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Monitoring programs for harmful algal blooms Field data will provide inputs to optically based eco
(HABs) are currently reactive and provide little or no system models, which are fused to the observational 
means for advance warning. Given this, the devel- networks through data-assimilation methods. Poten
opment of algal forecasting systems would be of tial model structure and data-assimilation methods 
great use because they could guide traditional mon- are reviewed. 
itoring programs and provide a proactive means for 

Key index words: bio-optics; forecasting; harmful al-responding to HABs. Forecasting systems will require 
gal blooms; remote sensing near real-time observational capabilities and hydro

dynamic/biological models designed to run in the 
forecast mode. These observational networks must 

An early forecasting system ‘‘The oyster is unseadetect and forecast over ecologically relevant spatial/ 
sonable and unwholesome in all months that have temporal scales. One solution is to incorporate a mul
not the letter ‘r’ in their name.’’ Henry Buttes from tiplatform optical approach utilizing remote sensing 
Dyets Dry Dinner, 1599 (The Handbook of Quotations, and in situ moored technologies. Recent advances in 
Classical & Medieval).instrumentation and data-assimilative modeling may 

Predicting and monitoring harmful algal blooms provide the components necessary for building an 
(HABs) is central to developing proactive strategies algal forecasting system. This review will outline the 
to ameliorate their impact on human health and the utility and hurdles of optical approaches in HAB de-
economies of coastal communities. As part of these tection and monitoring. In all the approaches, the 
efforts, numerous coastal monitoring programs have desired HAB information must be isolated and ex-
been enacted. Monitoring programs have traditiontracted from the measured bulk optical signals. Ex-
ally detected HABs by visual confirmation (water disamples of strengths and weaknesses of the current 
coloration and fish kills), illness to fish consumers approaches to deconvolve the bulk optical properties 
(Carder and Steward 1985, Riley et al. 1989, Pierce are illustrated. After the phytoplankton signal has 

tion algorithms will be species-specific, reflecting the 

been isolated, species-recognition algorithms will be 
required, and we demonstrate one approach devel-
oped for Gymnodinium breve Davis. Pattern-recogni

1965). Most of the traditional techniques are labor 
Baden 1990), or mouse bioassays (McFarren et al. 
shellfish samples (Schulman et al. 1990, Trainor and 
et al. 1990), chemical analyses for toxin levels in 

intensive, which limits the temporal and spatial res-acclimation state of the HAB species of interest. 
olution of the potential monitoring programs. 
These sampling limitations bias our understanding 
of harmful taxa and the environmental conditions 
promoting bloom initiation, maintenance, and se
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nescence. Developing approaches to characterize 
the different stages of phytoplankton-bloom dynam
ics will ultimately require a suite of approaches to 
provide sufficient sensitivity to detect dilute popu
lations of specific species in mixed phytoplankton 
communities. 

Over the past two decades, oceanographers have de
veloped optical instrumentation that can collect data 
in a nonintrusive manner [cf. Limnology and Ocean
ography 1989: vol. 34(8) and Journal of Geophysical 
Research 1995: vol. 100(C7)]. Optical techniques are 
amenable to a variety of platforms (satellites, aircrafts, 
mooring, and profiling instrumentation) allowing re
searchers to design multiplatform sampling networks 
capable of collecting data over ecologically relevant 
scales (Smith et al. 1987, Fig. 1). Many integrated ob
serving systems currently are under development by 
the oceanographic community. These approaches 
show much promise in mapping the distribution of 
phytoplankton and will be useful in monitoring HABs 
(Cullen et al. 1997). Furthermore, combining optical 
approaches with ocean forecast systems (Mooers 
1999) would potentially provide water-quality manag
ers a means to prepare for anticipated problems. Al
though promising, optical approaches have been 
criticized because they provide only bulk composite 
signals for a water mass, and the signatures for dis
tinct phytoplankton species are difficult to discrim
inate (Garver et al. 1994). 

Recent advances in instrumentation, bio-optical 
models, and coupled observation network/model sys
tems may offer new tools to tackle these issues. 
Therefore, in this paper we will focus on approaches 
that we believe show promise and hope to provide 
consideration of the strengths and weaknesses of the 
technologies available as of today. Specifically, our 
discussion will focus on the strengths and weaknesses 
of in situ optical data in relation to HABs, examine 

FIG. 1. The relevant tempo
ral and spatial scales for critical 
processes regulating phyto
plankton ecology (circles) and 
the sampling capabilities of the 
diverse sampling platforms 
available (squares). Redrawn 
and modified from Dickey 
(1993). 

optically based ecosystem models which utilize in situ 
field data, and briefly outline the potential of data-
assimilation approaches for the study of HABs. De
veloping a biological ocean forecasting system is a 
truly interdisciplinary effort, and a comprehensive re
view of all the pertinent aspects is beyond a single 
manuscript; therefore, we have focused our discus
sion on those approaches with which we are familiar. 
Given this, we recognize that our discussion may have 
omitted approaches that might be central to any fu
ture forecasting system. For this discussion, we will 
omit optical detection of phycobilin-containing 
HABs, such as cyanobacteria, and will focus primarily 
on chlorophyll a and chlorophyll c–containing algae. 
Whenever possible, field data will be used to illustrate 
both the strengths and weaknesses of these methods. 
The majority of the data presented was collected in 
the Gulf of Mexico as part of a multi-institution effort 
(http://www.fmri.usf.edu/ecohab/) that focused on 
defining the ecology of the dinoflagellate Gymnodin
ium breve Davis. More detailed description of the data 
will be provided in forthcoming manuscripts, the 
data here is used to only illustrate potential strengths 
and shortcomings. Finally a complete description of 
the uses of hydrological optics to study phytoplank
ton is well beyond the scope of a single paper. For a 
more complete treatment of the subject, there are a 
number of excellent synthetic texts available (Kirk 
1994, Mobley 1994, Bukata et al. 1995). 

IN SITU OPTICAL MEASUREMENTS 

Significant effort over the last decade has focused 
on developing techniques to measure the spectral 
dependency of in situ inherent optical properties 
(IOPs). The advantage of the IOPs is that they de
pend only on the medium and are independent of 
the ambient light field. This makes them easier to 
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FIG. 2. Examples of the utility of absorption data collected with a WetLabs Inc. AC-9 nine-wavelength absorption-attenuation meter. 
Data was collected aboard the OSV Anderson from 25 to 31 August 1997 in the Gulf of Mexico. The data represents a subset of a time 
series study which consisted of hydrographic/optical profiles and discrete water samples analyzed for cell counts, phytoplankton pigmen
tation measurements, total, dissolved, and methanol-extracted particulate absorption. The study focused on a Gymnodinium breve bloom, 
which was encountered off Apalachicola Florida. The AC-9 was factory calibrated a few months before the cruise. Manufacturer-recom
mended protocols were employed to track instrument calibration by filtered air and double-distilled 0.2-�m filtered water throughout 
the cruise. The optical instruments were mounted into a modified sea cage, which had a bottom support and loose clamps in order to 
minimize torsion, which can affect instrument performance. (A) The difference between absorption spectra before and after a clean-
water calibration for the AC-9 instrument. There is a large discrepancy between the spectra despite the fact that the instrument was 
factory-calibrated months before the cruise. Given this, daily water calibrations are highly recommended. (B) After a clean-water correc
tion, the total absorption at 676 nm measured during the Anderson cruise. The interpolated image was constructed from 10 discrete 
profiles collected over a 20 h period. High values in surface waters correlated with a monospecific G. breve population. The high values 
at depth are below the thermocline and consist of a mixed chromophyte community. (C) Representative relative spectra (particulate, 
detritus, and CDOM) used to deconvolve the bulk absorption measured during the cruise. (D) An example of deconvolving total 
absorption measured by an AC-9. The lines with symbols represent measured quantities. The diamonds represent the total absorption 
measured by the AC-9 in the surface G. breve bloom. Circles represent particulate absorption measured with a ship-based spectrophometer 
for the surface G. breve bloom. The dotted lines represent the estimated CDOM and particulate absorption using a standard inversion 
algorithm and the spectra presented in C. 

