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Abstract When considering cost-optimal operation of gas transport networks, com-
pressor stations play themost important role. Propermodeling of these stations leads to
nonconvex mixed-integer nonlinear optimization problems. In this article, we give an
isothermal and stationary description of compressor stations, state MINLP and GDP
models for operating a single station, and discuss several continuous reformulations
of the problem. The applicability and relevance of different model formulations, espe-
cially of those without discrete variables, is demonstrated by a computational study on
both academic examples and real-world instances. In addition, we provide preliminary
computational results for an entire network.
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1 Introduction

Natural gas is one of the most important energy sources. In 2013, it accounted for 25%
of the fossil energy used in Europe (Eurostat 2013). It is used in industrial processes,
for heating, and, more recently, for natural gas vehicles. Especially in Germany, its low
price leads to its role as a “bridging energy” during the transition to a future energymix
based primarily on regenerative energy. In Europe, natural gas is transported through
pipeline networkswith a total length of 100,000km.Gas transport in pipeline networks
is pressure-driven, i.e., the gas flows from higher to lower pressure. Thus, pipeline-
based gas transport requires compressor stations. The power required to compress the
gas is delivered by drives that use either electrical power or gas from the network
itself. The energy consumption of compressors is responsible for a large fraction of
the variable operating costs of a gas network.

In this article we focus on the stationary optimization of a single compressor station.
More specifically, we consider fixed boundary conditions, i.e., fixed inflow and outflow
pressures together with a fixed throughput, and ask the following questions:

– Can the station be operated in a way that satisfies the given boundary conditions?
In other words: are those boundary conditions feasible?

– If the boundary conditions are feasible: What is a minimum cost operation that
satisfies the boundary condition?

Transport of natural gas has been a rich source of mathematical optimization prob-
lems for roughly half a century. The first publications on optimization in gas networks
address tree-like or gun-barrel topologies with dynamic programming as a solution
technique (Wong and Larson 1968a, b); see Carter (1998) for a later survey. In the
following, we give a brief overview on mathematical optimization in this field. More
extensive reviews can be found in Koch et al. (2015).

One main branch of research investigates the problems of minimum cost operation
and feasibility testing for the stationary as well as the transient case. These problems
require models of complete gas networks comprising various types of elements like
pipes, compressors, (control) valves, etc. The combination of nonlinear gas physics
with the switching of controllable network elements typically leads to mixed-integer
nonlinear optimization models (MINLPs); see, e.g., Cobos-Zaleta et al. (2002) and
Domschke et al. (2011). One standard approach for tackling these MINLPs is the
application of (piecewise) linearizations of the nonlinearities in order to reduce the
problems to mixed-integer linear models (MILPs) (Geißler 2011; Geißler et al. 2013;
Martin et al. 2006, 2007; Martin and Möller 2005). Other investigations focus on the
nonlinear aspects under fixed discrete controls (Ehrhardt and Steinbach 2004, 2005;
Schmidt et al. 2015a, c; Steinbach 2007), or attempt to approximate discrete aspects
by continuous reformulations (Schmidt 2013; Schmidt et al. 2013, 2015b). For more
references and reviews in the areas of cost minimization and feasibility testing we
refer to Koch et al. (2015) and, especially, the chapter Schewe et al. (2015) therein.

The second major research branch that we want to highlight considers selected
types of network elements and studies them in more detail. For pipes, theoretical
studies include the controllability and stabilization of the governing system of partial
differential equations, the Euler equations (cf. Banda and Herty 2008; Banda et al.
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2006; Brouwer et al. 2011; Gugat et al. 2015). The best-investigated problem for
compressor stations is the one considered in this paper, which is of nonconvexMINLP
type: minimum cost operation under given boundary conditions (Carter 1996; Carter
et al. 1994; Jeníček and Králik 1993; Osiadacz 1980; Wright et al. 1998). See also
Králik (1993) for a simulation based model of compressor stations and Odom and
Muster (2009) for a recent survey onmodeling centrifugal gas compressors. As already
mentioned, the compressor stations are the dominant variable cost factor in gas network
operation.

In this article we study discrete-continuous models for the problem of minimum
cost compressor station operation. We give an almost complete isothermal description
of all relevant devices and their interplay. This description is comparable in accu-
racy with isothermal simulation models. However, we neglect some minor model
aspects that would only complicate the presentation without influencing the solutions
significantly. We explicitly mention these simplifications later in the description of
the considered problem. The specific structure of the resulting MINLP allows for a
large variety of continuous reformulations that will be discussed in detail and that are
applied to the problem under consideration. The approach of continuous reformulation
is in line with recent publications that develop techniques based on mathematical pro-
grams with equilibrium constraints (MPECs) for reformulating other discrete aspects
of network optimization models (Pfetsch et al. 2015; Schmidt 2013; Schmidt et al.
2013, 2015b). Thus, by combining the MPEC techniques from the cited publications
with the reformulation schemes discussed in this paper, it is possible to state purely
continuous NLP type models of the genuinely discrete-continuous problems of mini-
mum cost operation or feasibility testing. The outcome of this achievement is twofold.
First, it allows us to state highly detailed models of gas networks. This in particu-
lar is not viable with approaches based on linearizations since the resulting MILP
models tend to be very hard for state-of-the-art MILP solvers. Second, it allows us
to solve the resulting models with local NLP solvers, which are typically faster than
global MI(N)LP solvers. Obviously, this comes at the price of finding only locally
optimal solutions. For further applications of continuous reformulations of discrete-
continuous optimization problems, especially in the field of process engineering, see
Baumrucker et al. (2008), Kraemer et al. (2007), Kraemer and Marquardt (2010), and
Stein et al. (2004). We remark that, despite the fact that continuous reformulations are
being used in practice, an extensive numerical study like ours is yet missing in the
literature.

The paper is organized as follows. The problem of optimizing a gas compressor sta-
tion under steady-state boundary conditions is presented in Sect. 2. Afterwards, Sect. 3
introduces a mixed-integer nonlinear formulation of the problem and briefly discusses
an equivalent general disjunctive programming formulation. Then, in Sect. 4, the con-
cept of pseudo NCP (nonlinear complementarity problem) functions is introduced and
a collection of continuous reformulation techniques is discussed that can be applied
to the MINLP model of Sect. 3. These reformulations are applied to artificial and
real-world compressor stations in Sect. 5 and the solutions are compared. In addition,
this section also provides preliminary results for an entire large-scale network that is
fully reformulated using continuous variables and smooth constraints. Finally, Sect. 6
gives some remarks on further work and open questions.
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2 Problem description

A compressor station hosts a fixed number of compressor machines called units. It
can operate in finitely many discrete states that arise from the three operation modes
(closed, bypass mode, and active) and a certain number of configurations in the active
mode. Every configuration consists of a serial combination of parallel arrangements
of compressor units, see Fig. 2. Every compressor unit has an associated drive that
provides the power for compressing the gas. For ease of exposition we assume that
every drive powers just a single compressor unit.We also neglect the frictional pressure
loss caused by station piping, measurement devices, etc., which is usually modeled
by fictitious elements called resistors.

In this section we present the required models of all types of compressor machines
and drives and then describe their interplay. Full details can be found in Schmidt
et al. (2015c) where models of all network elements have been developed. For later
reference, the models are presented in constraint form, with constraint functions being
denoted by c and super-indexed with an abbreviated name indicating the semantics of
the constraint.

2.1 Physical quantities

The dynamics of natural gas is modeled in terms of the mass flow q, pressure p,
temperature T , and density ρ, where p, T , ρ are coupled by an equation of state. In
specific, we use the thermodynamical standard equation,

ρ(p, T , z) = p

RszT
.

Here the compressibility factor z models the deviation between real and ideal gas, for
which we use an empirical formula of the American Gas Association (AGA),

z(p, T ) = 1 + 0.257p/pc − 0.533
p/pc
T/Tc

.

We will later formulate certain constraints using ρ(p, T , z) and z(p, T ) with fixed T .
Finally we need the volumetric flow Q, given by the constraint

0 = cflow-conv(q, ρ, Q) = q − ρQ.

See Table 1 (or Schmidt et al. 2015c) for explanations of the physical quantities and
constants.

2.2 Boundary conditions

We are interested in feasibility testing and in computing cost optimal controls of a
compressor station for given boundary values. In accordance with our general network
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Table 1 Principal physical quantities and constants

Symbol Explanation Unit

p Gas pressure Pa

T Gas temperature K

ρ Gas density kg m−3

z Compressibility factor 1

q Mass flow rate kg s−1

Q Volumetric flow rate (Q = q/ρ) m3 s−1

m Average molar mass of gas mixture kg mol−1

pc Pseudocritical pressure of gas mixture Pa

Tc Pseudocritical temperature of gas mixture K

R Universal gas constant J mol−1 K−1

Rs Specific gas constant (Rs = R/m) J kg−1 K−1

Table 2 Compressor quantities

Symbol Explanation Unit

Had Specific change in adiabatic enthalpy kg J−1

ηad Adiabatic efficiency 1

P Compressor input power W

qfc Fuel consumption kg s−1

b Specific energy consumption W

Hu Lower calorific value J mol−1

n Compressor speed s−1

κ Isentropic exponent 1

M Shaft torque N m

Vop Operating volume m3

models (Schmidt et al. 2015c), a compressor station is seen as an arc a = (u, v) of a
directed network graphG = (V,A). The boundary conditions atwhich the compressor
station a has to operate consist of a mass flow range,

qa ∈ [q−
a , q

+
a ],

and of inlet and outlet pressure ranges,

pu ∈ [p−
u , p

+
u ], pv ∈ [p−

v , p
+
v ].

