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Abstract 

 

The Suspension Solutions design team has completely designed built and tested an independent 

rear suspension system for the 2008 FSAE car. The car currently features a solid rear axle, and the task 

of converting it to incorporate an interchangeable rear suspension has been undertaken in order to 

quantify the advantages and disadvantages of each design philosophy.  The car has been properly tested 

with both the solid axle and independent rear suspension side-by-side, however more testing is 

suggested.  After pushing both setups to their limits on a 50ft diameter skid pad, the test results were 

quantified, and a final comparison between the two design philosophies was tabulated. From our 

limited tested we can easily conclude an IRS FSAE car, at minimum, can match the performance of the 

previous solid axle setup, while being 22lbs heavier.  We suspect its performance advantage to become 

apparent with additional testing however.  More subjectively, it was found that the IRS handled more 

predictably and was easier for novice drivers to control and drive. Our results help quantify the 

advantages and disadvantages of each system and can be used by future FSAE teams to make more 

informed design decisions.  Our independent rear suspension design includes an unequal length A-Arm 

configuration, new rear uprights, spindles and hubs, a Torsen differential, and an additional steel space 

frame to connect all of the listed components to the CP08 chassis.  Our initial analysis shows that a 

performance edge between the two competing systems is dependent on the overall weight of each 

system and our preliminary testing results help confirm this analysis.  
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FSAE Team History and Opportunity 

 

Cal Poly’s Formula SAE team has been at the university since the early seventies, and has always 

been a great representation of the university’s “Learn by Doing” philosophy.  As a division of the Society 

of Automotive Engineers (SAE), the Formula club on campus designs, builds and competes with a mini-

formula style racecar every year.  In recent years the Formula SAE team has taken a different approach 

to their car’s design than most other teams.  In an effort to reduce weight, the team converted to a solid 

rear axle instead of a traditional independent rear suspension. 

Three generations of cars have used a solid rear axle.   The first was in 2006 (CP06), which had 

10” wheels, a relatively light WR-450 single cylinder engine, and weighted 319lbs.  CP06 competed and 

performed well in the FSAE West competition, 

placing 3rd in the skid pad event.  The axle and 

engine were then carried over to the 2008 car 

(CP08), which also had larger 13” wheels, an 

aero package, and fuel injection.  While CP08’s 

weight was higher at 374lbs, the car’s 

performance capabilities were never properly 

tested.   Brake problems, engine noise, gas tank 

and oil tank leaks kept the car off the track during 

competition.  The third generation to use a solid 

rear axle was manufactured in 2009 (CP09).  It had no carry-over parts from CP08 except the engine and 

shocks.   The team expected the car to weigh and perform similarly or better than the CP06 car.  

With so few carry over parts from the CP08 to the CP09 car the opportunity is present to analyze 

the effects of using a solid rear axle as compared to an independent rear suspension, specifically with 

emphasis on the overall weight of the car. Unfortunately, the team has never been able to accurately 

quantify the advantages and disadvantages of using a solid rear axle.   This project calls for re-designing 

the 2008 FSAE car, giving it an independent rear suspension with a rear differential to replace the solid 

rear axle set-up.   It is also required that this new rear suspension design be interchangeable with the 

solid rear axle design.  This will allow testing of the two different design approaches for a more 

Figure 1.1: 2008 FSAE car with solid rear axle. 
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controlled and complete trade study. Testing procedures will be developed to quantify the performance 

of each design throughout the fall quarter of the project.    

The ultimate goal of this design project is to see if a better performing car can be built with an 

independent rear suspension.   The latter is assumed to inherit a weight penalty, but this hasn’t been 

verified.  We will determine if the dynamic advantages of an IRS outweigh the additional weight and 

component complexity. We want to evaluate both analytically and experimentally the assumed 

increased weight of an IRS with respect to increased dynamic performance on a skid pad track. This 

needs to be determined in order to better justify the FSAE team’s design decisions for upcoming years.   

More specific goals include designing a rear suspension to be as light as possible and defining how the 

performance of both rear end designs (independent vs. solid rear) are affected by total weight.   Our 

design team will quantify the advantages of each design with respect to total weight.   
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Formal Problem Definition 

 

Suspension Solutions defines the problem of this project as follows:  the current solid rear axle 

design being used by the Cal Poly FSAE team is not properly justified. As engineers, we strive for the 

highest level of proof available to justify our designs. The solid rear axle design that Cal Poly’s FSAE team 

has implemented for three generations works under the assumption that less weight is worth the 

decrease in cornering agility.  

An independent rear suspension is heavier than a solid rear axle due to a greater number of 

moving parts which include: a rear differential, half shafts, CV joints, rear uprights, additional rear frame 

tubing, and upper and lower A-Arms. With this added weight, is it even possible to decrease lap times 

overall? This is a function of the relative tire loading of the two cases, as well as the overall power-to-

weight ratio of the car. With that said, we are aiming for an overall added weight of 25 lbs.  

While the solid rear axle design will most likely always weigh less than the independent rear 

suspension, it corners on three tires (like a go-kart), placing dynamic loads on less of a contact patch. 

The purpose of this project is to justify the use of a live rear axle design, by comparing it head-to-head 

against a more traditional independent rear suspension.  The latter is assumed to perform better due to 

the increase in traction with four tires in contact with the road.   
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Objectives/Specification Development 

 

Certain customer requirements must be met. Most importantly, this car should be as light as 

possible. As mentioned previously, the main downfall of IRS vehicles is the added weight, therefore 

weight savings is critical. In addition to weight, a competitive IRS vehicle must have proper handling 

characteristics and be predictable and stable when pushed to its limits. Budget constraints also exist, as 

well as practical assembly, maintenance, and vehicle life considerations. It is our job at Suspension 

Solutions to develop a car that meets these design requirements and provide a method to test the pros 

and cons of each design. 

In order to satisfy the stated customer requirements presented to us, Suspension Solutions has 

developed a list of engineering specifications.  This list was formed by carefully examining the customer 

requirements and transforming them into quantifiable parameters, using the QFD method (refer to 

Appendix B).  In compliance with the stated requirement of a fully functioning independent suspension 

vehicle, most of the engineering specifications deal with performance, stiffness, and weight.  These 

parameters are chosen to maximize lateral traction, while maintaining neutral and predictable handling.   

Because of the experimental nature of this vehicle, several parameters deal with increased 

adjustability of geometry, including wheel camber, track, toe, and adjustable shock mounting locations.  

Shock mounting adjustability will be incorporated only to the extent that it will not significantly impact 

the performance of the vehicle, minimizing changes in ride height, roll center, and so forth.  The 

remaining specifications deal with non-performance variables such as design life, fabrication and 

assembly cost, which are necessary to create a reliable, enjoyable, and consistent vehicle. 

As previously mentioned, one of the main reasons for Cal Poly’s SAE team turning to a solid axle 

is weight savings.  The argument stated that the decreased weight, as compared to a similarly designed 

independent rear axle vehicle, would offset any performance losses incurred by the limitations of solid 

axle geometry.  Our job is to design a functioning IRS prototype at a weight similar to the current solid 

axle design.  This requirement affects many other criteria, including material selection, suspension, 

frame stiffness, and designed safety factor.  Another major design consideration deals with our vehicle’s 

center of mass.  Our challenge is to maintain neutral handling during cornering, as well as other handling 



                                                                                                                                                     
 

 
 

12 

characteristics such as roll center, over steer/under steer, and weight transfer.  The remaining design 

criteria are meant to produce a car that is reliable, predictable, intuitive, and affordable.   

Additional specifications deal with the ease of vehicle maintenance, as well as the method of 

assembly, ensuring that this vehicle will be easy to assemble, maintain, and upgrade.  The following list 

of engineering requirements (refer to Appendix B) will produce a vehicle that will illustrate the 

comparative advantages of both solid-axle and independent suspension designs.   

Table 1.1: Design Requirements 

 
 

 

  

Suspension Solutions Formal Design Requirements 

Parameter Description Requirement or Target (units) Tolerance Risk Compliance 

Weight 25 lb (additional) +2 lb H T 

Size 62" (wheelbase) +2" L T 

Production Cost $2,000  $500  L I 

Suspension Deflection < 0.01" 0.005" M T 

Suspension Travel > 2"   L T 

Ride Height 1" +0.5" L T 

Design Life 500 miles +   L A 

Tire Adjustability Camber/Track   L I 

Steering Feedback Consistent Steering Force   H T 

Cornering Ability Neutral Steering   M T 

Shock Mounting 
Locations 

Multiple Locations   L I 

Safety Safety Factor n=1.5 ±0.2 L A 

Maintenance 
2" Clearance on Critical 
Elements 

±.5" L I 

Fabrication Method CNC / Welding   L I 

Assembly Method Standard Tools   L I 

Steering Reversal None   H T 
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Solid Rear Axle Design 

 

When designing CP06, the driving goal was the lightest car possible, aiming for a weight target 

of 300lbs.  The switch to the solid rear axle was made to decrease the weight and complexity of the 

drive train components altogether, and thus it was selected over an independent rear suspension.  The 

switch to the smaller single cylinder engine and using 10” wheels was also made purely for weight 

reduction reasons.  The FSAE team expected the disadvantages of the solid rear axle but could never 

fully quantify them.  

While the reduced weight and simplified design are definite advantages, the solid axle setup is 

not without its shortcomings.  Having a solid rear axle added more complexity to other chassis and 

suspension components.  This extra complexity is a result of the need to overcome a solid rear axle’s 

inability to corner smoothly.  Thus, the FSAE cars were designed to corner by lifting the inside rear tire 

(much like a go-kart), as shown in Figure 2.1.When 

lifting the inside wheel of the solid rear axle, an entire 

contact patch of the inside rear tire is lost, along with 

its ability to transmit tractive and lateral forces. The 

lack of normal force of the tire directly affects the 

lateral forces which can be generated by the tire.  All 

the weight of the rear of the car and all the lateral 

force in the rear must be produced only by the outside 

rear tire. Having only three contact patches on the road 

is not as effective as four, but the team has felt the car’s agility due to its lightweight would make up for 

this natural disadvantage. 

 

 

 

 

Figure 2.1: CP06 lifting inside rear tire 
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Tire Research 

 
Initial background research consisted of studying the behavior of tires and their ability to create 

lateral force for various slip angles and normal loads acting on the tire.  As long as the tire is outside of 

the frictional region, available lateral force will always increase with increasing normal load and slip 

angle as shown in Figure 2.2.   

 

Figure 2.2:  Tire data graphs as given in the Race Car Vehicle Dynamics textbook. The left graph is 
lateral force with respect to increasing slip angle and normal loads. The right graph is lateral force 
coefficient with increasing slip angle and normal loads.  

Also shown in the above figure is another tire relationship; the lateral force coefficients with 

respect to increasing slip angle and normal loads.  The lateral force coefficient given by 

 𝐹𝑙𝑎𝑡𝑒𝑟𝑎𝑙 𝐹𝑛𝑜𝑟𝑚𝑎𝑙   is a normalized measurement of a tire’s efficiency. The Milken figures show the 

lower normal loads have higher coefficients, meaning a more efficient use of the tire. This is one reason 

why a lightweight vehicle in racing is always important.   

Other tire factors play a role in the generation of lateral forces, such as the camber of the tire.  

Typically a tire performs best under zero camber; however, for racing applications this can change. It is 

known that negatively cambered tires perform better than positively cambered tires.   
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Steady State Cornering Model 

 
Since it is known that having four tires on the ground during a turn (as opposed to three) leads 

to less normal force on each tire, one can conclude that the lateral coefficients of each tire would 

increase. Four tires on the ground during cornering would be more efficient than only having three tires 

on the ground.  This is of course assuming that not much weight is added in the process. To accurately 

represent our performance assumptions that a vehicle with four wheels in contact with the road is more 

stable than one with three, analysis compared the lateral force coefficients of each tire during a 1.5G 

steady state turn.  A Matlab program owned by the SAE club calculated the difference in lateral force 

coefficient for the rear right tire (in a left-hand turn), which can be seen below.  

 

Figure 2.3: Lateral force coefficient with respect to slip angle for a three wheel model and four wheel 
model cases. 

Although this change in the lateral force coefficient seems small (about 5%), this model takes 

into account certain assumptions. One of these assumptions is that the tires all act at 0° of camber. This 

is obviously untrue.  We know that by lifting the inside rear wheel with a solid rear axle the loaded 

outside wheel will camber outward.  A tire’s available lateral force is inversely proportional to camber 

change, and a tire typically performs at its best between 0 and -1° of camber.  The positive camber 

introduced under cornering with the solid rear axle would further reduce the lateral force coefficient 

available at the rear. In comparison, the independent rear can be designed to minimize camber change 

under cornering and keep the tire within the range where it performs best. 
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 Manipulating the above mentioned Matlab code produced a relationship comparing the lateral 

slip coefficients of the tires of a three and four wheel model with respect to total vehicle weight. Figure 

2.4 below shows how much weight is available to add to an independent rear suspension car for a given 

slip angle while maintaining higher lateral force coefficients of the inboard and outboard tires than a 

solid rear axle car.  

Following the blue line (Figure 2.4) shows how much weight can be added to maintain equal 

lateral force coefficients for different slip angles.  Even at turns pushing the tires up to 7° slip, it can be 

seen that more than 70lbs of weight can be added to the 2008 car if it corners on all four tires.  The data 

becomes even more relevant at higher slip angles approaching the limits of the tires.  As shown in the 

graph, at 10° slip, 35lbs can be added to an IRS car without losing advantage over the solid axle.   

Knowing how much added weight will affect the performance of our independent rear 

suspension system, an analysis was conducted comparing the CP06 car with the last independent rear 

Figure 2.4 Available total weight increases with respect to increase slip angle of outboard and 
inboard tires 
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suspension car built at the school, the CP04 car.  Estimated weight values were used to gauge how much 

weight we anticipated adding to the CP08 car with our system.   

Table 2.1 Weight Addition Estimation 

 

Additions/Removals to 2008 Car 

Rear Frame 20 

Differential 10 

CV Joints & 1/2 shafts 12 

Uprights 5 

A-Arms 5 

Shocks 3 

(Rear A-Arms) -10 

(Solid Axle) -15 

(Bearing Blocks) -5 

Weight Addition 25 

 

Table 2.1 shows that converting the CP08 car to independent rear suspension will add 

approximately 25lbs to the overall weight of the car (bringing the total weight to about 400lbs, without 

a driver). This 25 lbs addition is still within the performance advancement of an IRS (Figure 2.4) even at 

slip angles approaching 9°.   
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Suspension Geometry 

 

The first phase of the suspension design began with the development of suitable rear geometry.  

It was immediately decided that an unequal length double wishbone suspension should be employed.  

This suspension type was chosen for its ability to meet the most desired performance objections with 

the minimum amount of compromises.  Its use is almost universal in not only FSAE cars but also road 

racing cars. The unequal length design features shorter upper A-Arms, which put the wheels in negative 

camber under bump.  This is desirable under cornering, where the roll of the body typically increases the 

positive camber of the outside wheel; with the short long arm design, the outside wheel’s camber is 

kept at a more consistent value under cornering. 