interpret and allows for the partitioning of bulk op- 1995). These instruments, while becoming increas
tical properties into the individual components (e.g. ingly user friendly, do require careful attention 
water, dissolved organic matter, phytoplankton, de- when it comes to calibration and maintenance, 
tritus, sediment, etc.). Some IOPs relevant to phy- which if ignored can compromise the spectra (Fig. 
toplankton studies include absorption, attenuation, 2A; Pegau et al. 1995). 
and scattering. Recently in situ spectral absorption Absorption. Data from submersible instrumenta
and attenuation meters have become commercially tion reflect bulk absorption, which represents the 
available and can provide robust measurements of additive absorption of the specific in situ constitu
absorption/attenuation (and thus scattering) at nu- ents (Fig. 2C). The instrument signal can be decon
merous wavelengths of light (currently up to 100 volved into the contributions by all absorption com
wavelengths) (Zaneveld et al. 1994, Pegau et al. ponents according to: 



 

 

 

 

n 

a(�) � � xi ·ai(�) 
i�1 

where ai(�) refers to absorption at wavelength � for 
component x. Because the instruments are calibrat
ed relative to pure water, the bulk signal can be op
erationally separated into particulate and dissolved 
material: 

atotal � awater � adissolved � aparticulates 

and the particulate material can be further parti
tioned into functional groups: 

aparticulates � aphytoplankton � asediments � adetritus 

Particulate absorption. Given equation 3, deriving 
the estimates of particulate absorption requires in
version algorithms to extract the particulate signa
ture from other constituents that often dominate 
the bulk optical properties in coastal waters (Mor
row et al. 1989, Roesler et al. 1989, Bricaud and 
Stramski 1990, Gallegos et al. 1990, Cleveland and 
Perry 1994, Roesler and Zaneveld 1994). These in
version techniques are based on modeling the vol
umetric absorption using generalized absorption 
spectral shapes for one or more of the individual 
absorbing components or using absorption ratios of 
different wavelengths that vary in a predictable way 
according to the components present. The first step 
in deriving a particulate spectra, involves modeling 
or measuring the absorption due to Colored Dis
solved Organic Matter (CDOM) so it can be re
moved from the bulk absorption spectra. The 
CDOM absorption (or gelbstoff) can be described 
as (Kalle 1966, Bricaud et al. 1981, Green and 
Blough 1994, CDOM spectra in Fig. 2C), 

aCDOM(�) � aCDOM(�440 nm)exp[�S·(� � �440 nm)] 

The exponential ‘‘S ’’ parameter (nm-1) depends on 
the composition of the CDOM present and can vary 
over 40% with values in marine systems ranging 
from 0.011 to 0.019 (Carder et al. 1989, Roesler et 
al. 1989), but many freshwater systems, estuaries, 
and enclosed oceans exhibit even greater variability 
in S (Jerlov 1976, Kirk 1977). The exponential co
efficient also depends upon the wavelength range; 
generally the value increases as the range extends 
into the ultraviolet wavelengths. Given a value for S 
and some idealized absorption spectrum for partic
ulates (average spectral shape from independent 
data sets, see Fig. 2C), the measured bulk absorp
tion spectrum (Fig. 2D) can be deconvolved into 
volumetric particulate and CDOM absorption using 
iterative curve fitting procedures. This technique 
can provide accurate estimates of particulate absorp
tion (Fig. 2D; R2 � 0.88 between measured and pre
dicted absorption for larger unpublished Gulf of 
Mexico database). The accuracy of these techniques 
vary significantly with the chosen value of S. This sen
sitivity is likely due to the influence of tripton or 
detritus which also displays an exponential absorp

tion coefficient, albeit with a flatter slope (Roesler 
et al. 1989). Thus, a steeper S can be indicative of 
the dominance by CDOM, whereas a lower S value 
indicates potential dominance of particulate organic 
material. Although these techniques are promising, 
they will require parameterization of the S value and 
some generalized absorption data tailored to the 
specific study site. Given this, collecting spectral li
braries of the absorption characteristics in the field 
remains of paramount importance. 

Another useful approach that circumvents the as
sumption of an idealized wavelength dependency 
for the total absorption and CDOM is based on mak
ing in situ measurements with and without 0.2-�m 
filters on the intakes of the instruments (Boss et al. 
1998, Roesler 1998, Schofield et al. 1999). The result
ing bulk and dissolved spectra can be used to derive 
particulate absorption with no a priori assumptions 
about its wavelength dependency (Fig. 3A). An ex
ample of a particulate spectrum derived using this 
approach is presented for a phytoplankton bloom 
encountered in the coastal waters off New Jersey. 
The particulate spectrum exhibited a blue to red 
ratio of 2.5 that is representative of phytoplankton 
(Prézelin and Boczar 1986) (Fig. 3A), and CDOM 
showed little absorption in the red wavelengths of 
light with absorption increasing exponentially with 
decreasing wavelength (Fig. 3A). The high absorp
tion at 715 nm and high absorption at 414 nm re
flects the significant presence of detritus and sedi
ment, which emphasizes that this technique pro
vides a particulate spectrum that can represent 
many constituents (eq. 3). If refined, these tech
niques offer the potential to generate continuous 
maps of particulate absorption both as a function of 
depth and wavelength (Fig. 3B). Furthermore, these 
approaches are quite amenable for shipboard appli
cations and do not require assumptions about S or 
some idealized absorption spectra. One potential 
source of data biasing may be induced by changes 
in the flow rate of water through the filtered instru
ment compared to the unfiltered one causing ap
parent differences in the depth of features. A sec
ond source of biasing occurs with differential filter 
clogging which causes sequential restriction in the 
nominal ‘‘size’’ of the CDOM that passed through 
the absorption meter. Unless in situ filter replace
ment is used, this approach may not be optimal for 
moored applications 

Phytoplankton spectra. Once a particulate spectrum 
has been derived, it must be deconvolved into the 
respective absorption of phytoplankton, detritus, 
and, if necessary, sediments. A series of different 
models and approaches have been developed to sep
arate algal and nonalgal absorption from each oth
er. The detrital-absorption spectrum can be approx
imated using an exponential function similar to 
equation 4; however, the S value is lower than that 
of CDOM (exponential coefficient for a reference 
wavelength at 400 nm ranges from 0.006 to 0.014 
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FIG. 3. (A) A representative set of repetitive measurements with and without a 0.2-�m filter on the AC-9 to provide estimates of the 
dissolved and total absorption at the depth of the thermocline off the coast of New Jersey on 24 July 1998. Again, manufacturer-
recommended protocols for the AC-9 were used. The particulate spectra (resembling phytoplankton absorption) were derived by sub
tracting the dissolved from the total absorption and the resulting spectra. (B) The derived particulate absorption spectra as a function 
of depth for a station off the coast of New Jersey on 24 July 1998. 

