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MicroRNA1511 (miR1511) is a small RNA with unknown function identified in several plants by deep sequencing. In this study, 
we showed that this small RNA is an authentic miRNA by analyzing the structure of the precursor stem-loop containing the newly 
identified miR1511* sequence. We confirmed this result by Northern blotting analysis. We used 5′RACE to identify one of the 
target genes (GmRPL4a) cleaved by both miR1511 and miR1511*. The site cleaved by miR1511* was located in the first exon of 
GmRPL4a, and the site cleaved by miR1511 was located in the second exon. The expression level of miR1511/1511* was higher 
in leaves than in roots and stems. In contrast, the lowest level of GmRPL4a expression was in the leaves and the highest in the 
root. These results indicate that an miRNA can co-regulate with an miRNA* to cleave the same target gene in plants, and that the 
level of GmRPL4a mRNA is regulated by miR1511/1511*. 
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MicroRNAs (miRNAs) are widely found in animals and 
plants. They are expressed at high levels, and they have the 
characteristics of phylogenetic conservation and diversity 
[1–4]. Therefore, miRNAs have become a hotspot for bio-
logical research and many studies are now focusing on this 
topic. miRNAs are a family of single-stranded small RNAs 
that are 21–25 nucleotides (nt) in length. They can cleave or 
inhibit translation of a target mRNA via complementarity 
between the miRNA and its target mRNA [3,5,6]. The 
number of miRNAs in the miRBase database [7] has in-
creased by approximately 100 times over the last decade, 
from 218 in release V1.0 (2002) to 21642 in release V18.0 
(2011). At present, most studies on miRNAs focus on their 
identification and validation. A few studies have focused on 
how miRNAs regulate expression and other biological func-
tions, using several conserved miRNAs in model organisms. 
For example, miR156 [8–10], miR159 [11], miR172 [12, 
13], and miR396 [14,15] regulate the growth and develop-

ment of leaves and flowers, while miR393 [16,17], miR398 
[18,19], miR395 [20], and miR399 [21,22] play important 
roles in the responses of plants to environmental and nutri-
tion stresses. However, the functions of numerous novel 
miRNAs have not yet been characterized. Soybean (Glycine 
max) is one of the most important oil, grain, and forage 
crops, but research on its miRNAs lags behind that on those 
in other model plants such as rice and Arabidopsis. To date, 
only a few soybean miRNAs have been analyzed in terms of 
their function [23–32].  

miR1511 is a novel small RNA that was first identified 
in soybean [23], but has since been found in Phaseolus vul-
garis [33], Medicago truncatula [34], and Vitis vinifera [35]. 
So far, there have been no experimental studies on miR1511. 
In this study, we verified the existence of miR1511 by se-
quencing and Northern blotting analyses. We found that 
miR1511 co-regulated with miR1511* to cleave and regu-
late the same gene, GmRPL4a. These results provide a the-
oretical foundation for the study of miR1511/1511* and 
their target genes. 
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1  Materials and methods 

1.1  Plant materials  

We used the soybean (G. max) cultivar Zhongpin 95-5383, 
which was bred in our laboratory. Seeds were surface-steri- 
lized in 8% Clorox for 4 min and then in 70% ethanol for  
4 min. The seeds were rinsed three times with sterile deion-
ized water [23]. Plants were grown in an illuminated incu-
bator at 25°C, 65% relative humidity under a 16-h light/8-h 
dark photoperiod with a light intensity of 10000 lx. The 
leaves, stems, and roots of 20-d-old seedlings were collected, 
immediately frozen in liquid nitrogen, and stored at –80°C 
until use. 