Optimum K suspension software was used to place the upper and lower pickup points of the 

upright and the chassis in order to determine dynamic properties of the suspension.  The design of any 

suspension system is largely dependent on the 

tires.  In order for a more controlled trade study 

between the two types of rear suspension systems, 

the same tires will be used for each.  These tires 

are Goodyear 20 x 13 x 7in racing slicks.  The club 

has a few sets of this tire available, giving plenty of 

opportunities for testing.  The tires were originally 

chosen for the CP08 car due to their driver-

friendly properties; unlike most race tires, these 

Goodyears do not have a steep peak followed by a drop-off in frictional properties, as seen in Figure 2.2.  

This typically means more predictable handling for an inexperienced driver.  The rear track was initially 

chosen to be 44”.  This is one inch wider than with the solid rear axle, and was chosen primarily to 

better balance lateral weight transfer.  A Matlab lap simulation was also run to check vehicle lap times 

through a set course with increasing rear track.  Lap times were seen to decrease with increasing track.  

With minimal change as track increased from 44 to 54 inches, the initial selection was deemed suitable 

for this design.  

With rear track, wheel size and rim diameter known, a suitable lower ball joint and toe link ball 

joint could be found.  The toe link replaces the steering link in a front double wishbone suspension and 

Figure 3.1  3-Dimensional A-Arm and tie rod 
geometry 
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further constrains the motion of the wheel.  The toe link was designed to be attached to the lower A-

Arm instead of the upper A-Arm for two reasons.  First, the upper ball joint was designed to be as far 

away from the lower ball joint as possible to distribute the loads more evenly.  Second, after conducting 

an FBD of the suspension member forces, it was seen that more force would exist in the lower A-Arm 

members. The extra support of the toe link on the bottom was expected to lower the maximum force 

seen in each lower A-Arm member, allowing for smaller and lighter A-Arms.  

The chassis pick up points were then iterated until suitable roll and heave characteristics were 

met.  Initial design focused on keeping roll camber as low as possible.  Roll camber is the change in tire 

camber as the chassis rolls.  While cornering the chassis will roll to the outside of the turn, and due to 

lateral weight transfer the outside wheels will become more heavily loaded than the inside wheels.  

  Roll Camber= 
∆ 𝐶𝑎𝑚𝑏𝑒𝑟

∆ 𝐵𝑜𝑑𝑦𝑅𝑜𝑙𝑙
             [1] 

Making sure the roll camber stays low is especially important for the outside wheels since they 

will provide the most lateral force, and a change in camber could greatly reduce the lateral forces the 

tires are capable of reaching.  Our geometry has roll camber of .4º/ºroll, and with a static tire camber of 

-1°, our outside tires will never be positively cambered even under 2.4° of chassis roll.  Dynamic 

properties of the geometry can be seen in various plots and graphs in Appendix C.  

 Also important with the suspension geometry is to insure that the roll center stays relatively 

consistent both vertically and laterally under roll.  A low roll center was desired in order to reduce 

jacking forces on the chassis and suspension.  However, it was quickly found that a compromise would 

have to be made between roll camber gain and roll center height.  A roll center of 2.4” was selected as 

the goal as it always maintained negative camber under 2.5° of roll, while remaining similar to the roll 

center height on the front suspension on the CP08 car.   

Figure 3.2: Suspension packaging and parameters 
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It was found that rear suspension geometry was much simpler to design than front suspension 

geometry due to the inability to steer the rear wheels.  Front geometry is complicated by the fact that it 

must take into account steering parameters including the effect of bump steer on the car.  Caster angle, 

kingpin inclination, wheel offset, mechanical trail and other parameters shown in Figure 3.2 were not as 

important in rear geometry.  Nonetheless it was important to re-analyze the CP08 car’s front geometry.  

This is shown later in the Detailed Design section. 

 

Loading Conditions and Forces 

 
 The determination of loading forces started with tire data and loading conditions.  The loads 

likely to occur under competitive situations were found using historical data, and a Matlab code was 

written to calculate normal, lateral and longitudinal (tractive) 

forces on each tire during a specific set of accelerations in a 

turn, based on tire properties and weight transfer.  These 

conditions were assumed to occur during steady longitudinal 

acceleration.  While this assumption is primitive and may need 

revision later, it functions well as an initial test, with a safety 

factor providing for any unknown loading and accelerating 

conditions. 

With initial geometry and tire forces at the contact 

patch known, forces in the suspension members could then be 

solved for.  In order to do this, each tension-compression 

member was assumed to be a two-force member, meaning it would only have axial forces acting on it.  

The forces are translated from the contact patch to the upright pickup points into the A-Arms axially, 

and lastly into the chassis through the chassis pickup points.  Since a double A-Arm suspension has six 

members to it, only six equations are needed to solve for all the forces for each tire loading condition. 

These six members are the upper A-Arm (2 members), the lower A-Arm (2 members), the tie rod and the 

push rod, which will be attached to the lower A-Arm and act through the lower upright ball joint. 

Summing forces in three directions and moments about three axes yields the axial forces in each 

tension-compression member for each given set of tire contact patch forces.  

Figure 3.3: Loading Forces seen on tire and 
in suspension members 
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A program was created in Matlab (see Appendix E) which solves for these axial forces using 

matrix math. Inputs are the OptimumK coordinate points, which define the geometry of the suspension 

components.  These forces are transmitted as reaction forces on the chassis through the A-Arm, which 

act as axial forces on each member.  Next, tire contact patch forces and tire properties such as 

pneumatic trail are manually input.  

The program then solves the system of quasi-static equilibrium equations and outputs axial 

forces in the suspension members. The development of the equations of quasi-static equilibrium and 

the FBD’s can be seen in Appendix H.  The first case was calculated using what was assumed to be worst 

case loading conditions of 1.5g’s lateral acceleration, 1.0g longitude acceleration, and 3.0g’s of bump. 

The resulting axial forces are then fed into a separate Matlab program that determines tubing sizes for 

each member.  The program takes into account yield and buckling, and also includes deflection of the A-

Arms.  

 

Space Frame Adaption 

 
The rear frame adaption is arguably the most difficult part to design given that it must interface 

and connect not only with all of our new suspension and drive train components, but also existing 

chassis and engine components, all while being easily removable.  Due to the different design 

possibilities available, multiple concepts were created, and a concept evaluation matrix was used to 

select top rear frame adaption designs based on common criteria requirements.  Concepts were 

designed with SolidWorks to better anticipate the manufacturing challenges and removability for each 

concept. At the time of the design no structural calculations were made for each frame, and designs 

were simply triangulated to provide stiffness.  To make up for a lack of accurate concepts, criteria 

requirements were weighted qualitatively for each design as shown in Appendix D. The criteria for which 

we judged the concepts are listed below. 

Weight: This is the largest area of concern and was weighted greatly in the decision process.  Since 

frames were constructed in SolidWorks, the program allowed us to find the weight of each design using 

carbon steel tubing.  Tubing geometry chosen was 1” O.D. by 0.0625” thickness for all members within 

the concept. These tube sizes could then be individually tuned using FEA analysis and results.  
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Stiffness: The concept’s stiffness rating was considered by inspection because a more accurate FEA 

analysis was not done at this stage of the design process.   

Manufacturability:  Tube notching and welding can become extremely difficult the more complex a 

structure gets.  The more branches a node contains the more difficult it will be to construct.  Also, the 

structure’s ability to adapt to existing pickup points on the chassis and frame will save the integrity of 

the current space frame design.   

Engine Stress:  This is currently an area of uncertainty.  While a stressed or partially stressed design may 

result in fewer components to stabilize the structure, this could potentially compromise the strength 

and reliability of the engine.  Engine testing should be done to determine the feasibility of stressing the 

engine. 

Suspension Compromises: The design must follow the suspension geometry and little to no compromise 

should be accepted in this area.  The concept must not pose complications to mounting locations for 

suspension components such as A-Arm and rocker pick-up points.   

Other considerations such as appearance, cost, interference and system compliance were used in the 

decision making process but were not heavily weighted due to the fact that this is purely a test vehicle 

to compare performance results. 

The top concepts from our design matrix are examined below, highlighting the pros and cons of each.  

Concept 1:  

Figure 3.4: Top concept 1 from rear frame decision matrix 
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The first concept, shown above, starts with a trapezoidal box that is fastened to the engine’s 

back mounts. This box will hold the differential components as well as provide the suspension mounting 

locations.  The box is then further constrained to existing engine bung mounts in four locations.  It also 

has members which run all the way up to the main roll hoop for added stiffness. The design initially 

weighed 22 lbs, and stiffness was expected to be high. It also was deemed to have the least possible 

interferences with existing components and was expected to not stress the engine.  It was eventually 

chosen as the top choice to develop.  

Concept 2:  

 

Figure 3.5: Concept 2 from rear frame decision matrix.  

 The second concept is a partially stressed engine design which mounts to removable engine arm 

tubes as well as the high corner of the roll hoop main down tube.  This structure mounts to the bottom 

of the engine and the existing rear rocker.  Relative to other structures, this design was one of the 

lightest, weighing in at 18 lbs.  Few locations on the space frame and chassis are used to stabilize the 

structure, which is picked up by the engine mounting locations, which consequently causes a higher 

engine stress relative to other concepts.  Mounting to the rocker was also deemed too difficult and it 

meant a new intake would absolutely need to be made.  
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Concept 3: 

 

Figure 3.6: Concept 3 from rear frame decision matrix. 

Concept 3 is a partially-stressed design mounting to the rocker and lower corner of the roll 

hoop.  Although it was rated higher on stiffness due to triangular geometry, its weight was the same as 

Concept 1 at 22 lbs. Problems arose with its interference with differential components and the intake.  

The intake would need to be re-manufactured, as in Concept 2.  Also, the rocker bar had over five 

members mounted to it.  This would be hard to incorporate into a removable design.  

The finalized design decision combined the best results of all design options and is shown in 

Appendix D.  The final design will be constructed with 4130 normalized steel tubing.  Cross-sectional 

area will be determined when further stress and stiffness calculations and FE models have been 

produced.  The structure will be constructed by notching and welding and attached to the chassis and 

rear space frame using detachable bungs and existing pickup points.     

 

  



                                                                                                                                                     
 

 
 

27 

Differential 

 
The differential is an essential part of a car’s drive train.  

When a car corners the outside wheels must travel a greater 

distance than the inside wheels, and therefore must spin at a 

faster speed. Without a differential (as in a solid axle) both 

wheels are forced to rotate at the same speed, scrubbing one 

tire under cornering.  Performance can be improved through the 

use of a differential, which allows the wheels to rotate at 

different speeds.  A couple of options were available for the 

selection of the differential.  The differential selection was based 

on the following criteria.   

The most dominating factors were weight and accessibility.  One option considered was 

modifying a differential from a quad.  For our application the quad differential would be considerably 

overbuilt.  To remove unnecessary weight from the housing, a new housing would need to be designed 

and manufactured.    

Limited Slip: The differential needed to have limited slip characteristics, whether through a clutching 

device or an Invex gear mesh like those present in Torsen differentials.  Although the desired life is 

assumed to not exceed 1000 hours, the life of 

the components must be considered.  Clutches 

used for limited slip differentials will wear 

more significantly than gears like those present 

in the Torsen, but could possibly be lighter 

overall as has been proven by past Formula 

teams.  An open differential would not supply 

the needed torque to both wheels under any 

substantial torque difference between drive 

axles.  The torque bias ratio is also a main 

consideration.   The bias ratio represents the 

”locking effect” and relates the torque supplied 

to the wheel with the most traction to the torque supplied to the free spinning wheel.    

Figure 3.7:  Representation of a limited 
slip clutch differential 

Figure 3.8: D12000 Torsen differential 
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Weight: Although there are many differential options available, most are not practical for FSAE 

applications.  Most readily available options are over-built, and we would have to consider a high weight 

compromise for these options.   

Cost:  The differential is a substantial part of our budget.  Keeping cost down is not absolutely necessary 

but aids in the positive outcome of our product.    

Availability:  Ease of purchase and procurement were considered purely for the ability to adapt half 

shafts and CV joints.  Choices included ordering a new or rebuilt differential or rebuilding the old Torsen 

on the 2004 Formula car. 

Torsen offers a limited slip differential specifically for FSAE teams.  Their current university special 

Torsen D12000 weighs in at just 8 lbs. This model has a torque bias ratio of 3.2:1, which means that 

about 75% of the torque can be maintained at the wheel with the most traction.  Also the Torsen is the 

only differential type that allows the use of a single inboard rear brake by design.  Fortunately for 

Suspension Solutions, Formula Hybrid owns a spare version of Torsen’s current university special, as 

shown in Figure 3.7. A housing will be manufactured out of aluminum to block dirt and debris from 

naturally settling inside the mesh of gears.  

CV Joints and Half Shafts 

 
Before making any design decisions, a strength calculation was performed to find the relative 

size of the drive train components.  The CV joints and shafts must be compatible with the differential 

and the uprights.  Many options were considered during this design process.  The 2004 Formula car 

already has all the components needed for this design, and these could be used and customized to fit 

the 2008 Formula car or referenced as a template to make the design better.   The half shaft and CV 

joint assemblies would be possible to manufacture in-house with few components needing to be 

outsourced.   Also at our disposal are Formula Baja’s out-of-service CV assemblies, which could be 

modified to fit our geometry.  As a last resort, a more costly idea would be to purchase a rebuilt or new 

CV assembly from a manufacturer.  Decisions were made based on the following criteria: 

Weight: The selected design of the CV joint and half shafts needs to be compliant with our projected 

weight goals.  Quad CV assemblies may be overbuilt for our application and thus would need to be 

modified or result in a weight penalty.   
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Buying vs. Manufacturing: Since this is a design project 

where learning is the most valuable experience gained, 

in-house manufacturing of the CV assemblies initially 

seemed like an intuitive decision.  After further 

thought and consideration, possible cost savings due to 

in-house manufacturing over outsourcing would not be 

achieved at a significant level.  Also, the ability to size 

and adapt components to each other may not be 

worth the time spent.  If in-house manufacturing were 

to proceed, many more design criteria would need to be analyzed.  The type of bearings used in CV 

assemblies range from the complicated tripod and cup to the traditional U-joint to splined collars which 

would be fitted to half shafts and mating components.  Using different sources for all these components 

would make seamless integration difficult, as well as potentially requiring modification of purchased 

parts, possibly compromising the component's integrity. Despite these drawbacks, the team decided to 

use custom-manufactured tripod half shaft assemblies. The most important factor considered was that 

any pre-manufactured assembly would set our track width. Since this parameter was already set by the 

design team, a pre-manufactured assembly would have to be cut and welded to fit our design. This was 

not at all desirable, as the resulting stress concentrations and fatigue strength are very difficult to 

accurately determine. This consideration, as well as the relative greater difficulty and increased weight 

of modifying a pre-manufactured CV spindle to fit and rotate properly within the designed uprights, lead 

the team to choose custom-manufactured tripod assemblies. In-house manufacturing also gave the 

team more control over the weight of the assembly, as well as material choice and fit and finish.  

 

Figure 3.10: Different bearing options for manufacturing of CV assembly. 