nm�1; Roesler et al. 1989). Often, approaches have 
exploited this and the observed low variance in dis
tinct wavelength ratios in phytoplankton absorption 
to separate algal and nonalgal spectra (Bricuad and 
Stramski 1990). Other approaches utilize multiple 
linear (Morrow et al. 1989) or nonlinear Gaussian-
based regression techniques (Hoepffner and Sath
yendranath 1993). The accuracy of these techniques 
can vary with location (Varela et al. 1998); therefore 
it is recommended that initial efforts focus on de
veloping criteria for determining which technique is 
appropriate for a given field site (Varela et al. 1998). 
Unfortunately for HAB-specific studies, the variance 
between the measured and derived spectrum can be 
noisy or so generalized that it compromises the utility 
of phytoplankton species identification algorithms 
(see below). Given this, separating the phytoplank
ton absorption from the particulate spectrum will be 
a central problem for HAB applications. 

Species identification. Assuming that a phytoplank
ton absorption spectrum can be derived from a bulk 
optical measurement, techniques for delineating the 
presence and quantity of HAB species in a hetero
geneous phytoplankton community are required. 
Delineation of a particular species can be successful 
only if the species represents a significant fraction 
of the overall phytoplankton biomass and/or if it 
has discriminating features in the cellular optical 
properties. Differences in the absorption properties 
between algae can be due to either unique pigments 
(Jefferey et al. 1997) and/or the light acclimation 
state associated with the ecological niche occupied 
by the HAB species. 

Laboratory work suggests that partial discrimination 
of algal species from cellular absorption is possible. 
For example, Johnsen et al. (1994), using stepwise dis
criminant analyses to classify absorption spectra 
among 31 bloom-forming phytoplankton (represent
ing the four main groups of phytoplankton with re
spect to accessory chlorophylls; that is, chlorophyll b, 

chlorophyll c1, and/or c2, chlorophyll c3, and no ac
cessory chlorophyll), differentiated toxic chlorophyll 
c3–containing dinoflagellates and prymnesiophytes 
from taxa not having this pigment. However, problem
atic and toxic taxa could not be further separated 
from other chlorophyll c3–containing taxa because of 
the similarities among absorption spectra. Millie et al. 
(1997) also utilized stepwise discriminant analyses to 
differentiate mean-normalized absorption spectra for 
laboratory cultures of G. breve from absorption spectra 
of a diatom, a prasinophyte, and peridinin-containing 
dinoflagellates. Therefore, absorption sometimes may 
provide enough information to distinguish among ab
sorption spectra between phylogenetic groups, and 
potentially taxa. However, wavelengths delineated by 
the stepwise techniques were wavelengths associated 
with the accessory carotenoids. This is problematic as 
the relative absorption in green, yellow, and orange 
wavelengths where the carotenoids absorb light is 
much less when compared to the absorption by chlo
rophyll in the blue and red wavelengths of light. Fur
thermore, the absorption attributable to unique ac
cessory pigments is difficult to discern because of the 
dampening of the shoulders on absorption spectra 
from pigment packaging effects (Duysens 1956, Morel 
and Bricaud 1986). In addition, the spectral depen
dency in the absorption properties of marine chloro
phyll c–containing algae exhibits little variability 
among taxa (Roesler et al. 1989, Garver et al. 1994, 
Johnsen et al. 1994). 

In order to maximize the minor inflections in 
spectral absorption, fourth-derivative analysis (But
ler and Hopkins 1970) has been used to resolve the 
positions of absorption maxima attributable to spe
cific photosynthetic pigments (Bidigare et al. 1989, 
Smith and Alberte 1994, Millie et al. 1995). Millie 
et al. (1997) combined derivative analysis with a sim
ilarity index to detect the quantity of G. breve for 
mixed laboratory phytoplankton cultures (Fig. 4A, 
B). In brief, fourth-derivative spectra initially were 
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FIG. 4. (A) Absorption for a hypothetical mixed assemblage of Dunaliella tertiolecta and Gymnodinium breve. The individual spectra 

reflect various proportions of the dinoflagellate and green algae ranging from 0% to 100% G. breve (redrawn from Millie et al. 1997). 
(B) The fourth-derivative spectra for the mixed assemblage spectra presented in A. The individual pigments associated with the specific 
shoulders in the derivative spectra are delineated (redrawn from Millie et al. 1997). (C) The relationship between the similarity index 
(eq. 6) versus the relative proportion of G. breve for hypothetical mixed assemblages. (D) Similarity-index values associated with natural 
mixed phytoplankton population encountered in the Gulf of Mexico (Fig. 2B). This dinoflagellate is the only species of phytoplankton 
in the eastern Gulf of Mexico observed to contain the pigment gyroxanthin-diester and it appears in constant proportion to cellular 
chlorophyll a in G. breve. Quantifying gyroxanthin-diester and chlorophyll a allowed to estimate the fraction of the chlorophyll biomass 
in mixed populations associated with G. breve. Particulate absorption spectra were measured using the quantitative filter technique (QFT) 
(Kiefer and Soohoo 1982). Sample and reference filters were placed directly in front of the detector windows of a scanning dual-beam 
spectrophotometer (DMS80, Varian) to minimize scattering loss. Reference spectra for this analysis were collected from a monospecific 
bloom of G. breve. The data compilation represents samples collected over the course of the year in diverse locations in the Gulf of 
Mexico. The open circle indicates an estuarine bloom of Cryptoperidinium which has a similar pigment complement but is not found in 
marine waters associated with G. breve. 

computed for mean normalized absorption spectra. 
The spectral similarity index was determined by 
computing the angle between the vectors compris
ing the fourth-derivative spectra of a standard G. 
breve sample from the laboratory and an ‘‘unknown’’ 
mixed assemblage of phytoplankton as: 

A ·Astd unkSI � [ ]�A � � �A �std unk 

where Astd and Aunk are the fourth-derivative spectra 
for G. breve and the unknown samples respectively, 
‘·’ is the vector dot-product operator, and �A� is the 
vector magnitude operator. This approach showed 
promise in delineating the presence of G. breve for 

hypothetical mixed assemblages in the lab (Fig. 4C). 
More recently this approach has been applied to 
natural mixed assemblages of G. breve within the 
Gulf of Mexico. In this field database, G. breve con
tributed between zero to 100% of the measured 
chlorophyll a. Results for these natural mixed pop
ulations (Fig. 4D) supported the laboratory findings 
of Millie et al. (1997) that the absorption due to G. 
breve may be detectable using the derivative/similar
ity-index approach (Kirkpatrick et al. 1999). 

