.  Clusters imply locality and can only deal with servers defined in 

the cluster, which leads to problems with scalability and the occlusion of WAN-based 

solutions.  Finally, none of the above methods can specifically manage data transfers 

once they have begun. 

 

We propose work that addresses the disadvantages experienced above and introduces 

additional levels of control to administrators of content servers by changing HTTP 

(Hypertext Transportation Protocol).  Since 1991, HTTP has governed how most content 

is requested by clients and delivered by servers[22] over the Internet.  Applications like 

Web browsers and Web servers all implement algorithms to handle HTTP, which means 

they can work together no matter who provided the application and no matter what 

operating system is used.  By suggesting a change to HTTP, we hope to keep with the 

goals of cross-platform, cross-application portability, while still achieving a way of 

introducing a load balancing method. 
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Our work moves to modify HTTP to packetize the stream of content served through 

HTTP, include a set of control messages for insertion between packets, and finally define 

in detail a control message for use in in-stream redirection of clients. 

 

The major feature of our HTTP, or HTTP 1.2, as it will be referred to from this point 

forth, is the support of in-stream redirection.  In-stream redirection means a client can be 

redirected to another server after starting the download of content from a server.  This 

ability leads to a particularly fine level of control not experienced by other load balancing 

methods.  Our work makes use of current HTTP features to organize data into packets to 

intersperse redirection control messages between packets of content.  TCP uses packets to 

achieve a similar level of control[8]. 

 

The significant areas of contribution included in HTTP 1.2 consists of the following: 

• Stream-controlling primitives, i.e. control messages. 

• Packetizing of streamed HTTP content. 

• In-stream redirection of content between multiple servers. 

 

This work lays out a path by which further developers can follow in order to fully 

develop the architectures and features supported in HTTP 1.2.  The work done in this 

solution is to introduce the idea of adding redirection control messages.  The solution is 

presented as a framework, not an end-all conclusion. 
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We discuss some other load balancing methods along with some of their advantages and 

disadvantages.  Almost all the other methods can be combined with HTTP 1.2 to offer a 

multi-layered approach to load balancing.  Such a combination of tools could lead to a 

level of control not yet provided by any single mean. 

 

Later we will discuss the history behind HTTP, and why we chose HTTP as a starting 

point for creating the HTTP 1.2.  We also provide the details about HTTP 1.2, along with 

a reflection back on the current HTTP.  An experimentation section provides 

experimental results that indicate the usability and feasibility of using HTTP 1.2.  Finally 

we discuss our findings and further work that can be done to advance HTTP 1.2. 

 



 5 

2 BACKGROUND 
Before we begin to describe how and what HTTP 1.2 does, we should first provide a brief 

overview of where HTTP 1.2 comes from, namely HTTP and the World Wide Web 

client-server model.  By discussing the basic client-server model we hope to highlight 

key areas of potential improvement. 

 

The World Wide Web is founded on a client-server model: servers host content, and 

clients retrieve content by requesting content from servers.  All information about the 

content must be exposed by the servers in a manner clients can understand.  Such 

information includes how long the content is, what type of file the content represents, and 

who should have access to content.  The server acts as a subordinate to the client, and 

must take commands from the client. 

 

Figure 1: Basic client-server process 

 

The client-server process is illustrated in Figure 1.  Stage 1 – the client enters the website 

address and the application converts it into a web request.  Stage 2 – the client application 

looks up the IP address of the server with its DNS.  Stage 3 – the DNS responds to the 
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client application with the proper IP address.  Stage 4 – the client application connects to 

the server issuing the request.  Stage 5 – the server responds to the request.  Stage 6 – the 

client sees their content. 

 

Protocols are provided so clients and servers can communicate to accomplish a transfer 

of content.  There are many different protocols used in conjunction to form the World 

Wide Web including HTTP, FTP, and TCP/IP just to name a few, but we will concentrate 

on HTTP. 

 

HTTP is currently in version 1.1 coming from two predecessor versions dating to roughly 

1990.  It started as a simple protocol meant to share research information around various 

educational establishments but was soon recognized as a powerful tool for sharing other 

content as well.  

 

The early assumption dictating the direction and construction of the early versions of 

HTTP is that content shared across networks is mainly text.  The key concept related to 

the transmission of text is that it can be transmitted across the network much like reading 

a sentence letter by letter.  This method of transmission is called a stream, and in this 

case, a text stream. 

 

In stream-based transmission, the content is often unusable until it has been fully 

delivered.  Imagine if you will living in a house as it is being built; the house is only 

usable once construction is complete.  This poses a problem for load balancing methods, 
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because content that requires a long time to transmit will only be usable after all of the 

content is received.  In a content-stream environment during the time the content is 

transmitted the load balancing method is quite limited in its decisions on what to do in 

loaded situations: continue serving the content but at a degraded speed, or disconnect 

some clients to speed up others.  This is a fact because once a stream is started the client 

expects and should receive content from the stream until the stream is stopped. 

 

The only load balancing method included in the definition of HTTP is the redirection 

status code that servers can issue when a client first connects.  This redirection method is 

quite useful when new clients connect to a server that is overloaded because it provides 

the server to prevent serving any content to the new clients.  However, we want to 

concentrate on events occurring after the client has connected to the server.  The 

redirection facility in the HTTP specification is therefore inadequate for our needs.  

During the time content is transferred to a client, a server may incur extremely high load 

situations especially if the content is extremely large or the client has a slow connection.  

Therefore there is a lot of time in which making load balancing decisions would be 

beneficial to the server, but is simply wasted time in the current version of HTTP. 

 

Fortunately the HTTP specification includes an area for transfer encodings that allow 

messages to be modified for transferring purposes[22], section 3.6.  The specification 

remains quite vague in regards to any transfer encodings other than chunking. 

 



 8 

Chunking was introduced as a transfer encoding in HTTP 1.1 in order to facilitate 

situations when not all the data is available when a client request is issued[22], section 

3.6.1.  Here chunks are served to the client one at a time until the server indicates the data 

is all served.  The logic used here is a client will continue to receive chunks until either 

the connection is terminated or the data is all received.  This is certainly a step in the right 

direction towards allowing finer control for load balancing because now the data is 

served in chunks or packets rather than a stream.  We will in fact use chunking as a 

model to construct our own transfer encoding.  The major problem with chunking is that 

the client must be expecting chunks and nothing more.  In fact, the chunk header, 

information that appears before a chunk, is simply the length of the chunk in hexadecimal 

form.  There is no specification for other chunk headers besides some tail headers that 

appear when all the chunks have been served. 

 

Another avenue of HTTP that we explored but found little use towards load balancing, 

yet still found use as a model is in byteranges[22], section 19.2.  Byteranges are just like 

they sound, ranges of bytes serving as partial content for requested files.  Byteranges are 

useful because a client can request parts of some content rather than the entire content.  

For example, a smart client could request byteranges from multiple servers asking for 

different ranges from each server to speed up a download from slower servers.  However, 

if a client requested multiple byetranges from a single server the server will respond with 

the byteranges in a text stream with no separation between byteranges.  Just as in 

chunking, byteranges serve to split the content into packets, which again is a step towards 
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what we want.  This still suffers from the problems inherent with text streams as the 

byteranges are delivered as one message rather than parts of a message. 

 

This area of HTTP has not been visited by many solutions but the tools are nearly 

available to make a soft transition.  Byteranges and chunking are both supported by most 

of the more recent Web browsers such as Microsoft’s Internet Explorer and Mozilla 

Firefox.  As far as server software goes, most servers support byteranges and chunking as 

defined in the HTTP 1.1 specifications. 

 

According to the official World Wide Web Consortium HTTP page, no further 

development is being made on HTTP.  This means the features present in HTTP are 

considered locked for all intents and purposes.  With no further work being done on 

HTTP, we feel that there is a missed avenue of very important features to improve the 

workings of the Internet. 

 

Solutions in the Related Work section below that dealt with a networked environment 

heavily based on HTTP made attempts to circumvent problems inherent in HTTP.  By 

circumventing the problems found in HTTP the solutions suffered by introducing extra 

overhead and complicated network paradigms.  Rather than work towards yet another 

solution circumventing HTTP, we hope to go right to the source of the problem by 

modifying HTTP. 
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3 RELATED WORK 
 

Many solutions have been proposed in conferences, papers, and technical talks that 

approach solving the problem with distributing load across multiple servers with identical 

content.  Throughout each of the solutions is a manipulation of the environment governed 

by the basic client-server process demonstrated in Figure 1, repeated below as Figure 2, 

which introduces similar disadvantages across the spectrum of solutions. 

 

Figure 2: Basic client-server process (repeated) 

 

The basic client-server process can be used to help categorize the solutions around where 

in the process the solutions manipulate the environment.  The solutions are categorized 

into four main categories based on Figure 2: 

• Solutions that make decisions at the client level (Stage 1) 

• Solutions that make decisions at the DNS level (Stage 2) 

• Solutions that make decisions when a client first connects to a server (Stage 4) 

• Solutions that make decisions after a client has already received part of the file 

(Stage 5) 
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Here is a simplified table of related works placed in categories: 

Table 1: Table of solutions 
Client Level DNS Level First connection In-stream 

• Mirrored 
content 

• Smart clients 

• Round robin 

• Variable TTLs 

• URL rewriting 

• HTTP 
redirection 

• Dispatchers 

• Redirectable 
sockets 

• Web clusters 

3.1 Client level 
In client level load balancing the entirety of deciding which server to connect to is placed 

at the client with no input from the server-side.  There are two general methods provided: 

mirrored content and smart clients.   

3.1.1 Mirrored content 

Mirroring content is indicated as a poor solution in [6] because it is not “user-transparent” 

and does not provide server-side control.  In [17] the authors point out that keeping track 

of clients is extremely difficult and expensive (p 1). 

 

In mirrored solutions, clients choose the server from which they will receive content.  

There is no guarantee that clients will choose different servers, and so no guarantee load 

is spread across servers.  Most clients lack the knowledge of current server load, network 

traffic, and locality that would make deciding upon a server an educated decision.  Better 

yet, most clients do not care so much for a server, but are interested only in their 

connection with a server.  Instead of using mirrors, a better solution would be “a 

distributed architecture that can route incoming requests transparently among several 

server nodes” ([6], p 28).  We will visit upon this statement in much more detail later. 
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Mirroring is one of the simplest approaches to providing multiple servers to clients.  

Content is distributed to each mirror, a list of the mirrors and the location of the content 

on each mirror is compiled and distributed to each mirror, and a web page is displayed to 

the clients with links to the content on each of the mirrors.  Maintenance consists of 

repeating these steps.  Mirrored sites can be loosely or strongly linked.  Mirrors can be 

added and removed very easily in loose-linked settings: a new mirror simply gets a list 

from a current mirror, hosts the content, and displays the list.  Strongly linked settings 

would require only a few extra steps including having the mirrored servers communicate 

every so often to update their mirror links.  There are a number of sites that use the 

mirrored-content approach to handle load balancing.  Sourceforge.net [20] is an open 

source community hosting content in a variety of locations including educational 

institutions and open source companies.  Another website that uses mirroring is 

GameSpot [9].  Patches and demos for popular computer games are served up throughout 

North America.  Users connecting to GameSpot to download a game or patch are 

confronted with a list of servers throughout North America.  However, unlike 

Sourceforge.net, users are also given current usage statistics for each server.  Users are 

given a bit of extra information in order to make an educated selection, which is meant to 

benefit them and balance the load on the servers. 

