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Abstract

LATERAL-TORSIONAL VIBRATION OF A SIDE-LOADED ROTOR
WITH ASYMMETRIC SHAFT STIFFNESS

By Clinton Judd

Using energy equations a four degrees of freedom analytical model is developed for a two-disk rotor with
shaft stiffness asymmetry. A radial constant force is applied to the outboard disk to emphasize the effects of
gravity or aerodynamic side loading. Special emphasis is placed on characterizing the lateral and torsional
vibration trends associated with shaft asymmetry which may be used to identify failing shafts in operational
rotor systems. Simulation reveals distinct patterns in lateral and torsional response, with strong
dependencies on the magnitude of the side load, magnitude of the asymmetry and proximity of the lateral
and torsional natural frequencies. Notable interaction is also observed between the lateral and torsional
response. Lateral response peaks are found to correlate to torsional response peaks under some conditions.

An experiment is performed to compare the response of a real system with the simulated model.
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Chapter I Introduction

I.1  Purpose

Modern high speed rotating machinery is constantly driven to the limits of design, materials, and service
life. Equipment failure can be costly and hazardous. Diagnostic tools are increasingly important for early
detection of component failure. One area of potential failure is in the shaft of a rotating machine which may
crack as a result of fatigue. This study aims to model and study the effects of a compromised shaft on
rotordynamic behavior in an effort to identify warning signs that could be used to identify a developing

failure.

1.2  Background

A comprehensive literature survey of various crack modeling techniques and system behavior of cracked
rotor was given by Wauer (1).This paper contains the modeling of the cracked components of the structures
and searches for different detection strategies to diagnose fracture damage. Dimarogonas (2) provided a
comprehensive literature review of the vibration of cracked structures and cites more than 300 papers. The
review is divided into several sections; methods that describe local flexibility due to cracks, nonlinearities
introduced into the system, and local stiffness matrix descriptions of the cracked section. The crack leads to
a coupled system that can be recognized from additional harmonics in the frequency spectrum. The sub-
harmonic resonances at approximately half and one third of the bending critical speed of the rotor are
reported to be the prominent crack indicators by Gasch (3, 4) and Chan (5). By utilizing a single parameter
“hinge” crack model, Gasch, provided an overview of the dynamic behavior of a simple rotor with
transverse crack. He assumed weight dominance and employed a perturbation method into his analysis.
Cross-coupling stiffness and dynamic response terms were not included in his analysis. Mayes model (6) is
more practical for deep cracks than a hinged model. Based on Mayes modified model, Sawicki and Wu et
al. (7, 8) studied the transient vibration response of a cracked Jeffcott rotor under constant acceleration
ratios and under constant external torque. The angle between the crack centerline and the rotor whirl vector

is employed to determine the closing and opening of the crack. This allows one study of the rotor dynamic



response with or without the rotor weight dominance assumption by taking non-synchronous whirl into
account. Sawicki and Wu et al.(9) investigated the nonlinear dynamic response of a cracked one-mass
Jeffcott rotor by means of bifurcation plots. When a rotor with the crack depth of 0.4 spins at some speed
ranges, both the lateral and torsional vibration responses sustain periodic, quasi-periodic or chaotic
behavior. Muszynska et al. (10) and Bently et al.(11) discuss rotor coupled lateral and torsional vibrations
due to unbalance, as well as due to shaft anisotropy under a constant radial preload force. Their
experimental results exhibited the existence of significant torsional vibrations due to coupling with the
lateral modes. In Bently and Muszynska’s experiments, an asymmetric shaft was used to simulate the

behavior of a crack.

The current paper extends the research investigation of Bently et al. (11) by using the simpler anisotropic
shaft model to characterize a cracked shaft and employing the methods used by Wu et al. (12) to develop a
vibration model. Using energy equations a four degrees of freedom analytical model is developed for a
two-disk rotor with shaft asymmetry. A radial constant force is applied to the outboard disk to emphasize
the effects of gravity or aerodynamic side loading. As load and stiffness asymmetry increase, the vibration
amplitudes in both lateral and torsional directions increase, resulting in torsional vibration with amplitudes
that may be measured in practical applications. This paper places special emphasis on characterizing the
torsional vibration trends associated with shaft asymmetry which may be used to identify failing shafts in

operational rotor systems.



Chapter II Rotor Model

I1.1 Definition of System

The system shown in Figure 1 represents a practical rotor system. An electric motor drives a shaft through a
flexible coupling. The shaft is supported by relatively rigid bearings that in turn support two rotors. The
inboard rotor is spanned closely by bearings while the outboard rotor is supported by a wide bearing span.

The outboard rotor is subject to external lateral side loads.

2 R

1. MOTOR

2. COUPLING

3. INBOARD ROTOR
4. SHAFT

5. OUTBOARD ROTOR

Figure 1: Rotor system
This system is analogous to a modern rotating machine consisting of a turbine driving a compressor. In this
case the inboard rotor and motor represent the driving torque and rotational inertia of a turbine. The
outboard rotor represents a compressor. Side loading at the outboard rotor might represent the side loading

a compressor would undertake due to gravity, aerodynamic loading, or gearbox reactions.
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Figure 2: Rotor system model (damping not shown)
Figure 2 shows a vibration model for the physical system depicted by Figure 1. The motor is modeled as a
source of rotational energy providing a constant angular velocity, Q . The attached coupling acts as both a
torsional damper and torsional spring. The shaft is modeled by multiple elements: a torsional spring
connecting the two rotors, two lateral springs aligned with a fixed X-Y coordinate system, and torsional
and lateral dampers (not shown). Because the inboard rotor is held laterally by close-mounted rigid
bearings, it is modeled with only one rotational degree of freedom, ® , and no lateral flexibility. The
outboard rotor is allowed to move both rotationally and laterally due to the flexible nature of the shaft, so it

is modeled three degrees of freedom, X, Y and © .

I1.2  Lateral Stiffness Model

For an axis-symmetric shaft, lateral stiffness is conveniently described in the rotating & -7 coordinate
system shown in Figure 3. The 7 -direction is always aligned with the strong direction of the shaft while
the ¢ -direction is always aligned with the weak direction of the shaft. This unique coordinate system
exhibits uncoupled stiffness; loads in the 77 -direction produce displacement only in the 7 -direction and

loads in the & -direction produce displacements only in the & -direction.



Center of Mass

Measured Position

N/ }// .
k/ Axis-symmetric Shaft
oA
Rotor > =
N

Figure 3: Outboard rotor parameters
In this special coordinate system, forces exerted by the shaft are described by Eq. II-1. Stiffness is defined

in the strong and weak directions as k; and k, respectively. The displacements 77 and & are measured

from the geometric bearing centerline to the geometric center of the rotor.
Fe|_ ke 0 [5}
F, 1 L0 k7
The stiffness matrix in the rotating coordinate system ( K, ) is defined by Eq. II-2.

210k,

In practical applications, it is more convenient to measure displacements in an inertial X-Y coordinate

Eq. II-1

Eq. II-2

frame. Shaft loads and displacements in the inertial coordinate system are related by the stiffness matrix,

[FX]:[kll klzl{X}
Fy | [koy Ky JLY

K, , as shown in Eq. II-3 and Eq. II-4.

Eq. II-3



o _|f F
I' k&

21 722
Eq. 11-4
To determine values that appropriately populate the inertial stiffness matrix the following coordinate

transformation can be made.

K, =TK,T"'
Eq. II-5
where
T |:cosCD —sin @}
sin® cos®
Eq. 1I-6

ke +k, k, —ke

Defining the average stiffness k = and the shaft asymmetry factor ¢ = , Eq. II-5produces

the inertial stiffness matrix shown in Eq. II-7.

1-gcos2®d —gsin2d
K,:k[ q q }

—gsin2® 14+ gcos2®
Eq. 1I-7
Given any rotational position @ and lateral displacement X and Y of the rotor centerline, the inertial

stiffness matrix may be used calculate loads acting on the rotor by the flexible shaft.

I1.3 General Equations of Motion

The equations of motion governing the system shown in Figure 2 can be derived using Lagrange’s
equations. The general form of Lagrange’s equations is shown in Eq. II-8, where ¢, is a generalized
coordinate, Q, is the generalized load(s) in the direction of ¢, that produce work, 7" and U are the kinetic

and potential energies of the system, D is the dissipation function of the system, and #n is the number of

degrees of freedom.



o(or) or ou oD .
—|—|-—+—+—=0, i=1l..,n
or\9q; ) Oq;, Oq; 04
Eq. 1I-8
The kinetic energy of the system is described by Eq. II-11below.
T= 11 + 1@ +%M{X2+Y2+25®[Ycos(d)+5)—Xsin(®+5)]+gzd)2}
Outboar;i?ot:x_‘ Inb d;,_/
Rotational Kinetic Energy ;03?50[‘&10 I?il;\eti ¢ Energy Outboard Rotor Lateral Kinetic Energy
Eq. 1I-9
For a non-specific lateral shaft stiffness having k,, = k,, , the potential energy of the system is
U= (kX +k,V?)+k, XY+ 1k (®-0)
Energy Stored In Shaft Through Lateral Deflection ~ Energy Stored in Shaft Through Torsional Deflection
Eq. 1I-10
For the axis-symmetric shaft, Eq. II-7 and Eq. II-10 produce Eq. II-11.
U =1k[(1-gcos20) X* +(1+qcos 20)Y* |- kgsin 20XY + Lk, (©-©)°
Eq. 1I-11
The energy dissipation function can be written as follows
D=1CX*+1CY* +1C,(D-6)
Eq. 1I-12
Lagrange’s equations are formulated for this system as follows
0 ( or j or ouU oD
—| = |-—=+—+—=-P,
o\oX) oX oX oX
o(or\ or ouU oD
| = |-—+—=+—==-P,
ot\oY) oY oYy oY
o(or\ or ou oD
—| = |-—+—+—==0
o\od) od od oD
0 (GT) or ou oD
—| = |-t —=+—==-Ty
ot\o®) 00 00 00
Eq. 1I-13

The solutions for Eq. II-12 using Eq. II-9, Eq. II-11, and Eq. II-12 are as follows.



X +2¢0,X + @] (1-qcos2®) X = ebsin (D +5)+ed’ cos((I)+5)+a)quin2(I>Y—;I—X

Y +260,Y + @ (1+ gcos2®)Y = —ed cos (P +5) + &b’ sin(®+5)+wquin2®X—%

b +w’ (<D—®)+2g,a),(d)—®): £260, [cos(<D+5)Y—sin(d)+5)XJ
P

2

2
Ew, q
2

cw

2
+— [COS(CD+5)Y—sin(<D+5)X]+
Yol

[cos(CD—5)Y—sin(CD—5)X]

2 2

2
+1K&jcos(q> +5)—(P—stin(<b +5)} L 4 [2c0520XY —sin 20 (X -¥? )]
M M Yol

6-"t(@-0)-(6-0) =T

0 0 I()
Eq. 1I-14
Assuming that the motor will run at a constant speed and the outboard rotor will vibrate about a static

lateral offset, it is convenient to express Eq. II-14 in terms of vibration coordinates X,, = X +7X s

P
Y, =Y +7y , p=0—-Qr,and =0 -Qr. Additionally, the motor drive torque can be expressed as a

function of the inboard rotor rotational vibration € and coupling properties C, = % and K, = I% .

Substitution of these terms into Eq. II-14 produces Eq. II-15 below.
X, +2%0,X, +a (l—qcos(Z(Qt—i-(p)))XM —a):qsin(Z(Qt+(p))YM = &sin(Qr ++06)

+e(Q+9) cos(Qt+¢+5)—(%quin(2(Qt+(p))—(%)qcos(2(9t+(p))
Y, +260,Y, + o] (1+qcos(2(Qt +9)))Y,, —algsin(2(Qr +9)) X, =-epcos(Qt +p+0)
+£(Q+¢) sin(Qt+(p+5)—(;—qusin(Z(Qt+(ﬂ))+(%j61005(2(9t+(P))
o+ w[2(¢—9)+2g,a)[(gb—é):—%[(%]COS(QI+(p—5)—(%jsin(§2t+¢)—5)}

+%l2005(2(9t + m)(%)(%]—sin(z(QHgo))[;—X)Z +sin(2(Qt+¢)))(%)z:l+F

o, p



£2g
o’

2
T eos (@14 0)7, ~sin(€ 10-5) X,

St 3 {3 v 31

2
+w"
,0

I'=

[cos(Qt+(p+§)Y —sin(Qr+¢p+5)X J

)Y, —sin(Qt+¢+5)X,, |

[2cos(2(Qt+ (p)) s1n(2(Qt +(0))X:,1 +sin(2(Qt + (p))Yﬂj]

9+(1+CR)2g1a)10'+(1+KR)a)120 =@ Q+26,0,0
Eq. 115

Non-dimensional time 7 = @, may be introduced for modeling purposes. The chain rule allows simple

2 2
: : e 10 _, 40 4O _ .40,
introduction of z Eq. II-15 since =, and = a)n . The result is Eq. 1I-16 below.
dt dr dr’ dr?
” ’ Q
X, +2cX,, +|1—gcos| 2 —Z'+(0 qsm —Z'+(0 Y, =&¢"sin —r+(p+5

P

& Q
+—(Q+ “r+p+S || L |+ —T+ = | = 2| —7+
60,12( a)n(p) cos( T+ ) ( j sm[ T (pJ cos( ( nr (p}

Y, +2cY,, +[1+qcos[ —r+¢) B " qsm[2{gr+¢DXM :—g¢"cos[£r+¢+5
1) @,
+%(Q+a)n(o) sm(—r+(p+é} [PX j—sm(Q[gﬂ—(o]] __ —cos[Z(Ez'ﬂp ]
w, M , ,
’ 2 R Q P Q
" CU[ gra)t ’ ! Eq Y X o
+| — -0)+———(¢'-0")=- —|cos| —T4+@—0 |—| = |sin| —T+@p-3F
() o2t -ore | (oG - (oS-
2 2
+% 2cos| 2 ET-%—(D B —sin| 2 gr+gz) B +sin| 2 gr+gz) kil +I,
w, p , M)\ M , M , M

. . . . . . . 4
! For notation purposes, non-dimensional time derivatives are expressed as hatch marks (i.e. (D) =

o d* (0
and (D) = dz'(z)).