Gymnodinium breve contains the unique chemotax
onomic carotenoid gyroxanthin-diester (Millie et al. 
1995); however this accessory pigment does not 
have unique absorption properties and is not re
sponsible for imparting G. breve’s unique absorption 
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FIG. 5. (A) Scatter plot of CDOM absorption measured at 400 nm and the CDOM fluorescence (340 nm excitation, 490 nm emission, 
fluorescence counts/time, not relative fluorescence units) as measured with the Wetlabs Inc. submersible fixed-wavelength spectrofluo
rometer (SAFIRE). Data were collected during the OSV Anderson cruise. (B) The depth variability in CDOM fluorescence emission at 550 
nm induced with 340 nm excitation light. (C) Spectral-fluorescence excitation and emission surface contour plot as measured with the 
SAFIRE for estuarine waters affected by both the Gulf of Mexico and the Suwannee river. (D) A contour plot for the spectral absorption 
and fluorescence emission during a transect that began ‘‘way up’’ on the Suwannee River and proceeded out into the Gulf of Mexico. 
The transition between the Suwannee and the Gulf occurred around station 15, which was marked by a 5-fold increase in water clarity. 
Within the Suwannee river, CDOM fluorescence was close to zero despite being a blackwater river loaded with humic and fulvic acids. 
The high concentration of humic and fulvic acids resulted in the absorption of the fluorescence excitation energy before light could 
reach the fluorescence emission detectors in the instrument flow tubes. This problem was not present within the marsh-transitional 
waters, coastal, and offshore waters where UV and visible CDOM fluorescence was detectable. This illustrates the need to optimize 
instrumentation to specific characteristics of the study site. 

properties. A possible hypothesis is that the unique 
absorption property in G. breve is a physiological re
flection of its ecological niche. Gymnodinium breve is 
negatively geotactic (Kamykowski et al. 1998) and 
positively phototactic (Steidinger 1975, Heil 1986, 
Kamykowski et al. 1998), which results in cells con
centrating (as large as 1 � 108 cells·L�1) at the air– 
sea interface. Cells therefore must cope with high 
irradiances (ultraviolet and visible) which results in 
distinct photoacclimation responses to minimize po
tential light-induced damage. This hypothesis how
ever is problematic given that cultures of G. breve 
have not been grown in the laboratory under real
istically high light (HL) levels, and therefore a 
‘‘true’’ reference has yet to be collected; however, 
laboratory cultures of G. breve have been grown at 

light-saturating levels (500 �mol photons·m�2·s�1) at  
least a factor of 4 less than light at the sea surface 
at local noon and do seem to resemble the absorp
tion spectra collected for natural populations in the 
field. This might explain why the laboratory based 
reference spectra seem to be effective for field pop
ulations. Assuming that the absorption spectra for 
cells grown at 500 �mol photons·m�2·s�1 is appro
priate, we hypothesize that these photoacclimation 
responses give G. breve its unique absorption prop
erties as cells selectively alter pigment levels leading 
to absorption spectra distinct from the other species 
present in the Gulf of Mexico. This does not imply 
that other algae are incapable of achieving similar 
absorption characteristics, but simply indicates the 
greater probability of finding G. breve in a HL-accli



FIG. 6. The ecological and bio-optical interactions in the 
EcoSim 1.0 model. Squares outlined with bold lines represent 
optically active processes (i.e. those processes mediated by spec
tral light). Ovals represent optically active constituents (i.e. those 
constituents that modify the water column light field). 

mated state. This feature may be applicable to other 
HAB species that often exhibit high growth rates 
and tolerance to bright light (Carlson and Tindall 
1985, Johnsen and Sakshaug 1993). This HL envi
ronment also results in enhanced cellular concen
trations of UV absorbing compounds (Vernet et al. 
1989). Recognizing this, Kahru and Mitchell (1998) 
increased the sensitivity-discrimination techniques 
for HABs by extending their measurements into the 
ultraviolet-A wavelengths of light. Unfortunately, 
laboratory cultures of G. breve cannot be maintained 
at realistic HL levels found in nature, therefore lab
oratory HL adapatation is necessary. 

Other vector-based, spectral optical-recognition 
applications have been developed for signal analyses 
and may provide alternative pattern-recognition 
tools for phytoplankton optical signatures. These ap
proaches can be combined with other multivariate 
methods (e.g. neural networks; Lawrence 1994) to 
enhance the sensitivity of species identification. Fu
ture research should focus on the sensitivity of these 
pattern-recognition approaches and whether newly 
developed hyperspectral instruments will provide 
the required input data for species-identification al
gorithms. Despite promise, several problems re
main. Field measurements of absorption in situ (for 
example, the Histar absorption-attenuation meter, 
Wetlabs, Inc., Philmoth, Oregon, is commercially 
available) and deck-board using a spectrophotome
ter are often noisy. This noise is magnified through 
analysis/transformation techniques such as the 
fourth derivative; therefore, improving the signal to 
noise for in situ optical sensors is important. Fur
thermore, some of these techniques (like derivative 
spectra) will require hyperspectral (1–3 nm resolu-

TABLE 1. Ocean color satellites which will be available in the coming years and the respective satellite characteristics. The delayed 
resolution specifies the data resolution if data is distributed through the individual federal and international agencies. Real-time resolution 
is the resolution of the satellite through direct broadcast from the satellite. 

Operational 
Satellite (sensor) Country, no. of channels Data rate (mb/sec) Delayed resolution (m) Real-time resolution (m) Revist time (days) (launch date) 

NEMO U.S.A, 
COIS 240 150 30–60 30–60 2.5 1999 

EOS AM1 U.S.A, 
MODIS 2 n/a 250 
MODIS 5 n/a 500 
MODIS 29 13 n/a 1000 2 1999 

EOS PM1 U.S.A, 
MODIS 2 n/a 250 
MODIS 5 n/a 500 
MODIS 29 13 n/a 1000 2 2000 

EO-1 U.S.A, 
ALI 10 250 30 

HYPERION 256 105 250 30 16 (tiltable) Dec. 1999 
HY-1 China, 

COCTS 10 4000 1000 2 
CZI 4 5.4 4000 250 6 2000 

IRS-P4 India, 
OCM 8 10.4 1800 360 2 1999 

ADEOS-2 Japan, 
GLI 6 1000 250 
GLI 30 6 1000 1000 2 2000 
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TABLE 2. Definitions for the EcoSim model variables and parameters. 

Definition Symbol Units 

Total absorption coefficient 
Water absorption coefficient 
Living biomass absorption coefficient 
Total colored degradational matter absorption coefficient 
Labile colored dissolved organic carbon absorption coefficient 
Relict colored dissolved organic carbon absorption coefficient 
Weight-specific absorption of individual pigments 
Weight-specific absorption of CDOC1 at 410 nm 
Weight-specific absorption of CDOC2 at 410 nm 
Total backscattering coefficient 
Scattering coefficient of water 
Scattering coefficient of particulates 
Backwards proportion of water scattered photons 
Backwards proportion of particulate scattered photons 
Total colored degradational matter 
Labile colored dissolved organic carbon 
Relict colored dissolved organic carbon 
Direct downwelling irradiance just beneath the surface 
Diffuse downwelling irradiance just beneath the surface 
Downwelling irradiance 
Total downwelling irradiance 
Scalar irradiance 
Total scalar irradiance 
Functional Group 1—Prochlorococcus (low light) 
Functional Group 2—Prochlorococcus (high light) 
Functional Group 3—Synechococcus 
Functional Group 4—Chromophycota (golden-browns) 
Downwelling diffuse attenuation coefficient 
Reduction in absorption resulting from pigment packaging 
Actual carbon to chlorophyll a ratio 
Optimal light-limited carbon to chlorophyll a ratio 
Optimal nutrient-limited carbon to chlorophyll a ratio 
Intercept of light-limited C:chl a versus light function 
Intercept of nutrient-limited C:chl a versus light function 
Slope of light-limited C:chl a a  versus light function 
Slope of nutrient-limited C:chl a versus light function 
Actual C:chl a ratio 
C:chl a ratio towards which phytoplankton strive 
Average cosine of downwelling photons 
Average cosine of downwelling photons from direct sunlight 
Average cosine of downwelling photons from diffuse sunlight 
Average cosine of downwelling photons from total sunlight 

at(�, z) 
aw(�, z) 
aph(t)(�, z) 
aCDOM(�, z) 
aCDOC1

(�, z) 
aCDOC2

(�, z) 
a* (�, z)pig 
a* (410)CDOC1 
a* (410)CDOC2 
bbt(�, z)
 
bw(�, z)
 
bp(�, z)
 