 

The standards for mirrored content, if such standards exist, are not used by all.  There is 

no way for users to become accustomed to mirrored architectures.  Most function 

similarly, but, as pointed out in the case above, some solutions are better than others in 

directing users to beneficial avenues of delivery. 
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The ease of adding and removing servers in a mirrored multi-server network is a 

desirable trait we would like to incorporate into our solution.  However, we want to avoid 

giving full control to the client in making load balancing decisions as the servers can 

collect and use metrics much more effectively than a client. 

3.1.2 Smart clients 

In [6], the authors supply details about client software that makes decisions when 

connecting to servers.  An older version of Netscape Communicator would connect to a 

server using a random number between 1 and the number of servers in the domain name, 

such as www2.cnn.com. 

 

The number is generated right when the client first connects to a server.  The authors 

indicate this solution would fit corporate intranets better than the Internet.  The fact that 

this solution uses random numbers to determine which server to connect to does not make 

it an optimal solution.  The nature of random numbers, which are actually pseudo random 

numbers in computers, is that there is no control whether a number comes up over and 

over again. 

 

Client software solutions “lack general applicability because the client must be aware that 

the Web site is distributed” ([6], p 36).  Clients must be aware of the layout of servers 

within a distributed system.  This characteristic is not desirable because it exposes the 

network architecture to clients who can then take advantage of their gained knowledge by 

circumventing the random server method by choosing their own number.  By 
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circumventing this method, the clients are also circumventing load balancing, which in 

actuality works against them. 

 

This solution only works if all clients have equivalent software applications because all 

load balancing is handled by clients.  Servers have no control over how load balancing is 

handled except to incorporate more servers into the system, and this is luckily an easy 

task.  Adding a server means assigning the server the next available number, exposing the 

server to the Internet through a DNS, and updating the count of servers.  Removing a 

server is easy as it is just reversing the steps. 

 

In our solution we want to avoid leaving all load balancing decisions up to the client, 

because clients make guesses, not choices.  Servers have much better awareness of 

situations within the multi-server system than any client. 

3.2 DNS level 
A simple DNS-based approach is described in [6].  The DNS, or Domain Name System, 

is the first step a client takes to connecting to a server and receiving their content.  It is 

from the DNS that a client gets the information needed to connect to the server in the first 

place.  Rather than require users to know the IP of a server, they instead can ask a DNS 

for the IP of a server with a given domain name.  For instance, www.mywebsite.com is a 

domain name, which could be translated by a DNS to the IP 64.33.155.253 or any other 

IP for that matter.  Whenever the user requests www.mywebsite.com they are requesting 

the IP from their DNS. For more information about how the DNS works see [1]. 
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Some solutions make use of the DNS process by trading out the IP stored by the DNS 

when a server becomes overloaded with the IP of another server within the cluster.  No 

two servers within the cluster are exposed to the Internet at one time.  Instead, the servers 

must generate and use metrics to determine which server is the exposed server.  “This 

process allows the cluster DNS to implement many policies to select the appropriate 

server and spread client requests” ([6], p 29). 

 

DNS tables are updated based on a TTL value (Time-to-live), typical values of which are 

multiple days according to [1], so that clients are directed to several different servers over 

time through one domain name. When an amount of time passes equal to the TTL value, 

then the DNS updates the IP-Domain pairing to point to another server.  The modification 

of TTL values as described by the authors of [6] is to either have constant TTL values, or 

create a situation in which TTL values are adaptive in the face of load across servers.  

“Constant TTL algorithms cannot adequately address client request skew” ([6], p 31).  

Client request skew refers to a burst of client requests in a short amount of time.  An 

incorrectly assigned constant TTL could lead to overloaded servers.  In their adaptive 

TTL algorithms, the authors use both server and client state information in order to pick 

the best server.  Popular sites are given low TTL values so the DNS points to different 

servers more often.  The DNS server records all the load metrics, so servers and clients 

are not requested to do any extra work. 

 

Using small TTL values may at first seem like a good approach to add a particularly 

substantive amount of control. The authors of [1] indicate small TTL values will lead to 
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clients having to request IPs from the DNS more often, thereby increasing the network 

latency.  Scalability can be negatively affected by small TTL values as well because more 

requests are transmitted through the network, implying that an increase in network 

performance would have to occur as TTL values decrease.  Using TTL values of zero 

forces clients to request name translation every time they request pages, rather than 

relying on their own locally cached IP-Domain pairings.  Such statements point out the 

added overhead introduced into the network, thereby reducing the abilities of such a 

network to handle increased loads.  “The increase in network traffic due to additional 

UDP DNS packets is not insignificant” ([1], p 3). 

 

To be effective, DNS-based solutions are restricted to using TTL values much larger than 

zero.  The DNS was established with the idea that TTL values would be 1 day as 

minimums and 4 days for larger domains[1].  Such high TTL values provide an 

extremely low level of control in which changes cannot happen rapidly enough to handle 

bursts of clients or rapidly changing networks.  “The [DNS-based] policies are ineffective 

because with address caching, each address mapping can cause a burst of future requests 

to the selected server and quickly obsolete the current load information” ([6], p 32).  

Unless the managers of the servers are also managers of the DNS, there is no guarantee 

on response times for updates to the DNS lookup tables.  This is especially the case when 

one considers that there are many different DNS to which users connect to and receive 

information.  Each DNS must propagate its changes to each other DNS in turn.  This 

propagation certainly introduces a lag as the changes are passed along throughout the 

network of DNS.  At any point in this chain of propagation a large number of clients may 
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be connecting to DNS servers with outdated IP-Domain pairings, thereby directing clients 

to potentially overloaded servers. 

 

Another major drawback of this solution is that the DNS acts as a router to the various 

servers in this scheme, and therefore becomes a single-point-of-failure.  However, DNS 

are often set up to deal with many different users, and only respond with small packets of 

information, so they do not fit the characteristics of a bottleneck. 

 

In [17] the authors present a solution that involves clustering clients and directing clients 

in clusters to most beneficial servers through a DNS front end.  Measurements are made 

through passive means by examining TCP information to determine the distance of a 

client to the servers.  The DNS front end connects to a process they refer to as the 

Webmapper.  When the clients ask the DNS for a IP-Domain pairing, they would be 

connecting to a Webmapper enabled DNS.  Part of the Webmapper’s duty is to cluster 

clients based on a pattern in their IP addresses so that future clients that fit the pattern can 

be handled without delay.  Clients in a cluster, according to the measurements, are all 

located an equal distance from servers.  Measurements are made and updated periodically 

after some fixed interval of time has passed.  Clients are mapped to servers with a 

probability so that overloading the servers does not occur.  The DNS is updated by 

assigning a dynamic TTL with each DNS response.  Servers transmit load information to 

the Webmapper component through small 20 byte additions to served content.  The 

Webmapper uses the distance measurements and server load measurements in order to 

modify the DNS entries for IP-Domain pairings. 
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Their experimentation shows that their algorithm for calculating the distance to the client 

is sometimes wrong.  They indicate this is a problem due to the nature of DNS-based 

solutions.  In many cases determining a best server through DNS methods is very 

difficult.  Hence the reason their solution was wrong.  One key point they bring up is that 

DNS-based solutions cannot deal well with bursts of clients.  There just isn't enough time 

for the DNS to update the IP-Domain pairings of servers which are being saturated by 

client requests. 

 

With the apparent drawbacks of DNS-based solutions we want to avoid using the DNS 

approach as a primary means of load balancing.  DNS-based solutions may be a viable 

option in avoiding load under light situations but does not appear to be robust enough to 

handle high load situations. 

3.3 First connection 
There are a number of approaches that allow for redirection when the client first 

connects.  These approaches are quite useful when a server is already under load but 

present no load balancing for clients already connected. 

3.3.1 Dispatchers 

The authors in [6] supply details for a dispatcher-based approach in which a client 

connects to a dispatcher, which then redirects the client to any of a number of back-end 

servers.  This approach differs from that of DNS-based solutions because the dispatcher 

“has a single, virtual IP address” ([6], p 32).  Back-end servers are accessed by the 

dispatcher through private IPs as they are on an internal network.  The dispatcher is an 
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integral part of the Web-server collection rather than an external entity to which updates 

are made as that in the DNS-based approach.  This places a much greater level of control 

in the hands of the Web-server collection administrators. 

 

The central dispatcher uses one of three routing mechanisms to direct clients to servers.  

Dispatchers use “simple algorithms to select the Web server to manage incoming 

requests, as simple algorithms help minimize request processing” ([6], p 32).  A Client 

connects to a dispatcher.  The dispatcher then determines a suitable back-end server and 

directs the client requests to the server by one of three methods: packet rewriting, packet 

forwarding, or HTTP redirection [6].  In packet rewriting, the dispatcher examines all 

requests replacing its IP address with the pre-chosen back-end server's IP address, 

directing the packet to the server.  The IP in the response packet is normally the IP of the 

server from which the content is being delivered. In rewriting, this IP must be replaced by 

the dispatcher's IP address, either by the back-end server or the dispatcher itself.  In 

packet forwarding, packets are routed based on MAC addresses rather than IPs.  No IP 

replacing is required in this solution. HTTP redirection, covered below, also does not 

require IP address modification. 

 

In [14] the authors introduce a solution that incorporates the use of a cluster with what 

they refer to as a request distribution node, basically a dispatcher.  Clients connect to the 

cluster through one IP, which initially points to the distribution node.  The distribution 

node makes decisions about queueing requests for back-end servers.  Requests are 

queued at the distribution node in an ordered list so that they can introduce Quality of 
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Service.  Servers signal the distribution node when they are ready to handle a request.  

The back-end servers handle the request and respond to the client directly rather than 

going through the distribution node.  Back-end servers are assumed to share a storage 

system to guarantee all content is equal across them. 

 

They have introduced a method they call TCP splicing in which the distribution node 

makes the initial connection to a client in order to receive a request, then determines 

which back-end server to direct the client to, makes a connection to the server, then 

“splices” the two connections together to make a single communication channel between 

the back-end server and the client.  The back-end server must replace IP addresses in all 

responses to fool the client into thinking they are communicating with the distribution 

node.  This entails a lot of added process overhead for nearly everyone but the client 

involved in order to maintain the transparency desired by most load balancers, leading to 

a poorly scalable solution. 