Fn:ng{cos[£r+(p+5] —sm[—r+(p+5]X } {cos[£r+(p+5] —sin[gr+(p+5]XM}
p a)Vl a)Vl a)”l
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p a)”l a)”l

2
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n

Eq. 1I-16
While Eq. II-16 provides a complete mathematical description for the system described in section II.1, the
physical interpretation is unclear. In sections 1.4 and I1.5, special cases are explored to develop a better

understanding of the system.

I1.4 Special Case: Lateral Vibration Only

For negligible levels of torsional activity, some simplifications can be made to the general equations of
motion. This might be the case when operating at a speed that is not near a torsional resonance. Assuming a
torsionally rigid system, all elements of the rotor move at a constant rotational velocity Q such that ¢ =0
and 6 =0 . Note that the inboard rotor has no vibration influence in this simplified model. For a vertical

side load only (P, =0) and 6 =0, Eq. II-16 simplifies to

X, +260,X, + . (1-qcos(2)) X,, = & cos(@)—(%)qsin(ZQt)+a)quin(ZQt)YM

Y, +2c0,Y, + o (1+qcos(2Q1))Y, = & sin(Qt)+(%jqcos(ZQt)+a):q sin (2Qr) X

Eq. 1I-17
1X (once per motor revolution) and 2X (twice per motor revolution) lateral forcing functions are clearly
shown as functions of the unbalance and side loading respectively. 2X variations in stiffness are also

present as well as 2X coupling terms that describe the interaction between the two lateral directions. It

10



should be noted that all 2X components are related to the shaft asymmetry, q. If no asymmetry were
present, q would become zero and Eq. II-17 would reduce to the description of a Jeffcott rotor with a 1X

forcing term due to unbalance.

I1.5 Special Case: Torsional Vibration Only

When the rotor is operating at a speed that does not excite significant lateral activity, some simplifications
can be made to the general equations of motion. Side loading produces a static deflection, however the

outboard disk remains in a constant lateral position such that X,, =0 and Y,, =0 . For rigid coupling

6 =0. Assuming only a vertical side load (P, =0) and 6 =0, Eq. II-16 reduces to

2
P+2c0p+0 Q= —;—g[%jcos(Qt+¢)+ (oquz (%J sin(Z(QH-ng))

1X Forcing Term 2X Forcing Term

Eq. 1I-18
Eq. II-18 resembles a linear oscillator with two forcing terms. The 1X forcing term is linearly proportional
to the side load and unbalance eccentricity. The 2X forcing term is not dependent on the unbalance
eccentricity, but has a quadratic dependency on the side load. Manipulation of Eq. II-18 reveals a

physically significant relationship.
16+ Cop+kop= —qugcos(Qt+(p)—quYsin(2(Qt+¢7))
Eq. 1I-19
Eq. II-19 shows that the 2X torque amplitude is proportional to the product of the side load ( £, ) and the
static displacement due to the side load (Y = —F, /k ). This highlights an interesting phenomena: a torque
that is proportional to Y results from the load P, acting in the direction of Y . Furthermore, the amplitudes

of the 1X and 2X torsional excitations are proportional to the ratio of unbalance eccentricity to the static

displacement due to side loading respectively.

To predict the conditions under which the 1X and 2X torsional excitations would be equal in magnitude,

the terms are equated:
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o, M
B
k

Eq. 11-20
Eq. II-20 predicts that the magnitudes of the 1X and 2X torsional excitations would be equal when the

. . . . . P,
magnitudes of the eccentricity and average displacement from side loading (-~ ) are equal.
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Chapter III Simulation

I11.1 Special Case: Lateral Vibration Only

For the special case where torsional vibration is considered negligible, ¢ =0 and 6 =0 . If we consider
only a vertical load on the outboard rotor ( P, =0), assume no initial displacements (®, =0,0,=0), and

consider the case where unbalance is aligned with the weak axis (J =0 ), the equations of motion reduce to

Eq. II-17. Non-dimensional time 7 = @,t may be introduced for modeling purposes. The chain rule allows

d(U 0
simple introduction of 7 into Eq. II-17 since 7 =w, and =0 . The result is Eq.
t

II1-1 below.

Q . Q Q P, . Q
X, +2¢X,, +|1-gcos| 2—7 | | X,, —gsin| 2—7 |Y, :%chos — —(—inzsm 2—r1
w, w, [ox , M) o ,
B
Y, +26Y,, +[1+qcos[2£rDYM —qsin(Zgr]XM :%QZ sin(grj+(—yjizcos(2£rj
a)ﬂ a)’l a)n a)ﬂ M a)ﬂ a)’l

Egq. -1
For the purpose of numerical modeling, let the states u, = X, , u, = X,,, us =Y,,, u, =Y,, . This
generates the system of equations described by Eq. III-2.
uy =u,
Q . Q Q F, . Q
u, ==2cu, —[l—qcos£2—r]]u3 +qsm[2—rju5 +i2§22 cos(— TJ—(—YJ%Sln[2—Tj
, @, , o, M ) w; [0}
us =g
P,
ug =—2gu; —[1+qcos[2£rj]u5 +qsin[2£r}u3 +i2§22 sin(gr)-k[—yjizco{Zng
, , w, , M ) w; w,
Eq. lII-2

The solution to this system of equations can be found using computer software, in this case Matlab version

7.1. The function “ode45” is used to solve this system of equations. This solver integrates the series of

13



differential equations and is based on an explicit version of the Runge-Kutta formula, the Dormand-Prince
pair. It is a one-step method that uses initial conditions and solves for conditions at the next time step.
Matlab programming for this system can be found in the C.1. Using the parameters listed in Table 1,
solutions to Eq. III-2 are generated for a range of rotor speeds. The resulting steady state vibration Xy, and
Ywm amplitudes are plotted in Figure 4.

Table 1: Parameters used for lateral vibration model

Wn S Gt £ p Py/M q
3500rpm | 0.2 | 0.05 | 0.005in | 1.0in | 2700in/sec® | 0.15

0.035

0.03 ——Horizontal Displacement X
' —— Vertical Displacement Y

0.025 -

0.02

0.015 4

0.01 -

Peak-to-Peak Amplitude (in)

0.005 4

0 1000 2000 3000 4000 5000 6000 7000

Rotor Speed (rpm)

Figure 4: Lateral vibration amplitudes predicted by model
Figure 4 shows amplitude peaks at the natural frequency ( @, ) and half the natural frequency (1, ) as
expected. These peaks are associated with the 1X unbalance excitation and 2X asymmetry and side load

excitations respectively.

In Figure 5 and Figure 6 the orbit response of the rotor is plotted at the @, and @, rotor speeds.
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Figure 5: Orbit response at half the lateral

1
natural frequency (Q = 5 w, =1750rpm)

I11.2 Special Case: Torsional Vibration Only

frequency (Q = @, =3500rpm)

Figure 6: Orbit response at the lateral natural

When the rotor operates at a speed that does not excite significant lateral activity, some assumptions and

simplifications can be made to the general equations of motion. It is assumed that side loading produces a

static deflection, however the outboard disk remains in a relatively constant lateral position such that

X,, =0 and Y,, =0 . For rigid coupling & =0 . Assuming only a vertical side load (P, =0) and 0 =0,

the equations of motion simplify to:

,
o'+ [—’
a)f’l

£q

2
250, ,
j o+ p'=

n

T2 2
[ a, P

_r

P jCOS(Q

M

—T+e

)

q .
+ﬁsm

n

S

Eq. III-3

For the purpose of numerical simulation, let 7 = @,¢ and the states u, = ¢ and u, = ¢ . The equations of

motion become:
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Eq. 111-4
Matlab is used to find a solution to Eq. III-4 (see Appendix C.2). Peak-to-peak torsional vibration
amplitude is plotted for the parameters in Table 2 in Figure 7.
Table 2: Parameters used for torsional vibration model
Wy wy S St € P Py/M q k
10000rpm | 3500rpm | 0.2 | 0.05 | 0.005in | 1.0in | 2700in/sec® | 0.15 | 0.49

0.016 - —— Torsional Displacement

Peak-to-Peak Amplitude (deg)

0 1000 2000 3000 4000 5000 6000 7000
Rotor Speed (rpm)

Figure 7: Torsional vibration amplitudes predicted by model

Two peaks are observed corresponding to wy and V2w respectively. It is observed that the ratio of the peak

. . . B . .
amplitudes at w; and 2wy approximates the ratio ?Y ¢ . This phenomenon is explored further through

P . . . .
parametric study by varying the value of MY and plotting the amplitude and speed against the ratio

it

o*M

. P . . . . B
? Ratio ?” /g is calculated from parameters ®,, ee, and Py/M using the relationship ?” / = ee
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P
% / ¢ . The resulting 3D plot using the parameters from Table 2 and increasing values of ﬁy is shown in

Figure 8 below.

Torsional Amplitude (deg pl-pi)

6000

Ratio (Py/k)ties)

Motor Speedirem)

Figure 8: Torsional vibration amplitude vs. speed for varying ratios of —* / &
It can be seen in Figure 8 that the ratio r & approximates the ratio of torsional vibration amplitudes at w;

. P, . o . .
and Y2w; (i.e. where ?Y / ¢ =1 the torsional vibration amplitudes at w; and Y2w; are approximately equal).
This suggests that torsional vibration associated with a shaft stiffness asymmetry (such as a transverse

crack) might be characterized by this ratio. For fy & <1 more torsional vibration activity would be

P, . — .
expected at speeds near w; and for ?Y & >1 more torsional vibration activity would be expected near Y2wy.

Torsional response predicted by the model for the parameters in Table 2 is plotted on a time scale for
12w=1750rpm and w=3500rpm in Figure 9 and Figure 10 respectively. Near Y2y, peaks are predicted
every 90 degrees of motor rotation, when the side load is aligned with the strong and weak axes of the

shaft. Near wy peaks are predicted only when the side load is aligned with the weak axis.
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Figure 9: Torsional response at half the torsional natural frequency (Q = 564 =1750rpm )
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Figure 10: Torsional response at the torsional natural frequency (Q2 = @, =3500rpm )
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The case where gravity is the only source of side loading may be of special interest, as might be the case in
a horizontal turbine with balanced aerodynamic loading. For the case of a gravitationally side loaded rotor
Py/M would be the acceleration due to gravity, generally accepted as 32.17 ft/sec’ or 386.1 in/sec’. Using
the rotor parameters in Table 3, the Matlab model from Appendix C.2 predicts the response shown in
Figure 11. Note the scale of the vertical axis in Figure 11 is the same as in Figure 7 for relative comparison.

Response at V2w is insignificant compared with the response at Wy, as might be expected from the low ratio

of ?Y / ¢ . Systems with lower lateral natural frequencies may exhibit additional response at 2wy since the

. P . . . . .
ratio Iy & would increase, but a general model that considers both lateral and torsional vibration should

be used to investigate such a case; the assumption of negligible lateral activity would be invalidated as w,
approached wy.