Each of the values qa , pu , pv can be fixed by setting its bounds to identical values.
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Fig. 1 Characteristic diagrams of a turbo compressor (left) and a piston compressor (right)

2.3 Compressor machines

We distinguish turbo compressors and piston compressors and start with the common
parts of their models. For an overview of relevant compressor quantities see Table 2.

The compression of a gas stream from pin to pout results in a specific change in
adiabatic enthalpy, Had:

0 = cad-head(Had, pin, pout, zin) = Had − zinTinRs
κ

κ − 1

((
pout
pin

) κ−1
κ − 1

)
.

Here zin = z(pin, Tin), and we assume that the isentropic exponent κ is constant. The
power P required for compressing the mass flow q is given by

0 = cpower(P , q, Had, ηad) = P − qHad

ηad
.

Its upper limit is the maximal power P+ that the associated drive can deliver:

0 ≤ cpower-limit(P , P+) = P+ − P . (1)

2.4 Turbo compressors

Turbo compressors are modeled by characteristic diagrams in (Q, Had)-space, see
Fig. 1 (left). The curves are defined using biquadratic and quadratic polynomials
F2(x , y; A) and F1(z; b) whose coefficients A and b are obtained from least-squares
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fits for given measurements of the compressor:

F2(x , y; A) =
⎛
⎝ 1

x
x2

⎞
⎠

T ⎡
⎣a00 a01 a02
a10 a11 a12
a20 a12 a22

⎤
⎦

⎛
⎝ 1

y
y2

⎞
⎠

and

F1(z; b) =
⎛
⎝ b0
b1
b2

⎞
⎠

T ⎛
⎝ 1

z
z2

⎞
⎠ .

The isolines of speed n (solid) and adiabatic efficiency ηad (dashed) are given by

0 = ciso-speed(Had, Q, n) = Had − F2(Q, n; AHad),

0 = ciso-eff(ηad, Q, n) = ηad − F2(Q, n; Aηad).

The compressor’s operating range (gray area) is bounded by the isolines of minimal
and maximal speeds n±, by the surgeline (left), and by the chokeline (right),

0 ≤ csurge(Q, Had) = F1(Q; bsurge) − Had,

0 ≤ cchoke(Q, Had) = Had − F1(Q; bchoke).

2.5 Piston compressors

Piston compressors aremodeled by characteristic diagrams in (Q,M)-space, see Fig. 1
(right). The volumetric flow Q satisfies

0 = cop-vol(Q, n) = Q − Vopn,

and the shaft torque M (with constant efficiency ηad) is given by

0 = ctorque(M , Had, ρin) = M − VopHad

2πηad
ρin.

The speed bounds n ∈ [n−, n+] induce left and right bounds of the operating range,
Q ∈ [Vopn−, Vopn+]. The upper limit can be given in one of three forms depending
on the specific compressor: either by a maximum compression ratio ε+,

0 ≤ climit(pin, pout) = ε+ − pout
pin

,

by a maximum pressure increase Δp+,

0 ≤ climit(pin, pout) = pin + Δp+ − pout,
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or by a maximum shaft torque M+,

0 ≤ climit(M) = M+ − M .

2.6 Drives

The four most frequently used drive types are gas turbines, gas driven motors, electric
motors, and steam turbines. Here we focus on the commonmodel aspects and consider
a generic “catchall” drive model that incorporates the two main aspects: the maximal
power P+ that the drive can deliver (cf. (1)),

0 = cmax-power(P+, n) = P+ − F2(n, Tamb; AP+), (2)

and its specific energy consumption b,

0 = cspec-ener-cons(b, P) = b − F1(P; ab). (3)

Here, Tamb denotes the ambient temperature at the compressor station and AP+ as
well as ab are the coefficients of the fitted (bi)quadratic polynomials. For specific
drive types, (2) or (3) may simplify or vanish completely. The fuel consumption of a
gas-powered drive is the mass flow qfc,

0 = cfuel-cons(qfc, b) = qfc − bm

Hu
.

The fuel consumption of an electric drive is zero, 0 = cfuel-cons(qfc, b) = qfc.

2.7 Configurations

Recall that a compressor station can be closed, in bypass mode, or active. We denote
the set of configurations of an active compressor station by C = {1, . . . , nC }, the
set of serial stages of configuration i ∈ C by Si = {1, . . . , nSi }, and the set of
parallel units of stage j ∈ Si byPi j = {1, . . . , nPi j }. For instance, in Fig. 2 we have
C = {1, . . . , 4} and

nS1 = nS3 = nS4 = 1, nS2 = 2,

nP11 = 2, nP21 = nP22 = nP31 = nP41 = 1.

M1

M2

M1 M2

M1

M2

Fig. 2 Complete set of possible configurations of a compressor station with two machines (a real station
may offer only a subset)
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In what follows, we refer to individual compressor units by the index triple i jk.
Given a triple (qa , pu , pv) of boundary values, the selected configuration i must

satisfy the following: the flow q j of every serial stage j ∈ Si equals qa and is
distributed over the nPi j parallel units:

qa = q j =
∑

k∈Pi j

qi jk for all j ∈ Si .

Moreover, all parallel units in stage j ∈ Si have to increase the gas pressure to a
common outflow value pi , j+1, which becomes the inflow pressure of stage j + 1. The
first and last stages must satisfy pi1 = pu and pi ,nSi +1 = pv , respectively.

2.8 Objective function

There are various reasonable objective functions in our context, which can mainly be
categorized as feasibility or optimization goals. If one merely wishes to know whether
given boundary conditions are feasible, it suffices to use a zero objective, f ≡ 0.
If the boundary conditions are infeasible, it may be useful to add slack variables
to a certain set of constraints and minimize the total infeasibility, measured by a
suitable normof the vector of slack variables. The reader interested in problem-specific
slack variable formulations for gas network planning is referred to Schmidt et al.
(2015a).

If one is convinced of having feasible boundary conditions, it is straightforward to
minimize operating costs, power, or fuel consumption. Specific objective functions
will be formulated after stating the optimization models in the following section.

3 Mixed-integer and general disjunctive programming models

One generic way tomodel the problem described in the previous section is presented in
Sect. 3.1: a mixed-integer nonlinear program (MINLP) that incorporates binary vari-
ables for the discrete states of the compressor station.An equivalent general disjunctive
programming (GDP) formulation of the problem is given in Sect. 3.2. Continuous
reformulations of the MINLP and GDP models are discussed later in Sect. 4.

One further possibility of tackling the problem is to enumerate all states of the
compressor station and solve all the resulting (continuous) problems by a local or
global method. However, this is only suitable when single compressor stations are
considered, whereas continuous reformulations can also be used for models of the
entire transport network; cf. Sect. 5.5. Another way is to apply suitable heuristics, see,
e.g., Schmidt et al. (2015b).

We denote individual continuous variables by x and discrete ones by s. Variable
vectors are written with bold letters, like x or s. Sub-indices refer to corresponding
elements of the compressor station or to sets of elements. In the constraint notation of
Sect. 2,we nowalso use sub-indiceswith the samemeaning as for variables.Additional
sub-indices E or I distinguish equality and inequality constraints.
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3.1 MINLP formulation

With x ∈ R
n and s ∈ {0, 1}m , the optimization problem under consideration takes the

general MINLP form

min
x,s

f (x, s) s.t. cE (x, s) = 0, cI (x, s) ≥ 0.

The boundary conditions correspond to the variable sub-vector xB = (qa , pu , pv).
For a suitable formulation of the discrete decisions and their implications on other

parts of the model, we review the concept of indicator constraints.

3.1.1 Indicator constraints

Indicator constraints use a binary indicator variable to control whether a certain con-
straint is enabled or disabled. If c(x) is any equality or inequality constraint with
indicator variable s, we denote the associated indicator constraints generically by

cindE (c(x), s) = 0, cindI (c(x), s) ≥ 0. (4)

The formulation (4) is chosen in such a way that the original constraint c(x) = 0 or
c(x) ≥ 0 must hold if s = 1 whereas it becomes irrelevant if s = 0. In this article we
use two specific types: big-M and bilinear indicator constraints. The big-M indicator
constraints of the equality constraint c(x) = 0 take the form

−M−
c (1 − s) ≤ c(x) ≤ M+

c (1 − s). (5)

For the inequality constraint c(x) ≥ 0 we obtain the single inequality

−M−
c (1 − s) ≤ c(x). (6)

Bilinear indicator constraints for equality and inequality constraints, respectively, are
given by

0 = sc(x) and 0 ≤ sc(x). (7)

The big-M formulation offers the advantage that convex constraints yield convex
indicator constraints. However, the big-M constants must be chosen sufficiently large
to ensure that the constraint is properly enabled or disabled: M−

c ≥ |minx c(x)| and
M+

c ≥ |maxx c(x)| in (5), and M−
c ≥ |minx c(x)| in (6). Numerical difficulties are

to be expected if M±
c are very large. The bilinear formulation avoids this but has the

disadvantage that even convex constraints yield nonconvex indicator constraints. We
later review these issues when discussing the numerical results of different problem
formulations in Sect. 5.
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Finally we need two more notions: an indicator expression y is a term whose value
is y ≥ 1 if the associated state is enabled and zero otherwise, like s in (7). Conversely,
a negation expression is a term whose value is y ≥ 1 if the associated state is disabled
and zero otherwise, like 1 − s in (5), (6).