 

Information about the load on back-end servers is gathered by the distribution node every 

10 msec.  This information includes CPU usage, disk access time, and network 

bandwidth.  With such a low cycle, the level of control is quite high, which is certainly a 

plus for load balancing.  When clients connect to the distribution node, the distribution 

node examines the request and, using the most recent load information, chooses a back-

end server that would best be able to handle the client's request. Having the back-end 

servers transfer information every 10 msec could get quite costly when there is a large 

number of back-end clients sharing one distribution node, so what the authors provide is 
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a method by which back-end server information is gathered in a staggered way so that 

only a few servers report the information at one time. 

 

[15] presents another solution with a dispatcher inserted between clients and back-end 

servers.  However in this solution they made attempts to be able to handle static, 

dynamic, and session-based connections.  The dispatcher relays all client requests to 

servers, and server responses to clients, examining server status with heartbeat messages 

every so often. Should a server become overloaded or go down for whatever reason, the 

dispatcher has enough information to continue serving the response from another back-

end server.  To avoid delays, the solution uses pre-forked connections to multiple back-

end servers.  This entails a connection overhead within the system as a trade-off to 

supplying the client with low latency responses.  Their inclusion of handling session-

based connections is an interesting side note.  The dispatcher keeps the state of how far 

along in a session a client is when dealing with the server.  It records information every 

time a client changes the state of the session.  An administrator dictates to the system 

what the different states are.  Servers handle states of the session until they have 

completed it in full, at which point they respond to the dispatcher with an 

acknowledgement that they are ready to handle the next state.  If a server becomes 

overloaded while handling one of the states, the dispatcher can migrate the connection 

and session over to another back-end server, handing the new server whatever session 

information it has stored from the last state. 
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The authors of [15] went on to implement the system using Java in [16].  Here a daemon 

runs on each back-end node to collect load information and report it to a dispatcher node.  

The dispatcher node also keeps track of which back-end nodes can handle particular 

content through a URL table.  Administrators can access the dispatcher node to 

add/remove servers and view load statistics in the system.  The authors have ensured 

cross-platform compatibility by writing in Java.  So whether content is hosted on Linux 

machines or Windows machines the solution will be able to run without too many 

modifications.  This would certainly assist in the adoption of the method by multiple 

content providers. 

 

These solutions face the problem of single-points-of-failure and bottlenecking.  All 

routing decisions are made by the dispatcher.  Should the dispatcher go out of action for 

any reason, whether that is maintenance or catastrophe, the back-end servers will never 

be reached.  Clients will be left without content until the dispatcher is put back into its 

place.  All clients connect to the dispatcher to gain access to content from any of the 

back-end servers.  If a large amount of clients connect to the dispatcher at the same time, 

then this solution may introduce an increased amount of response times as the dispatcher 

deals with the queue of backlogged client requests.  In packet rewriting dispatchers must 

examine all IP headers and replace IP addresses of servers and clients.  As the number of 

IP messages passed through the dispatchers increases the response times also increase.  

Such characteristics are not desirable in a system made to adjust load rather than cause 

load. 
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[6] offers no analysis of the fact that bottlenecking can occur.  The authors of [14] 

indicate a possible solution to bottlenecks is to create a two-tier system in which some 

dispatchers handle routing and others make decisions about which servers are to be used.  

However, this will still suffer from bottlenecking as some point as it is an unfortunate 

side effect of the design.  In [15] the authors suggest using multiple dispatchers to service 

requests, but this would lead to less transparency. 

 

One other problem with this set up is that the dispatcher and back-end servers must be on 

the same network if the algorithm involves packet rewriting or packet forwarding, 

implying they must all be located in the same geographic area [6].  Any attempts to 

incorporate servers from outside the internal network of the dispatcher would increase the 

amount of security threats inherent in the system.  What was an internal network, more 

secure than networks linked through significantly different geographic locations, is 

exposed across the vastness of the Internet. 

 

The privacy of the backend servers is a nice feature, but the bottlenecking attributed with 

the dispatcher nodes is a drawback.  We want to avoid bottlenecking if at all possible in 

our solution, so we cannot have just one entry into the multi-server system.  This means 

that we will not be able to hide backend servers from clients. 

3.3.2 URL rewriting 

In URL rewriting, HTTP reference links are updated every so often to point to different 

servers.  It could be the case that URLs are rewritten for every client who visits the page.  

Such solutions require dynamically changing pages rather than static ones introducing a 
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small overhead on the server machine.  Clients may not even visit the links which have 

been rewritten. 

 

One company that offers a lot of research and technology behind URL rewriting is 

Akamai.  They assist Internet companies delivering content to users through supplying 

URLs that change depending on server load.  URLs are assigned to all objects which the 

Akamai servers handle, which represent each object uniquely.  When a client visits a 

page, URLs pointing to various servers are used for content available to the client.  If a 

client clicks on a link, then they are served by a predetermined server.  According to 

Akamai's website, “Akamai routinely handles up to 15% of total Internet traffic-more 

than one billion hits every day” ([2]).  With so much of the traffic handled by this 

solution alone, it would seem this solution is a successful solution.  Akamai delivers 

everything from advertisements to media content using this solution, including some very 

high demand content for clients such as CNN.com.  The metrics collected by Akamai, 

however, are proprietary so we can supply no discussion about the actual logic behind 

their URL rewriting. 

 

If you are to visit the CNN Website [5], the only way you know content is being served 

by Akamai is by watching the status bar in the bottom of your web browser.  This 

solution is quite transparent to clients, requiring no decisions to be made by clients like 

that in mirrored content solutions.  You may notice the page loads a little slower than 

other websites, but it has a consistent load time even when top news stories hit the front 

page. 
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In [23] the authors present a solution that uses URL rewriting to direct specific users to 

different servers.  The client IP address, the client Web browser information, and cookies 

can all be used in determining how to rewrite the URLs.  This method is meant to be used 

in a Quality of Service arrangement in which some clients may be of higher status than 

others, but it has the potential for load balancing as well.  By handling only clients of 

higher status, and redirecting clients of lower status to other servers, the solution 

inadvertently sheds load from a server. 

 

One problem with URL rewriting as pointed out in [23] is the assumptions made that 

URLs used in rerouting clients are assumed to have not changed in the DNS.  Unless a 

tight coupling between the URL rewriting server and the DNS is established, then 

rewriting URLs could direct users to undesirable content or error pages.  Whatever tables 

the rewriter is using need to be checked and updated on a regular basis to ensure nothing 

of the sort happens. 

 

Another solution that uses URL rewriting is presented in [24].  In this solution, a server 

takes metric information periodically to determine its load.  If it sees that it is about to be 

overloaded it enters into a pre-overload mode in which it begins rewriting URLs of 

images and media content in all its pages.  Up until this time, the server acts as a normal 

server; it responds to clients with their requested content. 
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One problem we see with URL rewriting is possible problems with users bookmarking 

websites.  URLs are generated on-the-fly and are not guaranteed to point to the same 

location at future dates.  We instead use static server locations in our solution, with every 

server in the multi-server system storing content in the same place. 

 

URL rewriting also does nothing to help transferring large files because the clients are 

still left to download the files without possibility of redirection while they do so.  Such a 

solution does not present a flexible process for large file load balancing. 

3.3.3 HTTP redirection 

Redirection is supported as of HTTP 1.1 [22]. When a client requests content from a 

server, the server can redirect the client to another server by responding with a redirection 

message rather than the content. The protocol dictates a set of codes, which are found in 

the headers of HTTP responses. Clients and servers using programs that conform to 

HTTP 1.1 will understand the codes for redirection, and therefore not require any more 

software. According to the authors of [6], HTTP redirection “duplicates the number of 

necessary TCP connections” (p 35), and “HTTP redirection's main drawback is increased 

response time, since each redirected request requires a new client-server connection” (p 

36). The authors of [12] point out that “HTTP redirection is scalable, but not application 

independent” (p 2), which we will take to mean the required conformance to HTTP 1.1. 

 

In [21] the authors use HTTP redirection to ensure a particular Quality of Service. 

Administrators define some quality of service values, such as no more than 20% of 

network traffic should be devoted to ftp, on a quality of service server. Servers 
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periodically update a table of metric information, which they in turn report to the quality 

of service server. The table is updated after a server finishes any response. When a client 

connects to a server, the server checks with the quality of service server to make sure the 

quality of service values are not violated. The server asks the quality of service server 

whether it should handle the request, deny the request, or redirect it using HTTP 

redirection, to which the quality of service server responds with its selection. 

 

HTTP redirection is used by some dispatchers.  In dispatcher settings content servers 

must periodically report load information to the dispatcher. Based on the load 

information, the dispatcher redirects clients through the HTTP 1.1 method of sending 

back a redirection response with an address to the new server. The information may be up 

to date, but it may also be the case that servers haven't reported their information for 

some time. If the latter case happens to be true, then the dispatcher is redirecting clients 

on old information that could potentially lead to overloaded servers. 

 

When a server is in overloaded mode in [24], it uses HTTP redirection to take an ignorant 

stance with all new clients, while continuing to handle the requests of older clients. 

Servers in this solution continue to use HTTP redirection until they return to a normal 

mode of operations, progressing through the pre-overloaded mode again. 

 

HTTP redirection does not require any of the servers to have direct links to each other, 

although it would be necessary to have such links in order to properly gather load 

information. Due to this fact, the server distribution is not grounded in locality, IP 
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domains, or underlying software. All decisions are made by individual servers, rather 

than some dispatcher, thereby avoiding a single-point-of-failure. 

 

HTTP redirection is visible to clients in the form of longer response times. This negative 

characteristic stems from the fact that a client sends a request to an initial server, which 

then sends a redirection response to the client. The client must then connect to the new 

server and issue the request again. Without tightly coupled servers, the client could 

potentially be bounced back and forth indefinitely. 

 

In our solution, we want to be able to decide on redirecting traffic after a client has 

already connected to a server.  HTTP 1.1’s redirection capabilities do not include in-

stream redirection, so it does not pose as a viable solution. 

3.4 In-stream 
There are some approaches to load balancing that offer a method while the client is 

getting the content.  These in-stream approaches allow for decisions to be made no matter 

when the client connected.  Approaches that fall into this category afford administrators 

much more flexibility when deciding when to balance load. 

3.4.1 Web clusters 

In [7], the authors implemented a load balancer with an entry point into an internal 

network that provided external clients access to a cluster of servers. There are a number 

of nodes within the cluster: nodes with content and a node to gather and manage 

distribution within the cluster. Load in the network is reduced to routing packets to 

servers based on dynamic traffic information collected by the management nodes. 
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Content nodes gather load information and report this information to a master node. The 

management nodes then gather the information from master nodes in order to determine 

to which set of servers to direct packets. The solution involves the collection of five 

performance counters: available memory, processor utilization, total network traffic, 

number of connections, and number of client requests per second ([7], p 241). The 

number of client requests is determined by running an analyzer on client machines, which 

means modifications made to every client. 

 

Cluster membership is handled by humans interacting with consoles on the management 

nodes.  As content nodes are added, administrators assign them to master nodes.  The 

new content servers report to master nodes, who in turn report new membership to 

management nodes. Therefore scalability is automatically built into the system.  The 

paper does not go over many details about what sort of messages are transmitted over the 

network for membership, nor how often these messages are transmitted, so no analysis of 

the network overhead is indicated. 