Table 3: Parameters used for torsional vibration model for gravitational loading

Wn Wt S Gt € p Py/M q k
10000rpm | 3500rpm | 0.2 | 0.05 | 0.005in | 1.0in | 386.1 in/sec® | 0.15 | 0.07

0.02

0.018 +
0.016 - ——Torsional Displacement

0.014 -
0.012 -

0.01
0.008 -
0.006 -
0.004 -

0.002 - //\

0 T T T T T T
0 1000 2000 3000 4000 5000 6000 7000

Rotor Speed (rpm)

Peak-to-Peak Amplitude (deg)

Figure 11: Torsional vibration amplitude vs. speed for gravitationally loaded rotor
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I11.3 General Vibration

A general vibration model is required to consider torsional and lateral vibration interaction. To simplify

simulation, rigid coupling (& = 0 ), no horizontal side load (P, =0), and & =0 are assumed. For the

purpose of numerical modeling, let the states u, =, u, =¢', u;, =X,,, u, =X,,,

u, =Y, . The

equations of motion Eq. II-16 become:

2 2
, 2 A . P
u, =-— @ u - o uz—%(—yjcos 2r+ul + 4q2s1n 2 2T+ul (—Y
@, @, w,p"\M @, @, P @, M
£2¢ Q NEe e(1+q) Q [ Q
+—=| cos| —7+u, |ug—sin| —7+u, |u, |[+———=| cos| —7T+u, |us—sin| —z+u, |u,
P o, o, P o, o,
P
- 3612(ij{cos(2(£r+u1Du3+sin(2(£r+u1Du5]
w,p"\M @, @,
+%[Zcos(2[gr+ulnu3u5—sin(2(£r+u1Du§+sin(2[£r+ul]]u§]
p a)n a)“ a)“

' Q . Q , [ Q
u, =—2¢u,—| l—gcos| 2| —z+u, |||u;+gsin| 2| —7+u, | |us +eu,sin| —r+uy,
a)n a)ﬂ a)ﬂ
P
%(Q+wﬂu2)2cos{grﬂtl)—(ﬁyj%sin[2{gr+uln
w’l a)ﬂ a)n a)ﬂ

'
Us =Ug

' Q . Q , Q
ug =—2¢u, —| 1+qcos| 2| —7r+u, || |us+qgsin| 2| —z+u, | (u; —&u, cos| — 7 +u,
a)’l a)n a)n
+%(Q+wﬂu2)2 sin[£r+ulj+(&j%cos[2[gr+uljj
w, w, M )w; ,

The Matlab programming found in Appendix C.4 is used to find a solution to Eq. III-5. The predicted

+

Eq. ITI-5

response amplitudes for the parameters in Table 4 are plotted in Figure 12.
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Table 4: Parameters used for general vibration model

B /g
Wn Wy G G € p Py/M q k
1700rpm | 2500rpm | 0.2 | 0.04 | 0.001in | 1.0in | 1000in/sec® | 0.2 31.5

wno ot
2 2 wn wt
0.04 0.14
0.035 -
1012 <
. g
2 003 -
< ol g
c T
< 0.025 - =
g +0.08 E
£ 002 8
Q

s 1006 3
| (7]
& 0015 3
K 1004 €
& 001 8
(1] 7]
- 6
'—

0.005 - M_/ &‘h =+ 0.02

N

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Motor Speed (RPM)

——Torsional ——Horizontal —— Vertical

Figure 12: Response amplitudes predicted by general vibration model

Lateral response amplitude peaks around 1/2®, and o, as predicted by the simplified model in II.4.
Torsional response amplitude peaks at1/2®, and o, as predicted by the simplified model in II.5. However
new peaks appear in the torsional response at 1/2w@, and o, that were not predicted by the simplified

model. These peaks are associated with the interaction between the lateral and torsional vibration

introduced by the shaft asymmetry.

The following chapters will attempt to identify trends in the torsional and lateral vibration.
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II1.4 Trends of Increasing Shaft Asymmetry

The general vibration model developed in III.3 may be useful to understand how a developing shaft
asymmetry affects the vibration of a rotor, for example in the case of a propagating crack. As defined in

I1.2, the asymmetry factor, g represents the relative difference in stiffness between the strong and weak
axes of the shaft. g =0 represents a perfectly symmetric shaft while increasing values of g represent
increasing asymmetry. If the stiffness in the strong direction is assumed constant (k, = constant ), the
asymmetry factor g would increase as the stiffness in the weak direction (&, ) decreases. This would

reduce the average stiffness (& ) and therefore reduce the lateral natural frequency, o, .

Based on these assumptions, the decrease in @, is related to the increase in ¢ as follows

1
., = —, ..
n 1+q n,original
Eq. III-6
where @, ,,iqinq 18 the lateral natural frequency before introduction of asymmetry.

For the purpose of this study, it is assumed that the source of the lateral stiffness asymmetry does not affect

the torsional stiffness and therefore @, = constant . The Matlab model show in Appendix C.5 is used to
model a rotor with the parameters in Table 5 and increasing shaft asymmetry factor, g . The resulting

torsional vibration amplitudes are plotted in Figure 13 and Figure 14.

Table 5: Parameters used in vibration model of rotor with increasing shaft asymmetry

wnoriq@ Wi S Gt € p Py/M
1850rpm | 2500rpm | 0.2 | 0.04 | 0.005in | 1.0in | 386.1in/sec’
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Figure 13: Vertical vibration amplitudes for rotor with increasing shaft asymmetry
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Figure 14: Torsional vibration amplitudes for rotor with increasing shaft asymmetry
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Figure 13 shows that lateral response at 1/2w, grows with increasing asymmetry, as does the response at
w, . However there is no apparent lateral response associated with torsional resonances at 1/2®, and @, .

As indicated by Eq. III-6, increase in ¢ reduces @, - an effect more apparent in the 2D plot.

It can be seen in Figure 14 that torsional response peaks at 1/2w,, @, , 1/2w, and w, grow with
increasing asymmetry. For low values of ¢, the peak lateral responses at @, and 1/2w, do not correlate
with significant torsional response, despite proximity in motor speed to @, and 1/2w, . However Torsional
response at @, and 1/2wm, associated with the unbalance and side load respectively are significant even at
low values of g . Torsional response at 1/2®, appears to grow faster with increasing ¢ than the response

at o, . For higher values of ¢, lateral vibration at 1/2®, and @, is reflected in peaks in torsional response.

The orbit response at 1/2aw),, is plotted on the same scale for increasing values of ¢ in Figure 15 through

Figure 19. Overall response grows with a characteristic two-loop pattern developing with increasing

asymmetry. This is consistent with the predicted response of the simplified model presented in Figure 5

0.012

0.008 1

0.004 J

-0.004 1

Vertical Dispalcement (in)

-0.008 1

-0.012
-0.012 -0.008 -0.004 0 0.004 0.008 0.012

Horizontal Displacement (in)

Figure 15: Orbit response at 1/2w, for ¢ =0
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Figure 16: Orbit response at 1/2®, for g =0.05
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Figure 17: Orbit response at 1/2w, for ¢ =0.10
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Figure 18: Orbit response at 1/2w, for g =0.15
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Figure 19: Orbit response at 1/2w, for ¢ =0.20

26




II1.5 Effect on Response of the Proximity of v, to o,

To understand how torsional and lateral vibration interact, the model developed in III.3 is employed for

varying ratios of @, /e, . Parameters from Table 5 are used, «, is varied and the asymmetry factor is held
constant at g = 0.2 . Matlab programming found in Appendix C.6 is used to predict response, which is

plotted in Figure 20, Figure 21 and Figure 22. Lateral response remains completely unchanged, as indicated

by the overlapping plots in Figure 20. Torsional response at @, and 1/2w, both peak when @, /@, =0.5,
when @, corresponds with 1/2a, . Torsional response is less pronounced for @, /m, =1 and decreases as

o, |, increases beyond w,/m, =1.
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Figure 20: Vertical response for varying ratios of o, /o,
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Figure 21: Torsional response for varying ratios of @, /@, (3D plot)
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Figure 22: Torsional response for varying ratios of @, /®, (2D plot)
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I11.6 Effect of Increasing Side Load

The general vibration model developed in II1.3 may be used to understand how a side load affects the
vibration of an asymmetric shaft rotor. In real systems, side load may vary with aerodynamic or gearbox
loads. Determining how changing loads are reflected in rotor response could help with diagnosis of an
asymmetry. The Matlab model in Appendix C.7 is used to predict rotor response for varying loads and the

response amplitudes are plotted in Figure 23 and Figure 24.
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Figure 23: Lateral response for increasing side load (3D plot)

Lateral response is primarily affected at 1/2w, where overall response amplitude increases linearly with
side load. Torsional response increases with side load at 1/2w, , 1/2®, and ,, with the most notable

sensitivity at 1/2ew, . Torsional resonances are not reflected in the lateral response.
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Figure 24: Torsional response for increasing side load (3D plot)
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Chapter IV Experiment

IV.1 Overview of Experiment

The objectives of the experiment are to provide information for verifying and improving the mathematical
model, and to investigate the practical implications of lateral and torsional vibration measurement as
diagnostic tools. To this aim, the experimental foundation is the Bently Nevada RK-4 Rotor Kit shown in
Figure 25. This assembly allows for a wide range of configurations and is adaptable for the specific needs
of this study. Two disks fixed to a common shaft and supported with plain rigid bearings are driven by an
electric motor through a flexible coupling. A shaft-mounted bearing allows the application of a side load.
The inboard disk is constrained by adjacent bearings to prevent lateral vibration. The outboard disk is
supported by an adjustable bearing span to allow lateral flexibility. Torsional flexibility arises from the

section of shaft connecting the two disks. Proximity probes are used to measure vibration and allow

feedback control of rotor speed.

Figure 25: Bently Nevada RK-4 Rotor Kit configured for a side loaded rotor
Based on estimates from the sizes of disks and shafts used by the RK-4 rotor kit, the bearing span of the
outboard mass can be configured to provide a lateral natural frequency as low as 2,500rpm or a torsional
natural frequency as low as 5,700rpm. Additional disks can be added to further reduce both natural
frequencies. Figure 25 shows the rotor configured for minimum lateral natural frequency while Figure 26

shows a configuration for minimizing the torsional natural frequency.
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Figure 26: Rotor kit configured to minimize torsional natural frequency
The pulley system shown in Figure 27 is employed to provide an adjustable side load to the outboard rotor.
Calibrated masses are hung from a string which draws over a pulley and loads a shaft-mounted bearing near
the disk. Additional weights can be added to change loading conditions. Multiple pulleys can be used to
load the shaft either the horizontal or vertical (gravitational) direction. The advantage of this system is
flexibility to run a variety of side loads. However the masses hung have a potentially significant inertial
influence on the rotor that is not modeled by this study. Use of a spring or magnetic load may be more

appropriate to prevent inertial influence.

Figure 27: Side load provided by gravity through a pulley system
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To generate asymmetric lateral stiffness, four flats are carefully ground into the rotor shaft using a precision
machine tool. These flats are oriented 180 degrees apart in two locations along the shaft. This provides
symmetry about the center of the rotor’s bearing span as well as axis-symmetric lateral stiffness. Varying

flat depths result in varied magnitudes of stiffness asymmetry, as measured by load-deflection testing.

Figure 28: Precision ground flat in shaft to produce asymmetric stiffness

A direct current motor provides rotational power to the inboard end of the rotor system. A Bently Nevada
RK4 Speed Controller uses feedback from a coupling-mounted reluctor wheel (shown in Figure 29) to

control average motor rotational speed. Steady and ramped motor speeds can be achieved with this system.
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Figure 29: Reluctor wheel for motor speed control
Lateral vibration is measured directly at the shaft using eddy current proximity probes as shown in Figure
30. The probes are oriented mutually perpendicular to measure vertical and horizontal displacement
respectively. Due to physical constraints and limitations in linear range, these probes may not always be
positioned near a rotor. Instead they are placed along sections of shaft exhibiting acceptable levels of
vibration. This vibration is assumed to be representative of the nearby rotor’s vibration. Measurements

made by these probes are assumed to be proportional to what would be measured at the rotor itself.

Figure 30: Proximity probes for lateral vibration measurement
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In addition to lateral probes, each disk is equipped with a transducer for measuring torsional vibration. The
primary components are a custom machined gear wheel attached to the shaft and two proximity probes that

are fixed 180 degrees apart in the horizontal plane, as shown in Figure 31.

Figure 31: Torsional transducer consisting of a gear wheel and two proximity probes
The principle of operation of the torsional transducer can be described as follows. As the gear wheel
rotates, proximity probes detect the passage of teeth. The time it takes for teeth to pass can be attributed to

either lateral or torsional motion as follows:

27 R and Ar. = 27R
N(RQ; +V,) "N(Re,-V,)

AtL =

Eq. IV-1

where €); is the instantaneous rotative speed, V/ is the vertical velocity, R is the radius of the gear wheel,
N is the number of teeth, and Af; and At are the times between pulses generated by the left and right

probes respectively. The lateral component of the vibration signal (V) can be eliminated from the above

equations and the instantaneous rotative speed can be expressed as

o-~ At; + Aty
YN A AL

Eq. 1V-2
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In general, the vibration of the disk can be express as

0=(Q Q)

motor — =%i

Eq. IV-3

where @ is the general vibration angle with respect to the motor and Q is the rotative speed of the

motor

motor.