3.1.2 Discrete states

To represent the set of states of a compressor station, we introduce the binary variable
vector

s = ((si )i∈C , sbp, scl) ∈ {0, 1}m , m = |C | + 2,

with the following interpretation:

– the station is active in configuration i ∈ C if and only if si = 1;
– the station is in bypass mode if and only if sbp = 1;
– the station is closed if and only if scl = 1.

Since precisely one state must be selected, we add the special-ordered-set-1 (SOS-1)
constraint

0 = cop-mode(s) = 1 −
⎛
⎝sbp + scl +

∑
i∈C

si

⎞
⎠ .

In bypass mode, the inflow and outflow pressures have to be identical,

0 = cbypass(pu , pv) = pu − pv ,

yielding indicator constraints

0 = cbypass-indE (cbypass(pu , pv), sbp), 0 ≤ cbypass-indI (cbypass(pu , pv), sbp).

Note that only equality constraints are required if bilinear indicator constraints (7) are
used, whereas only inequality constraints are needed in the case of big-M constraints;
cf. (5). That is, in the former case the vector cbypass-indI is empty and in the latter case

the vector cbypass-indE is empty. Likewise, if the compressor station is closed, we have

0 = cclosed(qa) = qa ,

yielding

0 = cclosed-indE (cclosed(qa), scl), 0 ≤ cclosed-indI (cclosed(qa), scl).
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3.1.3 Configurations

Nowwe turn to the details of individual configurations. The continuous variable vector
of configuration i ∈ C reads

xi =

⎛
⎜⎜⎜⎜⎝

qfci
(pi j ) j=1,...,nSi +1

(zi j ) j∈Si

(ρi j ) j∈Si

(xi jk) j∈Si ,k∈Pi j

⎞
⎟⎟⎟⎟⎠ .

Here qfci is the total fuel consumption, pi j and pi ,nSi +1 denote the inflow pressure of
stage j and the outflow pressure of the last stage, respectively, and zi j , ρi j represent
the inflow compressibility factor and inflow gas density of stage j . Finally, xi jk is the
variable vector of compressor unit i jk and its associated drive, see Sect. 3.1.4.

The inflow quantities zi j and ρi j are coupled to the physical inflow conditions by
the constraints

0 = ccompr
i j (zi j , pi j ) = zi j − z(pi j , T ),

0 = cdensi j (ρi j , pi j , zi j ) = ρi j − ρ(pi j , T , zi j ).

The total fuel consumption qfci is the sum over all compressor units:

0 = cfuel-1i (qfci , (q
fc
i jk) j∈Si ,k∈Pi j ) = qfci −

∑
j∈Si

∑
k∈Pi j

qfci jk .

This constraint must be enabled if and only if configuration i is active:

0 = cind-fuel-1E ,i (cfuel-1i (qfci , (q
fc
i jk) j∈Si ,k∈Pi j ), si ),

0 ≤ cind-fuel-1I ,i (cfuel-1i (qfci , (q
fc
i jk) j∈Si ,k∈Pi j ), si ).

Otherwise configuration i is inactive,

0 ≤ cfuel-0i (qfci , si ) = si (q
fc
i )+ − qfci ,

where (qfci )+ is a suitable upper bound of qfci . Next, the inflow and outflow pressures
of the active configuration must equal the inflow and outflow pressures of the station:

0 = cind-p-inE ,i (cp-ini (pi1, pu), si ),

0 ≤ cind-p-inI ,i (cp-ini (pi1, pu), si ),

0 = cind-p-outE ,i (cp-outi (pi ,nSi +1, pv), si ),

0 ≤ cind-p-outI ,i (cp-outi (pi ,nSi +1, pv), si ),
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where

0 = cp-ini (pi1, pu) = pi1 − pu ,

0 = cp-outi (pi ,nSi +1, pv) = pi ,nSi +1 − pv .

The flow distribution over the parallel units of every stage j finally completes the
configuration model:

0 = cflowi j (qa , (qi jk)k∈Pi j ) = qa −
∑

k∈Pi j

qi jk , j ∈ Si .

In summary, the equality constraints of configuration i read

0 = cE ,i (xB , xi , si ) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

(ccompr
i j (zi j , pi j )) j∈Si

(cdensi j (ρi j , pi j , zi j )) j∈Si

cind-fuel-1E ,i (qfci , (q
fc
i jk) j∈Si ,k∈Pi j , si )

cind-p-inE ,i (pi1, pu , si )

cind-p-outE ,i (pi ,nSi +1, pv , si )
(cflowi j (qa , (qi jk)k∈Pi j )) j∈Si

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

and the inequality constraints are given by

0 ≤ cI ,i (xB , xi , si ) =

⎛
⎜⎜⎜⎝
cind-fuel-1I ,i (qfci , (q

fc
i jk) j∈Si ,k∈Pi j , si )

cind-fuel-0I ,i (qfci , si )

cind-p-inI ,i (pi1, pu , si )

cind-p-outI ,i (pi ,nSi +1, pv , si )

⎞
⎟⎟⎟⎠ .

3.1.4 Compressor units and drives

Lastly, we formulate MINLP models of turbo and piston compressors within a con-
figuration. The continuous variable vector of a turbo compressor ν = i jk with its
associated drive reads

xν = (Had,ν , qν , Qν , nν , Pν , q
fc
ν , bν , P

+
ν , ηad,ν),

and for a piston compressor ν with associated drive it reads

xν = (Had,ν , qν , Qν , nν , Pν , q
fc
ν , bν , P

+
ν ,Mν).
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The equality constraints of a turbo compressor are then given by

0 = cE ,ν(xi , si ) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

cflow-convν (qν , ρi j , Qν)

cad-headν (Had,ν , pi j , pi , j+1, zi j )
cfuel-consν (qfcν , bν)

cind-powerE ,ν (Pν , qν , Had,ν , ηad,ν , si )

cind-iso-speedE ,ν (Had,ν , Qν , nν , si )
cind-iso-effE ,ν (ηad,ν , Qν , nν , si )

cind-max-power
E ,ν (P+

ν , nν , si )

cind-spec-ener-consE ,ν (bν , Pν , si )

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

and its inequality constraints read

0 ≤ cI ,ν(xi , si ) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

cind-surgeI ,ν (Qν , Had,ν , si )
cind-chokeI ,ν (Qν , Had,ν , si )

cind-powerI ,ν (Pν , qν , Had,ν , ηad,ν , si )

cind-iso-speedI ,ν (Had,ν , Qν , nν , si )
cind-iso-effI ,ν (ηad,ν , Qν , nν , si )

cind-power-limit
I ,ν (Pν , P+

ν , si )

cind-max-power
I ,ν (P+

ν , nν , si )

cind-spec-ener-consI ,ν (bν , Pν , si )

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Here we introduce indicator constraints to disable the associated limits of physical and
technical quantities of inactive configurations: otherwise irrelevant infeasible values
of those inactive configurations would render the entire compressor model infeasible.

The equality constraints of a piston compressor are given by

0 = cE ,ν(xi , si ) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

cflow-convν (qa , ρi j , Qν)

cad-headν (Had,ν , pi j , pi , j+1, zi j )
cfuel-consν (qfcν , bν)

ctorqueν (Mν , Had,ν , ρi j )

cind-powerE ,ν (Pν , qν , Had,ν , ηad,ν , si )

cind-op-volE ,ν (Qν , nν , si )

cind-max-power
E ,ν (P+

ν , nν , si )

cind-spec-ener-consE ,ν (bν , Pν , si )

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

and the inequality constraints read
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0 = cI ,ν(xi , si ) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

climit
ν (pi j , pi , j+1) or climit

ν (Mν)

cind-powerI ,ν (Pν , qν , Had,ν , ηad,ν , si )

cind-op-volI ,ν (Qν , nν , si )

cind-power-limit
I ,ν (Pν , P+

ν , si )

cind-max-power
I ,ν (P+

ν , nν , si )

cind-spec-ener-consI ,ν (bν , Pν , si )

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Here the indicator constraints are introduced for the same reason as for turbo com-
pressors.

3.1.5 Model summary

As already mentioned, we may choose the objective f ≡ 0 if we are only interested
in feasibility testing. If we aim at minimum cost operation, a suitable objective is

f (x, s) =
∑
i∈C

si
∑
j∈Si

∑
k∈Pi j∩U fuel

ωfuelqfci jk +
∑
i∈C

si
∑
j∈Si

∑
k∈Pi j∩U el

ωelPi jk , (8)

where U fuel and U el are the sets of fuel gas and electricity driven compressor units,
respectively, and ωfuel and ωel represent fuel gas and electricity costs. The complete
MINLP model is then obtained with the variable vector

x = (xB , (xi )i∈C )

and the constraints

cE (x, s) =

⎛
⎜⎜⎜⎜⎝

cop-mode(s)
(cE ,i (xB , xi , si ))i∈C

(cE ,i jk(xi , si ))i∈C , j∈Si ,k∈Pi j

cbypass-indE (pu , pv , sbp)
cclosed-indE (qa , scl)

⎞
⎟⎟⎟⎟⎠ ,

cI (x, s) =

⎛
⎜⎜⎝

(cI ,i (xB , xi , si ))i∈C
(cI ,i jk(xi , si ))i∈C , j∈Si ,k∈Pi j

cbypass-indI (pu , pv , sbp)
cclosed-indI (qa , scl)

⎞
⎟⎟⎠ .