1.2  Collection of bioinformatics data and analytical tools  

The soybean genome sequences were obtained from the 
Phytozome database (http://www.phytozome.net/). The 
analysis of the secondary structure of miRNA precursors 
was performed using the web-based software Mfold (http:// 
mfold.rna.albany.edu/?q=mfold/RNA-Folding-Form). Tar-
get genes of miRNA were predicted by psRNATarget 
(http://plantgrn.noble.org/psRNATarget/) using data from 
DFCI Soybean Gene Index Release 15.0 (http://compbio. 
dfci.harvard.edu/cgi-bin/tgi/gimain.pl?gudb=soybean) and 
soybean mRNA sequences obtained from the Phytozome 
database (ftp://ftp.jgi-psf.org/pub/JGI_data/phytozome/v6.0/ 
Gmax/assembly/) according to Fahlgren’s methods [36]. 
We used the Primer Premier Version 5.00 software package 
(Premier Biosoft International) to design primers [37] and 
Multalin (http://multalin.toulouse.inra.fr/multalin/multalin. 
html) for sequence alignments.  

1.3  Small RNA extraction and enrichment  

We extracted total RNA from each sample using the 
RNAiso Plus kit (TaKaRa Biotechnology, Dalian, China) 
following the manufacturer’s instructions and Accerbi’s 
methods [38]. The method for small RNA enrichment was 
as follows [39]: 400 μL (1–2 mg) total RNA was mixed 
with 50 μL each of 50% PEG8000 and 5 mol/L sodium 
chloride. The mixture was incubated on ice for 2 h and then 
centrifuged at 15000 × g for 10 min. A 1/10 volume of    
3 mol/L sodium acetate (pH 5.2), two volumes of 95% eth-
anol, and 1 μL 20 mg/mL glycogen (MBI Fermentas, Vil-
nius, Lithuania) were added to the supernatant and the mix-
ture incubated at –20°C for 2 h before sedimenting small 
RNAs at 15000 × g. The pellets were washed twice with 
75% ethanol, dried briefly, and resuspended in 50% deion-
ized formamide. 

1.4  Northern blotting analysis  

We conducted Northern blotting analysis as described 
elsewhere [40]. Briefly, 40 μg enriched small RNAs was 

separated on a 15% polyacrylamide gel containing 8 mol/L 
urea, then RNA was blotted onto positively charged nylon 
membranes (Amersham Life Science, Buckinghamshire, 
UK) using a semi-dry transfer cell (BioRad Laboratories, 
Richmond, CA, USA). After transfer, the membrane was 
crosslinked in an ultraviolet crosslinker (UVP, San Gabriel, 
CA, USA) in order of obverse, reverse, and obverse sides 
for 1 min each side. The membrane was baked at 80°C for 
at least 30 min and then prehybridized at 42°C in UL-
TRAhyb-Oligo buffer (Ambion, Austin, TX, USA). After  
2 h, the oligonucleotide probes 5′ end-labeled with Opti-
Kinase (USB Corp, Cleveland, OH, USA) were added and 
the membrane was left to hybridize overnight (14–24 h). 
The hybridized membrane was exposed to a storage phos-
phor screen (GE Healthcare, Milwaukee, WI, USA) and 
scanned using FX Pro Plus (BioRad Laboratories, Hercules, 
CA, USA). 

1.5  Validation of target genes by 5′RACE  

We carried out 5′RACE using the First-Choice RLM-RACE 
kit (Ambion Corp., Austin, TX, USA). The procedures were 
modified slightly, as follows [40]: the 5′RACE adapter was 
directly ligated to total RNA (1 μg) without calf intestinal 
phosphatase (CIP) and tobacco acid pyrophosphatase (TAP) 
treatment. We used random decamers for cDNA synthesis 
with M-MLV reverse transcriptase. Touch-down PCR was 
performed with the nested primer specific to the predicted 
miRNA target gene and the nested primer corresponding to 
the 5′RACE adapter. The amplification conditions were as 
follows: 94°C for 4 min; 12 cycles of 94°C for 30 s, 
64–53°C for 30 s, 72°C for 30 s (–1°C/cycle) and 30 cycles 
of 94°C for 30 s, 58°C for 30 s, 72°C for 30 s; with final 
extension at 72°C for 8 min. The two PCR amplifications 
were the same, but the template for the second PCR was 
1/10 of the products of the first PCR. The PCR products 
from the second PCR amplification were electrophoresed on 
a 1.2% agarose gel. The expected fragments were isolated 
using a DNA gel extraction kit (Axygen Biotechnology, 
Hangzhou, China) and then ligated into the pMD18-T vec-
tor (TaKaRa Biotechnology) at 16°C for 1 h. Escherichia 
coli Top10 competent cells (Tiangen Biotech, Beijing, Chi-
na) were transformed with the ligation products and spread 
onto LB agar plates containing 50 μg/mL ampicillin. The 
plates were incubated at 37°C for 12–16 h. Randomly se-
lected colonies were cultured in liquid LB medium with 50 
μg/mL ampicillin at 37°C on an oscillator for 6 h. Positive 
recombinant clones were screened by colony PCR. PCR 
products containing the expected inserts were sent to 
GENEWIZ (Beijing, China) for sequencing using M13 
forward and reverse primers. 

