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Two genes recently identified in Arabidopsis thaliana may be 

involved in sequestering free copper ions in the cytoplasm and 
delivering copper to post-Golgi vesicles. The genes COPPER 
CHAPERONE and RESPONSIVE TO ANTAGONISTt are 
homologous to copper-trafficking genes from yeast and 
humans. This plant copper-delivery pathway is required to 
create functional ethylene receptors. The pathway may also 

facilitate the transport of copper from senescing leaf tissue. In 
addition. several other genes have been identified recently that 

may have a role in copper salvage during senescence. 
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Abbreviations 
ATX1 ANTIOXIDANT1 
ses BLUE-COPPER-BINDING PROTEIN 
eee2 Ca2+-SENSITIVE CROSS-COMPLEMENTER2 
CCH COPPER CHAPERONE 
EIN2 ETHYLENE-INSENSITIVE2 
ETR1 ETHYLENE RECEPTOR1 
HAH1 HUMAN ATX HOMOLOG1 
MNK MENKES 
MT METALLOTHIONEIN 
RAN1 RESPONSIVE TO ANTAGONIST1 
SAG SENESCENCE-ASSOCIATED GENE 

IntrOduction 
Copper is an excellent catalyst for redox reactions. Thus, it 
is not surprising that copper is an essential component of 
many of the electron carriers involved in oxidative phos­
phorylation and photosynthesis. In addition, copper 
participates in the detoxification of oxygen radicals gener­
ated by metabolism. Nevertheless, the reactivity of copper 
that makes it so useful in redox reactions also makes it 
toxic. For example, free copper will readily oxidize the 
thiol bonds within proteins causing a disruption of their 
secondary structure. Thus, cells must accumulate copper 
and distribute it to the cellular components that require it 
while preventing its toxic effects. 

Work in yeast,· mice and humans, has resul.ted. in' the" emer­
gence of a picture of 'specific, intracellular copper­
trafficking pathways [1]. The first components of these path­
ways are a variety of cytoplasmic copper chaperones. These 
chaperones sequester copper in a nonreactive form and inter­
act with other transport proteins to deliver copper to where it 
is needed within cells, Recently, two. genes have been iden­
tified from Arobidopsis tho/ioRO that encode the first 
components of the. inttaeellular copper-delivery system .00 be. 

identified in plants. The products of these genes, COPPER 
CHAPERONE (CCH) and' RESPONSE TO 
ANTAGONISTI (RANI) may interact to move copper from 
the !=Ytoplasm into post-Golgi vesicles. Little is known of the 
contribution of this pathway to copper; homeostasis and 
metabolism in plants. Initial characterization of the copper­
trafficking pathway components suggests that they may be 
involved in the delivery of copper to ethylene receptors and 
in the transport of copper from senescing leaves [zo0-400]. 

The study of intracellular copper trafficking began with 
the identification of a rare human metabolic disorder. The 
first report of what would become known as 'Menkes' 
kinky hair syndrome' detailed the symptoms of an untreat­
able, X-linked disease that was caused by a defective 
recessive gene and therefore primarily affected males [5]. 
Menkes' disease patients suffered from retarded growth 
and severe cerebral degeneration that caused their death 
within their first three years. Associated with these symp­
toms was the growth of wiry, brittle hair. Investigators later 
realized that this brittle hair is similar to the wool of sheep 
grazed on copper-poor forage [6]. It was eventually estab­
lished that Menkes' disease resulted from a defect in 
copper transport that caused 'copper starvation' symptoms 
in some tissues. Despite adequate dietary copper, patients 
had defective intestinal absorption of copper [7]. 