3.2 General disjunctive programming formulation

The shortest and possibly most natural way to model the cost minimization problem
presented in Sect. 2 is a general disjunctive programming (GDP) formulation (Gross-
mann 2002; Raman and Grossmann 1994). Since it is a convenient form that is often
used in engineering, we also state this model here for completeness. Using the notation
from the preceding section, the GDP model reads
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min γbp + γcl +
∑
i∈C

γi (9a)

s.t.
∨
i∈C

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

si(
cE ,i (xB , xi )

(cE ,i jk(xi )) j∈Si ,k∈Pi j

)
= 0

(
cI ,i (xB , xi )

(cI ,i jk(xi )) j∈Si ,k∈Pi j

)
≥ 0

γi = ωqfci

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(9b)

∨
⎛
⎝ sbp
cbypass(pu , pv) = 0

γbp = 0

⎞
⎠ ∨

⎛
⎝ scl
cclosed(qa) = 0

γcl = 0

⎞
⎠ , (9c)

sbp + scl +
∑
i∈C

si = 1. (9d)

GDP models like this are generally built from separate sets of “local” constraints and
objective terms that are combined in a logical disjunction. Every part of the disjunction
is controlled by a decision variable (here sbp, scl, or si , i ∈ C ): the local constraints
are enabled if and only if the associated decision variable is true (si = 1), and the
local objective terms γi are set to zero otherwise. The SOS-1 constraint (9d) ensures
that precisely one decision variable is true. In a general GDP, any set of feasible
combinations of decision variables could be defined by a suitable logical expression.
Moreover, “global” constraints and objective terms might be added.

4 Continuous reformulations

As discussed in Sect. 1, it is reasonable to study continuous reformulations of the
MINLP andGDPmodels of Sects. 3.1 and 3.2 in order to tackle optimization problems
for compressor stations or entire gas networks with continuous (local) optimization
methods, which tend to be faster than global methods for mixed-integer nonlinear and
nonconvex problems.

This section discusses five model reformulation schemes from the literature that
can be applied to any model with binary variables that exhibit the structure of a logical
disjunction, such as the problem under consideration.

First we introduce the concepts of NCP and pseudo NCP functions in Sect. 4.1.
Thenwepresent all reformulation schemes anddiscuss their feasible sets and regularity
properties with a view towards solving them by local algorithms.

4.1 Pseudo NCP functions

NCP functions are bivariate functions: ϕ : R2 → R with the property that

ϕ(a, b) = 0 ⇐⇒ a, b ≥ 0, ab = 0. (10)
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Classical NCP functions include, e.g., the minimum function ϕmin(a, b) = min(a, b)
and the Fischer–Burmeister function (Fischer 1992),

ϕFB(a, b) =
√
a2 + b2 − (a + b).

See Sun and Qi (1999) and the references therein for an overview of NCP functions.
NCP functions can be used to replace binary variables with continuous variables.
However, the right-hand side of (10) introduces some difficulties if it is considered
from an NLP perspective. The constraints a, b ≥ 0, ab = 0 lead to mathematical
programs with equilibrium constraints (MPECs). The problem is that standard NLP
regularity concepts like the linear independence constraint qualification (LICQ) or
the Mangasarian–Fromovitz constraint qualification (MFCQ) are violated at every
feasible point of an MPEC (Ye and Zhu 1995); see Luo et al. (1996) for an overview
of the theory and applications of MPECs. However, the nonnegativity constraints in
(10) are not needed for the reformulations discussed below. This leads us to extend
the class of NCP functions: We call a function φ : R2 → R a pseudo NCP function if

φ(a, b) = 0 �⇒ a = 0 or b = 0.

In the remainder of this article we use the following two pseudo NCP functions:

φprod(a, b) := ab, φFB(a, b) := ϕFB(a, b).

Note that the Fischer–Burmeister φFB function has a lack of regularity, whereas the
product formulation φprod is favorable since we do not have to impose nonnegativity
constraints here as in the classical NCP setting.

4.2 Reformulation schemes

It iswell-known that local solvers tend to be very sensitive to the specific formulation of
a nonlinear model. This is the reason why it is often useful in practice to have different
equivalent formulations to evaluatewhich formulation is best suited for the used solver.
In this section we discuss five schemes that allow to reformulate the MINLP and
GDP models of Sects. 3.1 and 3.2 with continuous variables and additional smooth
constraints. Since the geometry of the feasible regions of the resulting continuous
models and their regularity properties also have a strong influence on the solution
process, we analyze these aspects for every reformulation.

To be applicable in the context of the model of Sect. 3.1, the reformulations have
to possess the following properties:

1. Every feasible solution of the reformulation has to be uniquely translatable into a
feasible solution of the original MINLP (or GDP). This means that there exists a
mapping (a left-total right-unique relation) from the feasible set of the reformula-
tion to the feasible set of the original model.

2. For every binary variable s ∈ {0, 1}, the reformulation has variables from which
indicator and negation expressions can be constructed (cf. Sect. 3.1.1).
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3. The reformulation has variables from which the SOS-1 constraint can be con-
structed.

In what follows, we only present the representations of a set of binary variables
s1, . . . , sm ∈ {0, 1} together with the SOS-1 constraint∑m

i=1 si = 1, rather than stating
complete reformulated models. The latter can easily be reproduced from Sect. 3.1. We
frequently use the setsM := {1, . . . ,m} and Mi := M \ {i}.

As already stated in Sect. 1, all reformulation schemes below can be found in the
existing literature—in particular, see Baumrucker et al. (2008), Kraemer and Mar-
quardt (2010), and Stein et al. (2004)—except that we use pseudo NCP functions
rather than NCP functions.

4.2.1 Exact bivariate reformulation

The first reformulation requires two continuous variables (σi , τi ) ∈ R
2 per binary

variable si together with the constraints

φ(σi , τi ) = 0 for all i ∈ M , (11a)

σi + τi = 1 for all i ∈ M , (11b)∑
i∈M

σi = 1, (11c)

where φ is an arbitrary pseudo NCP function. Clearly, the constraints (11) imply
(σi , τi ) ∈ {(1, 0), (0, 1)}, giving the required mapping:

(σi , τi ) = (1, 0) �→ si = 1, (σi , τi ) = (0, 1) �→ si = 0.

An indicator expression is σi and valid negation expressions are τi or (1 − σi ). The
feasible region of (11) is illustrated in Fig. 3 (left).

Since this scheme adds 2m continuous variables and 2m + 1 equality constraints,
it introduces a lack of regularity (in the LICQ and MFCQ sense) in the (σi , τi )-space.
However, (11) can be equivalently reformulated by replacing (11a) with

φ(σi , τi ) = 0 for all i ∈ M1, σ1 ≥ 0.

For φ ∈ {φprod,φFB}, it can be shown that the latter formulation satisfies the LICQ if
and only if σ1 
= 0. Of course, M1 can be replaced with every other M j .

4.2.2 Approximate bivariate reformulation

The second reformulation works like the first one but relaxes (11b):

φ(σi , τi ) = 0 for all i ∈ M , (12a)

σi + τi ≥ 1 for all i ∈ M , (12b)∑
i∈M

σi = 1. (12c)
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Fig. 3 Left: Feasible set of the exact bivariate reformulation. The axes are the feasible sets of (11a). Together
with (11b) the feasible set {(1, 0), (0, 1)} (bullets) remains. Right: Feasible set of the approximate bivariate
reformulation. The axes are the feasible sets of (12a) and the shaded area is the feasible region of (12b).
The intersection consists of the two disjoint bold lines

The feasible set is illustrated in Fig. 3 (right): it is readily seen that (σi , τi ) ∈
({0} × [1,∞)) ∪ ([1,∞) × {0}), and that exactly one i ∈ M exists with σi = 1
and σ j = 0 for all j 
= i . Here we have added 2m variables with m + 1 equality and
m inequality constraints. Depending on the activity status of inequalities, the LICQ
might be satisfied or again be violated. An indicator expression is σi and a valid nega-
tion expression is given by τi . This scheme cannot be reformulated again like the exact
bivariate reformulation since one would lose the property of being able to formulate
indicator and negation expressions.

4.2.3 Exact univariate reformulation

This scheme requires only one continuous variable σi per binary variable si and adds
the following constraints:

φ(σi , 1 − σi ) = 0 for all i ∈ M , (13a)∑
i∈M

σi = 1. (13b)

The feasible set is shown in Fig. 4 (left). Clearly we have σi ∈ {0, 1} for all i ∈ M .
An indicator expression is σi and a negation expression is (1 − σi ). The number of
equality constraints exceeds the number of variables again by one (m + 1 vs. m), but
(13) can be equivalently replaced with

φ(σi , 1 − σi ) = 0 for all i ∈ M1, σ1 ≥ 0,
∑
i∈M

σi = 1,

satisfying the LICQ for φ ∈ {φprod,φFB} if and only if σ1 
= 0.
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Fig. 4 Left: Feasible set {0, 1} of the exact univariate reformulation (13) and the alternative exact univariate
reformulation (14). Right: Feasible set {0} ∪ [1,∞) of the alternative univariate reformulation (15)

4.2.4 Alternative exact univariate reformulation

Here, the set of constraints reads

φ

(
σi ,

∑
j∈Mi

σ j

)
= 0 for all i ∈ M , (14a)

∑
i∈M

σi = 1. (14b)

These constraints imply φ(σi , 1 − σi ) = 0, yielding σi ∈ {0, 1} for all i . As before,
there is one more equality constraint than variables (m + 1 vs. m), and we have the
equivalent reformulation

φ

(
σi ,

∑
j∈Mi

σ j

)
= 0 for all i ∈ M1, σ1 ≥ 0,

∑
i∈M

σi = 1.