 

Just as in the dispatcher-based solutions, we want to avoid the problems with 

bottlenecking experienced in clusters.  This means avoiding the use of management 

nodes to control load. 

3.4.2 Redirectable sockets 

In [12], the authors propose a change to sockets to implement a redirection method.  The 

authors introduce a protocol at the session layer rather than the network, application, or 
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transport layers. They have gone with this approach because they feel the network layer 

is too low of a layer, the application layer changes are not transparent, and the transport 

layer is still not at a high enough level. They are chiefly concerned with the amount of 

decisions already made at the particular levels. Lower levels deal with a lot of extra 

information that has nothing to do with redirection. Also of concern is the visibility by 

clients. Clients should not be exposed to redirection methods, and must avoid being dealt 

with in the application layer. 

 

To facilitate their redirectable sockets the authors created a protocol that dictates where 

redirection information is located and what the information looks like. What they do is 

wrap all transport layer data with a header that includes redirection information 

recognized by other modified sockets. To redirect a connection, a server simply adds the 

header to the response and the client connects to a new server. 

 

The overhead for the solution is indicated as roughly 1.5% over normal sockets, which 

means an increase in 1.5% of transmission time. 1.5% increase in time equates to less 

than a second for a 60 second download, and less than a minute for a 60 minute 

download.  Since most downloads fall between these two times, users will most likely not 

notice the overhead. 

 

As long as clients and servers include these modified sockets, that's all that is needed. 

The redirection logic is actually handled by some other program. This solution presents 

the means by which such a redirection program could implement redirection across 
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multiple computers but does not provide a protocol.  A protocol establishes a set of rules 

for which all future implementations of sockets are to follow. Those who adopt the 

protocol can implement it in any way they want so long as the end products generated by 

the implementation follow the protocol. 

 

A protocol makes it easier for others to adopt the solution for their own use. Making 

changes in the operating system is not necessarily an easy thing to do. Initially, the 

sockets could be adopted by individual users, but if the protocol and sockets were to 

catch on the change needs to be made in all future operating systems. 

 

In our solution we want to focus on designing a protocol that can be used across multiple 

computer architectures.  The protocol will also avoid making changes at the operating 

system level. 
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4 HTTP 1.2 SOLUTION 
Developing HTTP 1.2 involves looking at related works, identifying disadvantages, 

describing our intended goals, and building out a protocol to support those goals.  We 

draw upon existing elements of HTTP 1.1 to facilitate the necessary components of 

HTTP 1.2 in-stream redirection. 

4.1 Approaching a solution 
To begin formulating a solution, we begin by examining the disadvantages experienced 

with related works as a means of avoiding potential pitfalls and undesirable traits.  Then 

we create a list of features explaining how the solution should avoid the drawbacks.  

Next, the features are checked for conflicts where including one feature automatically 

leads to the failure of another feature.  In cases of conflict, one feature is chosen over the 

other in order of importance to the overall load balancing goals.  Finally, the list of 

features is condensed into a description of a desirable solution. 

 

Here is a list of drawbacks experienced by the various related works in no particular 

order: 

• There is a considerable lack of standards used across multiple content providers. 

• Some of the solutions are proprietary with no exposure of internal workings. 

• Single-point-of-failure or bottlenecking are common problems faced by many of 

the works. 

• The network layout is exposed to clients. 

• Clients may not be able to connect to the multi-server system the same way every 

time. 
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• Changes involved in the solution must happen at the operating system level rather 

than just applications. 

• Some solutions do not allow in-stream redirection. 

 

The next step is to take the list of drawbacks and rewrite them as features we want in our 

system to avoid the drawbacks.  We want a solution that: 

• Includes a standard that can be used across multiple content providers. 

• Avoids proprietary internal workings. 

• Avoids single-point-of-failure and bottlenecking. 

• Does not expose the network layout to clients. 

• Allows clients to connect to the multi-server system the same way each time. 

• Does not require operating system changes. 

• Allows for in-stream redirection. 

 

Most of the features do not conflict with each other.  However, we cannot safely avoid 

bottlenecking without exposing the network layout to clients.  We ultimately choose 

avoiding bottlenecking as a much more desirable feature than exposing the network 

layout to clients because if all nodes have load balancing capabilities it will not matter 

how the client gains access to the multi-server system. 

 

We can condense the features list further into a single sentence describing our intended 

solution.  We want a solution that provides a standard to use in-stream redirection at the 
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application layer without hiding internal workings while allowing clients to connect to 

the multi-server system consistently without bottlenecking or single-points-of-failure. 

 

Here a standard is a set of rules or regulations used to unify a potentially heterogeneous 

environment of clients and servers.  If all providers follow the standard, then a group of 

solutions that follow the standard will be compatible with other solutions in that group.  

This allows us to avoid dictating what server applications and client applications must be 

used to provide load balancing.  Furthermore, the Internet and applications follow 

standards in many situations in the form of protocols.  Therefore, our solution will be 

presented as a protocol. 

 

Existing protocols of the Internet can be examined and drawn upon to assess the abilities 

we wish to include in our protocol implementation.  TCP/IP[8] works at such a low level 

that we want to avoid dealing with it for sake of keeping our method simple.  HTTP 

proves to be a protocol in use that is more at the level we intend to concentrate on.  

However HTTP lacks the functionality for in-stream redirection.  More details on HTTP 

are provided in the next section. 

 

An augmented HTTP that allows for in-stream redirection addresses the application layer 

issue and also exposes internal workings because all decisions are exposed in text 

through the medium that is HTTP.  Allowing clients to connect to the system consistently 

every time while avoiding bottlenecks and single-points-of-failure is still an important 

feature we do not want to overlook.  We can achieve consistent connections by allowing 
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every server node in the system the ability to make load balancing decisions.  This is 

more of a network layout issue that will not be discussed ad nauseam in this text.  

However, if each node has the ability to make decisions, then the power is left in the 

hands of those in charge of the nodes. 

4.2 HTTP 1.2 Overview 
Our desired requirement statement for HTTP 1.2 is repeated to examine on a high level 

before going into the details of HTTP 1.2.  We want a solution that provides a standard 

to use in-stream redirection at the application layer without hiding internal workings 

while allowing clients to connect to the multi-server system consistently without 

bottlenecking or single-points-of-failure. 

 

HTTP 1.2 is not an entirely new protocol, but builds off of pre-existing elements of 

HTTP in such a way that adoption of HTTP 1.2 for servers and clients would require a 

short development cycle.  HTTP already operates at the application layer, so by 

extending HTTP we already support an application layer level of redirection. 

 

Clients should be able to connect to any server and be redirected by that server to another 

server.  This only requires the server to be aware of mirrored servers that make up part of 

the same “cluster.”  A cluster consists of servers with identical content from which clients 

can request.  By allowing clients to connect to any server we avoid the problems of 

bottlenecking and single-points-of-failure. 
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In-stream redirection will consist of the following set of steps: 1) a client connects to a 

server and requests content, 2) the server responds to the client by beginning to serve the 

content, 3) at some point during the transfer, the server becomes overloaded and informs 

the client to seek the rest of the content from another server, and 4) the client connects to 

the new server and finishes receiving the content going through steps 2 through 4 should 

the new server become overloaded. 

 

The benefits gained by this approach of in-stream redirection are: a) servers remain in 

control of load balancing, b) the granularity of control is determined by the server, and c) 

the cluster of servers does not have a predetermined size.  Even more for the last benefit, 

every server in a cluster does not need to know about every other server.  The more 

servers known by a server means a better load balancing because there is more potential 

redirection targets, but it is not required. 

 

Also, leaving the in-stream redirection at the HTTP level means if a client can request 

content from a server, the server is potentially part of a cluster.  Servers no longer need to 

be housed in the same server farm, or exist on the same Local Area Network.  The 

servers could potentially belong to different companies or organizations and managed 

completely separately. 

 

One last benefit gained is that HTTP 1.2 is not operating system or architecture 

dependent.  Servers running Linux with Apache as the HTTP server can interoperate with 

servers running Microsoft Windows with Microsoft IIS without problems. 
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4.3 HTTP 1.2 Implementation 
HTTP presents a unifying structure to the Internet because applications that deal with 

serving or downloading content use it as the standard means of communication.  A lot of 

work has already been done in adding some of the ideas behind multi-server systems into 

HTTP, such as byteranges and chunks, but it has not yet achieved the features we listed 

above as desirable features for a multi-server system.  We will go over the details that 

make up HTTP followed by details for HTTP 1.2. 

4.3.1 HTTP 1.1 details 

HTTP 1.1 is a text based protocol, meaning all communications are handled as a text 

stream from server to client and vice versa.  The messages transmitted in HTTP have two 

parts: information and data.  The information tells clients and servers what they are 

getting, or if any errors occurred, such as bad requests, and the data is the actual content 

associated with the information. 

 

Byteranges and chunks already show that the data can be split up into little text packets 

and communicated as such.  We intend to take this one step further and transmit not only 

these data packets but also some information packets with redirection information.  A 

client receiving data packets may receive an information packet with redirection 

information indicating to the client to get the rest of the data packets from another server.  

This accomplishes our goal of adding in-stream redirection to HTTP. 
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4.3.2 HTTP 1.2 details 

HTTP 1.2 is proposed as HTTP version 1.2 rather than its own protocol because it is 

meant to augment HTTP version 1.1 and so includes all the functionality of HTTP 

version 1.1 while introducing the desired new elements to support in-stream redirection. 

 

Introducing HTTP 1.2 as the new HTTP encourages future clients and servers to support 

HTTP 1.2 rather than include it as a possibility.  The transition to HTTP 1.2 can be 

incremental, as servers can recognize when clients are connecting with HTTP 1.1 or 

HTTP 1.2 and process the response as necessary.  Furthermore, this lends well to a 

formal adoption process similar to when HTTP 1.1 replaced HTTP 1.0, thereby allowing 

for a well described transition. 

 

Also, introducing the ideas behind HTTP 1.2 as a part of the de facto standard encourages 

future development leading to improved usage and support.  HTTP 1.2 as proposed in 

this document not complete, although some future ideas are presented in the Summaries 

section. 

 

One future concept that should be called out is the introduction of HTTP-based peer-to-

peer networks.  Packets, in-stream control messages, and subscription components of 

HTTP 1.2 can be combined to natively support distributed content. 

 

With a framework for in-stream control messages, people can continue to propose new 

control messages introducing entirely new concepts and abilities. 
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4.3.3 Packets 

Aside from generating the headers of the response to the client, we are also concerned 

with generating efficient packets.  We want to avoid including so much information at the 

beginning of each packet that it incurs a large overhead.  Instead we must keep the 

information brief and to the point.  A session ID is provided that can be used at the 

beginning of each packet to identify to which message the packet belongs.  The length of 

each packet and the total number of packets the client is to receive are also defined at the 

beginning of the entire message, so each packet does not need to include the length unless 

the packet is the last packet.  If the packet is a last packet, then it can have any number of 

bytes less than the packet-length defined in the initial headers, which must be defined 

somewhere in the packet headers.  Table 2: Packet header fields, shown in Table 2, 

provides a summary of the headers associated with each packet. 