1.6  Real-time PCR analysis of target gene  

cDNA was synthesized from 1 μg RNA using the Reverse 
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Transcription System (Promega Ltd., Southampton, UK) 
following the manufacturer’s instructions. The transcript 
levels in various tissues were determined using the 7300 
real-time PCR system (Applied Biosystems, Foster City, 
CA, USA) using FastStart Universal SYBR Green Master 
Mix (Roche Diagnostics GmbH, Mannheim, Germany). 
Each well contained 10 μL 2 × ROX, 0.5 μL forward primer 
(10 μmol L–1), 0.5 μL reverse primer (10 μmol L–1), 1 μL 
1/10 diluted cDNA, and 8 μL water. The PCR program was 
as follows: 95°C for 10 min; followed by 40 cycles of 95°C 
for 15 s and 60°C for 30 s. ACT11 was used as the reference 
gene [41]. 

1.7  Probes and primers  

The common probes and primers were synthesized by San-
gon Biotechnology Ltd. (Beijing, China). The LNA-modi- 
fied probes were purchased from Exqion Inc. (Vedbaek, 
Denmark), and included the miR1511 probe (Nor_1511), 
5′-CCATGGTATCAGAGCCTGGTT-3′; the U6 snRNA 
probe (Nor_U6), 5′-GACCATTTCTCGATTTGTGCGT- 
GTC-3′; and the miR1511* LNA probe, 5′-TG+AAGC+- 
AGGA+CCTG+ATAC+CAC-3′ (LNA_1511S) (the base 
before “+” was LNA-modified). Probes 5′ end-labeled with 
[γ-32P] ATP (FuRui Biology Engineer Co. Ltd., Beijing, 
China) were used as hybridization probes. The adapters and 
primers for 5′RACE were as follows: 5′RACE adapter, 
5′-GCUGAUGGCGAUGAAUGAACACUGCGUUUGCU- 
GGCUUUGAUGAAA-3′; 5′RACE outer primer (5′OP), 
5′-GCTGATGGCGATGAATGAACACTG-3′; 5′RACE 
inner primer (5′IP), 5′-GAACACTGCGTTTGCTGGCTTT- 
GATG-3′; gene-specific primers Tg5580R1, 5′-GAATTTG- 
CACTATAAAATCCGACAAAC-3′; Tg5580R2, 5′-CAA- 
AGATATTTAGTTCTGATGGGCATAC-3′ (where R1 is 
the outer primer and R2 is the inner primer). The primers 
for real-time PCR were designed from the sequence of the 
cleavage site of the miRNA target gene: qRTmiR1511S- 
5580F, 5′-TGTGAAGAAGGCCACGCTGAAG-3′; qRTmi- 
R1511S-5580R, 5′-CAGTCTTCCTCTTCTTGTCGAGC-3′ 
(primer pair was in the first exon across the cleavage site of 
miR1511*); and qRTmiR1511-5580F, 5′-GCTTCTGC- 
CATCAAGTCTGCTG-3′; qRTmiR1511-5580R, 5′-ACT- 
GTGAAACACCCAGCCACTTAG-3′ (primer pair was in 
the second exon across the cleavage site of miR1511). We 
used the following primer pair for amplification of the ref-
erence gene ACT11: ACT11F, 5′-ATCTTGACTGAGCG- 
TGGTTATTCC-3′, ACT11R, 5′-GCTGGTCCCTGGCT- 
GTCTCC-3′. 