1V.2 Control, Signal Processing and Data Acquisition

Bently Nevada equipment is widely used in industry for vibration monitoring and diagnostics. For this
project, the RK-4 Rotor Kit is equipped with a motor speed controller to provide steady rotation at the

inboard end of the rotor.

Two Bently Nevada TK17 Torsional Vibration Signal Conditions are employed to simplify measurement of
torsional vibration and reduce post processing. Based on the relationships described in Eq. IV-1, Eq. IV-2
and Eq. IV-3, each signal conditioner processes the two proximity probe outputs of a torsional transducer

into a single output proportional to torsional vibration amplitude.

For data acquisition, a Bently Nevada ADRE 208-P works in unison with a personal computer to store and
process vibration signals in real time, allowing for a wide range of vibration monitoring and data storage.
The 208-P performs many of the same functions of oscilloscopes, spectrum analyzers, filters, and recording

instruments.

Seven signals are fed to the 208-P. Three signals come from both the inboard rotor and outboard rotor
respectively. These include feedback from a vertical proximity probe, horizontal proximity probe, and
torsional transducer (pre-processed by a TK17). A seventh signal from the rotor kit’s Keyphasor provides a

measurement of motor speed and vibration phase angle.
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IV.3 Experimental Results

In an attempt to excite torsional activity and lateral-torsional vibration interaction, the rotor kit is
configured as shown in Figure 32 (additional notes regarding this trial can be found in Appendix D.1). Two

disks are used at both the inboard and outboard positions to reduce @, and @, . The calculated values
assuming rigid bearings and the dimensions of the rotor kit are @, =4,100rpm and @, =5,800rpm . A very

P
heavy side load is applied to achieve ﬁy = 2,600 in/sec? .

Figure 32: Rotor configuration for experimental results

The resulting vibration amplitudes as recorded by the ADRE 208-P are shown in the following figures. The
direct and 1X lateral response of the outboard rotor is shown in Figure 33 and Figure 34. A broad 1X
response peak is noted in the horizontal direction near 4,200rpm, but resonant peaks are not obvious in the

vertical response.
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POINT: Outhoard Vertical /0° —— DIRECT 1.76
POINT: Outboard Vertical /0° — — 1X COMP SR:0.452/204° 0.771/138°
MACHINE: Rotor Kit

From 20MAY2007 10:28:00.1 To 20MAY2007 10:31:32.9 Startup 201 rpm
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Figure 33: Vertical response, direct & 1X
POINT: Outboard Horizontal /90° Right —— DIRECT 1.46
POINT: Outhoard Horizontal /90° Right — — 1X COMP SR: 1.06/261° 0.884,28°
MACHINE: Rotor Kit
From 20MAY2007 10:28:00.1 To 20MAY2007 10:31:32.9 Startup 201 rpm
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Figure 34: Horizontal response, direct & 1X

38



The 2X filtered lateral response shown in Figure 35 and Figure 36 shows two or more distinctive peaks,
potentially related to the 1X and 2X excitations associated with the unbalance and side-load asymmetry
interaction respectively. 2X response peaks appear to occur at different speeds for the horizontal and
vertical directions. This may be an effect of the mass used for side-loading. It should be noted that this

difference in response was not predicted in simulation.

POINT: Outhoard Vertical /0° —— 2X UNCOMP 0.216/311°
POINT: Outboard Yertical /0° — — 2X COMP SR: 0.216/311° 0/NA
MACHINE: Rotor Kit
From 20MAY2007 10:28:00.1 To 20MAY2007 10:31:32.9 Startup 201 rpm
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Figure 35: Vertical response, 2X only
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— =1=1z

POINT: Outboard Horizontal /90° Right ——  2X UNCOMP 0.134/NA
POINT: Outboard Horizontal /90" Right — — 2X COMP SR 0/0° 0.134/NA°
MACHINE: Rotor Kit
From 20MAY2007 10:28:00.1 To 20MAY2007 10:31:32.9 Startup 201 rpm
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Figure 36: Horizontal response, 2X only
Torsional responses for the inboard and outboard disks separately are shown in Figure 37 and Figure 38.
The difference in the outboard and inboard response is shown in Figure 39. A 1X resonant peak is clearly

shown at 5,400rpm, but no peak is obvious at half this speed, as might be expected from the simulation

P
considering the high ratio of ﬁy . Observing the outboard rotor, some broad 1X response peaks also appear

at about 900rpm and 3,600rpm, but these do not appear to correlate to either the natural frequency at

5,400rpm or the peaks in lateral response.
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POINT: TK17 Inboard fu“ —— DIRECT 0.329
POINT: TK17 Inboard /0° — — 1X UNCOMP 0.136/194°
MACHINE: Rotor Kit

From 20MAYZ2007 10:28:00.1 To 20MAY2007 10:31:32.9 Startup 201 rpm
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Figure 37: Torsional response of inboard disk, direct & 1X
POINT: TK17 Outboard /0° —— DIRECT 0.296
POINT: TK17 Outboard /0° — — 1X UNCOMP 0.123/218"

MACHINE: Rotor Kit
From 20MAY2007 10:28:00.1 To 20MAY2007 10:31:32.9 Startup 201 rpm
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Figure 38: Torsional response of outboard disk, direct & 1X
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POINT: TK17 Inboard /0"
POINT: TK17 Inboard
MACHINE: Rotor Kit

From 20MAY2007 10:28:00.1 To 20MAYZ2007 10:31:32.9 Startup
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Figure 39: Overall rotor torsional response (difference between inboard & outboard), 1X & 2X

Additional trials were performed, but due to difficulties obtaining data from this apparatus, meaningful

results were not obtained. Future experimentation should be performed to verify or refute the results of the

model and simulation presented in this report.
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Chapter V Conclusion

The research presented in this paper aims to identify characteristics and trends associated with an
asymmetric shaft rotor system. Understanding the behavior of a compromised rotor system is important for
the early detection of failure. If trends can be identified through carefully correlated simulation, vibration

experts might use those trends to prevent catastrophic, hazardous or costly failures of real machines.

This paper examines a rotor consisting of two disks connected by a torsionally flexible shaft. One disk is
assumed to have rigid lateral support while the other is allowed lateral flexibility. A side load is applied to
the lateral flexible disc and the shaft is considered to have asymmetric stiffness. The model mimics a real
system that might consist of a turbine driving a compressor where gravitational or aerodynamic loading

provides a side load and a transverse crack or similar defect results in shaft stiffness asymmetry.

Energy equations are used to derive the mathematical model proposed to describe the system. The model
accounts for four degrees of freedom: rotation for both disks and translation for one. Parameters used in the
mathematical model such as side loads, stiffness, damping ratios, eccentricity and natural frequencies are

common to the discipline of vibration study.

The shaft stiffness model for this system assumes loads in orthogonal directions along specific axes of the
shaft produce deflection only in those directions, without interaction. This model is a special case that
allows exploration of the effects of reducing stiffness in one of these directions. The asymmetry factor
defines the magnitude of this unidirectional reduction of stiffness. Real systems may exhibit a similar
reduction of stiffness along one direction in the case of a transverse crack, for example. The asymmetry in

stiffness effectively couples the torsional and lateral vibration of the rotor system.

Special cases are identified that allow simplified evaluation of the system. First, torsional vibration is
assumed negligible and lateral vibration is evaluated independently. The equations of motions describing

this case resemble a Jeffcott rotor with additional forcing terms related to the asymmetry. A 1X forcing
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term associated with imbalance is present along with 2X forcing terms associated with the asymmetry
factor and side load. Computer simulation of this case reveals lateral response peaks at the lateral natural
frequency and half the lateral natural frequency. Orbit response at half the natural frequency displays a

characteristic loop-in-loop as a result of the asymmetry.

Also of interest is the case where lateral vibration is negligible and torsional vibration dominates. The
equations of motion describing this case resemble a simple linear oscillator with two forcing terms. A 1X
forcing term is associated with the unbalance, side load and asymmetry while a 2X forcing term is
associated with the side load and asymmetry only. Computer simulation shows torsional response peaks at
the torsional natural frequency and half the torsional natural frequency. An important characteristic
identified in both the mathematical model and computer simulation is the response at half the torsional
natural frequency grows approximately as the square of the side load while the response at the natural
frequency grows approximately linearly with side load. The response amplitudes are approximately equal

when the imbalance eccentricity and the displacement due to side load are equal.

When both lateral and torsional vibration and their interactions are considered, the equations of motion are
more complex and the system must be characterized through parametric computer simulation. Specific
studies are conducted to determine the effects of shaft asymmetry, side load, and proximity of the torsional
and lateral natural frequencies. By observing changes in the response of the system resulting from changes
in these parameters, conclusions can be made about their effects which may later be compared with real

systems for correlation and eventually diagnosis of failure.

Shaft asymmetry in a side loaded rotor results in torsional response. As the asymmetry factor increases,
torsional amplitude increases around half and one times the torsional natural frequency. Lateral vibration
also begins to influence torsional vibration as the asymmetry factor increases. Simulation predicts
additional torsional response at the lateral and half the lateral natural frequency as asymmetry increases.
Torsional vibration should be monitored at these frequencies to alert the possibility of developing shaft

asymmetry
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The effect of asymmetry on lateral response is primarily seen at half the lateral natural frequency. Here the
orbit response changes distinctly from a circular to a loop-in-loop shape as asymmetry increases. Overall
lateral vibration amplitude also increases with asymmetry at a higher rate at half the natural frequency than
at the natural frequency. Without shaft asymmetry, no resonance is present at half the natural frequency.
Torsional vibration does not appear to affect lateral vibration as in the opposite case, with no significant

change in lateral response around torsional resonances.

The proximity of the torsional and lateral natural frequencies has a strong influence on the amplitude of
torsional response at the torsional natural frequency. The amplitude of the torsional response at torsional
resonance peaks when it corresponds to the lateral half resonance. Response at half the torsional natural

frequency does not appear to be effected by proximity to lateral resonances.

Side loading impacts both torsional and lateral response. Lateral vibration is primarily affected by the 2X
forcing term associated with side load, which causes increased lateral amplitude near half the resonant
frequency. Side loading produces very little change in response at the resonant speed. Torsional response is
strongly influenced by side load, especially at half the torsional natural frequency. As side load increases,

lateral response at half the lateral natural frequency begins to cause torsional response at that speed as well.

In an attempt to correlate simulation with a real system, an experiment is conducted in which lateral and
torsional vibration is measured for a two disc rotor with an asymmetric shaft and side load. Lateral
vibration is measured with conventional proximity probes while torsional vibration is measured through
gear tooth transducers and special signal processing. Some vibration characteristics are observed to
correlate with simulation, notably the existence of torsional resonance and two peaks in the lateral
amplitude plot. However, verification of trending is not obtained. Further experimentation should be

performed.
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Appendix A Nomenclature

® = absolute angular displacement of inboard disk

6 = angular displacement of inboard disk with respect to input shaft (vibration angle)

® = absolute angular displacement of outboard disk

@ = angular displacement of outboard disk with respect to input shaft (vibration angle)

0 = angle between weak axis and mass center

X = absolute horizontal displacement of outboard disk
X, = dynamic horizontal displacement of outboard disk
Y = absolute vertical displacement of outboard disk

Y,, = dynamic vertical displacement of outboard disk

& = unbalance eccentricty

@

= input shaft rotative speed

P, = horizontal load

P, = vertical load

k. = lateral shaft stiffness in weak direction
k, = lateral shaft stiffness in strong direction
k = average shaft lateral stiffness

q = stiffness asymetry factor
k, = shaft torsional stiffness
k. = coupling torsional stiffness
I, = rotational inertia of inboard disk
I = rotational inertia of outboard disk
= radius of gyration
= mass of outboard disk

= lateral natural frequency

P

M

wn

o, = torsional natural frequency

C = lateral damping coefficient

C, = shaft torsional damping coefficient

C. = coupling torsional damping coefficient
¢ = lateral damping ratio

g, = torsional damping ratio
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Appendix B Detailed Calculations

B.1 Lateral stiffness of axis-symmetric shaft

Shaft stiffness is conveniently described in a rotating coordinate system
F|_[k oT¢
F, 0 k,|n
k. O
K.=| *®
0 &,
in an inertial coordinate system, the stiffness matrix would be
Fy ky  ky Y
k, k
K, = { 11 12}
Ky ky

perform a coordinate transformation to determine the values of the inertial stiffness matrix

K, =TK,T"'
[cos® —sind][k, O] cos® sin®
B | sin® cos® || 0 k, ||-sin® cos®

[cos® —sin® || k.cos® k,sin®
|sin®  cos® —k,sin® k, cos®

_ _k11 ki,
ky k,,

L™21
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ky, =k, cos’ ® +k, sin” @