In both cases, an indicator expression is σi and a negation expression is (1 − σi ) or,
equivalently,

∑
j∈Mi

σ j . The feasible set is the same as before, see Fig. 4 (left). Again,
the LICQ is satisfied for φ ∈ {φprod,φFB} if and only if σ1 
= 0.

4.2.5 Approximate univariate reformulation

The set of constraints for the final scheme is given by

φ

(
σi ,

∑
j∈Mi

σ j

)
= 0 for all i ∈ M , (15a)

∑
i∈M

σi ≥ 1. (15b)

The feasible set is illustrated in Fig. 4 (right). Clearly we have σi ∈ {0} ∪ [1,∞)

for all i . An indicator expression is σi , and a negation expression is
∑

j∈Mi
σ j . This

reformulation has the disadvantage that it always violates the LICQ for both φprod and
φFB, even if the inequality constraint (15b) is not active.Again, (15) can be equivalently
reformulated by replacing (15a) with

φ

(
σi ,

∑
j∈Mi

σ j

)
= 0 for all i ∈ M1, σ1 ≥ 0.

This formulation satisfies the LICQ for φ ∈ {φprod,φFB} if and only if σ1 
= 0.
Table 3 lists the main properties of the five reformulation schemes.
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Table 3 Summary of all reformulation schemes. Index 1 denotes the first version and index 2 denotes the
second version of the reformulation

Section Variables |E1| |E2| |I1| |I2| Exact/approx.

4.2.1 2m 2m + 1 2m 0 1 Exact

4.2.2 2m m + 1 – m – Approx.

4.2.3 m m + 1 m 0 1 Exact

4.2.4 m m + 1 m 0 1 Exact

4.2.5 m m m − 1 1 2 Approx.

5 Computational study

In the preceding sections we have discussed the problem of compressor station opti-
mization and we have presented several model formulations. With these formulations
at hand, the question arises whether all models are comparably well suited for numer-
ical computations, or whether there are benefits or disadvantages for any of them. In
this section we present an extensive computational study and compare the results of
local and global solvers applied to different model formulations. We will see that the
continuous reformulations work quite well in comparison to MINLP approaches.

As mentioned in the introduction, one main contribution of this paper is that—
in combination with techniques presented in Pfetsch et al. (2015), Schmidt (2013),
Schmidt et al. (2013) and Schmidt et al. (2015b)—our approach allows the purely
continuous reformulation of genuinely discrete-continuous models of entire gas net-
works. In order to demonstrate that this is also viable in practice, in the sense that one
can compute locally optimal values of the corresponding MINLPs, we present some
promising first results.

Section 5.1 introduces two compressor stations with boundary conditions as test
instances and describes the hardware and software used in the study. Section 5.2 then
discusses performance profiles for measuring performance and robustness of different
model formulations and solvers. Next, Sects. 5.3 and 5.4 present the numerical results
for single compressor stations while Sect. 5.5 presents a preliminary computational
study on entire gas networks. Finally, Sect. 5.6 gives a summary of the results.

5.1 Test instances and computational setup

We consider minimum cost problems using the objective (8) with cost coefficients
ωfuel = 0.024e/(kg/s) andωel = 0.14e/kW, and feasibility testing using the objec-
tive f ≡ 0. These objectives are combined with all presented models for two different
compressor stations. The first station, called GasLib-582 station in the following, is
compressorStation_5 from the network GasLib-582 (Humpola et al. 2015). It
contains one turbo compressor and one piston compressor and can be operated in three
configurations. This station is comparatively small and serves as a proof of concept
for the applicability of the continuous reformulations. Moreover, the data of this test
set are publicly available, so that other researchers can compare their models or algo-
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rithms on the same data. The second station, called HG station in the following, is
a real-world compressor station of our former industry partner Open Grid Europe1

(OGE). It is one of OGE’s largest compressor stations, containing five turbo compres-
sors that can be operated in 14 configurations in our model. The results on this station
illustrate the applicability of the presented models on real-world data.

The boundary values for our test instances are constructed as follows. We always
prescribe the in- and outflow pressures as well as the flow through the station. For
both stations, the set of inflow pressures (in bar) is Pin = {20, 50, 80}. For every
inflow pressure pin ∈ Pin, we then construct a set of outflow pressuresPout,i (pin) =
{pin + kΔpi : k = 0, . . . , 3}, i = 1, 2, where Δp1 = 13.3 bar (GasLib-582 sta-
tion) and Δp2 = 20 bar (HG station). The sets of flows (in 103 Nm3h−1) are Q1 =
{0, 375, 750, . . . , 2250} (GasLib-582 station) andQ2 = {0, 800, 1600, . . . , 4800} (HG
station). Thus, the complete set of boundary conditions for the GasLib-582 station is

T1 = {(pin, pout, Q0) : pin ∈ Pin, pout ∈ Pout,1(pin), Q0 ∈ Q1},

and the corresponding set for the HG station is

T2 = {(pin, pout, Q0) : pin ∈ Pin, pout ∈ Pout,2(pin), Q0 ∈ Q2}.

All values are chosen based on our experience with the technical capabilities of the
stations and with typical values in gas networks. Note that the flow values for the
test sets are given as volumetric flow under normal conditions, Q0, measured in 1000
normal cubicmeters per hour, as this is the standard technical unit in gas transportation.
It can easily be converted to mass flow via q = cQ0ρ0, where c = 1000/3600,
and ρ0 is the gas density under normal conditions. The sizes of the test sets are
|T1| = |T2| = 84.

All models are implemented using the modeling language GAMS (McCarl
2009) and the C++ software framework LaMaTTO++ (LaMaTTO++ 2015). As
global solvers for the MINLP model and its continuous (NLP type) reformula-
tions we use BARON 12.3.3 (Tawarmalani and Sahinidis 2002, 2004, 2005) and
SCIP 3.0 (SCIP 2015; Vigerske 2012). Additionally, we use the convex MINLP
solver KNITRO 8.1.1 (Byrd et al. 2006) as a heuristic for the nonconvex MINLPs and
as NLP solver for the continuous reformulations. As local solvers for the continuous
reformulations we use the interior-point code Ipopt 3.11 (Wächter and Biegler 2006)
and the reduced-gradient code CONOPT4 (Drud 1994, 1995, 1996) as well as the
three MINLP solvers. The solvers are run with default settings throughout, even for
solution tolerances, as it is virtually impossible to find settings that make the results
comparable in a strict mathematical sense.

All computations are executed on a six-core AMD Opteron Processor 2435 with
2600MHz and 64GB RAM. The operating system is Debian 7.5.

1 https://www.open-grid-europe.com.
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5.2 Measuring performance and robustness

To compare the computing times of different combinations of model formulations and
solvers, we use standard performance profiles (Dolan and Moré 2002). To this end, let
us define the performance measure

tp,s := computing time required to solve problem p ∈ Ti by s ∈ S ,

where the set S contains all 106 combinations of model formulations and solvers:
the MINLPmodel in big-M and bilinear product formulation combined with BARON,
SCIP, and KNITRO (1 × 2 × 3 = 6), and each of the five continuous reformulations
in four variants (big-M and bilinear product with both pseudo NCP functions each)
combined with all five solvers (5 × 4 × 5 = 100). We consider only the subsets of
feasible boundary values, Fi ⊂ Ti , defined to contain those instances for which at
least one combination s ∈ S produces a feasible solution. Now the performance ratio
rp,s associated with tp,s is

rp,s := tp,s
min{tp,s′ : s′ ∈ S } ∈ [1,∞).

Moreover, we set rp,s = rM := max{rp′,s′ : p′ ∈ Fi , s′ ∈ Si } for those instances p
that cannot be solved by s. The logarithmically scaled performance profile is finally
given by

ρs(τ ) := 1

|Fi | |{p ∈ Fi : log2(rp,s) ≤ τ }| ∈ [0, 1].

Finally, we remark that we use two different objective functions depending on the goal
of our analysis: If we consider the performance of the solution process, we minimize
costs using objective (8). For this case we also discuss the different solution qualities
obtained by the local solvers. If we consider the robustness of the solution process,
we use the empty objective f ≡ 0 since we are only interested in whether a feasible
point can be found or not. In the latter case, the time used for the performance profiles
thus equals the time required to find the first feasible point.

5.3 The GasLib-582 test set

The set F1 contains 48 instances of T1, hence 36 of the 84 instances are infeasible.
The computing times are up to 62 s in cases where solutions are found and up to 59 s in
cases where a solver detects infeasibility. Some of the instances are solved in fractions
of a second. This can happen, for instance, in the preprocessing of BARON due to
bound strengthening. As one would expect, the largest differences of computing times
are observed for the global solvers.