Table 2: Packet header fields 

Header field Description 

PACKET Message type. 

Session-ID The session ID that appears in the initial 

response headers.  All packets related to a 

response will have identical Session-ID 

values. 

Packet-number The number of the packet if aligned in 

offset order with the other packets. 

Packet-length The length of the packet if it is the last 

packet.  All other packets will have a 

length equal to that specified in the initial 

headers. 

 

Control messages as defined below include a keyword as the first entry of the message.  

The keyword PACKET is used in the front of every packet.  This makes it easier for the 

client to identify the packets from the control messages. 
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The PACKET format is demonstrated in the following example. 

PACKET CRLF 

Session: <Session-ID> CRLF 

Packet-number: <Packet-number> CRLF 

[Packet-length: <Packet-length> CRLF] 

CRLF 

4.3.4 In-stream control messages 

In-stream control messages are the way in which a server can issue commands to clients 

between packets.  We define two control messages below.  We have provided a message 

for redirecting a client to another server and a message for suspending a client for a 

specified amount of time.  Both messages are meant to assist in load balancing on the 

server by providing the means of informing clients to stop using the current server.  We 

believe the SUSPEND message is a novel approach to load balancing that involves 

having clients wait instead of being redirected to another server.  In our Analysis section 

we only explore the REDIRECT message, and leave the SUSPEND message for future 

work, although it is described below. 

4.3.4.1 REDIRECT message 

If a server becomes overloaded or predicts it will become overloaded, then it needs to 

shed load.  In HTTP 1.2, the server can do this by issuing clients REDIRECT control 

messages.  The important factors in deciding what makes up a REDIRECT control 

message are the functions that it needs to serve: 

• The control message must provide other servers from which the client can 

RESUME their download, see section 4.3.4.3. 
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• The control message must allow servers to pass messages to each other through 

the client.  Such information may be state information as in the case of an online 

store, or even more sensitive information.  This information is defined as the 

payload of a control message. 

• The control message must provide a time limit after which the client can return to 

the current server should the client not be able to connect to other providers. 

A REDIRECT message may have a payload attached to it if indicated in the headers.  A 

payload is information that the server requires the client to pass on to the next server.  

This could include state information to help the next server decide how to handle the 

newly redirected client.  For example, if a client is downloading a file that is subject to 

change frequently, the payload could consist of file information such as a MD5 hash, last 

modified date, path, etc., so the new server can easily identify if the file it has is really the 

one sought after by the client. 

 

The details regarding the payload are left to be determined by individual implementers 

and therefore will not appear in this work.  One suggestion for any parties considering 

payloads is to have the payloads encrypted with a method known to both servers.  The 

payloads could contain vital information that should not be allowed to be intercepted by 

unwanted third parties. 
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Table 3: REDIRECT header fields 

Header field Description 

REDIRECT Message type. 

Server-list A colon delimited list of servers from 

which the client can issue RESUME 

methods to finish the download. 

Payload-length The length of the payload.  This value will 

be 0 (zero) if there is no payload. 

Time-limit A length of time in seconds that the client 

must wait before returning to the current 

server should it not be able to connect to 

other servers.  This is like the case of the 

SUSPEND control message as defined in 

the next section. 

Payload The payload data as defined above. 

 

To better illustrate the REDIRECT message format we’ve provided an example below. 

REDIRECT CRLF 

Servers: <server-list> CRLF 

Packet-number: <packet-number> CRLF 

Payload-length: <payload-length> CRLF 

Time-limit: <time-limit> CRLF 

[<Payload> CRLF]  

CRLF 

4.3.4.2 SUSPEND message 

When a server becomes overloaded or predicts it will become overloaded, the server may 

choose to have clients suspend downloads and return at a future time to finish.  This is 

useful in scenarios where there may not be other servers with identical content or if the 

server needs to have clients reconnect directly to the same server.  Some scenarios are as 

follows: 
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• There is too much state information to encapsulate as a payload without incurring 

large network loads. 

• There are no other available servers to handle the client’s request. 

• Clients have been guaranteed to be served by one server only. 

• The server has determined all other available servers are already overloaded.  This 

may require tight coupling between servers or period testing from server-to-

server. 

A SUSPEND message may have a payload attached to it just as in the REDIRECT 

message shown above.  However, in this case because the client is going to reconnect to 

the same server, the payload would most likely be abbreviated with most of the 

information still stored on the server.  One example would be for the server to pass on a 

session ID to the client through a payload so the server knows where to look up stored 

data when the client returns. 

Table 4: SUSPEND header fields 

Header field Description 

SUSPEND Message type. 

Time-limit A length of time in seconds that the client 

must wait before returning to the current 

server. 

Payload-length The length of the payload.  This value will 

be 0 (zero) if there is no payload. 

Payload The payload data as defined above. 

 

To better illustrate the SUSPEND message format we’ve provided an example below. 

SUSPEND CRLF 

Time-limit: <time-limit> CRLF 

Payload-length: <payload-length> CRLF 
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[<Payload> CRLF]  

CRLF 

4.3.4.3 RESUME method 

A client who has been redirected by a server will contact a new server using the 

RESUME method rather than the standard GET method. 

 

A client will also use the RESUME command if previously issued a SUSPEND message 

as noted later.  The procedure is handled as though the client was redirected, except the 

redirecting server and the redirection server are the same server.  This is useful especially 

in quality of service cases where some clients are allowed to continue downloading while 

others must wait. 

 

Lastly, a client can use the RESUME method if they have already received part of some 

content, but a previous connection was terminated voluntarily or involuntarily.  For 

example, a modem user attempting to download a driver file receives half of the driver 

file and is disconnected.  Rather than start the entire file download over, the client can 

issue a RESUME method to the server and receive the rest of the content.  This process is 

useful for both fault tolerance and large files. 

 

The RESUME method differs mainly from the GET method by allowing content 

following the headers.  Normally a GET method includes only headers.  However, as is 

provided in details under the REDIRECT message, an in-stream redirection may include 

a payload, which needs to be handed off to the next server.  Using the standard GET 
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method would not allow the payload to be handed off by the client because the new 

server is not expecting anything passed the GET method headers. 

 

Creating the RESUME method rather than modifying the GET method is ideal because 

the GET method will be used many more times than the RESUME method.  Since the 

RESUME method will require extra headers this implies extra overhead over the 

traditional GET method.  We avoid the extra overhead by defining the RESUME method 

based on GET but with some extra required headers. 

 

4.3.4.3.1 GET headers 

Rather than define a whole new set of headers, all the headers normally found in a GET 

method call are available in the RESUME method call.  For further information regarding 

the required and optional headers see [22]. 

 

One header field we are chiefly concerned with is the Host header field.  The Host field 

“specifies the Internet host and port number of the resource being requested, as obtained 

from the original URI given by the user or referring resource” ([22], section 14.23).  This 

fits our intention perfectly because we want the new server to know whence the client 

was redirected. 

4.3.4.3.2 New header fields 

In order to facilitate the RESUME method we need to add some more header fields to the 

list offered by the GET method.  There are a few items that need to be addressed by 

appropriate header fields: 
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• The new server must be made aware that a payload exists or does not exist. 

• If a payload exists, then the new server needs to know the length of the payload. 

• The new server needs to know the list of servers for which the client has already 

attempted RESUME methods.  This will avoid the server sending a client to a 

server the client has already attempted with failure.  Such a scenario could lead to 

an endless loop of redirection should two servers be too overloaded. 

Table 5: RESUME method fields 

Field Description 

RESUME Method type. 

Payload-length The length of the payload attached to the RESUME 

file in hexadecimal notation.  The value of this field is 

0 (zero) if there is no payload. 

Servers A colon-delimited list of servers for which the client 

has already issued RESUME methods.  The colon 

character is not allowed in URLs, so we can use it as 

the delimiter in our list. 

 

4.3.5 HTTP 1.2 Header Fields 

New headers are needed in the response to the client in order to inform the client of 

particular redirection parameters.  The headers are an addition to those included in the 

HTTP 1.1 responses but will only appear when HTTP 1.2 is used by the client and server. 
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Table 6: Header fields and acceptable values 

Header field Description 

Packet-length An integer value greater than 0 

to indicate the byte length of 

the packet. 

Number-of-packets An integer value greater than 0 

indicating the total number of 

packets in the transmission. 

Session 10-digit hexadecimal value 

shared by all packets in the 

transmission. 

4.3.5.1 Previous header fields 

All header fields included in HTTP version 1.1 are included in version 1.2 for backwards 

compatibility.  For more information regarding previous header fields refer to [22]. 

4.3.5.2 New transfer encoding header value 

Splitting the content into packets serves as an encoding of the HTTP message in order to 

transfer it “safely” as defined in [22], section 3.6.  This means that we must specify a 

transfer encoding in the transfer-encoding header field.  The following line will appear as 

a header field in the response message. 

transfer-encoding = “packets” 

Just as in chunking, the packets encoding must be the last encoding applied to the 

message.  Chunking and creating packets are mutually exclusive and cannot both be 

applied to a message. 

4.3.5.3 Packet-length 

The server splits content up into packets of a fixed and constant length.  The length is 

indicated in the “packet-length” header by an integer value greater than zero.  The packet 

length cannot change over the course of serving an entire piece of content. 
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4.3.5.4 Number-of-packets 

A server can determine the number of total packets that will be served to a client using 

the packet-length discussed above.  This will allow clients to keep track of missing 

packets based on packet number rather than total number of received bytes. 

4.3.5.5 Session 

If the content is split into packets, then a unique session ID is created and attached both to 

the initial response to the client as well as each packet.  The session ID is a 10-digit 

hexadecimal value.  A session ID is required to mark all packets belonging to one 

transmission.  This is important if a connection between a client and server is used to 

transmit multiple files concurrently to avoid mixing packets. 

4.4 Example 
An example will help illustrate what content might look like with control messages. 

1. The client issues a request. 

GET /file.mp4 HTTP/1.2 

2. The server finds the file and responds with the packetized file. 

200 HTTP Ok 

[HTTP headers] 

Transfer-encoding: packets 

Number-of-packets: 202 

Packet-length: 2000 

Session: 149AC2BB80 

 

PACKET 

Session: 149AC2BB80 

Packet-number: 1 

 

[2000 bytes of packet data] 

 

PACKET 

Session: 149AC2BB80 

Packet-number: 2 
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[2000 bytes of packet data] 

 

3. The server discovers it is becoming overloaded and issues a REDIRECT control 

message. 
 

REDIRECT 

Session: 149AC2BB80 

Servers: server1:server2:server3 

Packet-number: 3 

Time-limit: 10000 

Payload-length: 0 
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5 HTTP 1.2 CLIENT/SERVER APPLICATION 
IMPLEMENTATION 

The main contributions provided here are the protocol modifications that make in-stream 

redirection possible.  The implementation is focused on a proof of concept for dealing 

with in-stream redirection control messages without developing the SUSPEND message.  