=k{1+0052®j+k}(1—0052®]
° 2 4 2
k.+k k —k.
=| =7 || 2% |cos2d
2 2

=k —kqcos2®
=k(1—-gcos2d)

k, =k, cos®sin®—k, cosDsin D

k —k
=—( 7 ‘f]sinZCD
2

=—kgsin 20

ky, = k. sin” @ + k, cos’ @

:kg(l—c;s2<bj+k”(l+0352d)j
k. +k k —k
=| =2 |4+| 21— |cos 2D
2 2
=k +kqcos2®
=k(1+qcos2<1))

thus, the stiffness matrix in inertial coordinates is given by

K, =k

1

1-gcos2®d —gsin2®
—gsin2® 14+ gcos2®
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B.2 Geometric Relationships
O=Qt+p-D,
O=Q+¢

b =g

©=01+6-0,
O=Q+0
=0

X, =X +ecos(D+5)
X, =X —ebsin(® +95)

cm

Yo =Y + £sin(® +6)
Vo =Y + eDcos(D +6)

assuming lateral vibration is about the static offset due to side loading

P
X=XM~f

1 (P
*=xu- ol )
X=X,
X=X,

P
Y:g—f

1 (A
i)
y=v,
=Y,

B.3 Other Relationships & Substitutions
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k. +k k —k /k /k C C
k: 5 ’7, — 7 ‘f’a): _’a): _I" = N = ! ,I: ZM,T:a)t
> q % n v 7 3 Tl S ,—k,l P (0

B.4 Axis-symmetric Shaft Stiffness

shaft stiffness is conveniently described in a rotating coordinate system

F.] [k. 0]¢
F | |0 k|7
k
K.=| °
0

in an inertial coordinate system, the stiffness matrix would be

FX — kll k12 X
FY k21 k22 Y
kll k12

K=l &
21 22

perform a coordinate transformation to determine the values of the inertial stiffness matrix

K, =TK,T"

[eos® —sin®][k, O { cos® sinCD}
|sin®  cos® || 0 k, || —sin® cos®

[cos® —sin® || k.cos® k. sin®

|sin®  cos® ||k, sin® k, cosD

_kll kl2 :|
_k21 k22
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ky, =k, cos’ D+k, sin® @

=k§ 14+cos2® Tk 1—cos2®
2 2

n

k. +k k —k
=| =1 || L= |cos2D
2 2
=k —kqcos2®
=k(1-gcos2®)

k,, =k, cos@sin®—k, cos Dsin P
k, —k
=—[ z fjsin2CD
2

=—kqsin 2D

ky, =k, sin’ ®+k,_ cos” @

1—cos2d 14+cos2d
:ké —_— |tk | ——
2 7 2

k.+k k —k
= =7 |+| 2 —= |cos2D
2 2
=k +kqgcos2®
=k(l+qcosZCD)

thus, the stiffness matrix in inertial coordinates is given by

1-gcos2® —gsin2d
K, =k .
—gsin2® 1+gcos2d
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B.5 Detailed Derivation

Kinetic Energy of the System
T=110"+11,0* +1 M5, +i My,
=1ID*+11,@° +1 M {[X —@sin(®+5)}2 +[Y+6d)cos(® +5)T}

=L[®*+11,0° +§M{X2 +Y? +26®[YCOS(CD+5)—Xsin(®+5)]+£2d)2}

Prepare for Lagrange Equations for X, Y, D 4pq ©

I _,

oX

a—Y.W:MX—e;"MCi)sin(CD+5)

0X

o(oT\ . . .

—| — |=MX —eM ®sin (D +6)—eM D* cos(D +5)
ot\ 0X

o,

oY

oT

—.:MY+5MCDCOS(CD+5)
oY

o(oTY v . .
—(—.j:MY+5Mq)cos(®+§)—qu) sin (@ +5)
ot\ oY

ﬁ(a—Tj =1,06
o\ 00
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%:—gMé[X cos(®+5)+Ysin(<D+5)]
(1460 )b+ oM [ cos(+6) X sin(@+)]
() (1) em (7~ Xbeos(0+0) (470 )sin(0 )]

ot

Potential Energy of the System

k., k,[x

U=1i[Xx Y][k” k”}{y}ﬁl@(@—@)z
21 22

k12:k21

U =4k, X? + kY )+ ky XY +1k, (0 -0)

for an axis-symmetric shaft

2

U =1k (1-qcos20) X* +(1+gcos 20) Y |- kqsin 20XY + 1k, (D -0)

Prepare for Lagrange Equations for X, Y, D 4pq ©

Y _ k(1- geos 20) X —kqsin 20Y
oX
%:k(l+qcosZ®)Y—kqsin2CDX

ou ., .
an:kqsmch(X2 ~Y*)~2kqcos 2DXY +k, (D -0©)

a_U = _kt (CD_®)
0®
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Dissipation Function of the System
. . . < \2
2 2
D=1CX*+1CY’ +1C,(D-6)

Prepare for Lagrange Equations for X, Y, D 4 ©

D _cx

oX

D _cy

oY

oD .
=5 (0-90)
oD L
- C (0-90)
Lagrange Equation for X

56



X

o(ar _8T+8U+8D_
or\oX) oX oX oX
MX'—&‘M('I.)Sil’l((D+5)—8MCbZ cos(®+5)+k(1—q0052®)X—kqsin2q)Y+CX =-P,

X —fﬁ)sin(d)+§)—&(b2 cos(®+65)+ @ (1-gcos2®) X — @’ qsin 2DY + 2co, X :—L—X

X +260,X + @, (1-qcos2®) X = eDsin (D +5) + ed’ cos(d)+5)+a)quin2CDY—;—X

substituting
1 (P 1 (P

X:XM - X . . .. . Y:YM Y - . . . ..
o’\M) X=X, X=X, w'\M) Y=Y, Y=Y,

n

1 (P,

X, +2c0,X,, + (l—qcos2<1)){XM —;(MH

n

=eDsin(D+5)+ D’ cos(D+ )+ w’gsin2®| Y, ——| L | |-—=X
( ) ( Jxo {M @ (Mﬂ M

n

X, +260,X,, + @ (1-qcos2®) X,, — @}qsin 20Y,,

= eDsin(D+6)+&d’ cos(<1)+5)—[%Jqsin2®—(%}qcos2®

O=Qt+9p-®, ®=Q+¢p O=¢

substituting

X, +20X, +a’ (1—qcos(2(Qt+(p—CDO)))XM —a)quin(Z(Qt+go—d)0))YM = &sin (U +p— Dy +6)

+,9(Q+(p)2 cos(Qr +p—-d, +5)—(%quin(Z(QH(/’—CDo))—(%jqcos(z(mﬂp_q%))
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X, +2¢X,, +[1—qcos[2[gr+¢)—®0DJXM —qsin(2[£r+(p—d)0DYM :5¢"Sin(£r+(/}—®0 +5]
w’l w’l w’l

¢ , ([ BYq . (fQ P g Q
+—(Q+w @) cos| —7+0—-D,+5 |-| L |—=sin| 2| —74+0-D, | |-| =X | Lcos| 2| —7+0—-D
2 ?) (w v j (M]wj ( Ew Y D [M]wj [ (w Y B

Lagrange Equation for Y

8(6Tj or oU oD

—| —=|-—+—+—=-F,

ot\oY) oY oY oY
MY+8M®COS(<D+§)—8M¢2sin(q)+§)+k(1+qcos2q))Y—kqsin2<DX +CY:—PY

b

Y+5®cos(d)+5)—5d)2 sin(CD+§)+a)j (1+qcos2CD)Y—a)quin2CDX +260,Y =~

Y +260,Y + @} (1+ gcos20)Y = —ed cos (D + ) + &0’ sin (P + 5 ) + . g sin 20X —%

substituting

o \M

n

Y, +250,Y,, +@; (1+qcos 2@){YM —Lz(iﬂ

: - 1(P] B
=—e®cos(D+)+ed’sin(®+5)+w’gsin 20| X, ——| X | |-~
(@880 0)roiguin20) x, - (2|1

n

Y, +250,Y, + o (1+qcos2®)Y,, —w’qsin 20X,

=—ebcos(D+5)+ed’ sin(CD+5)—(%)qsin2®+(%)q0052®

O=Qt+9p-®, D=Q+¢p O=¢

substituting
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Y, +2c0Y, + @’ (1+qcos(2(Qt+(p—®0)))YM —qusin(2(9t+(p—®o))XM =—gpcos(Q+p-D, +5)
N2 . P, . P,
+g(Q+g0)2 sin (Q + -, +5)—(ﬁqusm(Z(Qt+(p—®0))+(ﬁyjqcos(2(9t+gp—®o))

d)_ 40 C A _ a0
At JPHLLC N - — (0
r=of g g o) e el

let

Yy +2Y,, +[1+qcos[2{gr+¢)—®oanM —qsin[2[£r+(p—¢)0DXM :—ggo"cos[gr+¢)—d)o+5j
a)n a)n a)n
& 2 . [ Q P, ) q . Q P q Q
+—(Q+0,9") sin| —7+9p-D +6 |-| = | Ssin| 2| —7+9-D, | |[+| L | Scos| 2| —T+p—D
o o) (w e ] (Mjwj uw g H (M]wj Uw g J]
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Lagrange Equation for @

6(6Tj or oU oD
—| = |-—*+—+—=0
ot\od) ob o0bd oOb
(I+£2M)d5+gM[(Y—Xd))cos(d)+5)—(jf+Yd'))sin(CD+5)J
+8M<i)[Xcos(<D+§)+Ysin(<D+§)]+kqsin2q)(X2—Y2)
~2kq cos 20XY +k, (D -0)+C,(D-0)=0

(ﬁ+52j®+g[Ycos(d)+5)—Xsm(CD+§)]+a)qum2d)(X2 —Y2)

k C, . .
2w 20XY +—(D-0)+—(Dd-0)=0
oiacos20% + X (0-0) + S (6 0)

(,02+82)®+8[YCOS(CD+§)—Xsin(®+5)]+a)quin2®(X2 —Yz)

2 2
—2wchosZ®XY+ka’(d)—®)+ 'DICI (@—@) =0

(p2 +82)®+5[Ycos(q)+§)—)'('sin(®+5)]+a)quin2q)(X2 —Y2)
—2@’qcos20XY + p’w,’ (CI)—®)+2p2gta), (d)_®) =0
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from Lagrange equation for Y,

Y cos(@+68) = 26w, cos (@ +5)Y — ] (1+gcos2®)cos (P +5)Y

—eDcos® (D + )+ ed? cos (D +6)sin (@ +5)+ @) gsin 2D cos (P +5) X —%COS(CD-Fé)

from Lagrange equation for X,

Xsin(CD+5) =-2¢mw, sin(CI)+5)X - (1-gcos2®)sin(®+6) X

+eDsin® (D +5) + ed’ cos(CD+5)sin(CD+5)+a),quin2CI)sin(CD+5)Y—§4—Xsin(CD+5)

it follows that
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Y cos(®+5)— X sin(®+5) =20, [sin(CI)+§)X —cos(CI)+5)Y]
+@] (1—gcos2®)sin(®+6) X ~-w! (1+gcos2®)cos(P+5)Y

—e® + @’ qsin 20 cos (D +5) X —sin(CI)+§)Y]+§4—Xsin(q)+§)—%COS(CD+§)

Y cos(®+5)— X sin(®+5) =2¢0, [sin(CI)+§)X —cos(CI)+5)Y]
+@, [ sin (@ +5) X —cos(P+5)Y |

+a)jq[sin 20 cos (D +5)—cos 20 sin(CD+5)]X

~w,q| cos 2® cos (O +5) +sin 20sin (@ +5) |Y

+&Sin(®+§)—&cos(®+§)—eﬁ)
M M

Y cos(®+5)— X sin(®+5) =2¢0, [sin(CI)+§)X —cos(CI)+5)Y]
+@] [sin(CI)+5)X —cos(CI)+5)Y]+a)fq[sin(cl)—5)X —COS(®—5)Y:|

+&sin(q)+§)—&cos(q)+§)—a(f)
M M
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substituting into Lagrange equation for O

(p2 +52)d5+52ga)n [sin(CD+§)X —cos(®+5)Y]

+ew; | sin (@ +5) X —cos(D+3)Y |+ cw’q| sin(®—5) X —cos(D-5)Y |
P, . P ) .