�bbw 

�bbp(�, z) 

CDOM 

CDOC1 

CDOC2 

Edir(�, 0�) 

Edif(l, 0�) 

Ed(�, z) 

Ed(z) 

E0(�, z) 

E0(z) 

FG1 

FG2 

FG3 

FG4 

Kd(�, z)
 
Package effect 


�opt(ll) 
�opt(nl) 
�0(ll) 
�0(nl)
slope�(ll)
slope�(nl)
R 
Rw 
��d(�, z) 
��dir(�, 0-) 
��dif(�, 0-) 
��0(�, 0-) 

m�1 

m�1 

m�1 

m�1 

m�1 

m�1 

m2 · mg�1 

m2 · g�1 

m2 · g�1 

m�1 

m�1 

m�1 

Unitless 
Unitless 
�M C  or  �g C L�1 

�M C  or  �g C L�1 

�M C  or  �g C L�1 

�mol quanta m�2 · s�1 · nm�1 

�mol quanta m�2 · s�1 · nm�1 

�mol quanta m�2 · s�1 · nm�1 

�mol quanta m�2 · s�1 · nm�1 

�mol quanta m�2 · s�1 · nm�1 

�mol quanta m�2 · s�1 · nm�1 

�M or  �g L�1 

�M or  �g L�1 

�M or  �g L�1 

�M or  �g L�1 

m�1 

Unitless 
�g C:�g chl a 
�g C:�g chl a 
�g C:�g chl a 
�g C:�g chl a 
�g C:�g chl a 
�g C:�g chl a /(�mol quanta · m�2 · s�1) 
�g C:�g chl a /[�M C (�M N)  �1] 
�g C:�g chl a 
�g C:�g chl a 
Unitless 
Unitless 
Unitless 
Unitless 

tion) IOP or fluorescence data (see below). Several 
new spectrometer systems offer the potential to pro
vide hyperspectral data in the near future. While 
these transformation approaches can be applied to 
measurements of the IOPs, care should be taken 
when applying them to apparent optical measure
ments that are sensitive to the geometrical structure 
of the light field. Utilization of these techniques will 
also be dependent on further improvements in ex
tracting phytoplankton spectral absorption from the 
bulk optical signals. Finally, finding a universal glob
al approach for discriminating all HAB species is a 
pipe-dream. The similarity-index approach that ap
pears appropriate for blooms of G. breve will not be 
applicable to all species. For example, HAB species 
like Alexandrium often represent a minor subset of 
the total phytoplankton community; therefore, the 
optical signal will often be dominated by the other 
algal species present. Given this, techniques and ap
proaches will need to be tailored to specific algal 
species of interest. 

Scattering. Light scattering measurements show 
promise for detecting the concentration and size of 
particulate material present in seawater (Bricaud 
and Morel 1986, Stramski and Kiefer 1991, Stramski 
and Mobley 1997). Most often, the measurements 
are of the low-angle forward and perpendicular 
components of the particulate scattering (Trask et 
al. 1982). These approaches have been most often 
exploited by flow cytometry with the assumption 
that small cells had a smaller scattering signal (Perry 
et al. 1983, Olson et al. 1985, Ackleson and Spinrad 
1988). The theory underlying the estimation of par
ticle size from scattering characteristics is based on 
the Mie theory with anomalous diffraction approxi
mation, whereby the angular distribution of scat
tered light is a function of particle size and the rel
ative refractive index (Van der Hulst 1957, Bricaud 
et al. 1983, Morel and Bricaud 1986, Stramski and 
Kiefer 1991). Given this, caution must be used when 
relating scattering to cell size. For example, the re
fractive index can change by over 80% during a 12 
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TABLE 3. Bio-Optical equations for one optically-based ecosystem model. 

a t(�, z) � awater (�, z) � aph(t)(�, z) � aCDOM  (�, z) 7 
4 

a (�, z) � � a (�, z) 8ph(t)  ph(t,i) 

i�1 


7 
�3 2 �1a (�, z) � package effect · � (pigments [mg m ] ·a*  [m  mg  ])  9ph(t,i) j pig( j ) 

j�1 

�opt(ll,i) � �  0(ll,i) � slope�(ll,i) · E0(z)  10  

�  � �  � slope · C :N 11opt(nl,i)  0(nl,i) �(nl,i) i i 

�Ri 

�t 
� �r(i) · R w̄ (i) � Ri 12 

Rw(i) � [max(�opt(ll,i), �opt(nl,i))]�1 13a 
�1Ri � �i 13b 
2 

a (�, z) � � a (�, z) 14CDOM CDOC(i)
 

i�1
 


a (410, z) � a* (410, z) · CDOC (z)  15  CDOC(i)  CDOC(i) i 

aCDOC(i)(�, z) � aCDOC(i)(410, z) · exp[S ·(410 � �)] 16 

bbt(�, z) � b̃ bw · b w̄ (�, z) � b̃ bp · bwp(�, z)  17  

550 
bp(�, z) � 0.30[chl a(z)]0.62 · 18 

1 1 550 
b bp(�, z) � 0.30[chl a(z)]0.62 · 0.002 � 0.02 � log[chl a(z)] · 19˜ bp · [ � � ]
2 4 � 

Kd(�, z) � [a t(�, z) � bbt  (�, z)]/�̄ d(�, z)  20  
� � � � � � �1�̄ (�, 0  )  � [�̄ (�, 0  ) ·  E (�, 0  )  � �̄ (�, 0  ) ·  E (�,  0  )] · [E (�, 0 )] 210 dir dir dif dif tot 

z 

E (�, z) � E (�, 0 ) · exp K (�, z) dz 22d d d[� ]
0� 

E (�, z) � E (�, z) · [K (�, z)/a (�, z)] 230 d d t 

h light cycle due to changes in cellular pigmentation 
and intracellular compounds (Stramski and Reyn
olds 1993, Reynolds et al. 1997). Furthermore, like 
absorption measurements, the bulk scattering signal 
reflects the additive contributions of the specific 
components present, requiring inversion algorithms 
to extract the relative contribution of the phyto
plankton (Shifrin 1988). 