We are presenting the policy by which programmers of Web-based software will adhere 

and implement in their own ways. 

 

First we will begin by approaching the implementation by providing pseudo-code, see 

Pseudo-code 1 and Pseudo-code 2, which details the steps involved in the programming 

of HTTP 1.2.  This will serve as a guide to those who will need to modify or create 

software projects to use HTTP 1.2.  There are two pieces to the pseudo-code because 

both clients and servers must be modified to use HTTP 1.2. 

Pseudo-code 2: Client 
Submit a GET request to a server 

IF server response is HTTP 1.2 AND is marked for packets THEN 

    WHILE there is data ready to read from the socket 

        READ from the socket 

        IF data IS packet THEN append to file 

        IF data IS control message THEN 

            IF control message IS redirect THEN 

                Connect to another server using the RESUME method 

            END IF 

        END IF 

    END WHILE 

END IF 
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Pseudo-code 3: Server 
IF receive GET request from client AND request is http 1.2 THEN 

    IF content length < threshold THEN serve as in 1.1 

    ELSE 

        WHILE there is still data to send 

            IF load state IS overloaded THEN send redirect message 

            ELSE send packet 

            END IF 

        END WHILE 

    END IF 

END IF 

 

Line 2 of Pseudo-code 3 includes the keyword threshold, which requires a bit of 

explanation.  The threshold is a number indicating the amount of bytes that can safely be 

served by a server by means of a standard HTTP 1.1 transmission rather than breaking 

the content into packets.  When servers have virtually zero load, it is wasted effort to 

break up content.  Further discussion is provided about developing an accurate and 

effective threshold, see section 8. 

 

We chose to make a proof of concept for both a server application and a client 

application.  The intension is not to make fully distributable applications with highly 

polished algorithms and full documentation.  Instead we want to showcase that HTTP 1.2 

can be effectively used to create a load balancing method. 

5.1 Apache 
Rather than create our own server application we chose to use Apache’s HTTP Server[4].  

Apache’s HTTP Server is available as open source code and easily modified.  The 

architecture of the code helps us add in our HTTP 1.2 without having to overhaul the 

entire code. 

 



 52 

As of version 2.0, Apache introduced what they call Bucket brigades and the Filter chain.  

Basically bucket brigades are data containers used to break content up into more 

manageable segments.  This fits perfectly with our desire to send content as packets.  

Furthermore, the filter chain allows filters to modify the content as it makes its way to the 

client. 

 

Figure 3: Flow through Apache 

 

Filters can be written separately from the main source code and enabled through some 

configuration files.  This makes our chore of adding support for HTTP 1.2 quite easy 

with Apache’s API.  We created a filter at Step 4 to generate our new HTTP 1.2 headers, 

see Appendix A.  We also altered how the content is transferred to the client so we 

created a filter at Step 5, see Appendix B. 
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Our header filter generates the required new headers to facilitate the packet transfer 

encoding including the number of packets and the packet size.  The packet size is saved 

as an environment variable, which is Apache’s form for global variables.  We have the 

luxury of being able to change environment variables outside the code through 

configuration files read in when the application is started.  This means changing the 

packet size is quite easy. 

 

Our transfer filter creates packet headers and sends packets to the client.  In between 

sending packets, the filter also does some rudimentary metrics to determine if the client 

needs to be redirected.  The metric is based on how many clients are concurrently 

receiving content and how big is the content.  The more clients and bigger the content, 

the more likely the filter is to redirect clients.  The actual numbers that dictates how many 

clients and size of content that constitute enough load to redirect is dependent on the 

computer system running the server application.  Developing optimal methods for 

developing suitable load characteristics is outside the scope of this work. 

5.2 HTTPerf 
For our proof of concept we also want to have a client that can do some load measuring, 

metric collection, and reporting.  HTTPerf[18] is an application that is meant to generate 

high traffic loads and measure the performance of the HTTP server.  The code is 

originally designed to work with HTTP 1.1, so there were a number of modifications 

needed to bring it in line with HTTP 1.2 proposed in this paper.  These modifications 

consisted of coding the pseudo-code, provided in Pseudo-code 2: Client above.  HTTPerf 
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was designed to be somewhat modular so we were able to modify the request generator 

code for the standard HTTP request process, see Appendix C. 
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6 ANALYSIS 
We needed to establish in which cases HTTP 1.2 makes sense to use and what sort of 

performance gain or loss was encountered through the use of HTTP 1.2.  We ran a series 

of tests using both unmodified and modified versions of both Apache and HTTPerf.  The 

results are then compared against each other with conclusions drawn about the usefulness 

of HTTP 1.2 in particular situations.  We go into the analysis knowing HTTP 1.2 will not 

perform well in some situations as there is more for both the server and client to do.  

However, it is our goal to determine the areas in which HTTP 1.2 will prove useful. 

6.1 Overhead 
The first experiment measures the amount of overhead introduced both in size of the 

content and the amount of time for transfer of content that is served in packets but never 

redirected.  In many cases a server may break content into packets without ever having to 

redirect clients, so this is an important measure of the affect when the server is in normal 

operations.  Overhead of all underlying transport methods, including TCP/IP 

encapsulation, socket layer overhead, OS overhead, and HTTP 1.1 standard overhead, are 

included in these results but not separated out for individual analysis. 

6.1.1 Configuration 

The computers in use for this experiment are Compaq 2.4 GHz machines running Linux 

RedHat 9, kernel version 2.4.20 attached to a 100 Mbps LAN.  One computer is the 

server, and the other computer is the client. 

6.1.2 Results 

The test was run against content that was not broken up into packets, a packet size of 

1150 bytes, 2650 bytes, 4150 bytes, and 5650 bytes.  These values were considered due 
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to the Maximum Transmission Unit(MTU) as defined in TCP as 1500 bytes.  The idea 

being, content plus header information will be spread across MTUs as little as possible.  

Table 7 shows how long it took to download files of particular sizes across the LAN as 

well as % of the download that was overhead. 

Table 7: Overhead test results 

Packet size 8 KB file 600 KB file 6 MB file % Overhead 

Content not in packets .001 s .052 s .504 s 0 

1150 bytes .002 s .057 s .793 s 8.5 

2650 bytes .002 s .054 s .525 s 3.9 

4150 bytes .002 s .053 s .517 s 2.5 

5650 bytes .002 s .053 s .514 s 1.9 

 

What we see from the results is that the larger the packet size, the less time it takes to 

download the entire content and the less overhead incurred for packetizing.  We expected 

the packet size of 1150 bytes, which should not span across more than one MTU, would 

be the fastest, but Apache may include some sort of buffering code later on down the line 

of command.  However, the smaller the packet size the more times the system has to 

decide if redirection is required.  This is a classic trade-off between granularity of control 

and overhead.  It is our intention to leave the decision ultimately up to the server 

administrators as to what packet size to use.  We will see in later results that the 

underlying buffering done by Apache negatively impacts our implementation of 

redirection. 

6.2 Requests per second 
HTTPerf reports the maximum requests per second as a metric.  We can use this as a 

measurement of how capable a server is of handling client load.  A high request per 

second ratio is ideal, because that means the server is able to fulfill client requests 

without dropping them. 
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6.2.1 Configuration 

This test was run using four HP Kayak Pentium II 450 MHz computers with 192 MB 

RAM running Fedora Core 2.  The computers were connected through a 10/100 Mbps 

switch with static IPs.  Two of the computers were used as HTTP 1.2 servers, one was 

used as a HTTP 1.1 server for control purposes, and one was used as the client. 

6.2.2 Results 

The test was run for both HTTP 1.1 and HTTP 1.2 with different file sizes of 2 KB, 20 

KB, 200 KB, and 2 MB and different amounts of client connections including 2, 20, 200, 

and 2000. 

 

Clients were redirected at receiving 50% of the content regardless of actual server load.  

This is a very rudimentary load balancing method meant to illustrate a fixed test to 

compare repeatable results. 
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Figure 4: Average requests per second 

 

What we can see from Figure 4 is the regular implementation of HTTP 1.1 with no 

redirection does very well with a size of 20 KB and 100 client requests but that HTTP 1.2 

with redirection edges slightly ahead on further sizes and increased number of client 

requests.  There is a significant drop off from 100 client requests to 200 client requests 

and then an increase in responsiveness when the client requests increases to 300.  This 

pattern, although odd, was repeatable in subsequent experimentation.  Apache may be 

using some sort of caching mechanism in the increased number of client requests. 

 

Of significant importance is that HTTP 1.2 with redirection handles an average 3% more 

requests per second than HTTP 1.1 with the biggest gain of 34% occurring at 300 client 

requests with a file size of 200 KB.  We actually expected an even bigger improvement 
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using HTTP 1.2 because there are two servers in use rather than just one used in HTTP 

1.1. 

6.3 Net I/O usage 
Since our new method requires clients to open new connections to the redirection server, 

this added connection introduces a new overhead.  We need to test to see what kind of 

overhead is associated with creating these new connections. 

6.3.1 Configuration 

The same hardware configuration was used in this test as in the previous test.  Refer back 

to section 6.1.1 for details. 

 

The test was run for both HTTP 1.1 and HTTP 1.2 with different file sizes of 2 KB, 20 

KB, 200 KB, and 2 MB and different amounts of client connections.  As in the test for 

replies per second, the metrics for the 20 MB files and above were not helpful and are not 

reproduced here. 

6.3.2 Results 

The backbone of the network is a 10/100 Mbps switch, which means throughput rates are 

quite higher than what most people have at home.  With such high throughput rates, the 

time associated with new connections is actually more of an overhead than that for lower 

throughput rates.  This is because setting up a new connection is relatively constant no 

matter what connection speed a client has. 
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Figure 5: Net I/O usage 

The results in Figure 5 indicate the implementation of HTTP 1.1 has a higher throughput 

rate than HTTP 1.2.  We would expect this as the act of redirecting takes away from 

actual data transfer enough to show in the throughput rate.  However, we do see that 

HTTP 1.2 with redirection has a better overall throughput rate than HTTP 1.2 without 

redirection. 

 

The theoretical throughput limit for a 100 Mbps connection in KB per second is 12,500 

KB per second.  Although none of experimental results indicate rates reaching this high, 

the HTTP 1.1 implementation gets the closest with a top rate of 11,478 KB per second.  

Given a 1 Gbps connection, we may see HTTP 1.1 increase even further ahead of HTTP 

1.2. 
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6.4 Testing in the Cloud 
There is something to be said for testing in an environment as close to a real-world 

example as possible.  In an attempt to match real-world performance we used Amazon 

Web Services Elastic Compute Cloud to stage virtual HTTP servers to host both the 

original HTTP daemon as well as our redirecting HTTP daemon. 

6.4.1 Configuration 

Servers were staged in the Elastic Compute Cloud as small instances with a single core 

processor, 1.7 GB of RAM, and a 10 Mbps connection to the Internet running Ubuntu 

8.10.  The client was staged as a virtual machine on a computer running VMware Server 

with a single core processor, 512 MB of RAM, and a 1.5 Mbps connection to the Internet 

running Ubuntu 8.10.  In the case of testing redirection two servers were staged in the 

Cloud: one to operate as the primary server and one to operate as the secondary server to 

which clients are redirected. 