2  Results 

2.1  Structure and chromosomal location of pre-miR1511 

A total of 12 small RNA sequences located in the same re-
gion of chromosome 18 (21161219–21161347 bp, full 

length of 129 bp) were identified by high throughput se-
quencing of a small RNA library constructed from the soy-
bean variety Zhongpin95-5383 (unpublished data). The pre-
dicted secondary structure of this sequence was a stem-loop 
structure. Among the 12 small RNAs, four were located on 
the 5′ arm of the stem-loop, six on the 3′ arm of the 
stem-loop, and two on the complementary strand. The se-
quence with the highest number of reads (371) was 21-nt 
long and was located on the 3′ arm of the stem-loop. This 
21-nt sequence, which had only one more nucleotide (gua-
nine) at the 5′ end than gma-miR1511, was located in the 
same region of the chromosome as gma-miR1511 obtained 
from miRBase (http://www.mirbase.org/). Therefore, this 
21-nt sequence was designated as miR1511. Another 21-nt 
sequence (41 reads) located on the 5′ arm of the stem-loop 
was nearly complementary to miR1511, and was designated 
as miR1511*. The whole 129-bp sequence was located in an 
intergenic region of chromosome 18, and was designated as 
the miR1511 precursor pre-miR1511 (Figure 1) [2,42,43]. 
This sequence was located 10405 bp downstream of Gly-
ma18g19410.1 and 12789 bp upstream of Glyma18g- 
19420.1 (Figure 1(b)). 

2.2  Target gene cleavage site analysis of miR1511/1511* 

A total of 10 putative target genes of miR1511 were pre-
dicted, but 5′RACE analysis confirmed the cleavage site of 
only one gene, Glyma10g05580. The results of 5′RACE 
showed that three specific products were obtained by re-
moving a single primer-binding PCR product (Figure 2(a)). 
The sequences of two bands were the binding sites of 
miR1511* and miR1511. Sequence alignment showed that 
the cleavage site of miR1511* was located in the first exon 
of Glyma10g05580 and that of miR1511 was located in the 
second exon of Glyma10g05580, indicating that miR1511 
and miR1511* both had a binding site on this target gene for 
co-cleavage (Figure 2(b)). Furthermore, another specific 
band may reflect cleavage of Glyma10g05580 by an un-
known miRNA; therefore, Glyma10g05580 may be the tar-
get gene of more than one miRNA. Glyma10g05580 be-
longs to the 60S ribosomal protein L4 family and is homol-
ogous to RPL4a in Arabidopsis (henceforth designated as 
GmRPL4a) (Figure 2(c)). There is another copy of Gm- 
RPL4a in the soybean genome, Glyma13g19930, which was 
designated as GmRPL4d because of its similarity to the Ar-
abidopsis RPL4d gene. The predicted amino acid sequences 
of GmRPL4a and GmRPL4d had greater than 50% similari-
ty to the 60S ribosomal protein L4 in human and mice and 
greater than 80% similarity to the Arabidopsis RPL4a and 
RPL4d proteins (Figure 2(d)). 

2.3  Tissue specific expression analysis of miR1511/ 
miR1511*and their target gene  

To study the expression of miR1511/miR1511* in different 
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Figure 1  Sequence, stem-loop structure, and chromosome location of miR1511/miR1511*. (a) Length and read number distribution of pre-miRNA; (b) 
pre-miRNA stem-loop structure and genome location. Solid line indicates miR1511, dashed line indicates miR1511*. 