More relevant to the remote-sensing applications 
(see below) is the backward scattered light. Roesler 
and McLeroy-Etheridge (1998) have hypothesized 
that spectral backscattering coefficients may be used 
to derive the modal size of surface water particulate 
material. This might suggest that when HABs are 
associated with dense surface accumulations of algal 
cells, this derived modal size might represent the 
population. Modal size, in combination with derived 
phytoplankton absorption (i.e. pigment composi
tion) and geographic location can provide sufficient 
information to determine the class-specific taxono
my of the bloom. While their approach used back
scattering spectra derived from surface reflectance 
and absorption measurements, new instrumentation 
for obtaining backscattering coefficients in situ 
holds promise (Maffione and Dana 1997). The ma
jor problem with this strategy is that it will be sen

sitive to variations in the refractive index and can 
be disproportionately impacted by the presence of 
small particles. Additionally, as blooms develop and 
reach stationary phase, cell break up and aggrega
tion lead to increased dispersion in particle-size dis
tribution and reduced confidence in the derived 
cell modal size. 

Fluorescence. Stimulated fluorescence of chloro
phyll a has been widely used to provide an estimate 
of phytoplankton concentrations in the field. Stan
dard chlorophyll a fluorometers thus provide a bulk 
signature and will not be useful in discriminating 
between algal species. Fluorescence however will re
main a central mapping tool for phytoplankton 
monitoring programs. The accuracy of the estimat
ed phytoplankton concentration is compromised by 
the natural variability in the fluorescence yield (fluo
rescence per chlorophyll; Kiefer 1973, Cullen 1982, 
Falkowski and Kiefer 1985, Sosik et al. 1989, Marra 
1997). This variability can be related to environ
mental conditions (light, nutrients, and/or temper
ature). This allows fluorescence to provide estimates 
of the physiological state of the phytoplankton if the 
appropriate type of fluorescence measurements is 
made (Butler 1978, Falkowski and Kolber 1993, Kol
ber and Falkowski 1993, Schofield et al. 1995). Thus, 



although not HAB-specific, fluorescence-based pho
tosystem II quantum yield measurements will be key 
for describing the potential health of the phyto
plankton population. 

As described above, the spectral signature of phy
toplankton can potentially be used to detect the 
presence of HAB species. A technique that is phy
toplankton-specific, highly sensitive in dilute suspen
sions and can provide hyperspectral data on phyto
plankton pigmentation is chlorophyll a fluorescence 
excitation spectra (Yentsch and Yentsch 1979). The 
major advantage of these measurements is that the 
spectrum provides only the signature for the pho
tosynthetic pigments and avoids the confounding 
signal of nonphotosynthetic pigments (Yentsch and 
Phinney 1985, Demmig et al. 1987, Maske and 
Haardt 1987, Schubert et al. 1994) that are present 
within both nonHAB and HAB species. These stim
ulated fluorescence spectra thus have sharper pig
ment shoulders than corresponding absorption 
measurements (Schofield et al. 1990, Grzymski et al. 
1997, Johnsen et al. 1997), which would increase the 
power of any pattern-recognition algorithm. Sub
mersible fixed-wavelength spectrofluorometers are 
available (Spectral Absorption Fluorescence Excita
tion Emission Meter, SAFIRE, Wetalbs Inc.), but to 
date do not have the spectral resolution required 
for pattern-recognition algorithms. 

The significant presence of CDOM in coastal and 
inland waters often dominates bulk absorption. This 
can compromise the accuracy of empirical inversion 
approaches as described above. A possible means to 
circumvent this problem is to develop independent 
means to estimate the in situ concentration of 
CDOM. Recently, techniques have been developed 
to characterize CDOM using UV and/or visible 
light–induced CDOM fluorescence (Hoge and Swift 
1981, Coble et al. 1990, Chen and Bada 1992, Green 
and Blough 1994, Vodacek et al. 1995, Ferrari et al. 
1996, Nieke et al. 1997). Commercially available 
submersible instrumentation can measure UV/visi
ble light–induced fluorescence, thereby providing 
information on the concentration of CDOM (Fig. 
5A) or the absorption of CDOM when the variance 
in the quantum yield is negligible (Ferrari and Tas
san 1991). Further data is required to determine to 
what degree these observed relationships are linear 
over an environmentally relevant range of concen
trations and are robust in both time and space. An 
example of CDOM fluorescence within 1997 G. breve 
bloom is presented in Figure 5B. There are, how
ever, several caveats for using fluorescence to de
scribe CDOM. First, calibration and standardization 
between instrument systems are not trivial, requiring 
careful consideration of the quantum correction fac
tors to be applied to the instrument signals (Coble 
et al. 1990). Discrimination of the form of CDOM 
from fluorescence will only be to a general level (see 
Fig. 5C that presents the CDOM for estuarine wa
ters). For example, marine CDOM can be differen

tiated from terrestrial CDOM by its overall low fluo
rescence intensity and the few prominent shoulders 
in the blue wavelengths of light (Coble et al. 1990, 
Coble 1996). Finally, the choice of the appropriate 
excitation–emission wavelengths for CDOM fluo
rometers will vary depending on the field site, given 
that the high CDOM absorption in UV and visible 
wavelengths will significantly affect instrument per
formance (Fig. 5D). 

REMOTE SENSING 

Above water ocean color is determined primarily 
from the reflectance, defined as the ratio of the up
ward flux of light to downward flux of light incident 
on the ocean surface. Atmospheric effects aside, re
flectance is a function of both the scattering and 
absorption properties within the water column. The 
relationship between reflectance and the IOPs can 
reasonably be described as the ratio of backscatter 
to absorption, such as 

bb(�)
R � G 

a(�) � bb(�) 
where G is a constant dependent on the angular 
distribution of the light field and the volume scat
tering coefficient (Gordon et al. 1975, Morel and 
Prieur 1977, Zaneveld 1982, 1995). 

Several satellite and aircraft remote-sensing systems 
currently are in use, each having distinct spectral and 
spatial resolution (IOCCG 1999). The derived prod
ucts from these systems include chlorophyll a bio
mass, CDOM, sediment, IOPs, primary productivity, 
and potentially community classification (phycobilin 
and nonphycobilin-containing algae, Subramaniam 
et al. 1999a, b). These systems collect data over eco
logically relevant spatial scales, and therefore provide 
a mechanism to scan for algal productivity ‘‘hot
spots.’’ Given this, they will be key to the mapping 
of phytoplankton dynamics and provide inputs to 
coupled biological/hydrodynamic models. Further
more, semianalytical approaches to invert the reflec
tance spectra have been developed and show great 
promise for refining the interpretation of remote-
sensing data (Fischer and Doerffer 1987, Gordon et 
al. 1988, Doerffer and Fischer 1994, Lee et al. 1994, 
Roesler and Perry 1995, Garver and Siegel 1997). 

The disadvantages of ocean color satellites in
clude the confounding impact of clouds, the limit 
of detection to near-surface features, the lack of 
HAB-specific algorithms, the often degraded spatial 
resolution of the sensor, and the stringent embar
goes of real-time data access for most users. For air
craft sensors, considerations include cost, impact of 
partial cloud cover, as well as corrections for sensor 
geometry and atmospheric signals. Real-time full-
resolution data from these satellites is accessible via 
direct-broadcast satellite dishes, which will enable 
scientists to access the growing international con
stellation of satellites (Table 1). The real-time data 
from the full constellation of satellites will be critical 



to minimize site revisit intervals and potentially pro
vide researchers coverage at different times on 
the same day for tracking phytoplankton plumes. 
Development of regional networks of these direct 
access satellite dish platforms will be critical to the 
scientific community, much analogous to the im
portance of the proliferation of High Resolution 
Picture Transmission (HRPT) satellite data-acquisi
tion systems which revolutionized the utility and 
availability of AVHRR satellite data. Development of 
these systems will be strongly dependent on in-water 
validation studies. 