 

The client made 1000 sequential requests to the server for a 300 KB file.  The file was 

chosen prior to testing at random out of a set of large files.  The results include the 

average time it took to fulfill a request.  We let HTTPerf issue the requests and handle 

responses at the rate it deemed appropriate. 

 

We wanted to see how the performance changed when the servers were operating at 

normal conditions versus operating under loaded conditions.  Redirection is meant to help 

when the server is under extreme load so we wanted to see if this was the case.  Load was 

generated against the primary server by running HTTPerf on the server running local 
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requests with the hog parameter, meaning it would use as much local resources as 

possible to fulfill the requests. 

 

Just as in the previous tests we also wanted to see the impact introduced by packetizing at 

different sizes and redirection points.  Packet sizes were tested using 1000, 2000, 3000, 

and 4000 byte packets.  Redirection points, the percentage at which a client is redirected, 

were tested using 10%, 30%, 50%, 70%, and 90%. 

6.4.2 Non-loaded Results 

 
Figure 6: Non-loaded Server: Redirection vs. Time/Request 

The results in Figure 6 indicate redirection negatively impacts performance when a server 

is not loaded.  This conclusion comes as no surprise based on our previous tests that show 

packetizing when no redirection is intended means extra work.  What is surprising is how 

poorly increasing the packet size affected performance.  The 1000 byte packet method 
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remained relatively stable while all others show a significant decrease in performance as 

the redirection percentage increased.  This matches how we originally predicted keeping 

packet sizes below the MTU would perform, so in this case it worked well packetizing in 

smaller sizes.  As the packets grew the data was spread across multiple TCP/IP packets.  

On a LAN, such as our previous tests, this presents a lot less of a problem than when 

making multiple hops over the Internet going through multiple switches and routers that 

each deal with the TCP/IP packet sizes. 

6.4.3 Loaded Results 

 
Figure 7: Loaded Server: Redirection vs. Time/Request 

The results in Figure 7 indicate redirection is beneficial for a loaded server.  The amount 

of effort to produce the content in packets is the driving factor here as the results indicate 

using larger packets, thereby requiring less packetizing at the HTTP daemon level, leads 

to better overall performance.  The benefits of packetizing are diminished as the primary 
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server takes on more of the load, redirecting to the secondary server later in the lifetime 

of requests.   

 

These results more closely match our previous LAN-based tests indicating the larger 

packets led to better system performance due to overhead of smaller packet sizes and 

internal Apache mechanisms. 

6.4.4 Random URI Usage 

We recognized the OS may be doing some level of caching when fetching the same file 

over and over again.  We wanted to test using a random URI from a list of URIs in order 

to realize if caching in the OS was skewing any results.  Through some simple 

modifications to HTTPerf we were able to get it requesting a random URI from a list of 

50 files of equal size.  The files were in fact copies of the 300 KB file used in the normal 

testing. 

 

After running all the same tests we did not find the caching done by the OS led to any 

noticeable gains or losses in performance. 

6.4.5 Response Data Processing Overhead 

HTTP 1.2 processing has an inherent overhead over HTTP 1.1 due the need of inspecting 

the data in HTTP 1.2 for in-stream control messages.  HTTPerf does not inspect HTTP 

1.1 data.  We wanted to identify what sort of impact this had on the processing of 

requests.  HTTPerf collects samples of response processing times and includes those 

times in its standard set of statistics.  We inspected those statistics to discover the 

overhead of HTTP 1.2 data processing. 



 65 

Response processing overhead (s)

0.02

0.19
0.17

0.14
0.12

0

0.05

0.1

0.15

0.2

None 1000 2000 3000 4000

Packet Size

R
e

s
p

o
n

s
e

 p
ro

c
e

s
s

in
g

 t
im

e
 

(s
)

 

Figure 8: Response processing overhead (s) 

The results illustrated in Figure 8 show that there is a significant difference in processing 

the data in HTTP 1.1 responses and HTTP 1.2 responses.  In the case of 1000 byte 

packets the difference is .17 seconds per response.  In our testing we are using only one 

client to process all the requests and responses for 1000 responses.  We believe this 

would be less in the real environment where the responses are spread across a number of 

clients. 

6.5 Summary 
In all the tests where HTTP 1.2 without redirection was tested against HTTP 1.2 with 

redirection, redirecting proved to be beneficial.  This indicates that having a secondary 

server to deal with requests when the primary server is saturated can present beneficial 

performance gains.  However, there are definitely indicators that HTTP 1.2 could be 

detrimental to performance even with the benefits of redirection. 
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All client load in our testing was generated on a single computer, whereas in the real 

environment multiple computers would be acting as clients.  It is quite possible the single 

client in our testing is creating a bottleneck, which we cannot avoid.  It is certainly not a 

trivial activity to arrange hundreds of client computers for testing and so was not 

considered in any of our analysis. 

 

The key indicator to use when deciding if redirection will be beneficial is based on the 

network speeds.  On LAN-based speeds there is virtually no reason to use HTTP 1.2.  

The overhead and hassle of running two servers outweighs the performance gains by 

using HTTP 1.2.  However, HTTP 1.2 can be beneficial when clients connect to servers 

over the Internet because the work done to packetize data is less than the benefits of load 

balancing across the two servers. 

 

It might go without saying, but another major factor in deciding to use HTTP 1.2 is the 

possibility for high-demand content.  As HTTP 1.2 performs weaker than HTTP 1.1 in 

day-to-day tasks due to overhead even when not redirecting, an environment where 

content is not in high-demand from multiple clients at one time, or in which the servers 

are significant enough to not incur saturation, would not benefit at all from HTTP 1.2.  In 

these cases HTTP 1.1 is the winner and HTTP 1.2 should not be used. 

 

The conclusion that must be drawn is that HTTP 1.2 is most useful only when clients 

connect to the servers over the Internet and when content on the servers is in high-

demand most of the time or gaining access to the content when in high-demand is crucial.   
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HTTP 1.2 could also be useful when trying to guarantee QOS to a subset of clients.  In 

this scenario special treatment could be given to some clients by redirecting them to 

secondary server when load situations arise on the primary server. 
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7 CONCLUSIONS 
We set out to show that redirection with a modified version of HTTP would increase the 

performance when serving a file from a server subject to overloading.  The results do 

indicate some performance gain in some areas, but it is not enough at this time to warrant 

widespread use of a new version of HTTP.  However, the implementation done during 

this work was intended more as a proof of concept rather than a final solution, and as 

such has certainly served its purpose.  A revisit into Apache’s HTTP server or other 

HTTP server implementation may result in findings to increase the performance of HTTP 

1.2 with redirection. 

 

The changes proposed to HTTP are not overly complex, and introduce a new feature into 

an otherwise complete and “finalized” protocol.  Internet resources increasingly become 

distributed across multiple servers, as is the case in many open source communities
[20]

, 

and a need for dealing with distributed content in a controlled and described manner 

remains.  A solution in the form of modifications to HTTP can help guarantee cross-

platform and cross-company adoption.  Standards and protocols exist to reduce confusion 

and expense on the part of clients and entities owning the servers. 

 

Finally, the implementation of HTTP 1.2 provides server administrators with a level of 

control not afforded by other implementations.  They can use a multitude of operating 

systems, data structures, and patterns of server distribution and network topography.  

Assuming a client uses a HTTP 1.2 enabled browser, the administrator is guaranteed the 

tools to implement a distributed content system, with no need to force clients to install 
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new software.  Even more important is that HTTP 1.2 can be used in conjunction with 

most, if not all, the other methods for load balancing visited in this paper.  Such a 

combination would introduce a level of load balancing far more powerful than what is 

currently available. 
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8 FUTURE WORK 
Much like any new development, further development can introduce new ideas and 

concepts that never existed or were possible in the previous environment.  Below you 

will find a few ideas we have for new features and improvements. 

8.1 File size threshold 
The idea behind defining a file size threshold is meant to avoid wasted efforts by a server 

when load is particularly low.  Splitting files into packets takes more server effort than if 

the server just served content strait.  The only reason to split content into packets is when 

a load is expected to degrade a server’s ability to serve content to clients. 

 

If a server is serving particularly small content, then the chance that load balancing 

decisions will be required during the time it takes to serve the content is small.  So, we 

suggest setting a threshold value that defines the minimum size required of content in 

order for the server to split the content into packets.  The threshold will most likely vary 

from server to server and will require some experimental research to establish a sufficient 

threshold value. 

 

The threshold will be determined by two main questions.  How fast is the server’s 

connection to clients?  What is the performance specifications of the server’s hardware 

configuration?  A faster hardware usually indicates the ability to handle more clients than 

that of a slower system.  A faster Internet connection increases the capacity at which the 

server can respond to client requests and digest client requests.  The threshold is therefore 
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directly proportional to the answers provided to these two questions.  A faster hardware 

setup and faster connection will both allow for a higher threshold. 

8.2 Web browser 
The proof of concept for this work was done using a performance measuring tool, which 

is not fully featured like a popular web browser such as Mozilla’s Firefox[19].  In the 

future we hope that the protocol will be implemented in web browsers to prove that it can 

be useful in viewing web content or in a download manager. 

8.3 Concurrent connections 
By splitting the content up into packets it is quite possible that a client can get packets 

from different servers at the same time.  For instance, a client could connect to two 

servers getting the first half of the content from one server and the second half of the 

content from the other server at the same time.  If both servers upload at 100 Kbps but the 

client can download at 200 Kbps, then the client will be able to download the content 

twice as fast as if they downloaded from one server alone.  This technique is commonly 

referred to as pipelining. 

8.4 Striped content 
Clients are receiving packets from servers rather than the entire content all at once.  We 

can make use of this fact by hosting only some packets by servers.  This is referred to as 

striped files[10].  Striping files is a way of backing up files without storing the entire file 

in one place.  This means that if one server gets corrupted only part of the file is lost, and 

if the part is hosted by another server then the file can be easily recovered. 
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Striping files can also be considered a security measure, especially when talking about 

Internet sites.  A client can only get a file it they have access to all the servers that host 

the segments of the file.  So even if a client were to manage to get passed other security 

measures and get a part of the file, they would have to overcome the security measures of 

all the servers in order to obtain the file.  This can prevent illegal downloading of some 

content. 

8.5 Extra methods 
We concentrated our work on the RESUME method but there are a few messages that 

can be considered in achieving the peer-to-peer network functionality. 

8.5.1 SUBSCRIBE method 

HTTP 1.2 is meant to work hand-in-hand with multi-server systems hosting identical 

content.  One feature that needs to exist is an easy way for servers to notify other servers 

of their intention to host identical content.  The SUBSCRIBE method is introduced to 

facilitate just such a subscription service for Internet servers.  A server intending to host 

identical content of another server will issue a SUBSCRIBE method to the host of the 

content.  The content server can then add the subscribing server to its list of possible 

redirection servers if it decides the subscriber is a trustworthy source. 