 

Figure 3.9. CV assembly including half shaft 
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Results: As mentioned above, custom manufactured half shaft assemblies have their drawbacks, mostly 

relating to increased design complexity. Despite these factors, the team decided to manufacture the 

assemblies in-house in order to give them more direct control over track width, weight, and fit and 

finish. This decision was also economical, because a set of tripod assemblies were available from a 

previous Cal Poly SAE vehicle.  

 

Uprights 

The rear uprights were sized based upon worst case loading of maximum grip, both laterally and 

longitudinally, while experiencing a large spike in normal force due to a bump. The design was driven by 

the following factors: 

Design considerations: The upright design relies heavily on the choice of 

bearing and spindle assembly. There are many different ways to 

configure the half-shaft/spindle interface, mostly due to the live spindle, 

which is required of a rear upright. Some upright designs incorporate a 

larger bore in the center to encompass an entirely concentric CV 

joint/bearing combo. Such a design allows for longer half shafts, which 

has a few advantages, one of these being a less extreme angle for the CV 

joint to deal with. We decided against this design for a number of 

reasons. Firstly, it is a hard setup to 

manufacture due to critical press fits. 

Secondly, placing the CV joints inside 

the upright would likely weigh more. 

While the associated bore deducts 

from upright weight, it fills this void 

with larger, heavier bearings. Many teams boast uprights of this 

design that weigh a little over a pound due to the large void in the 

center; however, they do not take into consideration the weight they 

will in turn be adding in bearings. For these reasons, we decided to 

use a tripod joint housing mounted to a flange on the spindle to the 

Figure 3.11: Aluminum 
upright concept 

Figure 3.12: Steel upright concept 
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inside of the upright. This not only saves weight with smaller bearings, but also allows us to use tapered 

roller bearings to transfer thrust loads due to lateral grip forces. The roller resistance of this type of 

bearing was verified to be negligible through simple calculations, coming in at 1.5 in-lb. 

Material: Material decisions were initially looked at for strength and weight. FSAE uprights are typically 

constructed either from sheet metal or aluminum, and these two options were examined to determine 

which was better suited for this project.  4130 normalized steel has high strength and stiffness 

properties relative to those of 6061 aluminum, but the 6061 can have weight advantages over steel, 

which is the primary area of concern. These properties will drive geometry alterations for the initial 

upright design.  To pick the best design, the models will be imported into FEA software to more 

accurately predict stresses and stiffness. As for the relative cost of the materials it was determined that 

on the basis of just raw materials, the aluminum upright materials would cost about twice as much as 

those of the sheet metal uprights.  

Manufacturing Cost: With the choice between two materials comes the choice between two different 

manufacturing processes, which will naturally contribute to the overall design decision. An aluminum 

upright would be outsourced to a CNC machinist, while a sheet metal upright would be welded in-house. 

Performing in-house construction, while somewhat less expensive, is quite time consuming, which 

creates a cost much higher than one might assume. We would have to associate our time with a value as 

high, if not higher, than that of a CNC machinist due to the simple fact that we will be constructing many 

of the other systems in-house and are therefore ultimately responsible for their being completed on 

time.   

Deflection and strength Criteria: In order to accurately compare the two designs, both designs must 

have a deflection of no more than .005 inches, which would correspond to an arbitrary .05 degree 

change in camber. In terms of strength, both designs must have a factor of safety above 1.2, which is a 

safety factor based on conservative loading conditions. 

Once preliminary designs of each type of upright were created through simple hand calculations 

and solid modeling, a decision matrix was created to drive the ultimate design to fruition. Each criterion 

was rated on a scale of one to five, with five being the most ideal and one being the least. 
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Table 3.1: Upright Material Trade Study 

 

Criteria Weight: The relative weights awarded to each criterion are percentage values that add up to 

100 percent in total. Weight was decidedly the highest priority, and therefore it is worth 50% of the 

total points. Material and manufacturing costs were the next largest consideration, each coming in at 

15%. Strength and stiffness were merely guesses at this point, and because of the fact that at the end of 

the design process either upright will meet the required allowances within the factor of safety, stiffness 

and strength each embody 10% of the overall score.  

Results:  Due mostly to the fact that the preliminary design weighed about a half pound less, the 

aluminum upright design came out ahead in the above matrix. From here, FE analysis results can 

determine whether the designs are ultimately adequate, and necessary design iterations will be 

performed as seen fit.  

 

  

                Criteria 

Concept  

Criteria 

Weight 

6061 

Aluminum  

Weighted 

Sum 

4130        

Steel 

Weighted 

Sum 

Weight 0.5 5 2.5 3 1.5 

Material Cost 0.15 2 0.3 4 0.6 

Manufacturing Cost 0.15 3 0.45 5 0.75 

Strength 0.1 5 0.5 5 0.5 

Stiffness 0.1 4 0.4 5 0.5 

Total 1   4.15   3.85 
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Chapter 4: Final Design 
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Summary and model 

 

Presented below are some assembly models of all the current components within SolidWorks. 

This will allow us to accurately check all design interfaces before production. It also gives us a current 

prediction of interferences and weight comparisons between the IRS and solid rear axle systems.   
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Detailed Design Description and Analysis 

 

Rear A-Arms 

 
With a chosen rear frame adaptation concept, final chassis mounting points were determined, 

and final suspension coordinates could be found using Optimum K suspension software. Our final points 

can be seen in the following table.  The coordinate system that defines these coordinates is on the 

ground plane and directly in the middle of rear track line which connects the contact patch points of the 

tires. 

Table 4.1:  Geometry of the rear suspension giving in Optimum K coordinates. 

 

  
 

Double A-Arm Rear 

OptimumK v 1.1 Left   in   Right   

Lower A-Arm x y z x y z 

Chassis Fore 9 4.875 4.78 9 -4.875 4.78 

Chassis Aft -5 4.875 4.78 -5 -4.875 4.78 

Upright -2 19 5 -2 -19 5 

Upper A-Arm             

Chassis Fore 9 8 12.5 9 -8 12.5 

Chassis Aft -5 8 12.5 -5 -8 12.5 

Upright 0 17.5 15.5 0 -17.5 15.5 

Tie Rods             

Attachment Lower A-Arm           

Attachment 9 4.875 4.78 9 -4.875 4.78 

Upright 2 19 5 2 -19 5 

Wheel geometry             

Half Track   22     22   

Longitudinal Offset   0     0   

Vertical Offset   0     0   

Static Camber   -1     -1   

Static Toe   0     0   

Rim Diameter   13     13   

Tire Diameter   20     20   

Tire Width   7     7   
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Our final design incorporated shorter A-Arms than was originally designed.  A-Arms are typically 

desired to be as long as possible to reduce significant camber changes during cornering. However, we 

were able to maintain a good camber curve 

with roll with relatively shorter A-Arms overall. 

The lower A-Arms were still longer than the 

upper A-Arms in order to produce the desired 

tire curvature towards negative camber during 

roll.   Overall, shorter A-Arms were chosen to 

allow for easier insertion and mounting of the 

differential assembly.  Shorter A-Arms leads to 

a larger rear frame bay, where the differential 

will be housed. Since little-to-no changes were found within the dynamic suspension analysis, the larger 

rear frame bay was deemed more important to other areas of the project. The Differential Assembly will 

fit easily into the rear frame bay, allowing for easy accessibility.   

Next, the axial forces in the A-Arms were solved for using our developed Matlab program.  

Three loading cases were examined: a steady state cornering case, a straight line acceleration case, and 

a full cornering and accelerating case with 3G’s of bump. The latter was deemed to be most critical.  This 

case, along with the steady state cornering at 1.5G case, can be seen below in Table 4.2.  The tire 

coordinate system used is that of the SAE convention presented in the Milken’s Racecar Vehicle 

Dynamics.  

Table 4.2: Axial forces within the suspension members for two loading conditions 

All Loads in (lbf) Accelerating, cornering, and bump Steady state cornering, no bump 

F Tire X  F Tire Y  F Tire Z  F Tire X  F Tire Y  F Tire Z  

Member length (in) 350 342 801 0 342 267 

Upper A-arm (fore): 11.53 206.64 -1.0 

Upper A-Arm (aft): 9.29 200.64 229.73 

Tie Rod (fore): 14.77 -515.23 -145.09 

Lower A-Arm (fore): 17.01 -382.4 203.65 

Lower A-Arm (aft): 13.94 -501.97 -768.49 

Push Rod: 11.25 925.72 276.82 

 

Figure 4.1: Back view of A-Arm geometry 
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After examining all the loads it was found that the lower A-Arm aft member and the pushrod are 

the most heavily loaded members.  The tie rod has the next highest loading, and lastly the upper A-Arms 

are relatively lightly loaded.  The suspension member’s tube size was then calculated based on yielding 

and bucking criteria.  Deflection of the members was also calculated and led us to choose larger upper 

A-Arm members.  All allowable and final tubing sizes can be seen below in Table 4.3.  Each member was 

sized using a minimum 1.5 factor of safety. For the case of the upper A-Arms, it was found that .250” 

O.D. tubing would suffice for strength considerations; however, .4375” O.D. tubing was selected for 

manufacturing and stiffness reasons. Welding any smaller size of tubing would be very difficult, and 

wouldn’t allow the bearing wafer design chosen below.  

Table 4.3: Final A-arm Tubing Sizes. 

Member  length (in)  Allowable O.D. (in)  Chosen O.D. (in)  thickness (in)  Deflection (in)  

Upper A-arm (fore): 13.12 .250 0.4375 0.035 .003 

Upper A-Arm (aft): 11.14 .250 0.4375 0.035 .003 

Tie Rod (fore): 15.76 .313 0.4375 0.035 .001 

Lower A-Arm (fore): 17.90 .375 0.4375 0.035 .005 

Lower A-Arm (aft): 14.44 .500 0.500 0.035 .009 

Push Rod: 13.0 .500 0.500 0.035 .008 

 

With the tube sizes and lengths determined, design 

began on the bearing carrier that must be attached to the ends 

of each suspension member.  The CP08 front suspension 

currently houses the spherical bearings as part of the upright and 

chassis tabs.  However, designing the bearing into the arms 

seemed like a simpler manufacturing solution. We decided to use 

an A-Arm wafer design borrowed from the Formula Hybrid team. 

The design has already been proven as easy to manufacture and 

it allows for less deflection of the critical bearing surface during 

welding.  The wafers will need to be CNC machined, but the code 

for the machining is already available.  

Figure 4.2: Right Side of Suspension 
members 

Figure 4.3: A-Arm end 
wafer/bearing carrier 
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Rear Rockers 

The rear rocker’s design was started after 

suspension pickup points and space frame members 

were located.  The master Solidworks assembly was then 

used to design the rocker and push rod length and place 

their locations.  The first major concern was to place the 

rear rockers and the dampers that attached to them out 

of the way of other components.  Another concern was 

easy accessibility to the damper to allow for tuning.  

Lastly, a motion ratio of 1:1 was desired, which must be 

built into the geometry of the rocker.  The motion ratio 

relates the compression distance of the damper to the 

upward wheel travel. A motion ratio of 1:1 was chosen to 

avoid a progressive spring rate, which would change the vehicle behavior during roll and lead to an 

inconstant roll gradient.  This motion ratio also made use 

of most of the damper’s stroke with the two inches of 

travel, increasing velocity in the damper and improving 

damping characteristics. 

The upper horizontal member within the space 

frame box was found to be the most acceptable place to 

mount the rockers.  This allows the damper to be mounted 

parallel along that member, giving plenty of room for 

other components. This position also allows for shorter 

push rods than originally expected, which led to thinner, 

lighter pushrods. The rocker itself will pivot about a 

machined steel post with a threaded insert to allow a top 

piece to hold the rockers in place.  The bottom of the post will 

then be notched at the correct angle and be welded to the 

frame itself. Figure 4.5 shows this location on the rear space frame.  

Figure 4.4: Final rear Rocker assembly 

Figure 4.5: Final rear rocker location 
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With our geometry for a 1:1 motion ratio determined, a trade study was conducted to decide on 

the material to be used.  There were two 

obvious competing choices, a machined 

aluminum rocker or a steel fabricated rocker.  

Since manufacturability and cost are high 

concerns, it was decided through a trade study 

that steel fabrication should be employed.  

Although aluminum pieces would be lighter, we 

believe the total weight penalty of less than 

0.2lb is worth the cheaper alternative.  

The steel rockers will consist of three 

pieces: a plate, an insert to hold the bearing, and 

an insert to support the shock spherical bearing.  

The three pieces will then be TIG welded together to created the final part.  The final rear rocker 

assembly can be seen in Figure 4.4.  The rocker plate thickness was calculated using the CosmosWorks 

program and assuming the worst pushrod loads of upwards of 900lbf.  A thickness of 0.060” was 

deemed adequate with a factor of safety of 1.4 for normalized 4130 steel.  Results of this analysis can be 

seen in Figure 4.6. 

 

Shocks and the Anti-Roll Bar (ARB) 

  
 The shocks to be used on this project are the shocks that are currently in use on the CP08 car.  

The current shocks are Cane Creek mountain bike shocks with adjustable dampers and springs. The ride 

frequencies to be used are 3.3Hz for the front and 3.6Hz in the rear. The front ride frequency was 

desired to be higher than the rear to allow for faster transient response at corner entry and reduce front 

ride height variation.  However due to the lack of a front ARB, it was necessary to select springs for 

desired roll rates instead of ride rates, which lead to such high ride frequencies. With the previously 

stated ride frequencies and desired roll rates of 8400 ft-lbs/° in the front and 7900 ft-lbs/° in the rear, 

spring stiffness of 150 lbf/in and 175 lbf/in were chosen for the front and rear springs respectively. Roll 

Rates were decided based on matching the maximum lateral acceleration front to rear at 1.46 G and a 

Figure 4.6: Stress analysis on the rear rockers 
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desired roll gradient of 1.5 °/G.  Matching lateral acceleration front to rear is important for a neutral 

handling car. With a Front ARB available, a Rear ARB may have also been desired but with the lack of a 

front ARB, the addition of a rear ARB was deemed unnecessary.  Instead high spring rates will be used to 

achieve desired roll stiffness, at the cost of high ride frequencies. 

Front Suspension Analysis and Redesign 

 
Although the bulk of this project 

focuses on the adaptation and design of an 

independent rear suspension, a considerable 

amount of time must be spent reevaluating 

the current front independent suspension of 

the 2008 FSAE car. The front and rear 

suspension systems must ultimately work in 

unison. The CP08 front suspension has a lot of 

unique attributes due to the constraints that 

drove the solid rear axle design.   

With a solid rear axle it is necessary to 

unload the inside rear wheel while cornering, 

such as in a go-kart. In order to accomplish such a feat, karts have very high caster angles. Caster is the 

angle between the upper ball joint and the lower ball joint when looking at the side view of the wheel 

and upright.  Caster angles for racing karts typically range around 20-25°, which is quite large in 

comparison to a typical FSAE car, which runs anywhere from 4-8º of caster.  

Since more caster causes the wheel to rise and fall with steering, steering will give rise to roll, 

which will cause a diagonal weight shift from the inside front tire to the outside rear tire.  This is how 

solid rear axle vehicles unload the inside tire while cornering.  Diagonal weight transfer is also 

determined by other factors, such as spring rates and kingpin angle, but these contributions are 

considerably smaller than the contribution of caster angle. 