+gﬁxsm(®+§)—gﬁycos(®+5)—52®+a)qum2®(X2 —Yz)

2w’ qcos20XY + p’ o (®- G)) +2p°co, (d) - G)) =0

p D +e26m, [sin(CD+§)X —cos(CD+5)Y]

+e, | sin (@ +5) X —cos(D+3)Y |+ cw)q| sin(®—5) X —cos(D-5)Y |
P, . P :

+gﬁxsm(®+§)—gﬁycos(®+§)+a)jq[s1n2d)(X2—Yz)—ZCOSZQDXY]

+p'®] (D- ®) +2p°co, (d) —@) =0

d')+a)t2(<l)—®)+2g,a)t(<i)—®)= 52g2a)n [cos(®+5)Y—sin(®+5)X}
yo,
2 2
+ga;” [cos(CD+§)Y—sin(CD+§)X]+gw”q[cos(@—&)Y—Sin(d)—&)X]

0
2

+p2 K%)cos(@+5)—(§4—stin(d)+5)}+ a;lzq |:2C082CDXY—SH12CD(X2 —Yz)]

o,
£
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substituting

X:XM—%(L—XJ V% % Y:YM—LZ(QJ AR
=X, X=X, w\M) Y=Y, V=Y,

n n

®+@2(®—®)+2g,@(d)—®) gif [cos(d)+5) —sin(<D+§)XMJ
2
,0 )Y, —sin(®+5)XM:|+gﬁzq[cos(q)—é') —sin M:'

—%K%)cos(@+§) (% jsm(q)+§)} ZZH%jcos(q»&)—@—xjsin(@—é)}
ol w5 o)
el -2 202

<'1')+a)t2(q)—®)+2gta)t(q')—®) 2g [cos(d)+5) —sin(<D+§)XMJ
o’

L e )YM_sin(q>+(s)xM]+ﬁfzq[cos(cb—&)YM—sin(cb—(f)XM]
gt o
" “ff {mos 2®(XM —wi;@—"jj(m —w%(%n‘sm zq{(XM _Q,L;(%Dz _(YM %(%HH
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1 (P 1
=200$2®(XMYM —;(MXJYM ——:

; o,
. 2 (P 1 (P
—sin ZQ(de _a)_f(ﬁxj X, +a)_:(ﬁx

1 (P 1 (P
2.cos 2®(XM _a)_f(ﬁXD(YM —w—j(ﬁjj

2 P P, )
:E{COSZCD(—(MYJXM _(MXJYMJ_SIHZQ
2
+L4 2cos2d i P—X —sin 20 P—X +sin 2d
), M)\ M M

+2c08 20X, Y,, —sin 20X}, +sin 2DY,,
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combining

<i3+a)t2(d)—®)+2gta)t(@—@)=—E—Z{(%jcos(q)—&—(il—xjsin(@—6)}

Yo,

2 2
+% 2cos2d (ij (&j—sin 20 (P—Xj +sin 2P (ij +I
w, p M)\ M M M

where
r =252 cos(@+ ), —sin(®+8) X, |
P
P £w q

+

2
2 [cos(D+05)Y,, —sin(®+5)X,, |+ cos(@—05)Y,, —sin(®-5) X, |
Yo

P
+2—c§ cos2d —(&jXM—(P—XjYM —sin 2® (&jYM _(P_XJXM
P M M M M
a)2
+ ”zq [ZCOS 20X ,,Y, —sin2®X;, +sin ZQ)YAi]
P

O=Qt+9p-O, OD=Q+¢p O=p O=Q+60-0, G=Q+0 =0

substituting

p+o’ (p—0-D,+0,)+26,0, (gb—é) :—%K%JCOS(QIJrgD—@O —5)—(;—)‘jsin(§2t+(ﬁ—®0 —5)}

+ cojqu {2cos(2(9t+gﬁ—®0))(%j(%)—sin(Z(Qt+¢—¢>0))£§4—ij +sin(2(Qz+¢—q>0))£%ﬂ+r

where
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FZ—gzgza)n [COS(Qt+¢_CD0+5)YM _Sin(Qt+¢_cD0+5)XM}
P

e

2
+=[ cos (Q + 9D, +5)Y,, —sin(QU+p-D,+5)X,, |
o

2
+ 22  cos(Qt + 9~ 0, = 5),, —sin(Q +9 -0, ~5) X, ]

p
O L ML [ R )

2

+ 22008 (2(Q1 + 9 ®,)) X, ¥, —sin (2(Qr +p- D)) X}, +sin (2(Q +9- D, )Yy |

yo,
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2
(p”-'—[ﬂJ ((p_e_q)()+®())+2g1a)l ((0'—6'): gq |:[P ]COS(£T+¢ (D() 5J_[P_X]Sin(gr+(ﬂ_q)()_6J:|
@, o, o, p’* o, M o,
2 2
+_4q2 2cos| 2 £r+(p—q)o (&][P_X]_Sin ) ET_HP_@O (P_xJ tsinl 2 £T+¢_®O (&J i,
@, p @, M)\ M o, M o, M

_ 0 |
r,=— COS(—T+¢ <I>0+5JY —sm(—r+gp <I>0+5]XM:|

w, 10)

+§{cos a)gz'+(p—d)0+5] sm(a%z%(p D +5]XM}

n n

+€—g{cos £r+¢—®0—5] —51n[£z'+(p D, - XM}
o o,

n n

R R AL A CER ()
p—{z(z(ggz)@]]x(2(940@ij[2[9¢®})}
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Lagrange Equation for S

a(aTj of oU oD
——t—+t—=-T,,
00 00 060

EACE)
[,O-k (©-0)-C (D-0)=-T,,
.k c,. . T
O-L(0-0)-—L(d-6)=—"2&
10( ) 10( ) I
65 (0-0) C(o-6)-Lo C
IO IO IO IO

P=Qt+p-0, P=Q+9p d=¢ O=Q+0-0, 6=Q+0 O=0

substituting

10—k (¢p—®,-0+0,)-C,(p—6)=—k.0-C.0

. C.+C . k. +k k C .
O+——L0+——0="(p+0, - D, )+—L¢
IO IO IO IO

6'5+(1+CR)%9+(1+KR)%6’:%((p+®0—<DO)+%¢
9+(1+CR)Zg,co,6"+(1+KR)a)t29=a),2 (¢7+®0—<I)0)+2g,a),¢)

df)_ 40 _ _
r=op % 20 e e

let

2 2
0" +(1+C;) 2, “ 6”+(1+KR)(0)’] a:[a),] @+2, “ o'
w w w

n
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Special Case, Torsional Vibration Only

=0 Y,=0 g0

X
Assume = M

Lo Po=0 ®,=0 ©,=0 5_0

The torsional equation of motion becomes

2
2 F
0"+ “ P+ o Q' =- iqz(—yjcos £r+(p + 4qzsin 2 £T+(0
o, o, ,p M @, @,p o,

_ — ’
Let the states 1 =% and 2 =9
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Special Case, Lateral Vibration Only

Assume¢):O, =0

L Bo=0 =0 ©,=0 5_0

Q . Q Q B . Q

X, +2cX,, +£1—qcos(2—rDXM —qsm(Z—erM =i2Q2 cos{—rj—(lj%mn[Z—r
, , @, , M ) w; @,

Y, +2gY,, +(1+qcos£2£rj]YM —qsin[ZgrjXM =i2§22 sin[gr}—(ij%cos[Zgr
a)ﬂ a)ﬂ a)n a)ﬂ M a)ﬂ a)ﬂ

u
Let the states

Uy, =u,

u, =—2¢u, —(1—qcos(2g TD 7R +qsin(2E r]us +i292 cos (ﬂ r]—(&j%sin(Zg rj
@, @, @, , M) w; ,

Us =Ug

Q Q Q P, Q
uy =—2¢u, —[1+ qcos(Z—rDus +qsin(2—r]u3 +izQ2 sin(—r}+(—yj%cos(2—rJ
, w, , w, M ) w, w,
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General Vibration

Fn:gZZQ cos{gr+¢)]Y —sm(gﬁtq)jX }
P L @, @,

£ Q Y
+—| cos —T+¢)JYM—sm(—r+¢)jXM
P w, @,

Q [ Q
+€—q2 Ccos —r+¢]YM —s1n(—r+gonM
[0 [0

n

Bl =l
+_{zco{z[_f+¢]]xMYM_sm[z(gnmjjx;+sin(2(gn,+¢jjyﬁ}

2 2
0" =—(1+Cy) 2, —9' (1+KR)[ﬂ] 6’+(ﬂ] (o+2g,ﬂ(p’
o, o, o,

n n

]]X +qsm(
£ 2 Q P\qg . Q
+—(Q+w ') cos| —7+¢@ |-| L |-Lsin| 2| —7+
2 o) (w (’)J (Mjw,f Hw (”D

n

J\J A [Q J
Y, +&p"sin T+
a)”l

X, =-2¢X,, —[l—qcos[
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Y, =-2¢Y,, —[l-i-qcos[Z[gr—i-go]BYM +qsin(2{£r+¢)DXM —ggo”cos(gr+go]
a)n a)”l a)”l
£ 2 . [ Q B q Q
+—(Q+w,¢') sin| —7+¢ |+| L |-Scos| 2| —r+p-
oo Sevo(] ool o Srv-a.)

U ! ! !
u=0 u, = u, =X, u,=X,, u.=Y, u =Y u =0 u, =0
Let the states ! (ﬂ, 2 =9 , 3 M T4 M TS M 76 M7 ,and 8

b} b} ) bl

[, =—F|cos| —7+u, |ug—sin| —7+u, |u,
P L @, @,

& Q . Q
+—5| cos| —7T+u |us—sin| —7+u, |u,

P @, @,
£q Q [ Q

+—| cos| — 7 +uy |us—sin| —7+u, |u,
P o, o,

+%(&j —COS(2{£T+uIDu3—sin(2(£r+ulj]u5

w,p" \ M w, @,

+i2 2cos[2[£r+ulnu3u5—sin(2(£r+u1Du;+sin(2{£r+ulnu_§
p a)n a)ﬂ a)”

2 2
' @, @, @, @,
U =—(1+CR)2g,w—u8—(1+KR)(w—J u7+[;) u1+2g,;u2

n n n n

' Q . Q , [ Q
u, =—2¢u, —| l—qcos| 2| —z+u, |||u;+gsin| 2| —7+u, | |u; +eu, sin| —7z+u,
a)f’l a)”l a)”l
P
+%(Q+wﬂu2)2cos[£r+ul)—(—inzsin[2(£r+uln
, , M ) w, ,
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Y, =-2¢Y,, —[l-i-qcos[Z[gr—i-(ijYM +qsin(2(£r+¢)DXM —g¢”cos(£r+¢]
a)n a)”l a)”l
£ 2 . [ Q B q Q
+—(Q+w,¢') sin| —7+¢ |+| L |-Scos| 2| —r+p-
oo Sevo(] ool o Srv-a.)
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Appendix C Matlab Models

C.1 Special Case: Lateral Vibration Matlab Model

$ASYMETRIC SHAFT MODEL: Special Lateral Vibration only
%$Filename: asymetric.m

$By Clinton Judd

$Last Updated 2/8/08

$Description: Models the lateral vibration of a rotor with an asymetric
$shaft stiffness and a horizontal side load.

%$0utside Functions: lateral_fun.m used to define ODEs

clear all;
close all;

wn=3500*2*pi()/60; %$lateral natural frequency (rad/s)
wt=20000*2*pi()/60; S$torsional natural frequency (rad/s)

si=0.2; $lateral damping ratio

sit=0.05; $torsional damping ratio

ee=0.005; %$unbalance eccentricity (in)

rho=1.00; $radius of gyration (in)

Py=-2700; $Py/M, vertical load ratio (in/sec”2)

g=0.15; %$asymetry factor

parameters = {'wn (rad/s)', 'wt (rad/s)', 'si', 'sit', 'ee (in)', 'rho

(in) ', 'Py (in/sec”2)', 'q'; wn wt si sit ee rho Py q};
xlswrite('result', parameters, 'Parameters',6 'Al');

x0=zeros(6,1); %$set initial conditions to all zero
tf=4*wn; %$solution timespan (sec*wn)
tspan=0:tf; %$solution timespan (dimensionless)

options=odeset ('RelTol',le-6, 'AbsTol',le-6);
n=1; $start index for organizing output matrix by speed

%$Loop for each speed N (rpm)
for N=[250:50:6500];
omega=N*2*pi()/60; S%S$motor speed (rad/s)

[t,x]=0ded45(@lateral_fun, tspan, x0,options, omega,wn,wt,si,sit,ee,rho,Py,
q);

x0=x(end, :)"'; %$use results from last iteration for new
initial cond.

if omega==0.5*wn

xlswrite('result', t(:,1), [int2str(N) ' RPM'], 'Al'");
xlswrite('result', x(:,:), [int2str(N) ' RPM'], 'B1'");
elseif omega==wn

xlswrite('result', t(:,1), [int2str(N) ' RPM'], 'Al'");
xlswrite('result', x(:,:), [int2str(N) ' RPM'], 'B1'");
end
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$Output Data for Amplitude Plot

y(n,1l)=omega*60/ (2*pi()); %$Speed
(rpm)

y(n,2)=max(x(40:end,3))-min(x(40:end, 3)); $Amplitude X (in)

y(n,3)=max(x(40:end,5))-min(x(40:end,5)); $Amplitude Y (in)

n=n+l; %increase index for organizing output matrix

%$Plot Response
figure(l);

hold on;
plot(y(:,1),y(:,2), ") ;
plot(y(:,1),y(:,3), !