ECOSYSTEM MODELS 

With the ability to measure in-water optical prop
erties and the promise of algorithms to separate 
them into individual optical constituents, comes the 
inevitable question—how will optical data be used 
to describe HABs? Optically based ecosystem models 
will be a key tool in providing a means to optimally 
interpolate to regions where in situ data is sparse (in 
both space and time), coordinating field sampling 
efforts, and providing a central component to any 
forecasting network. 

The work by Riley (1946, 1947) on Geogres Bank 
is often acknowledged as the root for many modern 
coastal-ecosystem models. While the earliest models 
varied with time, the environmental complexity was 
necessarily simplified. The environmental complex
ity of the models has increased with the increase in 
computing power, and by the 1970s, explicit descrip
tions of circulation patterns were included to de
scribe the physical transport of phytoplankon pop
ulations (Walsh 1975, Wroblewski 1977). Ecosystem 
models in recent years have with varying degress of 
success simulated seasonal changes in both chloro
phyll a and/or nutrient fields (Walsh et al. 1989, 
1991, Bissett et al. 1994, McClain et al. 1999). Most 
of the models are based on simplified food webs 
(Walsh et al. 1999) and thus do not explicitly con
sider the natural phytoplankton diversity despite the 
fact that community diversity significantly affects 
foodweb dynamics and biogeochemistry. Given this, 
current ecosystem models are still a long way from 
the more specialized need of predicting HABs. 

For the purposes of this paper, we focus our dis
cussion on a model being developed for mixed-phy
toplankton communities with the caveats that: (1) 
any of the available models will require substantial 
modification for HAB detection; and (2) the de
scribed model represents one of many possible mod
els currently under development by the oceano
graphic community. We have chosen this model as 
it is designed to utilize the optical signals as inputs 
for biological parameters, and thus, it could be col
lected using the optical systems described above. 
The Ecological Simulation (EcoSim) 1.0 model (Fig. 
6) has simulated the seasonal succession of phyto
plankton communities and changes in the optical 
properties in the Sargasso Sea (Bissett et al. 1999a, 

b). This model describes the temporal changes in 
the in situ optical constituents and the effects on 
water clarity and resulting feedbacks on the ecosys
tem (Tables 2 and 3). 

The EcoSim model utilizes the spectral distribu
tion of light energy, along with temperature and nu
trients, to drive the growth of phytoplankton func
tional groups (FG) representing broad classes of the 
phytoplankton species. For past simulations of the 
Sargasso Sea, the functional groups consisted of 
FG1—Prochlorococcus (high chlorophyll b), FG2— 
Prochlorococcus (low chlorophyll b), FG3—Synechococ
cus, and FG4—Chromophyta (chlorophyll c contain
ing). The intracellular chlorophyll a concentrations 
of each functional group vary as a function of the 
light history and nutrient status of the group. Each 
functional group has its own unique set of accessory 
pigments, which vary as a function of the carbon to 
chlorophyll a ratio. Absorption by phytoplankton 
(eq. 8) is the sum of absorption from each phyto
plankton species modified by the package effect 
(Morel and Bricaud 1986, eq. 9). Each phytoplank
ton species can chromatically adapt to changes in 
total photon flux (eq. 10) and intracellular nutrient 
status (eq. 11) through changes in the cellular car
bon to chlorophyll a ratio. Changes in carbon to 
chlorophyll a ratios, in turn, lead to changes in ac
cessory pigment concentrations (equations not 
shown). The time rate of change of the carbon to 
chlorophyll a ratio is a function of the growth rate 
of the individual phytoplankton groups (eqs. 12 and 
13). Other optically important parameters (eq. 7) 
are also parameterized with the model (eqs. 14–16). 

Light intensity just below the sea surface–atmo
sphere interface, Ed(�, 0�), can be derived using 
atmospheric radiative transfer models (Gregg and 
Carder 1990) influenced by the variable presence of 
clouds. The attenuation of light energy with increas
ing water depth is a function of the distribution of 
light energy, as well as the spectral absorption and 
scattering of the water (Fig. 6). The absorption and 
scattering properties of the ecosystem respond to 
changes in the downwelling solar energy through 
cellular growth, loss of biomass, changes in pigmen
tation, and photolysis of CDOM. Similar to absorp
tion, scattering (eq. 17) is assumed to be a linear 
combination of the individual optical constituents. 
The equations for particulate scattering and back
scattering (eqs. 17–19) are related to total chloro
phyll a concentration (Morel 1988). The diffuse at
tenuation coefficient (Kd) is linked to the IOPs via 
an estimation of the geometric structure of the 
downwelling light field (eq. 20, Fig. 7) (Sathyen
dranath and Platt 1988). This value at the sea sur
face is given by equation 21 (Morel 1988). It is mod
ified with depth as a function of the total scattering 
to beam attenuation ratio. Thus, with an estimation 
of Kd, downwelling irradiance can be attenuated 
(eq. 22) and total scalar irradiance approximated 
(eq. 23). Model simulations for the optical signa



Propagating Light Through a Water Column
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FIG. 7. Schematic view of Ecosim 1.0 bio-optical equations. Each layer in the filled column represents a layer in the EcoSim. The 
optical equations are solved for each of these layers as light propagates through the model domain. 

tures of particulates, CDOM, and diffuse attenuation 
are presented in Figures 8 and 9. Model results 
agree well with measured in situ data (Fig. 9; Bissett 
et al. 1999a, b). 

Although many of the approximations used in the 
model are simplistic, they are numerically efficient. 
This is important at this stage of model develop
ment. In the model, the equations for light propa
gation are limited to the downward direction. More 
accurate Radiative Transfer Models (RTM) that fully 
describe the geometric structure of the light field 
(Mobley 1994) exist; however, resolving the angular 
distribution of photons in EcoSim 1.0 would have 
increased the length of each simulation run from 
hours to tens of years. Although computer-process

ing speed has increased drastically in recent years, 
prediction of HABs will require three-dimensional 
ecological/optical/physical simulations, whose com
putational requirements would currently preclude 
the use of a complete RTM. Additionally, much 
more work is required in the field to rigorously test 
the predictions of the optical-simulation models. 

Phytoplankton assemblages respond to an ever-
changing physical environment. The rise of a HAB 
species to bloom proportions is directly related to 
the past history and current status of the circulation 
patterns. Thus, the importance of accurately simu
lating the physical environment to future predic
tions of HAB outbreaks cannot be overemphasized. 
The EcoSim model was developed for an open 
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for (A) particulates and (B) CDOM. Note that while the cycles 
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ocean study, where it was assumed that vertical mix
ing was the dominant physical process affecting the 
phytoplankton population. In this case, a one-di
mensional turbulence closure scheme (Mellor and 
Yamada 1982, Chen et al. 1988, Walsh and Dieterle 
1994) was used to simulate the daily changes in the 
surface-mixed layer. While this assumption may have 
been valid for Sargasso Sea, a one-dimensional as
sumption is unrealistic for a more complex coastal 
system wherein advective processes can dominate 
the physical environment. For these systems, a three-
dimensional simulation, for example, the Princeton 
Ocean Model (Blumberg and Mellor 1987) or the 
SCRUM model (Song and Haidvodgel 1994) that 
can resolve some of the complexities of the coastal 
physical environment will be required. 