The 2008 FSAE car was measured and currently has a caster angle of 9°. This is on the high side 

of FSAE cars, but not as bad as expected.  The main advantage of an independent rear suspension, 

however, is to keep the weight as evenly distributed on the four tires as possible, leading to more 

Figure 4.7: Caster angle 
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efficient tire performance and higher lateral force coefficients.  If we leave the high caster angle on the 

CP08 car then it will induce excess jacking of the inside rear tire, which is not beneficial to our cause. 

There are many options at our disposal in order to solve the front caster problem, all requiring 

different amounts of effort in both design and manufacturing.  Since the front suspension is already 

built, it would be extremely convenient to recycle as many of the parts as possible, cutting down on the 

labor and time needed before the car is test ready.  Solutions were thus aimed at changing as few parts 

as possible.  

The front upright is a complex aluminum CNC machined part.  However, the tabs on the upright 

that house the upper and lower ball joint, along with the spherical bearing, are removable and held to 

the upright by two bolts.  Re-machining these aluminum tabs to change the caster and kingpin angle 

 

Figure 4.8. Solid models of current front caster and mechanical trail (left) and suggested changes (right). 
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would be much faster, easier, and cheaper than re-machining an entire upright.  As for the other 

components, only new upper A-Arms will need to be made, which are relatively simple to fabricate. 

The decision was made to re-manufacture the upper ball joint tab only, moving it forward with respect 

to the centerline 0.75in and changing the caster angle from9º to 5.3°.  The downside of changing just the 

upper ball joint tab, however, lies in the mechanical trail.  This change would decrease the mechanical 

trail from 0.79in to 0.46in.  Mechanical trail is what gives rise to the aligning moment around the tire. 

The aligning moment is the lateral force multiplied by the combination of mechanical and pneumatic 

trail where, typically, the pneumatic trail is much smaller than the mechanical.  This is to ensure a 

consistent steering wheel feedback to the driver.  The aligning moment is directly proportional to the 

amount of force the driver must provide at the steering wheel.  High amounts of trail and consequently 

high forces through the wheel may give rise to a fatiguing driver, while too low an amount of trail may 

not give the driver enough feedback while cornering.  

Although the mechanical trail will be decreased slightly by our manipulation, we anticipate that 

the car will still respond reasonably to the driver.  During testing we expect to run both the old caster 

angle, along with the new one to determine if the diagonal weight jacking is even a problem.  This 

information can be used in the future since caster angle affects many other aspects besides this diagonal 

weight transfer effect.  

 

Rear Frame Adaptation 

 
With the rear frame concept design chosen, optimization began on its individual members. 

Using the maximum suspension loads from our Matlab program and FEA software, each tube’s relative 

size was considered and changed.  Optimizing members lightened the structure where stiffness is not 

needed and stiffened the structure where it was found to be the weakest. The tubes that make the 

trapezoid with the engine mounts are all design to be .065” thick to reduce node deflection.  Other 

members were found to be sufficient at a thickness of .035” thick.  After an initial FEA it was found that 

the two members that mounted to the existing main roll hoop would not be needed, and were removed 

for a weight savings of 2.5 lbs.  Additional members were then added from the original concept in order 

to support the differential and rocker loads. The final weight was calculated to be 15.06lbs, which is 

about 5.5lbs less than the original concept.  
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The strength and stiffness properties of the frame can be seen in the following figures and table. 

The worst case loads were found at each suspension point and used to perform the strength and 

stiffness calculations within FEA. Within the FE analysis the engine was assumed to be much stiffer than 

the frame itself, based on the thickness of the motor mounts. Deflection is biggest at the back bottom 

nodes at 0.015”.  This is not surprising considering that the lower A-Arms are the most heavily loaded. 

This analysis was conducted without a 3G bump load.  If such a load is seen we are confident that the 

steel will not yield; however deflection will be much greater. Since such a load is so rare, we designed 

for stiffness assuming it will not happen during a racing situation.  

Table 4.4: FEA Frame Performance Estimate. 

FEA Frame Performance Estimate 

  Maximum Displacement Maximum Stress 

Frame 0.015 inch 12000 psi 

Allowable 0.02 inch 52200 psi 

S.F. 1.37 4.0 

 

Figure 4.9: Final rear frame design 
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Figure 4.10: Stiffness and strength FEA results for max case loading, respectively 

 

FEA was also used to calculate an estimate of the roll stiffness of the rear chassis.  The A-Arm 

and upright members were modeled along with the frame and a known load was applied to one upright.  

The rear frame was constrained used pined joints in all directions at each of the four nodes which would 

connect it existing rear space frame. Knowing this force, the deflection and the distance between the 

uprights, chassis roll stiffness could be found in units of lbf-ft/°.  We found the rear chassis stiffness to 

be approximately 4200lbf-ft/°.  The FEA deflection results used to calculate this are shown below.   

 

Figure 4.11: Chassis stiffness simulation of rear frame 
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The rear frame will be attached to the existing sub frame 

using removable frame bungs.  Similar bungs are already 

incorporated into the sub frame to aid in engine removability.  

Our new bung sets(4), however, will need to be in single shear, as 

shown in Figure 4.12.  Though not ideal, placing the bolt in single 

shear is necessary for the frame to be removable due to the 

complex angles the tubes will be arranged in. Failure calculations 

were done on the joint, and it was found that bolt shear would be 

the cause of failure, at an axial tube member force of 3800lbs. 

Our FEA results show that this much force will not be seen in any 

of the frame members.  We will be using a Grade 8 0.3125” bolt in 

each joint.   

The locations of the bungs were temporally set 

at the uppermost node of the main roll hoops down 

tubes, and the very bottom of the down tubes.  Initially 

we planned on reusing the frame bungs currently on 

the car as shown in Figure 4.13. However, we found 

that a lighter, stiffer frame will be possible by creating 

new hard points. Using the old bungs would force the 

tubes running to the rear box to “cheat” the node.  

Alternatively, the tube could be placed at the node and 

run off-axis to the bung, placing the tubes in bending.  

Both these designs could compromise the strength of 

the frame, and therefore new bung locations were 

placed to avoid these issues.  

Figure 4.12: Frame Bung design 

Figure 4.13 Rear Space Frame Assembly 
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Differential Choice and Mounting 

 

After considering the available options, Suspension Solutions selected a University Special 

Torsen differential.  This choice provides an efficient torque transfer under a variety of conditions and 

supplies a torque-biasing ratio of 3.2:1. The University Special Differential is modeled off of an Audi 

Quattro AWD drive train and is more than strong enough to handle the torque requirements of our 

engine.  Another factor contributing to us choosing the university special was ease of availability.  

Suspension Solutions was able to use an existing Torsen differential, freeing up funds for other aspects 

of the design. 

Many Formula teams using 

the university special differential 

choose to abandon the stock housing 

in favor of a custom-manufactured 

enclosed assembly. This method is 

generally preferable, as the engineer is 

free to design the whole differential as 

one unit, as well as potentially 

removing some un-necessary weight 

and complexity from the assembly.  

Despite these advantages, it was 

decided that the stock housing would 

be used unaltered, as seen in Figure 4.14, due to the fact that we want to preserve the differential in its 

original state for use by future SAE teams. This is a design consideration because we are borrowing the 

differential from the Hybrid SAE team, and would like to return it to them as unaltered as possible. 

Effectively this means that the housing is not to be notched, ground, or bolted into unless absolutely 

necessary. Given this limitation, the design problem became how to effectively work around the existing 

differential housing without making sacrifices in weight or performance.   

 

 

Figure 4.14: Torsen Differential 
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Differential Design Components 

 The first major consideration for the differential was how to effectively deliver torque from the 

engine. Although various methods exist for power transfer from engine to differential, the engine is 

currently configured to be chain-driven. In order to maintain equal final torque ratios are equal it was 

decided to use the same diameter 40 tooth sprocket found on the solid axle design. The final sprocket 

uses six ¼ inch grade 8 screws to fasten it to the sprocket differential insert. This insert will be machined 

out of T6 6061 aluminum because of the relative 

ease of manufacture. Performing stress 

calculations on the screws showed that this 

design is able to meet the stated design 

requirements, (See Figure 4.15). Since the 

purpose of the sprocket insert is to supply power 

to the drive train, a strong and reliable method of 

locking the sprocket insert to the differential 

body was needed. This was accomplished by 

using the differential housing’s built-in large 

splined opening on one end. Using AGMA spline 

calculations it was determined that a splined insert with a 1/4” wall thickness would be sufficient to 

transmit torque from the sprocket to the differential.   To ensure a secure and sealed environment this 

insert will have a slight press-fit tolerance of .001 inch. In addition to transferring torque to the 

differential, this splined insert will also provide a 

mounting point for two bearings, one inside the 

insert to isolate the drive shafts from the 

differential and one on the outside to mount the 

differential assembly to its supporting uprights. 

Because the inner bearing surface will only see 

rotation during cornering, and slow rotational 

speeds even then, an inexpensive and low-profile 

bronze bushing was used for the inner bearing. A 

spherical ball bearing was used for the outer 

surface, sized for at least 1x108 rotations. 

Figure 4.15: Sprocket insert with differential 

Figure 4.16: Brake Insert with Differential 
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Next to be designed was the opposing 

differential insert, whose function is to transmit the 

braking torque from the upright-mounted caliper to the 

rotor. Again we decided to use existing parts, and so the 

rotor being considered is the same carbon rotor used in 

the solid-axle setup.  In order to transfer braking torque 

to the differential, this insert will use a combination of 

press-fit and (3)10-32 thread socket cap screws, shown in 

Figure 4.16. The corresponding screw holes in the 

differential are the only modifications to the Torsen 

housing, and were drilled because the original keyhole locking mechanism was determined to not be 

strong enough. The brake rotor is positively locked to the differential insert via built in splines, and inner 

and outer bearings support the axle stub and differential in the same way as described for the sprocket 

insert earlier. Spherical roller ball bearings were selected for differential support because of the lack of 

thrust loads.   

The inserts will be made of 6061-T6 aluminum 

stock. Early on in the life of this project it was 

determined that in order to maintain proper chain 

tension, the differential assembly would need to be 

adjustable, with between ½-1” longitudinal travel. In 

order to meet this requirement, as well as keep the 

whole differential assembly straight and true, the 

differential, inserts, sprocket, rotor, and caliper will all 

be mounted onto two 6061 aluminum uprights, shown 

in Figure 4.17. The whole differential assembly will 

pivot on the lower mounting hole, and will be 

accurately adjusted via turnbuckles mounted to the 

frame. This method allows for approximately ¾ inch 

maximum longitudinal travel. Lateral adjustment will be controlled by shims between the differential 

upright and the upright mounting brackets. This will allow for up to ¼ inch adjustment side-to-side, 

which given careful initial alignment and good build quality, should be sufficient. As mentioned above, 

Figure 4.17: Differential Assembly 

 

Figure 4.18:  Deflection distribution of Upright 
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the brake caliper will be mounted directly on to the differential upright. The caliper is a Brembo-P32F 

opposing piston design and was selected because of it’s availably and general suitability. The uprights 

are designed with an outside step to hold the 

differential bearings securely in line. One potential 

concern is the large moment applied by the caliper 

upright (Figures 4.18 and 4.19).  An estimated 900 

lbf·in braking moment was assumed for the rear 

inboard brake which is approximately 30% of the front 

braking torque (300lbf·in).  To accurately identify the 

stress and deflection results of the complex shape, FE 

analysis was done which transferred the brake loading 

to the mounting points.  Due to unknown factors in 

loading the analysis was done using a 1.5 safety factor 

on the reaction loads located where the caliper mounts 

to the upright.  Maximum stress resulting in the upright, 

shown in Table 4.5 is within the yielding limits of the material used (Al 6061). 

When completely assembled, the differential assembly weighs approximately nine pounds. This 

weight is not entirely accurate as it does not include the 

weight of the differential gearing or the brake caliper 

mounting hardware. Taking these factors into account 

will put the total weight at around 12 pounds, which is in 

line with our expectations. 

The final component to the differential assembly is a housing cover. Because the stock housing 

is an open differential design, the bevel gearing is directly exposed to the outside elements, leaving it 

vulnerable to all kinds of environmental hazards, from rocks to mud to dust. The rotation of the 

differential would also tend to fling any lubricating grease out of the assembly, leading to premature 

wear and poor performance. For these reasons, Suspension Solutions has decided to manufacture a 

clamshell-style cover to snap onto the existing housing. This housing will be made out of either sheet 

metal or carbon fiber, depending on availability of materials at manufacture date. Because it is a totally 

non-structural part, almost any gauge of material will work, so we will attempt to make the clamshell 

 
 

Max Mises 24.4 ksi 

Max Deflection 0.0282 in 

Figure 4.19: Von Mises stress in upright 

Table 4.5: Upright Results (S.F.  1.5) 
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assembly as thin as possible. To prevent oil leakage and completely seal the differential housing from 

outside elements, a rubber gasket will be added around all edges. 

Following the design plan outlined above, the differential assembly will be manufactured at a 

total material cost of under $150, and with only minimal alterations to the differential housing. The 

differential's built-in outer splines will be used to transmit torque from the sprocket to the housing, and 

braking torque will be transmitted to the housing via a press-fit and bolts. Bearings will be cylindrical 

roller bearings, and differential inserts will be made from 1020 steel or 6061 aluminum. This design is 

sized for a minimum life of 2000 hours, with the aluminum brake rotor insert the driving part for design 

life. 

 

 

 

 

 

 

 

 

 

 

 
 
 

 

 

Figure 4.20: Exploded Differential Assembly 
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CV Joints, Half Shafts, Splines, and Axles 

The objective of this project was to analyze and properly size various elements of an 

independent suspension Formula SAE car. A breakdown of typical formula power-transmission systems 

yielded five major components that would need to be designed in order to achieve a workable system. 

These components are as follows: 

1. Inboard Axle Stub Splines 

2. Halfshaft Splines 

3. Halfshaft Fatigue Sizing 

4. Spindle Fatigue Design and Sizing 

Chromoly and 4130 steel members were sized for infinite life and aluminum parts for 1000 hours of 

service. All bearings in our design are rated for a minimum of 1000 hours as well.  Following is a short 

description of each design process as well as the final design dimensions and safety factors. 

Spline Analysis 

The loading on a spline is typically pure torsion, either steady or fluctuating. Although it is 

possible for bending moments to be superposed, the spline analysis preformed assumes that the 

bending loads are minimized due to proper bearing placement.  Splines and half shafts were designed to 

transmit the maximum allowable torque needed to overcome the longitudinal friction force generated 

by the tires.  This was computed knowing the frictional coefficient of the tire (µ=1.4).  A static calculation 

shows that the maximum torque transmitted to the wheels cannot exceed 233.3 ft lbf for stable 

conditions to be obtained.  Although the power supplied to the differential from the transmission can 

reach levels of 466.5 ft lbf, this much torque cannot be contained due to the frictional properties of the 

tires and will cause unstable conditions.  Due to internal splines already manufactured into the 

differential and tripod bearings, multiple analyses were done to verify components reliability.  According 

to Norton there are two possible failure modes possible bearing and shear, with shear usually being the 

limiting mode. The shear stress calculated for the splines uses the SAE assumption that only 25% of the 

teeth are in contact due to inaccuracies in spacing and tooth form. For a more detailed analysis of spline 

calculations refer to Appendix C.   