)i
)i
axis ([0 6500 0 1. 10*max(
title('Asymetric Shaft L teral Vibration');
)
)i

) .

4

y(:,3))1);

a

xlabel ('Motor Speed(rpm)'’
ylabel ('Amplitude (in)'
grid;

end

xlswrite('result', y(:,:), 'Bode Plot', 'Al'");
$ASYMETRIC SHAFT ROTOR MODEL: Special Lateral Vibration Only
$Filename: lateral_fun.m

%$By Clinton Judd
$Last Updated 3/16/07

%$Description: defines ODEs for lateral vibration model
%$Called By: asymetric.m

function dx=lateral_ fun(t,x,omega,wn,wt,si,sit,ee,rho,Py,q);

(1)=0;
x(2)=0;
x(3)=x(4);
dx (4)=-2*si*x(4)—(1-

g*cos (2*omega*t/wn)) *x (3) +g*sin (2*omega*t/wn) *x (5) + (ee/wn”2) *omega”2*co
s (omega*t/wn)-Py* (gq/wn”"2)*sin (2*omega*t/wn) ;;

dx (5)=x(6);

dx (6)=—2*s1*x(6)—

(l+g*cos (2*omega*t/wn) ) *x (5)+g*sin (2*omega*t/wn) *x (3) + (ee/wn”2) *omega”2
*sin(omega*t/wn)+Py* (q/wn"2) *cos (2*omega*t/wn) ;

dx=[dx (1) dx(2) dx(3) dx(4) dx(5) dx(6)]"';
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C.2 Special Case: Torsional Vibration Matlab Model

$ASYMETRIC SHAFT MODEL: Torsional Vibration Only
$Filename: asymetric.m

%$By Clinton Judd

$Last Updated 1/28/2008

$Description: Models the torsional vibration of a rotor with an
asymetric
$shaft stiffness and a horizontal side load. Assumes no lateral
vibration

%$0Outside Functions: torsional_fun used to define ODEs

clear all;
close all;

wn=10000*2*pi()/60; $%$lateral natural frequency (rad/s)
wt=3500*2*pi () /60; %torsional natural frequency (rad/s)

si=0.2; $lateral damping ratio

sit=0.05; $torsional damping ratio

ee=0.005; $unbalance eccentricity (in)

rho=1.00; $radius of gyration (in)

Py=-2700; $Py/M, vertical load ratio (in/sec”2)

g=0.15; %$asymetry factor

parameters = {'wn (rad/s)', 'wt (rad/s)', 'si', 'sit', 'ee (in)', 'rho

(in) ', 'Py (in/sec”™2)', 'q'; wn wt si sit ee rho Py qg};
xlswrite('result', parameters, 'Parameters',6 'Al');

x0=zeros(2,1); %$initial conditions
tf=4*wn; $solution timespan (sec*wn)
tspan=0:tf; $solution timespan (dimensionless)

options=odeset ('RelTol',le-7, 'AbsTol"',le-7);
n=1; %index for organizing output matrix

%$Loop for each speed N (rpm)
for N=[250:50:6500];
omega=N*2*pi()/60; S%motor speed (rad/s)

[t,x]=0ded5 (Rtorsional_fun, tspan,x0, options, omega, wn,wt,si,sit,ee,rho,P
y,d);

x0=x(end, :)"'; %$use results from last iteration for new
initial cond.

xlswrite('result', t(:,1), [int2str(N) ' RPM'], 'Al'");
xlswrite('result', x(:,:), [int2str(N) ' RPM'], 'B1'");
%Output

y(n,1l)=omega*60/ (2*pi()); $Speed (rpm)
yv(n,2)=(360/(2*pi()))* (max(x(end-500:end, 1)) -min(x (end-

500:end,1))); $Amplitude (deg pk-pk)
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n=n+l; S%increase index for organizing output matrix

%$Plot Response

figure(1);

plot(y(:,1),y(:,2),'k.");

axis ([0 5000 0 1.10*max(y(:,2))1);
title('Asymetric Shaft Torsional Vibration');
xlabel ("Motor Speed(rpm)');

yvlabel ('Torsional Amplitude (deg pk-pk)');
grid;

end

xlswrite('result', y(:,:), 'Bode Plot', 'Al'");

$ASYMETRIC SHAFT MODEL: Torsional Vibration Only

$Filename: torsional_fun.m

$By Clinton Judd

$Last Updated 10/9/06

$Description: defines ODEs for torsional vibration model

%$Called By: asymetric.m

function dx=torsional_fun(t, x,omega,wn,wt,si,sit,ee,rho,Py,q);
dx(1)=x(2);

dx (2)=-x(1)*(wt/wn)"2-(2*sit*wt/wn) *x(2) -

(ee*q/ (wn*rho) *2) *Py*cos ( (omega/wn) *t+x (1) )+ (gq/ (wn"4*rho”2))*sin (2* ( (om

ega/wn) *t+x(1))) *Py"2;

dx=[dx (1) dx(2)]";
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C.3 Special Case: Torsional Vibration Matlab Model For Parametric Study Of % / £

$ASYMETRIC SHAFT MODEL: Torsional Vibration Only
%$Filename: torsionalparametric.m

%$By Clinton Judd

$Last Updated 2/17/2010

%$Description: Models the torsional vibration of a rotor with an
asymetric
$shaft stiffness and a horizontal side load. Assumes no lateral
vibration

%$0Outside Functions: torsional_fun used to define ODEs

clear all;
close all;

wn=10000*2*pi()/60; %$lateral natural frequency (rad/s)
wt=3500*2*pi()/60; S%torsional natural frequency (rad/s)

si=0.2; $lateral damping ratio

sit=0.05; $torsional damping ratio

ee=0.005; %$unbalance eccentricity (in)
rho=1.00; $radius of gyration (in)

g=0.15; $asymetry factor

x0=zeros(2,1); %$initial conditions

tf=4*wn; %$solution timespan (sec*wn)
tspan=0:tf; $solution timespan (dimensionless)

options=odeset ('RelTol',le-7, "AbsTol',le-7);

n=1; %index for organizing output matrix
$Loop for each Py/M
for Py=[-1371,-2742,-4112,-5483,-6854,-8225,-9595,-109667;
$Py/M, vertical load ratio (in/sec”2)
Pyke=-(Py/wn"2) /ee;
%$Loop for each speed N (rpm)
for N=[250:50:1600,1610:10:1900,1950:50:3350,
3360:10:3650,3700:50:60001;
omega=N*2*pi()/60; S%motor speed (rad/s)

[t,x]=0ded5 (Rtorsional_fun, tspan,x0, options, omega, wn,wt,si,sit,ee,rho,P
y,d);

x0=x(end, :)"'; %$use results from last iteration for new
initial cond.

%Output
y(n,1l)=omega*60/ (2*pi()); $Speed (rpm)
y(n,2)=(360/(2*pi()))* (max(x(end-500:end, 1))-min(x (end-

500:end,1))); $Amplitude (deg pk-pk)
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y(n,3)=Pyke; %Ratio Py/M
n=n+l; S%increase index for organizing output matrix

%$Plot Response

figure(1);

plot3(y(:,1),y(:,3),y(:,2),"'b.");
title('Asymetric Shaft Torsional Vibration');
xlabel ("Motor Speed(rpm)');

zlabel ('Torsional Amplitude (deg pk-pk)');
ylabel ('Ratio (Py/k)/(ee)');

grid;

end
end

$ASYMETRIC SHAFT MODEL: Torsional Vibration Only
$Filename: torsional_fun.m

%$By Clinton Judd

$Last Updated 10/9/06

%$Description: defines ODEs for torsional vibration model

%$Called By: asymetric.m

function dx=torsional_fun(t, x,omega,wn,wt,si,sit,ee,rho,Py,q);
dx(1)=x(2);

dx (2)=-x(1)*(wt/wn)"2-(2*sit*wt/wn) *x(2) -

(ee*qg/ (wn*rho) "2) *Py*cos ( (omega/wn) *t+x (1) )+ (gq/ (wn"4*rho”2)) *sin(2* ( (om

ega/wn)*t+x(1))) *Py"2;

dx=[dx (1) dx(2)]"';
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C.4 General Vibration Model

$ASYMETRIC SHAFT MODEL: Torsional Vibration Only
%$Filename: torsionalparametric.m

%$By Clinton Judd

$Last Updated 2/17/2010

$Description: Models the torsional vibration of a rotor with an
asymetric
$shaft stiffness and a horizontal side load. Assumes no lateral
vibration

%$0Outside Functions: torsional_fun used to define ODEs

clear all;
close all;

wn=10000*2*pi()/60; $%$lateral natural frequency (rad/s)
wt=3500*2*pi () /60; %torsional natural frequency (rad/s)

si=0.2; $lateral damping ratio

sit=0.05; $torsional damping ratio

ee=0.005; $unbalance eccentricity (in)
rho=1.00; $radius of gyration (in)

g=0.15; %$asymetry factor

x0=zeros(2,1); %$initial conditions

tf=4*wn; $solution timespan (sec*wn)
tspan=0:tf; $solution timespan (dimensionless)

options=odeset ('RelTol',le-7, 'AbsTol"',le-7);

n=1; $index for organizing output matrix
$Loop for each Py/M
for Py=[-1371,-2742,-4112,-5483,-6854,-8225,-9595,-10966];
$Py/M, vertical load ratio (in/sec”2)
Pyke=-(Py/wn"2) /ee;
%Loop for each speed N (rpm)
for N=[250:50:1600,1610:10:1900,1950:50:3350,
3360:10:3650,3700:50:60007;
omega=N*2*pi()/60; S%S$motor speed (rad/s)

[t,x]=0ded5(@torsional_fun, tspan,x0, options, omega,wn,wt,si,sit,ee,rho,P
y,9a)i

x0=x(end, :)"'; %$use results from last iteration for new
initial cond.

%Output
y(n,1l)=omega*60/ (2*pi()); %$Speed (rpm)
y(n,2)=(360/(2*pi()))* (max(x(end-500:end, 1))-min(x (end-

500:end,1))); $Amplitude (deg pk-pk)
y(n,3)=Pyke; S%Ratio Py/M
n=n+l; S%increase index for organizing output matrix

%Plot Response
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figure(1);

plot3(y(:,1),y(:,3),y(:,2),'b.");
title('Asymetric Shaft Torsional Vibration');
xlabel ('Motor Speed(rpm)');

zlabel ('Torsional Amplitude (deg pk-pk)');
ylabel ('Ratio (Py/k)/(ee)');

grid;

end
end

$ASYMETRIC SHAFT ROTOR MODEL: General vibration
$Filename: general_ fun.m

%$By Clinton Judd

$Last Updated 2/24/2010

$Description: defines ODEs for general vibration model
%$Called By: asymetric_gen.m
function dx=general_ fun(t,x,omega,wn,wt,si,sit,ee,rho,Py,q);

dx(1)=x(2);

dx(2):7x(l)*(wt/wn)A27(2*sit*wt/wn)*x(2)f

(ee*q/ (wn*rho) *2) *Py*cos ( (omega/wn) *t+x (1) )+ (gq/ (wn*4*rho”2))*sin (2* ( (om
ega/wn)*t+x(l)))*PyA2+(ee*2*si/rhoA2) (x (6) cos ((omega/wn) *t+x (1)) -

X (4)*sin((omega/wn) *t+x (1)) )+ (ee* (1+q) /rhoAZ) (x(5) *cos ( (omega/wn) *t+x (
1))-x(3)*sin((omega/wn) *t+x (1)) ) -

(2*g*Py/ (wn*rho) "2) * (x(3) *cos (2* ( (omega/wn) *t+x (1)) )+x(5) *sin (2* ( (omega
/wn) *t+x(1))))+(g/rho”2)* (2*x(3) *x(5) *cos (2* ( (omega/wn) *t+x (1)) ) -

X (3)72*sin(2* ((omega/wn) *t+x (1)) )+x(5)"2*sin(2* ( (omega/wn) *t+x(1))));
dx (3)=x(4);

dx (4)=—-2*si*x(4)—-(1—-

g*cos (2* ( (omega/wn) *t+x (1)) ))*x(3)+g*sin (2* ( (omega/wn) *t+x (1)) ) *x(5) +ee
*dx(2)*sin((omega/wn *t+x (1) )+ (ee/wn”"2)* (omega+wn*x (2))~2*cos ( (omega/wn
) *t+x (1)) -Py* (g/wn”"2)*sin (2* ( (omega/wn) *t+x (1)) ) ;

dx (5)=x(6) ;

dx (6)=—2*si*x(6)—

(l+g*cos (2* ( (omega/wn) *t+x (1)) ) ) *x(5)+g*sin (2* ( (omega/wn) *t+x (1)) ) *x(3)

ee*dx (2) *cos ( (omega/wn) *t+x (1) )+ (ee/wn”2)* (omega+wn*x(2))"2*sin( (omega/
wn) *t+x (1)) +Py* (g/wn”2) *cos (2* ( (omega/wn) *t+x(1)));

dx=[dx (1) dx(2) dx(3) dx(4) dx(5) dx(6)]"';
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C.5 Vibration Model for Increasing Shaft Asymmetry

$ASYMMETRIC SHAFT MODEL: Special Lateral Vibration only
%$Filename: asymetric_gen_g.m

%$By Clinton Judd

$Last Updated 2/2010

%$Description: Models the lateral vibration of a rotor with an
increasingly
$asymmetric shaft stiffness and a horizontal side load.