First we discuss the objective values that are obtained by the different formulations
and solvers. In theory, the global solvers BARON and SCIP should produce identical
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Table 4 GasLib-582 test set: numbers of false infeasibility reports and solver failures. Top: solver does
not find a feasible solution with any model, bottom: no solver finds a feasible solution with any variant of
given model

BARON SCIP KNITRO Ipopt CONOPT4

0 7 7 7 8

MINLP EBR ABR EUR AEUR AUR

7 1 0 0 2 5

objective values whereas the local optima found by the local solvers can be larger by
arbitrary amounts. However, our results show that the values of BARON and SCIP
slightly differ in some cases and that all model formulations and solvers produce
almost identical values on the current test set.

For every problem p ∈ F1, we compute the minimum and maximum objective
values f ∗

p,min and f ∗
p,max as well as the maximal absolute gap g∗

p = f ∗
p,max − f ∗

p,min.
The minimal values f ∗

p,min range from 0 to 0.008735 (operating cost in e/s), with
maximal gaps ranging from 0 to 0.008765. The average maximal gap over p ∈ F1 is
approximately 0.0012, but most of the individual gaps are actually zero. We assume
that differing objective values are mainly caused by different numerical properties of
the solvers. We also compared the discrete states of the compressor stations in the
optimal solutions for every instance. Different active states are found for 9 of the
48 feasible instances, 3 of which have boundary values of the form Q0 = 0 and
pu = pv , where the bypass mode and the closed mode are both feasible and globally
optimal with zero cost. The remaining 6 instances have different active configurations.
Thus, we have the surprising observation that on the current test set the local solvers
always yield optimal values close to the global minima. A possible reason could be
that many instances admit just one feasible discrete configuration. Unfortunately we
cannot find out whether this is true since it would require the huge effort of testing
feasibility for all discrete configurations.

Next, we turn to the issue of infeasibility detection. A substantial fraction of the
boundary values of our test set are infeasible: 36 out of 84. In theory, if a global
solver detects infeasibility of an instance, this is considered as an infeasibility proof.
However, due to numerical inaccuracy, this is not always true in practice. To give a
more detailed overview, we also list the numbers of feasible instances that are not
solved (i.e., infeasibility is reported or the solver simply fails) in Table 4. Among the
solvers, BARON clearly shows the most reliable results: for every feasible instance
there is at least one model formulation for which BARON produces a solution. All
other solvers report false infeasible results or fail in 7 or 8 cases. Surprisingly, this
is also true for the global solver SCIP. Regarding the different continuous reformu-
lations, the approximate bivariate and exact univariate reformulations are solved for
every feasible instance (at least by one solver). The worst result is obtained for the
MINLPmodel (7 failures). However, this result has to be carefully interpreted because
the MINLP is handled by only 3 solvers whereas all 5 solvers can handle the con-
tinuous reformulations. Within the set of reformulations, the approximate univariate
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Table 5 GasLib-582 test set: fastest solvers for every combination of MINLP model or continuous refor-
mulation with indicator constraint type and pseudo NCP function (BP: bilinear product)

Model big-M /φFB big-M /φprod BP/φFB BP/φprod

MINLP BARON BARON

Exact bivar. reform. BARON BARON BARON BARON

Approx. bivar. reform. KNITRO BARON BARON BARON

Exact univar. reform. BARON BARON BARON BARON

Alt. exact univar. reform. Ipopt BARON BARON CONOPT4

Approx. univar. reform. BARON BARON BARON CONOPT4

reformulation has by far the largest number of false infeasibility reports and solver
failures.

Let us now investigate the performance (measured in computing time) of all com-
binations s ∈ S . We define the fastest combination to be the one that has the largest
number of instances that it solves at least as fast as all other combinations, i.e., the
combination s with the largest value ρs(0) in the corresponding logarithmically scaled
performance profile. We use this value because it is a generally accepted quality mea-
sure. Of course, onemight also be interested in othermeasures such as the total runtime
of a model/solver combination s on all instances. To give a visual illustration, we need
some aggregation and compare the 106 combinations in two stages: in the first stagewe
determine the best combination of a solver with indicator constraint type and pseudo
NCP function for each of the 6 basic models: MINLP and 5 reformulations. In the
second stage, only the 6 best combinations of the first stage are compared. Table 5 lists
the fastest solvers for the MINLP model and the 5 reformulations. The solver printed
in bold is the fastest solver of the entire row, i.e., over all combinations of indicator
constraint types and pseudo NCP functions. Note that the MINLP model does not
involve any pseudo NCP functions, hence the first row has only two entries (big-M
and BP).

First, it can be seen that the global solver BARON is the fastest solver for 18 of the
22 model formulations. The local solvers Ipopt or CONOPT4 are faster in only three
cases. CONOPT4 is the overall fastest solver for the alternative exact and approximate
univariate reformulations. Second, it is apparent that the bilinear product used as
pseudo NCP function yields clearly faster runs than the Fischer–Burmeister function:
all the bold model/solver combinations use the bilinear product. Third, a best choice
of the type of indicator constraints (big-M vs. bilinear product) is not apparent by this
criterion. The full data set actually shows that the choice does not have a significant
impact here.

Figure 5 shows the 6 performance profiles of the fastest model/solver combinations
(bold) for each row of Table 5. Although BARON is faster than all other solvers on
the largest number of model formulations, it turns out that the preferable model/solver
combination does not use BARON. In order to determine the overall fastest combina-
tion, we again compare the values ρs(0). It can be seen that the local solver CONOPT4
(applied to the alternative exact and approximate univariate reformulations) produces
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Fig. 5 GasLib-582 test set: comparison of fastest combinations of indicator constraint type, pseudo NCP
function, and solver for MINLP and continuous reformulations; cf. Table 5

the shortest solution times for approximately 40% of all feasible instances. Notice
that both formulations solved with CONOPT4 are faster than all other combinations
if an instance can be solved by CONOPT4 at all (the “horizontal” lines of the perfor-
mance profiles of AEUR and AUR in Fig. 5 extend almost to the left boundary). This
is to be expected since local solvers typically tend to be faster than global solvers.
The global solver BARON applied to the other continuous reformulations yields sig-
nificantly slower solution times and is the fastest combination for 15 to 25% of the
feasible instances. Finally, BARON applied to the original MINLP model is distinctly
the slowest combination of solver and model formulation.

We now turn to robustness. The most robust combination is defined as the one that
solves the largest fraction of instances to optimality, i.e., the combination s with the
largest value

ρ∗
s := lim

τ↗rM
ρs(τ ).

As in the performance comparison,we list themost robust solver for every combination
ofmodel reformulation, indicator constraint type, and pseudoNCP function in Table 6.

Here BARON appears even more often than in the case of computing times: It is
always the most robust solver, except for the single case where SCIP is applied to
the MINLP model with bilinear products as indicator constraints. In contrast to the
case of computing times, the choice of pseudo NCP functions does not seem to have
a significant impact here.

Again we compare the 6 performance profiles of the best combinations (bold) for
each row of Table 6, see Fig. 6.
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Table 6 GasLib-582 test set: most robust solvers for every combination of MINLP model or continuous
reformulation with indicator constraint type and pseudo NCP function (BP: bilinear product)

Model big-M /φFB big-M /φprod BP/φFB BP/φprod

MINLP BARON SCIP

Exact bivar. reform. BARON BARON BARON BARON

Approx. bivar. reform. BARON BARON BARON BARON

Exact univar. reform. BARON BARON BARON BARON

Alt. exact univar. reform. BARON BARON BARON BARON

Approx. univar. reform. BARON BARON BARON BARON

Fig. 6 GasLib-582 test set: comparison of most robust combinations of indicator constraint type, pseudo
NCP function, and solver for MINLP and continuous reformulations; cf. Table 6

Overall, the results look more “homogeneous” than in Fig. 5. All combinations
produce comparatively good values ρ∗

s from 85 to 98% of solved instances. The
two bivariate reformulations produce the best values (significantly above 90%). Note
further that these model formulations use big-M indicator constraints. The good
robustness is probably caused by the convexity conserving property of the big-M
formulation, which contrasts with the inherently nonconvex bilinear products.

5.4 The HG test set

The set F2 contains 41 instances of T2, hence 43 of the 84 instances are infeasible.
The computing times are up to 67 s in cases where solutions are found and up to 45 s
in cases where a solver detects infeasibility.
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Table 7 HG test set: numbers of false infeasibility reports and solver failures. Top: solver does not find
a feasible solution with any model, bottom: no solver finds a feasible solution with any variant of given
model

BARON SCIP KNITRO Ipopt CONOPT4

1 3 2 8 5

MINLP EBR ABR EUR AEUR AUR

3 2 2 2 2 4

The minimal objective values (ine/s) now range from 0 to 0.069505 and the maxi-
mal gaps from0 to 0.022102. The averagemaximal gap over all p ∈ F2 is significantly
smaller than for F1 at approximately 0.0006778 and most of the individual gaps are
again zero. Except for one case, the active states in the optimal solutions for a given set
of boundary values are identical for all s ∈ S or consist of different sets of identical
compressor units yielding the same objective value.2 The exceptional case is exactly
the one leading to the maximal gap. Excluding this case reduces the maximal gap over
all instances by one order of magnitude.

In Table 7 we list the numbers of feasible instances for which a model could not be
solved to optimality (i.e., infeasibility is reported or the solver fails). As it was the case
for the GasLib-582 station, BARON yields the smallest number of false infeasibility
reports (just one).Moreover, the choice of the class of solver (global vs. local) seems to
be more crucial than the choice of the specific model formulation: the MINLP solvers
report false infeasibility in 1 to 3 cases whereas the local solvers have significantly
larger numbers of failure of 5 and 8.