The result of our spline analysis is presented in the following tables: 
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Spline Analysis – Differential (28 Splines) 

Material - 4130 Q&T @ 425°C 

Major Diameter dO(in) 0.919 

Pitch Diameter dP(in) 0.875 

Minor Diameter dR(in) 0.852 

Inner Diameter (Hollow) di(in) 0.0 

Approximate Length l (in) 0.808 

Shaft Torque T (lb ft) 467.6 

Shear Stress τ (psi) 46210.9 

Yeild Strength Sy(psi) 173000 

Safety Factor SF 3.74 

 

 

 

Spline Analysis - Half Shaft (30Splines) 

Material - 4130 Q&T @ 425°C 

Major Diameter dO(in) 0.975 

Pitch Diameter dP(in) 0.9465 

Minor Diameter dR(in) 0.918 

Inner Diameter (Hollow) di(in) 0.5 

Approximate Length l (in) 0.864 

Shaft Torque T (lb ft) 467.6 

      

Shear Stress τ (psi) 36943.3 

Yeild Strength Sy(psi) 173000 

Safety Factor SF 4.68 

Table 4.7 Spline analysis results of half shaft splines using equations provided 
by Norton 

Table 4.6 Spline analysis results of differential splines using equations 
provided by Norton 
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Half Shaft Fatigue 

 
Half shaft sizing needs to be determined due to the abnormal amount of braking and 

accelerating during an endurance test.  For our purposes a simplified model assumed a maximum 

accelerating torque of 2800 in-lbf and a maximum braking torque of 2800 in-lbf.  This is the maximum 

torque required to overcome the frictional properties induced by the tires.  The material used for this 

application is 4130 Q&T steel at 425°C with an ultimate strength of 236 Ksi.  The cyclic loading induces 

fatigue loading, and modifying factors were used to find the modified endurance limit of the material.   

 

Modifing Factors 

ka Suface Factor 0.6522 

kb Size Factor 0.9777 

kc Loading Factor (Mises) 1 

kd Temperature Factor 1 

ke Reliability (99%) 0.814 

Notch Sensitivity q 1.72 

 

A surface factor was applied to the endurance limit assuming a machined cold drawn process.  The size 

factor assumed an outer shaft diameter of 1 inch with a ¼ inch wall thickness.  The loading factor was 

adjusted to a value of one due to the equivalent Mises stress applied to the alternating torsional stress.  

The temperature factor was adjusted to 1 due to the location of the half shafts and the surrounding 

conditions.  The half shafts are located in ambient conditions and encounter high heat transfer rates due 

to the forced convective properties applied during a dynamic test of the vehicle.  For this reason the 

assumption that the half shaft does not heat up is a valid one.  A notch sensitivity factor was used as a 

result of the torsional effects on the spline.   

 
The endurance limit was found using Equation [1]. 

 

𝑆𝑒 = 𝑘𝑎𝑘𝑏𝑘𝑐𝑘𝑑𝑘𝑒𝑆𝑒′     Equation [1] 

 
The safety factor of the shaft was found using Equation [2], the Goodman failure criteria. 

𝑆. 𝐹. =  
1

𝜎𝑚
𝑆𝑒

+
𝜎𝑎
𝑆𝑢𝑡

                                                                   Equation [2] 

Table 4.8 Endurance limit modifying factors 
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Stress Values 

Tm 0 in lbf 

Ta ± 2800 in lbf 

τa 27.2 Ksi 

σea (Mises) 47.1 Ksi 

Se 51.9 Ksi 

Sut 236 Ksi 

S.F. 1.1   

 

Due to the over-conservative estimate of the alternating torque being applied to the half shafts for 

infinite life, the safety factor and sizing the shaft resulting from fatigue analysis is an acceptable one.  

Using 4130 steel 1 inch OD ¼inch wall thickness stock tubing to manufacture the half shafts will be able 

to withstand the maximum torsional loading of 2800 in lbf during its intended use.  A conservative 

model was chosen purposely due to the unknown loading conditions which act on half shafts.   

Spindle Fatigue Sizing 

Unlike half shafts, spindles are responsible for carrying the weight of the vehicle and thus are subjected 

to bending as well as torsional loading. To acquire the spindle moment, the tire patch forces were 

translated to the spindle, and two constant resulting moments were calculated, Mx and My. These were 

then added to the spindle cut FBD, and summing the moments in three planes about a generic cut gave 

the moment on the spindle. The following geometric dimensions were used: 

 

 

 

 

Table 4.9 Torsional Stress Values 
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The tire patch forces were calculated from a weight-transfer spreadsheet using six different loading 

conditions and then added up using the linear damage rule: 

𝐹𝑒𝑞 = [
 𝐹𝑖

𝑎 𝑙𝑖
6
𝑖=1

 𝑙𝑖
6
𝑖=1

]1/𝑎      Equation [3] 

Here an application factor of a=2 was used, signifying moderate impact operation. After evaluating the 

moment at the step and bearings, we decided that the shaft was critical at the step because of the 

added local stress concentrations. We originally planned to use 6061 aluminum sized for 1000 hours of 

life, but after consulting Mil-Handbook 5, we concluded that the shaft would need to be at least 45mm 

in diameter, which proved impractical. We therefore decided to use a 4130 chromoly hollow spindle, 

sized to infinite life.  The results of these design parameters are as follows: 

 

Outer Diameter, D 1.57” 

Outer Step Diameter, Dstep 1.18” 

Inner Diameter, d 0.79” 

Modulus, E 30,000 ksi 

Ultimate Strength  236 ksi 

Yield Strength 212 ksi 

Factor of Safety 2.15 

Figure 4.21: spindle geometric dimensions 

Table 4.10 Spindle sizing properties 
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Uprights 

 

As mentioned before, the uprights were designed with worst-case scenario forces in mind. To achieve 

this we looked at forces on the outside rear corner of the car under 1G of longitudinal acceleration, 1.5 

Gs of lateral acceleration, and 3Gs of vertical acceleration for the worst-case scenario of a sudden bump. 

The table below lists the resulting pick up point forces, calculated using a Matlab program and used in 

the FE analysis. 

 After some minor adjustment, the upright passed FE analysis, but the initial results were quite 

unexpected. The design failed at the lower tab of edge B, pictured in Figure 4.24. It was the result of a 

sharp corner causing a large stress concentration, resulting in local stresses upwards of 55,000 psi, well 

above the 35,000 psi yield strength of aluminum. This problem 

was solved by increasing the cross sectional area in that region 

slightly and creating a ½ inch fillet in place of the sharp edge. 

The resulting local stress never exceeded 23,000 psi, and the 

design passed with a factor of safety of 1.5 at a weight of 1.74 

lb per upright. This weight can be further reduced by making 

some adjustments to the dimensions above the bearing ring; 

for example, changing the upper legs from ¼ to 1/8 inch wide. 

Component weight could further be reduced by constructing 

the upright out of stronger, but much more expensive, 7075 

aluminum. 

 

 

 

 

 

Point 

Force X  

[lbf] 

Force Y  

[lbf] 

Force Z  

[lbf] 

A +220 +302 -41 

B +162 -290 +13.3 

C +361 -408 +700 

Table 4.11: reaction forces on the upright Figure 4.22: Final Upright FEA  
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Many of the critical dimensions of the upright stemmed 

from the given bearing dimensions. The bearings were sized using a 

Timken bearing life calculation, with a maximum life of 1000 hours 

and a spindle diameter of 30mm. The spherical bearings used to 

connect the A-Arms to the uprights will do so by means of pick up 

tabs, simple C channel devices that will be held to the upright with ¼ 

inch bolts. These are still in the design phase but will be constructed 

from 4130 steel. Such a setup allows for simple adjustment of 

camber angle by adding successive shims between the pickup tabs 

and upright, a desirable feature which will allow for greater 

suspension tune-ability.  The Bearings to be used are tapped roller 

bearings, Timken #M86610 and #M86649.  They were sized for 

infinite life and lightweight. Tapered Roller bearings were chosen do 

to their ability to take axial loads. And general removability.  

Cost Analysis 

 
Current cost analysis is based on recent component design.  Pricing tables will fluctuate 

throughout the design process and will be documented and updated on the teams interactive 

spreadsheet.  Total estimated pricing came to about $3670.15, which is within our budget.  This does 

not include an estimate for hardware or a large fluctuation in vendor pricing.       

 

Suspension           

Part No. Components Quantity   Description Cost 

08S0241-SS Upper a-arm fore tube 2   4130 3/8x.035  $6.00 

08S0242-SS Upper a-arm aft tube 2   4130 3/8 x.035 $6.00 

08S0243-SS Tie rod tube 2   4130 7/16x.035(30inch) $11.00 

08S0244-SS Lower a-arm fore tube 2   4130 1/2x.035 (86) $11.00 

08S0245-SS Lower a-arm aft tube 2   4130 1/2x.035 $11.00 

08S0246-SS Push Rod Tube 2   4130 1/2x.035 $11.00 

08S0604-SS  Shocks 4  Fox DHX 5.0 $399.00 

08S0647-SS Space Frame Adaption 1  4130 .87" x .065"wall x 6' $30.80 

Figure 4.23: Exploded Upright View 

Table 4.12: Cost analysis of major components 
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DriveTrain           

Part No. Components Quantity   Description Cost 
08D0101-SS Differential  1   Torsen University Special $415.00 
08D0102-SS Sprocket attachment 1   6061 2" OD 12" wide $17.84 
08D0103-SS Brake Hub 

attachment 
1   4.5" OD 3" wide $30.40 

08D0104-SS Differential Support 
Right 

1   4140 multipurpose $40.33 

08D0105-SS Differential Support 
Left  

1   4140 multipurpose $40.33 

08D0106-SS Sprocket  1   chain # ANSI 35 $13.15 
08D0108-SS Mounting Bracket 

Right 
1   6061 Al 12"x3"x.5" $13.18 

08D0109-SS Mounting Bracket 
Left  

1   6061 Al 12"x3"x.5" $13.18 

08D0201-SS TriPod Bearing 4   Tripod Joint 22-Spline RT40/41 $62.99 
08D0202-SS TriPod Bearing 

Housing 
4   Tripod Joint Housing 94mm dia, 26mm 

thick 
$182.99 

08D0203-SS Half Shaft Right 1   4130 Unpolished; 1"OD 1/4"wall x 6' $86.33 
08D0204-SS Half Shaft Left 1   Included in Half Shaft Right Cost   
08D0205-SS Rotor Side Inner 

Shaft Bearing 
1   2"OD 1"IDx9/16" Doubley sealed ball 

bearing  
$18.38 

08D0206-SS Rotor Side External 
Bearing 

1   2.5"OD 1.25"ID x 5/16" Doubley sealed 
ball bearing 

$25.87 

08D0207-SS Sprocket Side  
External Bearing 

1   2.5"OD 1.25"ID x 5/16" Doubley sealed 
ball bearing 

$25.87 

08D0208-SS Sprocket Side Inner 
Shaft Bearing 

1   2" OD 1" ID x 1/2" ABEC 1 Doubley 
sealed ball bearing 

$10.92 

Upright           

Part No. Components Quantity   Description Cost 

08U0101-SS Rear Upright Right 1   6061 12"x6"x2" $78.03 

08U0102-SS Rear Upright Left 1   6061 12"x6"x2" $78.03 

08U0201-SS Rear Spindle  1   12" x 4" x 1.25" 4140  $76.92 

08U1AS2-SS Upright Bearings 4    30mm Id x 6r mm OD 
Tapered Roller Bearing 

    $14.95 

Total Cost $3700.10 
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Manufacturing Plan 

Most components will be manufactured in house by students to cut down on labor costs.  Many 

drivetrain components include splines and will therefore need to be outsourced due to their complexity.  

Several local sources have been contacted for these jobs, such as Helical in Santa Maria.  For ease of 

manufacturability, most large components will be made out of 6061aluminum, which can be easily 

machined.  Components such as the rear spindles needed a material with higher strength properties to 

accommodate the relatively large load levels, and small shaft diameter dictated by the upright bearings.  

The stock 4130 tubing priced out for the half shafts are slightly larger than what the required design calls 

for.  The decision to price out the larger diameter gave us flexibility to turn down the sides to a smaller 

corresponding wall thickness.  Flanges will need to be welded onto the differential axle stub to support 

mounting locations for the tripod bearing housing.   

A-Arms, tie rods, and push rods will use stock tubing which will be notched to fit bearing wafers 

(Part # 08S247-SS).  The 4130 steel bearing wafers will be manufactured in house using a CNC mill and 

an existing wafer jig.  Spherical bearings will be ordered from Coast Fabrication (Part # HAB-4TG), and 

will be pressed into the wafers and secured using a staking tool.  Simple tabs will be ordered to save 

time, while complex tabs such as the push rod mounting tab (Part # 08S0250-SS) will be cut and welded 

in the hangar.  The rear rocker assembly will include sheet metal, which will be cut and grinded to shape.  

The space frame adaption will be one of the more complicated manufacturing jobs of the project.  A 

network of multiple tubes will have to be notched and welded to one another.  This will require the care 

of a carefully designed jig and a professional welder.   

The rear frame is going to have to be very carefully jigged and notched.  With multiple nodes 

having more than three members joined at them, notching will become very difficult unless properly 

mapped out to the manufacturer and welder. The extra time taken to properly measure and notch tubes 

will produce a stronger frame that is easier to weld. TIG welding will be used to weld the frame; tubes 

will be 4130 normalized steel and ordered from Aircraft Spruce.   

The complexity of the upright will require the accurate manufacturing ability of a CNC.  Upper 

and lower A-Arms, tie rods, and push rod tabs will be bolted onto the upright.  The tapered roller 

bearing will be press fit inside the upright.   

 



                                                                                                                                                     
 

 
 

61 

 

 

 

 

Chapter 5: Manufacturing Process 
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Suspension: 

A-Arms 

One of the unique aspects of this project’s A-

Arms were the bearing wafer designs.  During the 

design phase it was determined that using wafers 

instead of bearing cups would produce a better quality 

part, though it did produce some manufacturing 

challenges.  The wafers required a special tooling jig to 

hold the part during machining; fortunately, this jig 

was already constructed and used for production by 

the Formula Hybrid team.  The jig (shown in the 

background of Figure 5.1) held the wafer blanks (seen 

in the back right of the figure) during the CNC machining operation to produce the completed wafers.  

The blanks themselves were prepared manually from ¼” thick 4130 steel, with the center hole drilled 

and reamed to the proper size for the spherical bearings.  With the only critical dimension being the 

distance of the hole from the edge (ensuring a tight fit in the jig), these blanks were quick to 

manufacture on a properly set up mill. 

The CNC machining was done after coding in CamWorks was completed.  Since these parts had 

been produced before by Formula Hybrid, only minor changes had to be made to the code to adapt to 

this projects suspension geometry.  Machining of the wafers was done with ¼” carbide endmills, and 

took approximately six minutes per single wafer and 15 for each outboard double wafer. 