 
Figure 2  Target gene cleavage site analysis of miR1511/miR1511*. (a) 5ʹRACE and sequencing analysis; (b) schematic diagram of cleavage site; (c) pre-
dicted conserved region; (d) sequence alignment of RPL4 protein from soybean, Arabidopsis, human, and mice. M, 100 bp marker; U, M and D, band 
number; “.” indicates the same amino acid. 
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tissues, we carried out Northern blotting analyses using 
RNA obtained from roots, leaves, and stems of Zhong-
pin95-5383 with miR1511/miR1511* specific probes and 
U6 snRNA as the internal reference. miR1511 was pre-
dominantly expressed in the leaves, with low to moderate 
expression in the roots and stems. The expression pattern of 
miR1511* was similar to that of miR1511 with weak signals 
in the leaves and stems. These results differ from those of a 
previous study in which miR1511 was expressed at its 
highest level in stems [28]. This difference might be be-
cause of differences in the variety and/or sampling period.  

We designed two pairs of primers according to the se-
quence of the miR1511* and miR1511 cleavage sites in 
GmRPL4a mRNA. These primers were used to analyze the 
expression pattern of GmRPL4a in roots, stems, and leaves 
by real-time PCR. The relative expression patterns obtained 
using these two pairs of primers were similar. The highest 
expression level of GmRPL4a was in roots (more than twice 
that in the leaves) and it was expressed at moderate levels in 
stems (1.6–1.8 times that in leaves) (Figure 3(b) and (c)). 
Therefore, the expression pattern of GmRPL4a was nega-
tively correlated with that of miR1511/1511*, suggesting 
that the expression of GmRPL4a decreased with increasing 
expression of miR1511/1511*. 

3  Discussion 

3.1   miR1511 is an authentic miRNA 

Previously, high-throughput sequencing analyses identified 
miR1511 in soybean [23], P. vulgaris [33], M. truncatula 
[34], and grape [35], and its tissue-specific expression had 
been detected by Northern blotting [28]. However, the 
complementary strand of miR1511 (miR1511*) had never 
been identified. Identification of the complementary strand 
is a requirement for the classification of a small RNA as an 
miRNA [5,44]. In this study, we identified miR1511* by 
high-throughput sequencing and Northern blotting. The 
stem-loop structure analysis of the precursor indicated that 
miR1511 and miR1511* originate from two arms of the 
stem-loop structure with a 2-nt overhang at the 3′ end and a 
3-bp mismatch in the complementary region. This structure 
was consistent with the standards for miRNAs [5], proving 

the authenticity of miR1511. 

3.2  GmRPL4a was co-cleaved by miR1511 and miR1511* 

We verified the cleavage sites in the target gene of miR1511, 
GmRPL4a, by 5′RACE. These results were consistent with 
soybean miRNA degradome sequencing data reported pre-
viously [30], but the cleavage site was slightly different. 
miR1511*, the complementary strand of miR1511, and its 
target gene were also identified by 5′RACE, indicating that 
miR1511/miR1511* could co-regulate the same target gene 
(Figure 2(b)). GmRPL4a and GmRPL4d, which show high 
sequence similarity to each other (90%), belong to the 60S 
ribosomal protein L4 family and have the same binding site 
for miR1511/1511* (Figure 2). High-throughput sequencing 
results showed that miR1511 also cleaved GmRPL4d [30], 
but this may not be accurate because of the short sequence 
read. The cleavage of GmRPL4d was not verified by 
5′RACE in this study, which might be the result of the low 
expression level of GmRPL4d in the tissue examined, or 
some other unknown regulatory mechanism. The expression 
of GmRPL4a was negatively correlated with that of 
miR1511/1511* in roots, stems, and leaves, indicating that 
they may be controlled via the same regulatory mechanism. 
However, the expression level of GmRPL4a could not re-
flect regulation of miR1511 because of the possible influ-
ence of GmRPL4d and regulation of other miRNAs. 