Turning to the performance investigation,we follow the same two-stage approach as
before. Table 8 lists the fastest solvers for the MINLP model and all tested continuous
reformulations. It can be seen that BARON is the fastest solver for the MINLP model
(to which only global solvers can be applied) and that local solvers (CONOPT4 and
Ipopt) are the fastest for all continuous reformulations, where both global and local
solvers are applied. This is in line with our expectations since local solvers typically
tend to be faster than global solvers. Moreover, it is noticeable that the pseudo NCP
function φprod yields better results than the Fischer–Burmeister function φFB, and that
global solvers outperform local solvers when applied to big-M indicator constraints
while the converse behavior is observed for bilinear indicator constraints (except for
the case of BARON applied to the exact bivariate reformulation using bilinear indicator
constraints and φ = φprod).

Figure 7 shows the performance profiles for every bold combination of Table 8.
The approximate bivariate reformulation (ABR) solved with CONOPT4 is the over-
all fastest combination, performing best on more than 30% of all instances. The
approximate univariate (AUR), exact bivariate (EBR), and alternative exact univariate
(AEUR) reformulations combined with CONOPT4 come next, each performing best

2 The detection of mathematical symmetry in this situation could be used to reduce the complexity of the
corresponding station model.
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Table 8 HG test set: fastest solvers for every combination of MINLP model or continuous reformulation
with indicator constraint type and pseudo NCP function (BP: bilinear product)

Model big-M /φFB big-M /φprod BP/φFB BP/φprod

MINLP KNITRO BARON

Exact bivar. reform. BARON CONOPT4 CONOPT4 BARON

Approx. bivar. reform. BARON CONOPT4 Ipopt Ipopt

Exact univar. reform. KNITRO BARON Ipopt Ipopt

Alt. exact univar. reform. Ipopt SCIP Ipopt CONOPT4

Approx. univar. reform. BARON SCIP Ipopt CONOPT4

Fig. 7 HG test set: comparison of fastest combinations of indicator constraint type, pseudo NCP function,
and solver for MINLP and continuous reformulations; cf. Table 8

on roughly 20% of all instances. Since the approximate univariate formulation shows
better results than EBR and AEUR for small values τ > 0, we may summarize that
the approximate reformulations (combined with φ = φprod) tend to be the fastest com-
binations. A possible reason might be that for local solvers the enlarged feasible set is
preferable to the feasible sets of lower dimension of the exact reformulations. In addi-
tion, the overall preferable approximate bivariate scheme is also the “most regular”
formulation with respect to the LICQ (cf. Sect. 4.2). Finally we note that in terms of
solution times both the exact univariate reformulation and the MINLP model cannot
compete with the other reformulations.

Regarding robustness, the situation changes completely. We list the most robust
solver (the one with largest ρ∗

s ) for every combination of model reformulation, indi-
cator constraint type, and pseudo NCP function in Table 9. For the original MINLP
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Table 9 HG test set: most robust solvers for every combination of MINLP model or continuous reformu-
lation with indicator constraint type and pseudo NCP function (BP: bilinear product)

Model big-M /φFB big-M /φprod BP/φFB BP/φprod

MINLP KNITRO SCIP

Exact bivar. reform. BARON BARON BARON BARON

Approx. bivar. reform. BARON BARON BARON BARON

Exact univar. reform. BARON SCIP BARON BARON

Alt. exact univar. reform. BARON SCIP BARON BARON

Approx. univar. reform. BARON SCIP KNITRO BARON

model, KNITRO (with big-M indicator constraints) and SCIP (with bilinear indicator
constraints) are equally robust. BARON is the most robust solver in 80% of all con-
tinuous reformulations. The bilinear product indicator constraints always yield better
results than the big-M ones. Except for KNITRO applied to the approximate univariate
reformulation using bilinear indicator constraints and φ = φFB, no local solver is more
robust than one of the global solvers.

The performance profiles of the most robust combinations of Table 9 are given
in Fig. 8. All models yield comparable results, solving 85 to 93% of all instances.
The highest percentages are obtained by the original MINLP and the exact bivariate
reformulation (EBR). The fastest continuous reformulations, i.e., the approximate
bivariate and the alternative approximate univariate reformulation, yield the smallest
values at approximately 85%. Thus, we have exactly the opposite situation as for the
performance comparison.

5.5 Continuous reformulations of entire networks

Let us now extend our approach of continuous reformulations to MINLP models of
entire gas networks. To this end, we combine the reformulations presented in this
paper with suitable MPEC based reformulations of all controllable network devices
(except compressor stations) (Pfetsch et al. 2015; Schmidt 2013; Schmidt et al. 2013,
2015b). In our computational study,we combine theMPECbasedmodel of the network
with all combinations of pseudo NCP functions, indicator constraints, continuous
reformulations, and local solvers discussed in the previous sections. Each of these
combinations is applied to 50 randomly chosen instances of theGasLib-582 network.3

All instances are solved with the goal of feasibility testing, i.e., with objective function

3 The 50 randomly chosen instances are cold_1461, cold_1466, cold_1689, cold_2311, cold_2406,
cold_2763, cold_3824, cold_4105, cold_712, cool_122, cool_1500, cool_1586, cool_1766, cool_1770,
cool_1929, cool_2045, cool_2208, cool_2270, cool_2859, cool_3400, cool_3409, cool_3885, cool_3929,
cool_4031, cool_416, cool_4192, cool_526, cool_543, cool_821, freezing_1106, freezing_1416, freez-
ing_1599, freezing_164, freezing_2206, freezing_3078, freezing_3853, freezing_402, freezing_728,
mild_1203, mild_1344, mild_1459, mild_3124, mild_92, warm_1215, warm_2356, warm_2689,
warm_2718, warm_3048, warm_3235, warm_916.
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Fig. 8 HG test set: comparison of most robust combinations of indicator constraint type, pseudo NCP
function, and solver for MINLP and continuous reformulations; cf. Table 9

f ≡ 0; cf. Sect. 5.2. The time limit of all computations is set to 2 min, and we use the
same hardware and software as in the preceding sections.

The results for embedding continuous reformulations of compressor stations in
entire network models are of interest for, at least, two reasons. First, they give insight
into the situation where boundary values are restricted to nontrivial ranges, rather than
being fixed as in the study presented so far. Second, they provide a first impression on
the robustness of solving purely continuous network models.

Table 10 lists the number of feasible solutions found by the individual reformula-
tions. It turns out that the choice of the pseudo NCP function (Fischer–Burmeister vs.
product) is not crucial here: 51 combinations using φFB and 57 combinations using
φprod are solved to feasibility. Similarly, the choice of the specific indicator constraint
type does not appear to be of great importance for entire networks (61 feasible solutions
for big-M constraints and 47 for bilinear product constraints).

In contrast, the choices of reformulation scheme and local solver have a strong
influence. All univariate reformulation schemes (EUR, AEUR, and AAUR) yield fea-
sible solutions significantly less often (9, 13, and 8 times) than the exact bivariate
(EBR; 45 feasible solutions) and the approximate bivariate reformulation scheme
(ABR; 33 feasible solutions). Concerning the tested local solvers, Ipopt (70 feasible
solutions) clearly outperforms both CONOPT4 (37) and KNITRO (1).

In total, 38 instances (76%) are solved to feasibility. The most successful combina-
tion (printed bold in Table 10) combines the Fischer–Burmeister pseudo NCP function
with big-M indicator constraints, the exact bivariate reformulation scheme, and the
local solver CONOPT4.
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Table 10 Number of solved
instances (k) for every
combination of pseudo NCP
function (pNCP), indicator
constraint type (cind),
continuous reformulation, and
local solver. All combinations
for which no feasible solution
could be found are not listed

pNCP cind Reformulation Solver k

φFB big-M ABR Ipopt 9

φFB big-M ABR CONOPT4 5

φFB big-M EBR Ipopt 9

φFB big-M EBR CONOPT4 14

φFB bilin. prod. AAUR Ipopt 2

φFB bilin. prod. AEUR Ipopt 4

φFB bilin. prod. EUR Ipopt 3

φFB bilin. prod. ABR Ipopt 1

φFB bilin. prod. ABR CONOPT4 2

φFB bilin. prod. EBR Ipopt 1

φFB bilin. prod. EBR CONOPT4 1

φprod big-M AAUR Ipopt 1

φprod big-M AAUR KNITRO 1

φprod big-M AEUR Ipopt 1

φprod big-M EUR Ipopt 1

φprod big-M ABR Ipopt 7

φprod big-M ABR CONOPT4 3

φprod big-M EBR Ipopt 10

φprod bilin. prod. AAUR Ipopt 4

φprod bilin. prod. AEUR Ipopt 8

φprod bilin. prod. EUR Ipopt 5

φprod bilin. prod. ABR Ipopt 2

φprod bilin. prod. ABR CONOPT4 4

φprod bilin. prod. EBR Ipopt 2

φprod bilin. prod. EBR CONOPT4 8

The analysis of the results shows that feasibility testing for entire gas networks is
possible with purely continuous models in principle. However, the used combinations
of MPEC models and continuous compressor station reformulations have to be tested
in more detail in order to increase the robustness of the formulations. This is a subject
of future research.