The A-Arm tubing was cut to length on the chop saw, and 

then sent to the mill to be notched.  Notching involved one 

pass per side with a ¼” endmill to produce the slots shown 

in Figure 5.2 at left.  When the tube was flipped for notching 

on the second side, a ¼” plate was inserted into the first 

notch.  A digital angle finder was secured to the plate and 

was used to ensure that the slots were in plane with each 

other. 

Figure 5.1: A-Arm wafer jig, blanks, and finished 
single wafers  

Figure 5.2: Notched A-Arm tubing 
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 With the wafers and tubes complete the A-Arms could be mounted on the jig plate.  The jig was 

created from 3/16” steel with all A-Arm points located, drilled and tapped for ¼” bolts.  Spacers were 

cut on a lathe to fit inside the bearing holes on the wafers while mounting to the jig plate.  Prior to 

placing on the jig, all tubes and wafers were cleaned on the wire wheel around the welding area to 

remove any contaminants.  Once assembled on the jig the A-Arms were tack welded in two places at 

both ends of each tube, final TIG welded on one side, flipped on the jig, and welded on the other side. 

 The lower A-Arms also required the addition of a gusset for mounting the pushrod tabs.  This 

piece was made from 0.060” steel and was cut so it would rest tangent to the top tubes.  After being 

welded in place, the A-Arm was mocked up to get the proper location for the push rod tabs.  These tabs 

were then bolted onto a rod end and welded on to the A-Arms.  Similarly, tie rod tabs were created and 

aligned so that the tie rod acted in line with the nodes at the upright and chassis. 

Rockers 

 The rocker assembly consisted of three main parts that needed to be manufactured.  The first 

parts manufactured were the main rocker plates.  These plates (4) were plasma cut out of 0.060” thick 

4130 steel plate stock.  The drawing shown in Appendix F was traced by the plasma cutter in order to cut 

the rocker plate to its proper shape. With excess slag removed, the rocker plates were then stacked 

together and tack welded to for an easier drilling process. The bolt holes for pushrods and shocks were 

done on a simple drill press, while the hole for the bearing insert cup was done on a mill. This bigger 

hole required a 1” drill which proved to be too much load for the smaller clamps of the drill press. Using 

the mill was much more stable and produced a clean 

finish. With all the drilling done on the plates the tack 

welds holding them together was ground off, and the 

parts were prepared for welding.  

 The next parts manufactured were the rocker 

bearing insert cups (4).  These parts were created from 

1” x .125” 4130 steel tube stock.  The bearing cups were 

cut to length and then welded to the previously drilled 

out hole in the bearing rocker plates. Since boring for 

the rocker bearing was done after the welding process, 

no special jig was used. Figure 5.3 shows the rockers after the TIG welding of the two parts. Once the 

Figure 5.3: Rockers after welding of bearing cups 
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parts had cooled down from welding they were chucked up on the CNC lathe to bore out the proper 

diameter for the rocker bearing. The bore was cut to allow for a bearing press fit of 0.001”.  Once this 

process was complete, the bearings were easily pressed 

into the rockers using the hydraulic press.  

 The third main component was the rocker 

posts(2) which the bearings pivot on and connect the 

rockers to the frame. These were turned down from 1” 

4130 steel bar stock using the CNC lathe. A perfect slip fit 

was needed to allow easily removability of the parts, 

while also making sure the inner race would not spin on 

the post.  Figure 5.4 shows a rocker post bearing 

surface being turned down.  With the bearing surface 

slip fit done, the rocker was drilled and tapped for a ¼”-

28 bolt.  This bolt would apply axial force to the bearing 

races, keeping the rockers in place. Next the rocker post 

were flipped on the lathe and the back end was bored 

out and then notched on the tube notcher to allow for 

clean, easy welding to the rear frame.  

The suspension was then mocked up to find the 

final placement of the rocker post. It was then tacked in 

place and then fully TIG welded. Figure 5.5 shows the 

final rocker location. 

Push-rod’s/Tie-rods: 

 Carbon pushrods were originally designed for the car, but due to the uncertainty of carbon 

properties, they needed to be tested for buckling before being used on the car. 0.5” diameter carbon 

tubes were laid up manually around an aluminum mandrel, with a [0°2/90°]sym laminate of unidirectional 

AS04carbon.  Tapped inserts were machined out of 4130 steel and bonded to both ends of the finished 

rods.  The carbon pushrods meet or exceeded expected failure loads for buckling but the manufacturing 

difficulty led us to build steel parts for the final assembly.  A more complete description of the carbon 

rod manufacturing and testing is in another report which has been handed down to the current FSAE 

Figure 5.4: Rocker bearing post being machined 

Figure 5.5: Final Rocker Location. 
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team members.  The ’08 solid rear axle push rods became our new tie-rods to speed up manufacturing 

of other parts.   

Chassis 

Manufacturing of the chassis began with the construction of some basic jigs to properly locate 

the tubes.  The rear frame was constructed in several stages; first, the upper and lower rectangles were 

made, then connected to each other, and finally connected to the existing frame.  For the upper and 

lower rectangles, angle iron was welded to the frame table to restrain the tubes to the dimensions 

specified during design.  Tubes were mitered at 45º and carefully cut down until they could fit inside the 

jig with minimal gaps.  In the design for the lower rectangle, a cross piece was used to triangulate the 

base.  This tube required a more complex notching and made use of the PipeMaster, a tool used to 

indicate the shape required for fitting tubes.  After 

careful notching, the tubes were tacked in several 

places at each corner and then TIG welded while still 

in the jig. 

 With the upper and lower rectangles 

complete, a temporary notched tube welded to the 

table was used as a jig to space the upper and lower 

rectangles vertically.  At this point the back trapezoid 

was created to connect the two parts, again using the 

PipeMaster and tubing notcher to properly 

fishmouth the tubes for welding.  The almost completed rear section was next aligned with the 

connection points on the engine, as shown in Figure 5.6.  This stage in the fabrication was very critical, 

and extra steps were taken to ensure that the frame 

was level, centered and at the proper height for our 

suspension design.  The down tubes on the engine side 

were then cut, notched, and tacked in place while still 

attached to the car.  At this point, the rear box was 

sturdy enough to remove from the car, and all joints 

were cleaned and finish welded.   

Figure 5.6: Rear box aligned with the existing 
frame and engine  

Figure 5.7: Single shear chassis bungs for 
upper frame mounts  
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 With the rear box complete the connections could be made to the existing steel chassis.  For the 

sake of removability these connections were all made using machined bungs as shown in Figure5.7 at 

left.  The bungs were machined from 4130 steel on a manual lathe and mill, and were designed to slip 

inside the frame tubing for welding.  Two styles of connectors were made; those designed for the upper 

frame pickup were single side, single-shear bungs, while the lower bungs were for a double-shear 

mount.  With the lower mount was already in place on the old chassis it was simply a matter of 

connecting the lower node of the rear box to the new bung bolted onto the chassis.  The upper 

connecting tubes required new mounts on the old chassis in order to maintain pure tension-

compression members; again, this was just a matter of bolting the bungs together and running tubing in 

a straight line between the frame and upper node on the rear box.  A key factor in the design was the 

orientation of the bungs.  The connections had to be aligned in such a way that the rear frame could be 

easily removed; improperly done, the new frame could be trapped in place, forcing tubes to be bent for 

removal.  The bungs were welded onto the tubes running to the rear box, and the mating tubes and 

bungs were welded onto the existing frame to complete the chassis fabrication. 

With the frame completely welded, the 16 “unique” suspension pick up tabs were assembled 

into the completed A-Arms, and lined up with their appropriate nodes on the chassis. Then they were 

tack welded in place, one A-arm set as a time.  With all the tabs tack welded, the a-arms were removed 

and the tabs were fully TIG welded. A similar process was carried out for the chain guard tabs, and diff 

turnbuckle tabs. Figure 5.8 shows the rear frame complete assembled with all the suspension 

components.  

 

 

 

 

 

Figure 5.8: Rear frame completely welded and assembled with the suspension components 
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Drivetrain: 

 The drivetrain subsystem proved to have the most complex and high precision parts needed for 

the project.  Many parts included multiple set ups on both manual and CNC mills and lathes; some parts 

also requiring fourth axis splining operations.  For easier manufacturability, most the drivetrain parts 

were machined from 6061-T6 aluminum round stock.  Any highly loaded parts were sized to a fatigue 

life of at least 500 hours, to ensure safe testing.  However, the spindles and half-shafts were 

manufactured from 4340 and 4130 steel respectively, due to higher 

expected loads.  

Differential Inserts 

 The sprocket insert and brake Insert were machined down 

from the appropriate 6061 Al round stock following the drawings in 

Appendix F.  First, the stock was turned down on the CNC lathe located 

at the Bonderson machine shop to match the profile for each insert.  

Both inserts required turning, drilling, boring, and facing operations, 

from both sides of the parts.  Once the lathe work was completed, the 

parts had their bolt holes drilled using the manual mills and a rotary 

table at the hangar machine shop.  Finally, the parts were sent to the 

CNC mills at Bonderson for splining. The brake spline on the brake 

insert was coded using CamWorks and cut with a standard ½” three 

flute end mill.  The involute spline on the sprocket insert was splined 

using a fourth axis operation.   

 Luckily only one major problem was encountered during the 

entire machining process of these parts. On the sprocket Insert, the 

bearing surface was accidently turned down too much resulting in a 

0.080” slip fit.  This of course was unacceptable, and a separate sleeve 

piece was needed to increase the bearing surface diameter. The sleeve 

was machined separately from the same material and pressed on the 

bad surface with a 0.002” press fit using the hydraulic press. With the 

parts now one, the correct bearing surface diameter was machined. the 

sleeve was later welded on, when it was found the press fit was not enough.  

Figure 5.9: Top- drilling of Sprocket 
bolt holes. Middle-Bearing surface 
after sleeve was pressed on.  
Bottom- final part after splining 
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Differential Axle Stubs 

 The differential axle stubs were also started from 6061 Al round bar stock, and consisted of 

three processes for each axle stub.  First the bulk of the material was turned down until the proper 

bushing surface diameter was reached on a CNC lathe. The full profile, including radius dimensions and 

spline major diameter, were then machined following the drawings in Appendix F.  Next, the axle stubs 

had the bolt holes for the tri-pod bearing housings drilled using a manual mill and rotary table. Lastly, 

the parts were put on the 

fourth axis mill for splining.  

 The axle stubs 

were originally designed to 

be constructed of steel, 

however due to time and 

cost constraints they were 

redesigned for aluminum.  

As will be discussed later, a new set of Axles were machined out of 4340 steel following yielding of the 

aluminum axles after the first drive. the steel material for these parts was ordered already slpinned. the 

steel parts were then heat treated, along with the half shafts for better hardness properties.  

Differential Uprights 

 The two differential uprights were fully machined on a CNC mill.  The process was coded and cut 

by shop technician Matt Ales. CamWorks was used to code the tool paths for both parts. The process 

included two sides of machining for each part as well as creating soft jaws for the second side processes.  

They were machined from 6061 Al 0.5” plate stock. Figure 5.11 shows both differential uprights, one 

after the first side of 

machining complete and 

one fully complete.  The 

only problem encountered 

during the manufacturing 

process was when one 

differential upright Figure 5.11: Left- Brake side differential upright after first side of machining. 
Right- Sprocket side differential upright fully machined. 

Figure 5.10: Differential axial stubs and sprocket insert completed and 
assembled in differential 
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got shot out of the soft jaw due to a random incorrect tool path.  This unfortunate event, however, did 

not damage the part beyond use.  Lastly, a manual milling operation was needed to face away the gap 

for the brake caliper on the corresponding upright.  With the uprights complete the bearings could then 

be pressed into their respective spots. 

 

Differential Half Shafts 

 The half shafts were manufactured from a long 1” O.D. by 

.25” thick stock pipe. Two pieces were first cut to length using a 

horizontal band saw.  Next the ends of the 13” long parts were 

turned down on a manual lathe to the correct spline O.D. of 0.975”.  

Lastly the parts were put on the fourth axis mill for their 30 tooth 

splining operation using a slot mill.  

 Similarly to the aluminum axle stubs, the cutter was not 

appropriately sized, and the teeth needed to be cut deeper than 

anticipated.  Also after the splining operation, they required post 

lathe work.  They needed to be turned down past the spline O.D. by up to 0.005” in order for the tripod 

bearings to slide on.  Although the bearings fit on nice and snug, a new cutter would be ordered if these 

parts were to be manufactured again.  

Differential Drilling 

The differential was drilled with a bolt pattern to match that of the brake Insert. The operation 

was done on a manual mill with the rotary table and no difficulties were experienced.  

Drive train Assembly 

With all the parts manufactured, assembly of the drivetrain subsystem could occur. The only 

initial problems while assembling the subsystem were with the sprocket bolts. The bolt heads needed to 

be slightly faced down to avoid making contact with the differential upright.  Also, shim stock was 

needed to ensure a good fit between the bushings and the sprocket insert.  

Figure 5.12: Splined half-shaft 
with tri-pod bearing 



                                                                                                                                                     
 

 
 

70 

 

Figure 5.13: Drive train assembly 

After assembly, the subsystem was placed within the rear frame. The differential tabs, which 

connect the uprights to the bottom frame members, were welded in place. Also, the diff turnbuckles 

were mocked up and welded in place.  

Uprights: 

Wheel Uprights 

The uprights were machined from solid 6061 Aluminum blocks 

using a HAAS CNC mill. Eric Pulse at Bonderson helped with converting the 

SolidWorks model into CamWorks code for fabrication. Due to the 

thickness of the design, each upright had to be flipped half way through 

the cutting process to mill the back geometry. This was done in order to 

keep end mill stress at safe levels during the machining process.  

 Once the uprights were fully machined, it was discovered that 

the back bearing opening on both uprights were out of tolerance by -

.004” and had to be bored out in order to achieve the desired 

press fit between the bearing outer race and the upright. The 

uprights were chucked up on a lathe with reverse chuck jaws to 

remove .004” material from the rear openings. Once the press fit 

was down to 0.0015”, the outer races were pressed using a 

hydraulic press.  About 300psi was needed.  

 

Figure 5.14: Finished upright, 
in wheel 

Figure 5.15: Upright right after 
machining process 



                                                                                                                                                     
 

 
 

71 

Upright Suspension Tabs 

The upright tabs were constructed from .080” steel plate. They were cut using a plasma cutter. 

The top tabs were designed to accept the A-arm bearings at a slight angle, so a block of aluminum was 

milled to the correct tab geometry to fixture the tabs for the welding process.  

For future upright CNC fabrication, it would be beneficial to put more consideration into how 

complex of a fixture will be required so that it is easier to remain within specified tolerance. Also, it was 

found through trial and error that quenching the tabs in water after the plasma process resulted in 

hardening the slag, making it much more difficult to grind off. From that point on, all plasma cut items 

were air cooled prior to grinding.  