Finally, coupled biological–physical models are 
complex and nonlinear with numerous equilibrium 
states and instabilities (Lozano et al. 1996). There
fore, major consideration for the design of the mod
el must also be related to the ecology of the HAB 
species and the relevant scales of interest (Franks 
1997). Given that the competition between species 
reflects physiological responses to the physics which 
can operate over many scales (from turbulent scales 

to vertical and horizontal transport), this is not a 
trivial task. This requires the researcher to essen
tially decide to what degree small scale nonhydro
dynamic processes will be required to be nested 
within larger scale circulation models. For example, 
how important is it for small-scale physics to provide 
an adequate population description of vertical mi
gration (Kamykowski et al. 1994, 1998), and then 
how important is the vertical migration to larger 
scale bloom dynamics of the HAB species (Yanagi et 
al. 1995, Amano et al. 1998). Analogous decisions 
are also required in the temporal domain, that is, 
competition between species reflect the past and pre
vailing environmental conditions and the physiolog
ical capabilities of the individual species. Given this, 
how complex do dynamic physiological acclimation 
models need to be? A whole host of physiological 
models have been developed, all with varying de
grees of complexity (Sakshaug et al. 1989, Geider 
1993, Geider et al. 1996, 1998). Choosing the ap
propriate models essentially is a scaling problem 
that requires understanding of the processes that oc
cur over different scales of time, space, and orga
nizational complexity (Levin 1992). Although 
daunting, the increased understanding of the ecol
ogy of HAB species in nature [cf. Limnology and 
Oceanography vol. 42(5)], increases with comput
ing power, and improved modeling capabilities do 
offer hope for robust models in the near (5–10 
years) future. 

DATA ASSIMILATION AND FORECASTING SYSTEMS 

The scientific field of ocean forecasting is young, 
but quickly maturing due to significant advances in 
ocean-circulation modeling (Holland and Capotondi 
1996) and the advent of data-assimilation methods 
adopted from the meteorology community (Dalay 
1991). Data assimilation represents a procedure by 
which observations are used to constrain a dynamic 
numerical model. Historically, for meteorological 
predictions, this involves data being assimilated into 
a model by combining observed and modeled values 
to provide the initial conditions for the next model 
forecast run. The process of assimilating data is ac
complished through a variety of methods. Early as
similation efforts in oceanography either inserted 
data directly into the circulation models (Holland 
and Hirschman 1972) or utilized least squares based 
assimilation schemes (Wunsch 1978, 1989). These 
approaches were replaced by the ‘‘nudging’’ tech
nique developed by the meteorological community 
(Anthes 1974), wherein observational data were used 
only to adjust model solutions through the use of a 
relaxation term added to the dynamic model (Hol
land and Malanotte-Rizzoli 1989). These techniques 
advanced as assimilation methods began to utilize the 
uncertainty in both the models and observational 
data to refine the model adjustment. 

Currently, suites of assimilation methods are avail
able, all of which vary greatly in complexity and 
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computational cost making them appropriate for 
different applications. The Optimal Interpolation 
(OI) method is a technique where model adjust
ment by observational data depends on the errors 
in the data, the dynamical constraints of the model, 
and the error estimate in the model solution (Breth
erton et al. 1976, Dombrowsky and DeMey 1989, 
Robinson et al. 1989, Mellor and Ezer 1991). This 
approach has relatively low computational require
ments making it appropriate for high-resolution 
forecast applications. More advanced schemes, such 
as the ‘‘Kalman filter/smoother’’ assimilation meth
od (Kalman 1960), are computationally expensive, 

FIG. 9. (A) Simulated Kd(487) 
and (B) measured Kd(488). The 
measured Kd data was provided by 
Dr. D. Siegel, University of Califor
nia at Santa Barbara. The bold black 
line is the mixed layer depth. 

which currently limits their use for complex models 
(Malanotte-Rizzoli and Tzipermann 1996), such as 
biological/hydrodynamic models that would be re
quired for HAB forecasting applications. Another 
advanced assimilation scheme is the adjoint method, 
which is not appropriate for forecasting applications 
but is a powerful means to perform hindcast dynam
ical analyses. Such an approach will be useful for 
understanding the environmental conditions asso
ciated with algal bloom initiation from time-series 
data. Currently, several coupled physical–biological 
models have been constructed with data-assimilative 
methods (Ishizaka 1990, Fasham and Evans 1995, 
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(Satellites, Sbips, Moorings, Meteorology)
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Feedback

FIG. 10. Schematic for an ocean nowcast/forecast system al
lowing for adaptive sampling of events poorly sampled using tra
ditional shipboard protocols. Schematic adapted from Glenn et 
al. 1998. 

Lawson et al. 1995, Matear 1995) providing a blue
print for future HAB data-assimilative models. 

Coastal ocean forecasting networks generally work 
in a recursive mode (Glenn et al. 1998, Fig. 10). 
Initially, the data-assimilative model provides a now-
cast that is moved forward in time by the circulation 
model driven by surface-boundary forcing. Surface-
boundary forcing is available through a variety of 
federal and defense weather prediction systems. The 
forecast cycle generally lasts for 2–4 days after which 
the weather predictions become sufficiently coarse 
to compromise any predicted hydrographic or ad
vection features. During the forecast cycle, addition
al field data are assimilated to constrain the model 
dynamics to provide improved nowcasts for the next 
set of ocean forecasts. To improve the quality of the 
nowcasts, adaptive sampling by ships and autono
mous vehicles is initiated to collect subsurface data 
in specific regions within the forecast grid. Con
versely, the forecasts/nowcasts provide an unprece
dented opportunity for biologists to devise sampling 
strategies to characterize episodic events, which can 
play a disproportionately large role in structuring 
phytoplankton communities and which are poorly 
sampled using traditional protocols. Therefore, sys
tems as described above will be critical in studying 
bloom initiation, maintenance, and senescence. 

The utility of any forecasting system will vary with 
both the type and phase of the HAB bloom. For 
example, optical techniques are likely to have little 
success in detecting blooms during the earliest ini
tiation phases of a bloom or in detecting HAB spe
cies that represent only a minor portion of the total 
phytoplankton community. These approaches will 
also not provide much success in predicting whether 
a particular bloom is toxic; however it will provide 
a means to structure monitoring efforts which can 
then utilize more powerful diagnostic tools. Given 
this, these approaches will provide researchers with 
a powerful suite of proactive tools for monitoring 
HAB populations in nature. For these tools to real
ize their full potential we recommend that research 
should focus on: (1) increasing the accuracy of 

methods to deconvolve the bulk IOPs into the in
dividual constituents, with an emphasis on improv
ing methods to derive phytoplankton spectra; (2) 
combining different optical measurements to in
crease the utility of multivariate pattern-recognition 
methods; (3) developing multiplatform observation 
networks to collect data in horizontal/vertical space 
over ecologically relevant scales; (4) refining ecosys
tem models to utilize the available optical data; (5) 
exploring and developing data-assimilation models 
in conjunction with physical oceanographers to cre
ate early generation biological-forecasting systems; 
(6) verifying and utilizing model forecasts for adap
tive sampling of HAB phenomena; and (7) surviving 
the arduous period of trial and error. 
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