5.6 Summary

A major result of our study is that local solvers applied to continuous reformulations
tend be faster than global solvers applied to themixed-integermodel and its continuous
reformulations. This was to be expected. Moreover, our numerical results suggest that
this tendency becomes more evident for larger instances. When comparing only the
continuous reformulations, the results for the larger compressor station HG indicate
that reformulations with larger feasible sets are preferable and that the regularity of the
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formulation has a strong impact on the performance of the solution process. (Recall
that the “most regular” approximate bivariate reformulation yields the best solution
times on the large test set.) Finally, global solvers (especially BARON) produce more
robust results, independent of the choice of model formulation.

Our results also indicate which types of indicator constraints work well with a given
solver. Especially for larger instances, global solvers tend to be faster on big-M for-
mulations while local solvers perform better with bilinear products. A probable reason
for this is that the behavior of global solvers is stronger influenced by nonconvexity
than it is the case for local solvers. The situation changes with regard to robustness
of the solution process, where the bilinear indicator constraint is clearly preferable to
the big-M formulation.

A second observation concerns the preferable type of pseudo NCP functions:
The product formulation φprod distinctly outperforms Fischer–Burmeister functions.
Although the latter are quite prominent in the literature, the simple formulation using
products usually produces faster and more robust formulations in practice.

Finally we can state that, for the models considered in this paper, there are no
significant drawbacks concerning the quality of solutions when local solvers are used.
These results are perhaps not entirely surprising for the considered class of real-world
problems. However, no systematic study exists in the literature up to now.

The tendencies observed above might change when fixed boundary values are
replaced with nontrivial feasible ranges. This happens, e.g., when the tested con-
tinuous reformulations of compressor stations are used in continuous models of entire
networks. As expected, the resulting instances are hard, but we have seen in Sect. 5.5
that in principle they can be solved by local solvers. Nevertheless, more extensive
testing of model combinations and possibly the development of further model variants
are required in order to obtain more robust formulations. Both issues are subjects of
future research.

6 Conclusion

In this article we have presented MINLP and GDP models for cost optimization and
feasibility testing of gas compressor stations. Moreover, we have considered different
types of continuous reformulation techniques from the literature and applied them to
the application problem. Our computational study shows that local solvers applied to
continuous reformulations can be used to replace MINLP formulations that can only
be tackled by global solvers. The continuous reformulations yield comparably robust
results, optimal values of almost the same quality on our test set, and tend to be solvable
within shorter solution times. Together with the techniques developed in Pfetsch et al.
(2015), Schmidt (2013), Schmidt et al. (2013), and Schmidt et al. (2015b), this article
provides a complete continuous reformulation of the discrete-continuous problem of
stationary gas transport optimization. Additionally, first promising numerical results
on a large-scale network underpin the practical usability of continuous reformulations
for entire networks.

However, somequestions remain open.Wehave considered a stationary and isother-
mal variant of the problem of compressor station optimization. Since including gas
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temperature as a dynamic variable mainly leads to increased nonlinearity and noncon-
vexity in the model, we expect that continuous reformulations tend to be even more
favorable for these models. In contrast, the consideration of the transient case will also
increase the amount of discrete aspects so that it is unclear which formulation will be
favorable in this case. Finally, more extensive testing of suitable continuous models
for entire networks is a subject of future research.

Acknowledgments This work has been supported by the German Federal Ministry of Economics and
Technology owing to a decision of the German Bundestag. The responsibility for the content of this pub-
lication lies with the authors. This research has been conducted as part of the Energie Campus Nürnberg
and supported by funding through the “Aufbruch Bayern (Bavaria on the move)” initiative of the state of
Bavaria. We are also very grateful to Benjamin Hiller for his comments on an earlier version of this paper.
Finally, we thank our former industry partner Open Grid Europe GmbH for their support.

Compliance with ethical standards

Conflicts of interest The authors declare that they have no conflict of interest

Human and Animal Participants This article does not contain any studies with human or animal subjects

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.

References

Banda MK, Herty M (2008) Multiscale modeling for gas flow in pipe networks. Math Methods Appl Sci
31:915–936. doi:10.1002/mma.948

Banda MK, Herty M, Klar A (2006) Gas flow in pipeline networks. Netw Heterog Media 1(1):41–56.
doi:10.3934/nhm.2006.1.41

Baumrucker BT, Renfro JG, Biegler LT (2008) MPEC problem formulations and solution strategies with
chemical engineering applications. Comput Chem Eng 32:2903–2913. doi:10.1016/j.compchemeng.
2008.02.010

BockHG,Kostina E, PhuHX, Rannacher R (eds) (2005)Modeling, simulation and optimization of complex
processes. Springer, Berlin

Brouwer J, Gasser I, Herty M (2011) Gas pipeline models revisited: model hierarchies, nonisothermal
models, and simulations of networks. Multiscale Model Simul 9(2):601–623. doi:10.1137/100813580

Byrd RH, Nocedal J, Waltz RA (2006) KNITRO: An integrated package for nonlinear optimization. In:
Large scale nonlinear optimization, Springer Verlag, pp 35–59. doi:10.1007/0-387-30065-1_4

Carter RG (1996) Compressor station optimization: computational accuracy and speed. In: 28th annual
meeting, Pipeline Simulation Interest Group. Paper 9605

Carter RG (1998) Pipeline optimization: dynamic programming after 30 years. In: PSIG 30th annual meet-
ing, Denver, Colorado. Paper 9803

Carter RG, Schroeder DW, Harbick TD (1994) Some causes and effects of discontinuities in modeling and
optimizing gas transmission networks. Tech. rep, Stoner Associates, Carlisle, PA, USA

Cobos-Zaleta D, Ríos-Mercado RZ (2002) AMINLP model for a problem of minimizing fuel consumption
onnatural gas pipeline networks. In: Proceedings ofXILatin-Ibero-American conference onoperations
research, pp 1–9. Paper A48–01

Dolan ED, Moré JJ (2002) Benchmarking optimization software with performance profiles. Math Program
91(2):201–213. doi:10.1007/s101070100263

Domschke P, Geißler B, Kolb O, Lang J, Martin A, Morsi A (2011) Combination of nonlinear and linear
optimization of transient gas networks. INFORMS J Comput 23(4):605–617. doi:10.1287/ijoc.1100.
0429

123

http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.1002/mma.948
http://dx.doi.org/10.3934/nhm.2006.1.41
http://dx.doi.org/10.1016/j.compchemeng.2008.02.010
http://dx.doi.org/10.1016/j.compchemeng.2008.02.010
http://dx.doi.org/10.1137/100813580
http://dx.doi.org/10.1007/0-387-30065-1_4
http://dx.doi.org/10.1007/s101070100263
http://dx.doi.org/10.1287/ijoc.1100.0429
http://dx.doi.org/10.1287/ijoc.1100.0429


Computational optimization of gas compressor stations… 443

Drud AS (1994) CONOPT—a large-scale GRG code. INFORMS J Comput 6(2):207–216. doi:10.1287/
ijoc.6.2.207

DrudAS (1995) CONOPT: a system for large scale nonlinear optimization, tutorial for CONOPT subroutine
library. Tech. rep, ARKI Consulting and Development A/S, Bagsvaerd, Denmark

Drud AS (1996) CONOPT: a system for large scale nonlinear optimization, reference manual for CONOPT
subroutine library. Tech. rep, ARKI Consulting and Development A/S, Bagsvaerd, Denmark

Ehrhardt K, Steinbach MC (2004) KKT systems in operative planning for gas distribution networks. Proc
Appl Math Mech 4(1):606–607. doi:10.1002/pamm.200410284

Ehrhardt K, Steinbach MC (2005) Nonlinear optimization in gas networks. In: Bock et al. (eds) Model-
ing, simulation and optimization of complex processes. Springer, Berlin, pp. 139–148. doi:10.1007/
3-540-27170-8_11

Eurostat (2013) Gross inland energy consumption by fuel type. http://epp.eurostat.ec.europa.eu/tgm/
refreshTableAction.do?tab=table&plugin=1&pcode=tsdcc320&language=en. Downloaded on 2 Oct
2015

Fischer A (1992) A special Newton-type optimization method. Optimization 24(3–4):269–284. doi:10.
1080/02331939208843795

Geißler B, Morsi A, Schewe L (2013) A new algorithm for MINLP applied to gas transport energy cost
minimization. In: Jünger M, Reinelt G (eds) Facets of combinatorial optimization, Springer, Berlin
Heidelberg, pp 321–353. doi:10.1007/978-3-642-38189-8_14

Geißler B (2011) Towards globally optimal solutions forMINLPs by discretization techniques with applica-
tions in gas network optimization. Ph.D. thesis, Friedrich-Alexander Universität Erlangen-Nürnberg,
Germany

Grossmann IE (2002) Review of nonlinear mixed-integer and disjunctive programming techniques. Optim
Eng 3(3):227–252. doi:10.1023/A:1021039126272 Special issue on mixed-integer programming and
its applications to engineering

Gugat M, Hante FM, Hirsch-Dick M, Leugering G (2015) Stationary states in gas networks. Netw Heterog
Media 10(2):295–320. doi:10.3934/nhm.2015.10.295

Humpola J, Joormann I, Oucherif D, Pfetsch ME, Schewe L, Schmidt M, Schwarz R (2015) GasLib—a
library of gas network instances. http://www.optimization-online.org/DB_HTML/2015/11/5216.html
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