Spindles 

 The spindles(2) for the wheel uprights required many 

manufacturing processes.  They started as 4” round stock of 4340 

steel.  This steel was chosen over the designed steel of 4140, due to 

its availability in our stock size.  The parts required two alternating 

CNC lathe and CNC mill processes.  First the parts were turned 

down to the end of the sinusoidal spline.  The rest of the part was 

left uncut to give room to grab the part in the mill’s vice. Next, the 

sinusoidal spline was cut using the CNC mill and an extra long ½” 

four flute end mill.  After the sinusoidal spline was cut, the rest of 

the bushing surface was turned down back on the lathe and a 

perfect slip fit was achieved.  Then, the part was put back on the 

mill to machine the bearing housing bolt hole pattern.   Lastly, a die 

was used to thread the 1”-20 thread for the center lug nut.  

Cutting the thread proved to be more difficult than 

expected due to the ease of cross-threading.  However, much care was taken and after a great deal of 

time chasing, tightening the die, and re-chasing, a perfect fit was achieved. Figure 5.16 shows the two 

spindles and castle center locking nut, one with the tread completed and one without.  

 

Figure 5.16: Final Steel Spindles 
and castle nut showing thread 
and sinusoidal spline. 



                                                                                                                                                     
 

 
 

72 

Hubs 

The wheel hubs were manufactured in two phases.  First, the stock 6061 Al round stock was cut 

to length and turned down to the right profile using a CNC Lathe. The complex profile required chamfers 

to be machined from both sides of the part. All dimensions were machined following the drawings in 

Appendix F.  With the side profile complete, the part was sent to the CNC mill and the matching female 

sinusoidal spline and wheel bolt pattern was machined.  Soft jaws were needed in order to properly 

secure the part in the vice.  The spline was purposely cut too small on the first pass and carefully taken 

down to the correct size, cutting 0.002” per cycle of the program. After each cycle we would check the 

hub with the matching spindle spline until a perfect slip fit was achieved.  

 

 

 

 
 

 

 

 

 

Figure 5.17. Right-Completed hubs and Spindles. Left-Spindle and hub slip fit. 
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Chapter 6: Design Verification 
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Weight Results 

An important design goal decided early in our project was to limit the amount of weight added 

to the 2008 car. We had calculated that we could gain 35lbs and still have a cornering advantage over a 

solid rear axle even at a tire’s highest slip angles.  Thus, we set a goal of 25lbs of additional weight for 

our system.  After all components were manufactured and assembled, we weighed our complete IRS 

Interchangeable assembly and compared it to the amount of weight we had removed with the solid rear 

axle assembly.   The total weight removed was 42.6 lbs while total weight added was 64.4lbs. This led to 

total weight addition of 21.8lbs, surpassing our goal of 25 lbs. Table 6.1below shows the weight of 

various assemblies and components. 

Table 6.1: Weight of Assemblies. 

    Weight  (lbs) 

Solid Rear 
Axle 

Components 

Axle Assembly - Axle, spacers, axle nuts, wheel hubs, 
sprocket/brake inserts, sprocket, brake disk 

(18.81) 

A-Arm Assemblies - Lower A-Arms, lower links, bearing 
blocks, jacking bar, push rods, rocker, brake caliper, 
shock 

(18.55) 

Engine Arm's- Left engine arm, chain guard, right 
engine arm 

(5.3) 

IRS Assembly  
IRS Assembly - Rear frame, A-Arms, rockers, shocks, 
differential assembly, upright assembly, half shafts, tri-
pod bearings (Aluminum Differential axle stubs) 

64.47 

Total Weight Added:  21.81 

 

Although we met our weight goal, looking back at certain parts, we are confident that an extra 

10 lbs could have easily been saved.  For example, in order to make our system interchangeable, we 

needed to adapt our new frame to the old frame.  If designing an IRS from scratch we believe we could 

have combined the two separate frames and saved anywhere from 5-10 lbs in chassis alone.  Also, many 

of our drive train components are oversized and heavy.  For example, aluminum tri-pod bearing 

housings could have been used over steel ones. We chose steel based on cost and availability, however 

using aluminum could have saved us an estimated 3 lbs. Our half shafts themselves are also over 

designed and probably could shed a third of their weight, saving another 1 lb.  If the extra weight of an 

IRS over a solid rear axle was down to 10 pounds or less, it would be much harder to justify the use of a 

solid rear axle design.  



                                                                                                                                                     
 

 
 

75 

Dynamic Test Plan and Equipment 

The 2008 Formula car was to be run through a rigorous set of tests to experimentally quantify 

the advantages of either setup.  These tests were to include skid pad trials to determine maximum 

lateral G forces, a 75 meter straight line run to gain data on the traction and acceleration differences 

between the two systems due to weight transfer and weight difference, some wet pavement testing in 

order to observe handling responses in poor weather conditions, and a repeatable slalom/Autocross 

course in order to grasp transient cornering stability. Due to time limitations, we were only able to 

accomplish skid pad testing. We choose skid pad, since we believe we could gain the most information 

from this test and it is relatively easy and repeatable with the 08 car with both IRS and Solid rear Axle 

configurations.     

 

 

 

 

 

 

 

 

 

 

In the design phase of the IRS setup in question, it was calculated that during steady state 

cornering at 1.5 G of lateral acceleration, the pushrod would be under a compressive load of 276 lbf. A 

second case, the worst case scenario, attained simultaneous suspension loads during 1.5 G lateral 

acceleration, 1 G longitudinal acceleration and a 3 G bump. This can be seen below in Table 1 whose 

values were calculated using the Matlab vehicle dynamic simulation. 

Figure 6.1: FSAE Specified Skid-Pad Course 
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Table 6.2: Simulated Loads in each suspension member based on 1.5 G lateral acceleration 

All Loads in (lbf) Accelerating, cornering, and bump Steady state cornering, no bump 

F Tire X  F Tire Y  F Tire Z  F Tire X  F Tire Y  F Tire Z  

Member length (in) 350 342 801 0 342 267 

Upper A-arm (fore): 11.53 206.64 -1.0 

Upper A-Arm (aft): 9.29 200.64 229.73 

Tie Rod (fore): 14.77 -515.23 -145.09 

Lower A-Arm (fore): 17.01 -382.4 203.65 

Lower A-Arm (aft): 13.94 -501.97 -768.49 

Pushrod: 11.25 925.72 276.82 

 

In order to see if these numbers make any real world sense, a series of tests were conducted on the real 

life prototype during “steady state cornering”. The vehicle was outfitted with the following equipment: 

 Motec Data acquisition system 

 Strain gage bridge attached to one of the pushrods to act as a load transducer 

 A 3 axis accelerometer mounted on the chassis of the vehicle to measure accelerations   

With the above equipment mounted, the vehicle was taken through skid pad testing in order to obtain 

the system’s maximum lateral acceleration. The skid pad test was set up in accordance to formula SAE 

event regulations:  a circle with a 50 ft diameter that the vehicle is driven around at maximum velocity 

without tire slippage.  Accelerometer data was obtained and checked against a hand calculation based 

on the vehicles lap time around the ring. Load transducer data was recorded from the pushrod which 

correlated to the accelerations acting upon the vehicle. Due to the fact that all the data was time 

stamped, it was a simple task to compare the pushrod loads to the lateral accelerations attained. 
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Strain Gages 

Finding the amount of strain in the pushrod of the car experimentally required a variety of different 

equipment.  Strain gages were utilized to measure the amount of strain in the pushrod and were wired 

to compensate for bending and temperature effects.  The gages were wired into a full Wheatstone 

bridge as shown below in Figure 4. 

 

 

Figure 6.2: Wiring diagram for a full Wheatstone bridge. 

Wiring the strain gages to compensate for the above characteristics required that the strain gages be 

applied in a certain manner on the pushrod.  The layout of the strain gage application is shown below in 

Figure 6.3.  The pushrod contained four strain gages attached at the center section of the shaft; two 

were aligned axially along the shaft (1 and 3) while the other two were aligned in the transverse 

direction (2and 4).  The numbers labeled on the gages in Figure 5 denote their wiring position in the 

Wheatstone bridge in Figure 4. Figure 6 shows the pushrod load transducer installed as part of the IRS 

for the mini Formula car.  

 

Figure 6.3: Strain Gage Application schematic.  Gages 1 and 2 are 180 degrees out of plane with gages 

3 and 4. 
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Transducer Calibration 

Strain gages output a differential voltage that is converted into micro-strain. This can then be converted 

to force using a calibration constant. The calibration constant was computed experimentally using an 

Instron tensile test machine and a Vishay P3 box. 

Specially manufactured clevises were bolted to the rod ends of the pushrod so the Instron could grip the 

part without damaging it. Once the pushrod was firmly fixed in place, the Instron applied a tensile load 

to the pushrod which gave a corresponding strain reading.  Figure 7 shows the pushrod loaded in the 

Instron. 

 

Figure 6.5: Pushrod Load Transducer fixed in Instron machine. 

A P3 data acquisition box was used to read the strain gage bridge output during calibration.  The P3 is 

capable of converting the bridge millivolts to micro-strain using the gage factor provided with the strain 

Figure 6.4: Pushrod Load Transducer 
installed on car. 
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gages.  With the load applied by the Instron and the micro-strain readings from the P3, a calibration 

curve was produced.  A trend line was fit to the calibration curve with the slope being the calibration 

constant.  The wiring for the calibration test that was conducted can be seen in Figure 8. 

 

Figure 6.6: Full Wheatstone bridge wired into P3 data acquisition box.  

Accelerometer 

Measuring the strain in a pushrod is important information; however it does not mean much or 

correlate to anything relevant without knowing its relation to the dynamics of the vehicle.  

Accelerometers were used in this case to provide relative comparative data to the strain readings.    The 

accelerometer used in this experiment was a Dimension Engineering Buffered ±3 G Triple Axis 

Accelerometer part number ADXL330.  This accelerometer is a 3-axis accelerometer that has an 

operating range of ±3 G and operates off of 3-15 V.  The accelerometer outputs a voltage much like the 

strain gages, and in order to get relevant data, a calibration constant is required. For the ADXL330, this 

constant is equivalent to 333 mV/G.  The mounted accelerometer can be seen below in Figure 9 

 

Figure 6.7: Accelerometer mounted on rear frame. This location proved to be vibration prone, 

so it was later relocated to a more dampened location on the monocoque. 



                                                                                                                                                     
 

 
 

80 

DAQ 

The data acquisition  system (DAQ) that was used in this experimental process was manufactured by 

Motec which specializes in vehicle data acquisition and engine control systems.  The FSAE car was 

outfitted with a Motec Advanced Central Logger (ACL) and Variable Input Module (VIM) shown in Figure 

10. The ACL interfaces with a computer to retrieve data across an Ethernet cable.  

 

Figure 6.8: ACL and VIM wired together and mounted on a makeshift bracket. 

The sensors used were connected to the DAQ system through the VIM.  The VIM is a module that has a 

55 pin connector that connects all of the sensors being used.  For this experiment, nine pins were used 

to connect both the accelerometer and the Wheatstone bridge.  The Wheatstone bridge requires four of 

the nine pins; a +5 volt supply, ground, Sensor +, and Sensor -.  The accelerometer requires five pins due 

to the fact that it is a 3-axis accelerometer; one pin is used for each the X, Y, and Z accelerations, as well 

as a +5 volt supply and ground.  The VIM interfaces with the ACL across a CAN-BUS.  This CAN-BUS 

serializes and prioritizes the data to be relayed. It is comprised of a twisted trunk pair of wires and two 

100Ω resistors at either end of the cable.  A five pin connector was used to connect the CAN-BUS to the 

VIM and a 22 pin connector was used to connect to the ACL.  The mounted and Connected ACL and VIM 

can be seen in Figure 11. 
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Figure 6.9: Motec DAQ mounted on the racecar 

The ACL is the brain for the VIM in that it stores all of the data read and relayed by the VIM.  The ACL 

required power from the battery with an auxiliary power switch.  This auxiliary power switch controlled 

whether the ACL was on or off, and it was wired this way because the memory in the ACL is volatile and 

can be corrupted if the logger is not powered down correctly. The ACL is a robust device that is set up to 

handle power overloads; with an optimum voltage for the system of 12 Volts.  

The ACL is configured by software provided by Motec called ACL Manager which allows the user to 

specify which channels to monitor and what rates to sample at.  These rates can be changed for all 

channels being monitored, and the sampling rates do not have to be the same.  The software also 

provided built in anti-aliasing filtering and start/stop conditions for the data logging.  The start/stop 

conditions can be set with a multitude of options, for this experiment the start/stop condition used was 

that data was to begin logging when the Wheatstone bridge received power and stop when the power 

was pulled. 

Once the data is logged on the ACL it can be read on a computer via an Ethernet cable, however the 

data cannot be read live.  The data can be later viewed and manipulated using either i2 Standard or i2 

Pro, both of which are also supplied by Motec.  These programs allow for the data to be displayed 

graphically as well as for more advanced filtering to be applied to the data. 

 

 

 



                                                                                                                                                     
 

 
 

82 

Initial Installation Testing 

 

Axle Stubs 

The first test trial with the Independent Rear Suspension yielded some predictable failure results.   Due 

to time constraints and ease of manufacturability the team agreed that temporary aluminum axle stubs 

could work for testing , but steel axle stubs should be manufactured during this time which would 

eventually replace the aluminum parts.  Unfortunately, machining splines into our 4130 stock tubing was 

turning out to be too time consuming and expensive with the consistent replacement of cutting tools.  

Fortunately the team was able to find splined material which would mate to the internal Torsen splines.   

 

After the first test trial with the IRS, the aluminum axle stubs were removed for inspection. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
A 4 degree twist was measure on the worst case axles stub (± ½ degree).  A calculation was done to find 

maximum torque acting on the axle stubs.  The calculation was done assuming the following conditions: 

1.) Modulus of Elasticity for Aluminum is 3.4 Msi   
2.) Diameter of the splined tube:  D=.85 inches 
3.) Length of twist is 3.775  

Figure 6.10: Results of torsional twist 
on sprocket side (right) axle stub 

Figure 6.11: Result of torsional twist 
on brake side (left) axle stub 
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The length of twist starts at the beginning of the splines and ends where the diameter changes 

considerable at the flange.   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Table 6.3: Axle stubs stress and deflection calculations 

Aluminum Axle Stubs 

Angle of Twist 4 degrees 

Length of Splines 3.775 inches 

Diameter .85 inches 

Max Applied Torque 422 lb-ft 

Max Shear Stress 42 ksi 

Max Stress 72 ksi 

 
The maximum applied torque is higher than our worst case torque at the differential in first gear which 

is 351 ft-lbs. This could possibly be due to impulse or shock from a dropped clutch or a stall.  Needless to 

say we did not continue testing until steel axle stubs were available.   

 

Figure 6.12: Length of twist is 3.775 inches 
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The steel axle stubs and half shafts were heat treated to ensure proper material properties.  The four 

parts were heated to 1600 °F for an hour then oil quenched until ambient conditions then tempered to 

750°F for an hour then air cooled.   

 

Upright Thrust Bearing 

High Friction and long term repetitive movement can be destructive if a bearing is not properly 

lubricated.  This lesson was demonstrated with Suspension Solutions upright thrust bearing.  High 

temperature lithium grease was applied to the new and existing bearing.    