 

A simple pass-code authentication method has been added to the SUBSCRIBE method to 

avoid entry of malicious entities.  The authentication portion of the SUBSCRIBE method 

is optional to avoid limiting server systems that require no authentication. 
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SUBSCRIBE method fields are described in Table 8 and include enough information for 

a sever to uniquely identify itself amongst other subscribers. 

Table 8: SUBSCRIBE method fields 

Header Field Description 

SUBSCRIBE <content-name> Method name along with the URL minus the domain 

name of the content that was duplicated. 

Server-domain A domain name of the server subscribing to the 

content.  i.e., www.cnn.com. 

Port The port number on the subscribing server associated 

with HTTP traffic. 

Authentication An authentication code known by both subscriber and 

subscribed.  This field should be encrypted by an 

encryption method known by both parties. 

 

This field is optional.  If subscribing to a public server 

system, then there may be no barrier to entry. 

 

The SUBSCRIBE method follows this format: 

SUBSCRIBE <content-name> CRLF 

Server-domain: <domain-name> CRLF 

Port: <http-port-number> CRLF 

[Authentication: <encrypted-authentication-code> CRLF] CRLF 

8.5.2 UNSUBSCRIBE method 

Just as servers can subscribe to content, they must also be able to unsubscribe from the 

content.  The UNSUBSCRIBE method allows servers that no longer wish to host content 

to advertise to other servers that they are no longer valid redirection servers.  The header 

fields for an UNSUBSCRIBE request are presented in Table 9. 
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Table 9: UNSUBSCRIBE method fields 

Header Field Description 

UNSUBSCRIBE <content-name> Method name along with the URL minus the 

domain name of the content that was duplicated. 

Server-domain A domain name of the server subscribing to the 

content.  i.e., www.cnn.com. 

Port The port number on the subscribing server 

associated with HTTP traffic. 

Authentication An authentication code known by both 

subscriber and subscribed.  This field should be 

encrypted by an encryption method known by 

both parties. 

 

This field is optional.  If subscribing to a public 

server system, then there may be no barrier to 

entry. 

  

The UNSUBSCRIBE method follows this format: 

UNSUBSCRIBE <content-name> CRLF 

Server-domain: <domain-name> CRLF 

Port: <http-port-number> CRLF 

[Authentication: <encrypted-authentication-code> CRLF] CRLF 

8.6 Load balancing policies 
An entire second paper could be written on the subject of suggesting load balancing 

policies.  We only implemented some rudimentary static load balancing in our analysis 

section.  In addition to our rudimentary load balancing method we also only had one 

secondary server to which to redirect. 

 

Given a handful of servers one could devise a load balancing method that involved the 

servers communicating amongst each other to actively direct traffic to under utilized 
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servers.  Such a method would lead to a better overall spread of client load across a set of 

servers. 

 

Load balancing methods could be driven by other factors such as a quality of service 

model in which some clients are considered above other clients in deciding which can 

remain downloading content and which must wait.  Such a method would be useful for 

premium services in which customers pay to be included in a VIP group to ensure their 

content is always delivered as fast as possible.  The load balancing method could either 

redirect VIP clients to an under utilized server or force non-VIP clients to wait with the 

SUSPEND message. 

 

The areas of load balancing techniques is far too vast to try and cover within the confines 

of this paper, and so we leave it up to future individuals to explore, develop, and include 

their own load balancing suggestions. 
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APPENDIX A: APACHE HEADER FILTER 

 

    /* Add our headers to the content */ 

    ap_set_content_type(r, apr_pstrcat(r->pool, "multipart", 

         use_range_x(r) ? "/x-" : "/", 

         "byteranges; Session-ID=", 

         ctx->boundary, 

         NULL)); 
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APPENDIX B: APACHE TRANSFER FILTER 

 

AP_CORE_DECLARE_NONSTD(apr_status_t) ap_byterange_filter(ap_filter_t 

*f, apr_bucket_brigade *bb) 

{ 

... 

    while (current_packet <= ctx->num_ranges && !redirect ) { 

        apr_bucket *e2; 

        apr_bucket *ec; 

 

        /* these calls to apr_brigade_partition() should theoretically 

         * never fail because of the above call to 

apr_brigade_length(), 

         * but what the heck, we'll check for an error anyway */ 

        if ((rv = apr_brigade_partition(bb, range_start, &ec)) != 

APR_SUCCESS) { 

            ap_log_rerror(APLOG_MARK, APLOG_ERR, rv, r, 

                          PARTITION_ERR_FMT, range_start, clength); 

            continue; 

        } 

        if ((rv = apr_brigade_partition(bb, range_end+1, &e2)) != 

APR_SUCCESS) { 

            ap_log_rerror(APLOG_MARK, APLOG_ERR, rv, r, 

                          PARTITION_ERR_FMT, range_end+1, clength); 

            continue; 

        } 

 

        redirect = (current_packet >= redirectat && 

!has_starting_packet); 

 

        found = 1; 

 

        /* For single range requests, we must produce Content-Range 

header. 

         * Otherwise, we need to produce the multipart boundaries. 

         */ 

        if (ctx->num_ranges == 1) { 

            apr_table_setn(r->headers_out, "Content-Range", 

                           apr_psprintf(r->pool, "bytes " 

BYTERANGE_FMT, 

                                        range_start, range_end, 

clength)); 

        } else if (redirect) { 

            ctx->bound_head = apr_pstrcat(r->pool, 

                                          CRLF "REDIRECT", 

                                          CRLF "Server: ", "localhost", 

                                          CRLF CRLF, NULL ); 

            ap_xlate_proto_to_ascii(ctx->bound_head, strlen(ctx-

>bound_head)); 

 

            e = apr_bucket_pool_create(ctx->bound_head, strlen(ctx-

>bound_head), 

                                       r->pool, c->bucket_alloc); 

            APR_BRIGADE_INSERT_TAIL(bsend, e); 

        } else { 
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            char *ts; 

 

            ctx->bound_head = apr_pstrcat(r->pool, 

                                    CRLF "PACKET", 

                                    CRLF "Session-ID: ", ctx->boundary, 

                                    CRLF, 

                                    NULL); 

            ap_xlate_proto_to_ascii(ctx->bound_head, strlen(ctx-

>bound_head)); 

 

            e = apr_bucket_pool_create(ctx->bound_head, strlen(ctx-

>bound_head), 

                                       r->pool, c->bucket_alloc); 

            APR_BRIGADE_INSERT_TAIL(bsend, e); 

 

            if (current_packet != ctx->num_ranges) { 

               ts = apr_psprintf(r->pool, "Packet-number: %u" CRLF 

CRLF, 

                                 current_packet++); 

            } else { 

               ts = apr_psprintf(r->pool, "Packet-number: %u" CRLF 

"Packet-length: %u" CRLF CRLF, 

                                 current_packet++, range_end - 

range_start + 1); 

            } 

            ap_xlate_proto_to_ascii(ts, strlen(ts)); 

            e = apr_bucket_pool_create(ts, strlen(ts), r->pool, 

                                       c->bucket_alloc); 

            APR_BRIGADE_INSERT_TAIL(bsend, e); 

        } 

 

        if (!redirect) { 

  do { 

      apr_bucket *foo; 

      const char *str; 

      apr_size_t len; 

 

      if (apr_bucket_copy(ec, &foo) != APR_SUCCESS) { 

          /* this shouldn't ever happen due to the call to 

           * apr_brigade_length() above which normalizes 

           * indeterminate-length buckets.  just to be sure, 

           * though, this takes care of uncopyable buckets 

that 

           * do somehow manage to slip through. 

           */ 

          /* XXX: check for failure? */ 

          apr_bucket_read(ec, &str, &len, APR_BLOCK_READ); 

          apr_bucket_copy(ec, &foo); 

      } 

      APR_BRIGADE_INSERT_TAIL(bsend, foo); 

      ec = APR_BUCKET_NEXT(ec); 

  } while (ec != e2); 

        } 

 /* GMO: I added these two lines in the hopes that it will send 

along 

  * what it has so far so we can decide later if we need to 

redirect. 
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  */ 

        ap_pass_brigade(f->next, bsend); 

   bsend = apr_brigade_create(r->pool, c->bucket_alloc); 

        range_start += packet_size; 

        range_end += packet_size; 

        if (range_end > clength) range_end = clength - 1; 

    } 

 

    if (found == 0) { 

        ap_remove_output_filter(f); 

        r->status = HTTP_OK; 

        /* bsend is assumed to be empty if we get here. */ 

        e = ap_bucket_error_create(HTTP_RANGE_NOT_SATISFIABLE, NULL, 

                                   r->pool, c->bucket_alloc); 

        APR_BRIGADE_INSERT_TAIL(bsend, e); 

        e = apr_bucket_eos_create(c->bucket_alloc); 

        APR_BRIGADE_INSERT_TAIL(bsend, e); 

        return ap_pass_brigade(f->next, bsend); 

    } 

 

    e = apr_bucket_eos_create(c->bucket_alloc); 

    APR_BRIGADE_INSERT_TAIL(bsend, e); 

 

    /* we're done with the original content - all of our data is in 

bsend. */ 

    apr_brigade_destroy(bb); 

 

    /* send our multipart output */ 

    return ap_pass_brigade(f->next, bsend); 

} 
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APPENDIX C: HTTPERF CALL GENERATOR 

static char redHost[50]; 

 

static void 

call_destroyed (Event_Type et, Call *call) 

{ 

  Conn_Private_Data *priv; 

  Conn *conn; 

 

  assert (et == EV_CALL_DESTROYED && object_is_call (call)); 

 

  conn = call->conn; 

  priv = CONN_PRIVATE_DATA (conn); 

 

  if (++priv->num_destroyed >= MIN (param.burst_len, param.num_calls)) 

    { 

      if (priv->num_completed == priv->num_destroyed 

   && priv->num_calls < param.num_calls) 

 issue_calls (conn); 

      else { 

 core_close (conn); 

 

        if (call->redirect.needed) { 

          // Set up the redirect call and connect it so the timer 

process will pick up the tab 

          Conn *red = conn_new(); 

 

          uint n = sprintf (redHost, call->redirect.server); 

 

          red->hostname = redHost; 

          red->hostname_len = strlen (redHost); 

          red->fqdname = red->hostname; 

          red->fqdname_len = red->hostname_len; 

          red->is_redirecting = 1; 

          red->last_packet_received = call-

>redirect.last_packet_received; 

 

          core_addr_intern (red->hostname, strlen (red->hostname), 

param.port); 

 

          core_connect(red); 

 

          param.num_redirects++; 

        } 

      } 

    } 

} 

 

static char packetHeader[50]; 

 

static void 

call_send_start (Event_Type et, Call *call) 

{ 

  if (call->conn->is_redirecting) { 
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     uint n = sprintf ( packetHeader, "Starting-packet:%u\n\0", call-

>conn->last_packet_received + 1 ); 

     call_append_request_header(call, packetHeader, n); 

  } 

} 