The basic function of ribosomal proteins, which are key 
components of the ribosomal subunit, is in ribosome assem-
bly and protein synthesis. Many studies have shown that 
ribosomal proteins have various other ribosome-independ- 
ent functions in plants and animals, playing roles in cell 
growth, differentiation, development, apoptosis, and regula-
tion of stress responses [19–26]. Research on the mutants 
rpl5a, rpl5b, rpl24b, and rpl28a indicated that the entire 
ribosomal large subunit was involved in establishing abaxial- 
adaxial leaf polarity in Arabidopsis. The ribosome might be 
involved in the processing of one central network during the 
establishment of leaf polarity [25]. A study on mutants of 
11 ribosomal proteins in Arabidopsis provided further evi-
dence that the ribosome plays an important role in estab-
lishing leaf polarity. The rpl4d mutation did not affect cell 
proliferation but caused strong abaxialization of leaves in  

 

 

Figure 3  Expression of miR1511/miR1511* and target gene GmRPL4a in soybean roots, stems, and leaves. (a) Northern blotting of miR1511/miR1511* in 
different tissues; (b) and (c) real-time RT-PCR analysis of GmRPL4a in different tissues using primers designed from mR1511 cleavage site (b) and primers 
designed from mR1511*cleavage site (c). 
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the as1 and as2 backgrounds [26]. 
In this study, the deduced amino acid sequence of 

GmRPL4a showed high similarity (greater than 80%) to 
RPL4A and RPL4D proteins in Arabidopsis (Figure 2(d)). 
Also, the highest level of miR1511/1511* expression was in 
the leaves (Figure 3(a)). Therefore, based on the study of 
RPL genes in Arabidopsis, miR1511/1511* may play a role 
in regulating the development of soybean leaves. However, 
because the 5′RACE results on target cleavage suggested 
that GmRPL4a may be regulated by other miRNA(s) in 
soybean (Figure 2(a)), the contribution of miR1511/1511* to 
regulating soybean leaf development requires further study. 

3.3  Functions of miRNA*   

Generally, it is considered that miRNA*s integrate into the 
degradation pathway after the formation of mature miRNAs. 
However, in-depth studies of miRNAs [53] are providing 
more evidence that miRNA*s have other functions in plants 
and animals. In animals, miR199a* may play a role in inhib-
iting proliferation, movement, and invasiveness of cancer 
cells via negative regulation of mRNA and protein expres-
sion of its target gene MET (a proto-oncogene) and its 
downstream gene ERK2 (extracellular signal-regulated ki-
nase 2) [27]. In addition, miR199a* has a regulatory role in 
the formation of cartilage [55]. The expressions of miR-9 
and miR-9* are significantly down-regulated in the cerebral 
cortex of patients with Huntington’s disease, compared with 
that of healthy individuals. The target gene of miR-9 is 
REST and that of miR-9* is the REST co-repressor gene, 
CoREST, which form a double-negative feedback regulation 
loop [56]. 

In Arabidopsis, both miRNA* and miRNA could bind to 
different AGO proteins and form an RNA-induced silencing 
complex (RISC) because of the different 5′ terminal nucleo-
tide. This indicates that miRNA*s have the essential re-
quirements for functionality [57]. The levels of miR399* 
increased during low phosphorus stress, and it was trans-
ported from shoots to roots, like miR399 [58]. A previous 
study also revealed that the expression levels of some 
miRNA*s were the same as, or higher than, those of miR-
NAs in the apical meristem or mature leaves of soybean. In 
addition, in situ hybridization analysis indicated that 
miR166a/b and miR166a/b* showed different expression 
patterns. 

Some miRNA*s are more abundant than miRNAs in the 
mycorrhizal symbiosis in M. truncatula [28]. According to 
data analysis of degradome sequencing, 44 target genes may 
be cleaved by different miRNA*s. The latest research on 
miR393* revealed that its overexpression in Arabidopsis 
resulted in a phenotype like that of the memb12 mutant, the 
target gene mutant of miR393b*. miR393* and miR393 
played the same role in plant resistance to exogenous bacte-
rial invasion, but they combined with different AGO pro-
teins to cleave a variety of target genes [60]. Although 

miRNA*s can regulate target genes both independently or 
with a corresponding miRNA, our study is the first report 
that a single target gene can be cleaved by an miRNA and 
its complementary strand miRNA*. 
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