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  

Figure 6.13:  Bearing FAIL 
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Dynamic Testing Results 

The two suspension systems were run in a skid-pad test similar to that of the FSAE competition 

seen in Figure 6.1. For our test however, double ski pad circles were not used. Instead just a single circle 

was used for simplicity and to cut down on experimental variables.  Cones were set at the appropriate 

diameters, and each suspension system was timed around the circle track.  The car was driven by two 

different drivers for both configurations.  Each driver then drove  to maximize lateral acceleration while 

maintaining traction and minimizing wheel spin.  Both a stopwatch and Data acquisition were used to 

determine the maximum lateral acceleration attained.   

Stopwatch  

The drivers were Danny Nunes, FSAE’s former drive train lead, and Matt Ales, FSAE’s former 

team lead and engine lead. All IRS testing was done first  then the axle was assembled back on the car ( 

a 24hr turn around) and tested the next weekend.  Before driving, the setups were weighed and 

balanced with a 150lb driver (a compromise between both drivers). They were also set with 0° toe angle 

at each tire and set up with static caster of between 0° and -1° for each tire.  

Testing was performed on campus at CalPoly’s H1 Lot off Bishops road.  The skid pad was 

moderately swept and weather conditions are shown in Table 6.2. This table also shows the Skid pad 

times and calculated lateral accelerations from these times. To calculate Lateral Acceleration, Equation 

6.1 was used.   

  𝐷𝑠𝑘𝑖𝑑𝑝𝑎𝑑 ∗𝜋 𝑡  
2

𝑔∗𝐷𝑠𝑘𝑖𝑝𝑎𝑑 2 
= 𝐴𝑙𝑎𝑡𝑒𝑟𝑎𝑙  (𝑔′𝑠)                                                       (6.1) 

Table 6.2 shows mixed results, which suggest more testing is needed, however we can first 

easily conclude that the IRS car can at minimum match the solid rear axle car in terms of ski pad timed 

results.  Before one can conclude whether it is indeed faster, further study of the data is required along 

with some more background information.  Nunes’ results can be thought to represent the beginner 

driver, as this was his 2nd time driving an IRS FSAE car, and 1st time driving a Solid Axle FSAE car.  He was 

able to put both faster and more consistent skid pad results in the IRS car. After drivng both set ups, 

Nunes’ went on to say:  
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“Driving the Axle is definitely fun, but you can’t really tell when the rear will slide out, the IRS 

starts to under steer at the limit, which lets you control it easier, this could be play in the 

throttle though, with isn’t very responsive.” 

Consistency seemed to be harder to achieve in the Solid Axle car for Nunes, whose fewer timed 

laps are a result of the car and driver over steering and spinning out more often.  Interestingly, tire lift 

with the Soild Axle was also a bit inconsistent for Nunes when compared to Ales. We believe this a 

combination of poor throttle response, but also perhaps of lighter weight. With the car weighing 30lbs 

less, due to driver, the normal load could vary more with vibration, and weight jacking. This would be 

counter intuitive to our orginal anaylsis which showed lighter weight is better. It is still true that less 

total vehicle weight means greater lateral force coefficients.  However if it leads to driving frequencies 

which inconsistency lift the inside tire, then  they do not matter as much.  This is a design parameter 

that is affected by many things however, so a conclusion cannot be reached by our limited testing.  

  



                                                                                                                                                     
 

 
 

87 

Table 6.4: Lateral Acceleration Testing results by stopwatch. 

Skidpad Diameter: 50 ft           

 Driver: Danny Nunes  Matt Ales 
Direction: CW CCW CW CCW 

  time(s) G's time(s) G's time(s) G's time(s) G's 

IRS  
 

Weather: Cloudy,  
59° F, dry 

6.9 0.64 6.5 0.73 6.8 0.66 6.5 0.73 

6.7 0.68 6.4 0.75 6.7 0.68 6.4 0.75 

6.0 0.85 6.0 0.85 6.5 0.73 5.5 1.01 

6.1 0.82 5.6 0.98 6.0 0.85 5.5 1.01 

5.9 0.88 5.6 0.98 6.0 0.85 5.5 1.01 

5.7 0.94 5.6 0.98 6.0 0.85 5.3 1.09 

5.7 0.94 5.6 0.98 5.6 0.98     

5.7 0.94 5.6 0.98 5.5 1.01     

5.6 0.98 5.5 1.01 5.5 1.01     

        5.5 1.01     

Average of Best 4 5.7 0.95 5.6 0.99 5.5 1.004 5.5 1.03 

     Direction: CW CCW CW CCW 

  time(s) G's time(s) G's time(s) G's time(s) G's 

 
Solid Rear 

Axle 
 

Weather: Clear,  
68° F, Dry 

6.3 0.77 6.8 0.66 6.3 0.77 6.5 0.73 

6.0 0.85 6.4 0.75 6.3 0.77 5.8 0.91 

5.8 0.91 6.2 0.80 6.0 0.85 5.6 0.98 

5.7 0.94 6.1 0.82 6.0 0.85 5.6 0.98 

5.6 0.98 6.0 0.85 5.9 0.88 5.5 1.01 

        5.8 0.91 5.4 1.05 

        5.7 0.94     

        5.5 1.01     

        5.5 1.01     

        5.4 1.05     

Average of Best 4 5.8 0.92 6.2 0.81 5.5 1.005 5.5 1.00 

 

 Ales’ results can be thought to represent a more experienced driver within FSAE. He has driven 

both CalPoly’s IRS and Solid Axle cars multiple times, both in and out of competition.  Ales did put down 

a slightly faster time 0f 5.3s in the IRS compared to 5.4s in the Solid Axle. However looking at an average 

result between the fastest four runs shows Ales is similar in both cars, with only a slighter higher 

average in one direction in the IRS car.  Experience showed with Ales, who did not spin out as frequently 

in either set up. He did agree with Nunes that the IRS is more stable saying:  
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“ The (IRS) is more predicable than the solid rear axle. It doesn't slide out...If it starts to slide you 

can either counter it by changing your steering input, or by giving it a little bit of brake it will 

come back around... it feels pretty consistent” 

Data Acquisition System 

 

 

Figure 6.14: Lateral acceleration during skid pad test, plotted with pushrod strains. Note the positive 
and negative fluctuations about the axis of zero acceleration. These correspond to right turn (+) and 
left turn (-) laps. Strain experienced in the pushrod during testing fluctuated between tension and 
compression. During a right hand turn, the left pushrod (the one the transducer was on) was on the 
outside rear corner of the car, which saw high compressive forces. During a left hand turn, the left 
pushrod was on the inside rear corner of the car, which was unloaded and put into tension. This 
checked out with the direction the car rolled in cornering, and more importantly it makes physical 
sense. 
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Table 6.5: Accelerations at peak strain during skid pad test. X is longitudinal, which is due mostly to 
changes in throttle position.  Y is lateral (radial acceleration, a measure of a cars grip) and Z is vertical, 
which is influenced by bump. 

Accelerations at 
Peak Strain 

Axis G 

X 0.09 

Y 1.27 

Z 0.21 

 

Table 6.6: Peak strains seen by the pushrod due to cornering. Compressive strains indicate a right 
hand turn; tensile loads indicate a left hand turn. The tensile load was considerably less. This can be 
related directly to the inside rear tire’s tendency to want to lift during cornering. 

Peak Strain Data 

Peak 
Compressive 

Strain *με+ 
232.22 

Peak Tensile 
Strain *με+ 

74.58 
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Figure 6.15: Solid axel and IRS lateral acceleration results plotted on same axis. Peak IRS lateral 
acceleration: 1.27 g. Peak solid axel lateral acceleration: 1.16 g.  

 

Discussion  

The data obtained seems reasonable based on the hand calculations in Appendix A and simulated 

dynamic modeling preformed by the Suspension Solutions Senior Project team.  According to the 

accelerometer data, latteral acceleration reached a peak value of 1.27 G during skidpad testing for the 

IRS car. Stopwatch acceleration calculations, which represent more of an average acceleration based on 

the time it takes to complete a lap, show lateral acceleration reaching 1.05 G. These numbers are both 

reasonable due to the fact that that it is asumed at the onsent of the hand calculated lateral 

acceleration that the cars velocity around the track is constant. We know for sure this is not the case, 

primarily because the motor of this car surges and spikes due to a poor carburataion. It is also asumed 

during the hand calculation that the radius of the turn remains constant. This also is not entirely true; 

video footage confirms that the cars distance from the marker line varied between 6 inches and 2 feet. 

For these reasons, it is entirely logical that at some point around the skidpad, the car did infact feel a 

lateral acceleration of 1.27 G. This maximum was also varifed by occuring at the point of maximum 

pushrod strain.  
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Maximum strain throughout the skid pad test was found to be 232.22 µε which converts to 645.06 

pounds of force applied to the pushrod.  These numbers seem reasonable when you consider that the 

car weighs approximately 535 pounds with the driver and is undergoing 1.27 G lateral, .09 G longitudinal 

and .21 G vertical acceleration.  When checked against the dynamic simulation results in Table 1, the 

force that was present experimentally in the pushrod lies between the two design conditions listed.  The 

worst case design condition was a simulation of the car accelerating around the skid pad with a 3 G 

bump present, while the other was steady state cornering with no bump.  The design condition with the 

3 G bump predicted a force of 925.72 pounds in the pushrod.  On the other hand, the steady state 

design condition with no bump predicted 276.82 pounds of force in the pushrod. It makes physical sense 

that the load measured by the transducer in our experiment ended up somewhere in between these 

design cases.  

Future Testing 

The following are a series of dynamic test which we believe the FSAE team should follow up our skid pad 

testing with. They will better show the differences between the handling and dynamic properties of the 

independent and solid rear axle car.  

Acceleration Test 

The FSAE competition features an acceleration event over a 75m track.  For this test, a straight, flat 

75m track will be measured.  The two suspension systems will be timed from a standing start on 

multiple runs to ensure consistent data.  Data acquisition will also be used to measure maximum 

longitudinal acceleration. 

Autocross Test 

A test track consisting of straights, slaloms, constant radius, changing radius and hairpin turns will be 

constructed.  The vehicle will be timed with each suspension system through the track at increasing 

speeds.  The fastest lap time of each car will be compared, and data acquisition will be used to plot 

accelerations through the track.  This data will be compared to determine which vehicle has superior 

performance in the autocross event. 
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Conclusion and Recommendations 

 
 Following the design presented in this report, the Suspension Solutions team successfully 

converted the CP08 Formula car to an independent rear suspension with a differential.  The design of an 

independent rear suspension system had not been attempted by the FSAE club in over five years.  

Although many of our designs had to be compromised to allow for interchangeable rear ends, we 

believe the car still performs competitively, not only against the solid rear axle FSAE car, but also against 

other school teams’ FSAE cars which were designed to have independent rear suspensions.  The results 

of this project will allow the FSAE team to gain more knowledge, which will hopefully lead to better 

design decisions regarding rear suspensions systems and differentials.  

 Although we were able to complete skid pad dynamic testing, we believe more testing needs to 

be done to better justify either design decision.  We also believe there are still many improvements that 

can be made, the biggest with respect to weight. We calculated early in the design process that total 

vehicle weight was most likely the driving factor that would lead to a performance advantage of either 

an independent rear suspension or solid rear axle car.    A Formula SAE design team starting from 

scratch for a new year could easily surpass our prototype in lightness.  However, allowing for the testing 

of both rear suspension systems by designing an interchangeable system was worth the extra weight 

and complexity. The following recommendations to improve upon a generic independent rear 

suspension are listed below with respect to particular components and systems. 

Rear Suspension Members and Geometry 

 With regards to suspension geometry, more dynamic possibilities could be analyzed to better 

understand the handling characteristics of the car. Within our design it was quickly found that 

suspension geometry, whether front or rear, is always a compromise between two or more competing 

characteristics.  More optimization could have occurred, but the man-hours were needed on other 

components. Also, the rear A-Arms were designed for the limitations on the rear frame adaptation of 

the car.  More freedom to determine geometry could likely improve the dynamic ride characteristics of 

the car, resulting in a better performance.  
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Differential choice 

The differential being borrowed from Formula Hybrid for this project is the Torsen university 

special used by many FSAE teams. Although a Torsen has its advantages, such as allowing the use of a 

differential mounted brake rotor, there are other options available.  The Torsen was chosen for its 

limited slip capabilities, but more importantly because it was readily available and commonly used 

within FSAE.  However the differential is arguably overweight and lighter options exist within the world 

of ATV differentials.   The design team would recommend extensive research into ATV differential’s if 

the FSAE teams were to return to an independent rear suspension car.  ATV clutch-type limited slip 

differential will likely be lighter and more effective than the Torsen university special, a theory which has 

been proven by a handful of FSAE teams.  Half shafts and tripods/CV joints also need to be properly 

researched to ensure that compatibility of parts are available or machine-able when choosing a 

differential.  

Uprights 

 The upright is a very complicated part that went through many design iterations during this 

project. Its complexity lies in the complete understanding of all the components it must connect and all 

the forces that act on it.  Live spindles must be used with rear differentials, which are more complicated 

than typical front dead spindles.  

Rear Frame 

 Had an independent rear suspension been the car’s design from the start, it is believed that 

some weight could be taken off the rear sub-frame.  The extra sub frame we had to create is our 

heaviest addition to the car, and had to be designed against the already fixed engine position of the 

previous rear sub frame. Once again, a knowledgeable understanding of all the loading conditions and 

where they act is most important for conducting FE analysis on a chassis.  The rear frame was also 

limited by our hesitation to design a stressed engine frame.  We did not have the availability and time to 

complete an engine stress test.  It is suggested that FSAE use a strong table and lever mechanism to 

experimentally determine the strength and stiffness of the WR-450 engine.  If results show a strong and 

stiff enough block, the stressed engine design, which is a lighter design, could be justified.  
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Final Thoughts 

 In conclusion, Suspension Solutions was able to design manufacture and test an independent 

rear suspension system for the 2008 Formula car.  The finished product met all our major design goals: it 

was fully interchangeable, taking less than 30 minutes for two people to remove or attach with just five 

bolts needing to be fastened.  The components were all easily accessible; bleeding or removing the 

brakes, removing the differential assembly, and changing the shocks are all straightforward jobs.  Finally, 

the system met our weight goal, tipping the scales at just 22 lbs added when we designed for 25 lbs.   

 Limited dynamic testing shows mixed results. However it was agreed by both drivers that the IRS 

is a more stable and predictable car.  With further testing we suspect it to clearly be seen as the faster 

design as well.  This project did teach us a number of valuable lessons.  First, it is important to have a 

complete adequate design before the manufacturing begins.  The longer you wait, the harder it gets to 

make changes in a project.  This is due to the constraints created by already built parts and the time 

available.  Second, it is important to design within your manufacturing abilities or have a complete plan 

for how parts will be manufactured.  This includes knowing the processes needed to manufacture the 

part, or knowing companies who are able to create the part for you.   

 Most importantly we learned that the weight savings associated with the solid rear axle might 

not be worth it when it comes to performance, reliability and accessibility.  This is a lesson that can be 

passed down to future FSAE teams to allow them to more easily quantify the advantages and 

disadvantages of solid rear axle and independent suspension designs. 
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