%$Outside Functions: general_fun.m used to define ODEs

clear all;
close all;

for g=[0:0.02:0.27;

wnorig=1850*2*pi()/60; %$original lateral natural frequency (rad/s)
wn=(1/(1+qgq))”~0.5*wnorig; %lateral natural frequency after asymetry
(rad/s)

wt=2500*2*pi()/60; %torsional natural frequency (rad/s)

si=0.2; $lateral damping ratio

sit=0.04; $torsional damping ratio

ee=0.005; %$unbalance eccentricity (in)

rho=1.00; $radius of gyration (in)

Py=-386.1; $Py/M, vertical load ratio (in/sec”2)

parameters = {'wn (rad/s)', 'wt (rad/s)', 'si', 'sit', 'ee (in)', 'rho

(in) ', 'Py (in/sec”™2)', 'q'; wn wt si sit ee rho Py qg};
xlswrite('result', parameters, 'Parameters',6 'Al');

x0=zeros(6,1); $set initial conditions to all zero
tf=4*wn; %$solution timespan (sec*wn)
tspan=0:tf; $solution timespan (dimensionless)

options=odeset ('RelTol',le-7, 'AbsTol"',le-7);
n=1; $start index for organizing output matrix by speed

%$Loop for each speed N (rpm)
for N=[250:25:4000];
omega=N*2*pi()/60; S%motor speed (rad/s)

[t,x]=0ded5 (Rgeneral_fun, tspan, x0, options, omega,wn,wt,si,sit,ee,rho,Py,

a);
x0=x(end, :)"'; %$use results from last iteration for new

initial cond.

%$Output Data for Amplitude Plot
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y(n,1l)=omega*60/(2*pi()); %$Speed
(rpm)

y(n,2)=max (x(2*wn:end, 3) ) min(x(2*wn:end, 3)) ; $Pk-Pk Amplitude X
(in)

y(n,3)=max (x(2*wn:end, 5) ) min(x(2*wn:end, 5)) ; %$Pk-Pk Amplitude Y
(in)

y(n,4)=(360/(2*pi()))*(max(x(2*wn:end, 1)) -min(x(2*wn:end, 1)));
$Pk-Pk Amplitude torsional (deq)

y(n,5)=q;

n=n+1l; %increase index for organizing output matrix

%Plot Lateral Response

figure(l);

hold onj;

plot(y(:,1),y(:,2),'k.");
plot(y(:,1),y(:,3),'g.");

axis ([0 4500 0 1.10*max(y(:,3))1);
title('Asymetric Shaft Lateral Vibration');
xlabel ('Motor Speed(rpm)');

ylabel ('Amplitude (in pk-pk)"');

grid;

%$Plot Torsional Response
figure(2);

hold on;
plot(y(:,1),y(:,4),'k.");
axis ([0 4500 0 1.10*max(y(:,4))1);

title('Asymetric Shaft Torsional Vibration');
xlabel ("Motor Speed(rpm)');

ylabel ('Torsional Amplitude (deg pk-pk)"');
grid;

%Plot Response

figure(3);

plot3(y(:,1),y(:,5),y(:,4),'b.");
title('Asymmetric Shaft Torsional Vibration');
xlabel ("Motor Speed(rpm)');

zlabel ('Torsional Amplitude (deg pk-pk)');
ylabel ('Asymmetry Factor, g');

grid;

hold on;

%Plot Response

figure(4);
plot3(y(:,1),y(:,5),y(:,3),"'b.");
title('Asymetric Shaft Lateral Vibration');
xlabel ('Motor Speed(rpm)');

zlabel ('Vertical Amplitude (in pk-pk)"');
ylabel ('Asymmetry Factor, g');

grid;

hold on;
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xlswrite('result', y(:,:), ['Bode Plot g=' int2str(g)], 'Al'"');
end

end
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C.6 Vibration Model for Varying Ratios of «,/,

$ASYMMETRIC SHAFT MODEL: Special Lateral Vibration only
%$Filename: asymetric_gen_w.m

%$By Clinton Judd

$Last Updated 2/2010

%$Description: Models the lateral vibration of a rotor with varying
%$torsional natural frequency

%$0utside Functions: general_fun.m used to define ODEs

clear all;
close all;

n=1; $start index for organizing output matrix by speed

for wtwn=[0.25:0.25:2]7;

ag=0.2; $asymetry factor

wnorig=1850*2*pi()/60; %$original lateral natural frequency (rad/s)
wn=(1/(1+q))"0.5*wnorig; %$lateral natural frequency after asymetry
(rad/s)

wt=wn*wtwn; $torsional natural frequency (rad/s)

si=0.2; $lateral damping ratio

sit=0.04; $torsional damping ratio

ee=0.005; $unbalance eccentricity (in)

rho=1.00; $radius of gyration (in)

Py=-386.1; $Py/M, vertical load ratio (in/sec”2)

parameters = {'wn (rad/s)', 'wt (rad/s)', 'si', 'sit', 'ee (in)', 'rho
(in) ', 'Py (in/sec”2)', 'gq'; wn wt si sit ee rho Py q};

xlswrite('result', parameters, 'Parameters',6 'Al');

x0=zeros(6,1); %$set initial conditions to all zero
tf=4*wn; %$solution timespan (sec*wn)
tspan=0:tf; %$solution timespan (dimensionless)

options=odeset ('RelTol',le-7, 'AbsTol"',le-7);

%$Loop for each speed N (rpm)
for N=[250:25:4000];
omega=N*2*pi()/60; S%motor speed (rad/s)

[t,x]=0ded5 (Rgeneral_fun, tspan, x0, options, omega,wn,wt,si,sit,ee,rho,Py,
a);

x0=x(end, :)"'; %$use results from last iteration for new
initial cond.
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%$Output Data for Amplitude Plot

y(n,1l)=omega*60/ (2*pi()); %$Speed
(rpm)

y(n,2)=max (x(2*wn:end, 3) ) min(x(2*wn:end, 3)); $Pk-Pk Amplitude X
(in)

y(n,3)=max (x(2*wn:end, 5) ) min(x(2*wn:end, 5)) ; %$Pk-Pk Amplitude Y
(in)

yv(n,4)=(360/(2*pi()))*(max(x(2*wn:end,1l))-min(x(2*wn:end,1)));

$Pk-Pk Amplitude torsional (deq)
y(n,5)=wtwn;

n=n+l; %increase index for organizing output matrix

%Plot Lateral Response

figure(l);

hold on;

plot(y(:,1),y(:,2),'k.");
plot(y(:,1),y(:,3),'9.");

axis ([0 4500 0 1.10*max(y(:,3))1);
title('Asymetric Shaft Lateral Vibration');
xlabel ("Motor Speed(rpm)');

ylabel ('Amplitude (in pk-pk)"');

grid;

%$Plot Response

figure(3);

plot3(y(:,1),y(:,5),y(:,4),"'b.");
title('Asymmetric Shaft Torsional Vibration');
xlabel ("Motor Speed(rpm)');

zlabel ('Torsional Amplitude (deg pk-pk)');
ylabel ('wt/wn');

grid;

hold onj;

end

end

xlswrite('result', y(:,:), ['Bode Plot'], 'Al'");
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C.7 Vibration Model for Increasing Side Load

$ASYMMETRIC SHAFT MODEL: Special Lateral Vibration only
%$Filename: asymetric_gen_p.m

%$By Clinton Judd

$Last Updated 3/2010

%$Description: Models the lateral vibration of a rotor with an
$asymmetric shaft stiffness and increasing side load.

%$0utside Functions: general_fun.m used to define ODEs

clear all;
close all;

for Pyke=[1,5,10,15,20]; %$Py/M, vertical load ratio
(in/sec”2)

ag=0.2;

wnorig=1850*2*pi()/60; $original lateral natural frequency (rad/s)
wn=(1/(1+gq))”~0.5*wnorig; %lateral natural frequency after asymetry
(rad/s)

wt=2500*2*pi () /60; %torsional natural frequency (rad/s)

si=0.2; $lateral damping ratio
sit=0.04; $torsional damping ratio
ee=0.005; %unbalance eccentricity (in)
rho=1.00; $radius of gyration (in)

Py=-Pyke*ee*wn”"2;

parameters = {'wn (rad/s)', 'wt (rad/s)', 'si', 'sit', 'ee (in)', 'rho
(in) ', 'Py (in/sec”™2)', 'q'; wn wt si sit ee rho Py qg};
xlswrite('result', parameters, 'Parameters',6 'Al');

x0=zeros(6,1); $set initial conditions to all zero
tf=4*wn; %$solution timespan (sec*wn)
tspan=0:tf; $solution timespan (dimensionless)

options=odeset ('RelTol',le-7, 'AbsTol"',le-7);
n=1; $start index for organizing output matrix by speed

%$Loop for each speed N (rpm)
for N=[250:25:4000];
omega=N*2*pi()/60; S%motor speed (rad/s)

[t,x]=0ded5 (@general_fun, tspan, x0,options, omega,wn,wt,si,sit,ee,rho,Py,

a);
x0=x(end, :)"'; %$use results from last iteration for new

initial cond.
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%$Output Data for Amplitude Plot

y(n,1l)=omega*60/ (2*pi()); %$Speed
(rpm)

y(n,2)=max (x(2*wn:end, 3) ) min(x(2*wn:end, 3)); $Pk-Pk Amplitude X
(in)

y(n,3)=max (x(2*wn:end, 5) ) min(x(2*wn:end, 5)) ; %$Pk-Pk Amplitude Y
(in)

yv(n,4)=(360/(2*pi()))*(max(x(2*wn:end,1l))-min(x(2*wn:end,1)));

$Pk-Pk Amplitude torsional (deq)
y(n,5)=Pyke;

n=n+l; %increase index for organizing output matrix

%Plot Lateral Response

figure(l);

hold on;

plot(y(:,1),y(:,2),'k.");
plot(y(:,1),y(:,3),'9.");

axis ([0 4500 0 1.10*max(y(:,3))1);
title('Asymetric Shaft Lateral Vibration');
xlabel ("Motor Speed(rpm)');

ylabel ('Amplitude (in pk-pk)"');

grid;

%$Plot Torsional Response

figure(2);

hold onj;

plot(y(:,1),y(:,4),'k.");

axis ([0 4500 0 1.10*max(y(:,4))1);

title('Asymetric Shaft Torsional Vibration');
xlabel ('Motor Speed(rpm)');

ylabel ('Torsional Amplitude (deg pk-pk)"');
grid;

%Plot Response

figure (3);

plot3(y(:,1),y(:,5),y(:,4),"'b.");
title('Asymmetric Shaft Torsional Vibration');
xlabel ("Motor Speed(rpm)');

zlabel ('Torsional Amplitude (deg pk-pk)"');
ylabel ('Ratio (Py/k)/(ee)');

grid;

hold on;

%Plot Response

figure (4);
plot3(y(:,1),y(:,5),y(:,3),'b.");
title('Asymetric Shaft Lateral Vibration');
xlabel ('Motor Speed(rpm)');

zlabel ('Vertical Amplitude (in pk-pk)"');
ylabel ('Ratio (Py/k)/(ee)');

grid;

hold onj;
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if omega==0.5*wn
xlswrite('result', y(:,:), ['Pyke' int2str(Pyke) ' '
int2str(N)], 'Al");
elseif omega==wn
xlswrite('result', y(:,:), ['Pyke' int2str(Pyke) ' '
int2str(N)], 'Al');
end
end

end
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Appendix D Experiment Trial Notes

D.1 Notes on Experimental Trial Apparatus

System consists of two 800g disks as an inboard rotor and two 800g disks as an outboard rotor.
Inboard rotor supported closely by bearings.

Outboard rotor has bearing span of 7.75in

Outboard rotor has asymmetry with 1.5" long flats ground on either side of rotor.

Flats reduce diameter to a 0.230in thickness.

Shaft length between rotors is 14in.

Outboard rotor has vertical loading system (pulleys) with masses hung to produce vertical side load.
Prox-probes for lateral vibration measurement near bearings (inboard / outboard)

Gear wheels at each end for torsional measurement (TK17 inboard / outboard)

Calculated wn = 5,800rpm and wt=4,100rpm wt/wn = 0.707

201b hung for side loading (Py/M = 6.7g’s = 2600 in/sec”2)
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