The defective gene in Menkes' disease (MNK) has been 
cloned and shown to encode a metal-binding ATPase that.is 
localized to the trans-Golgi [8-11]. It is therefore suspected 
that in Menkes' disease patients, the absence of this ATPase 
prevents some form of copper transport. Researchers study­
ing the MNK homolog from yeast, Co2+-SENSITIVE 
CROSS-COMPLEMENTER2 (CCC2), found the product of 
this gene in the membranes of post-Golgi vesicles [IZ], and 
found that it forms part ofa specific copper-delivery pathway 
[13] (Figure la). CCCZ was found to interact with a cyto­
plasmic copper chaperone, ANTIOXIDANTl (ATXl) [13]. 
Through this interaction, copper is transferred from ATXl to 
CCCZ and then into the lumen of the post-Golgi vesicle. 
Once inside the post-Golgi vesicle, the copper can be insert­
ed into copper-requiring proteins as they make their way to 
the plasma membrane, the endomembrane system or to be 
secreted. A human homolog of ATXI, HUMAN ATX 
HOMOLOG (HAHI) (Figure Ib), has been found, indicating 
that this pathway is conserved in eukaryotes [14]. In d1is 
review we describe recent advances in the study of an intra­
cellular copper trafficking pathway in plants. This pathway 
may supply copper to ethylene receptors and transport cop­
per during leaf senescence. 

Identification of CCH and RANt 
Functional homologs of both ATXI/HAHI andCCC2/MNK, 
Which have the ability to fcaseue yeasrinwhich thcscgcnes" 
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Comparison of copper-trafficking pathways in yeast, human and 
Arabidopsis. (a) In yeast, when copper (Cu2+, shown as a black dot) 
enters the cytoplasm it is bound by ATXl [361. ATXl interacts with a 
membrane-bound ATPase, CCC2, in the membrane of post-Golgi 
vesicles [131. As a result of this interaction, the copper is transferred 
into the lumen of the vesicle. Once inside, copper may have many 
destinations (represented by'?'), but the best characterized is 
FERROUS TRANSPORT3 (FET3), a copper-dependent iron oxidase 
[12,37,38]. (b) The human homologous copper-trafficking pathway. 
Copper is bound in the cytoplasm by HAH1, the human ATX1 
homolog. HAH1 interacts with the CCC2 homolog, MNK, to deliver 
the copper into the lumen of the trans-Golgi. Although copper may 
then become incorporated into other proteins ('?') a known destination 
is the human FET3 homolog, ceruloplasmin (CER) [371. When 
cytoplasmic copper concentrations are elevated, MNK travels to the 
plasma membrane where it functions in copper efflux [161. MNK cycles 
back to the trans-Golgi when copper levels decrease. (c) A possible 
copper-trafficking pathway in plants. Copper in the cytoplasm is bound 
by the ATXlIHAHl homolog, CCH. Unlike ATXl and HAH1, CCH has 
a carboxy-terminal helix domain. CCH may interact with RANl to 
transport copper into a lumen of some vesicle, possibly a post-Golgi 
vesicle. Although the destination of copper within this vesicle is 
unknown ('?'), ethylene receptors, such as ETR1, may depend on 
RANl for copper delivery [3··,4··1. PM, plasma membrane. 

are mutated, have been identified from Arabidopsis 
tltaliana [ZOO,300] (Figure lc). Arabidopsis CCH was initially 
identified by a search for genes that are upregulated dur­
ing leaf senescence [ZOO]. CCH is similar to ATXl at the 
amino-acid level, particularly in the location and content of 
its metal-binding domains. One feature that is unique to 

CCH is a 47-amino-acid carboxy-terminal extension that is 
absent from ATXl as well as from its human and mouse 
homologs [ZOO]. This region is believed to form a helix with 
one positively charged face and one negatively charged 
face. The function of this helix is unknown, but the possi­
bilities that it contributes to targeting or protein-protein 
interactions are under investigation. 

RANI was identified by a screen for mutations that alter 
sensitivity to the hormone ethylene (the involvement of 
RANI in ethylene perception is discussed below). The 
sequence of RANi revealed that it is the Arabidopsis 
CCC2/MNK homolog, and it has been shown that RANi can 
rescue ccc2 mutant yeast [3"0]. The metal-binding, mem­
brane-spanning and ATPase domains of RANI are similar 
to those of CCCZ/MNK, yet both RAN 1 and CCCZ do not 
appear to have an important targeting feature that is present 
in MNK [3°°]. MNK contains two leucine repeats that form 
a targeting signal for retention in the trans-Golgi membrane 
[ISO]. Interestingly, MNK appears to remain in the pOSt­
Golgi except under conditions of elevated cytoplasmic 
copper in which MNK travels to the plasma membrane 
where it functions in copper effiux from the cell [16]. Once 
copper levels are reduced, MNK returns to the trans-Golgi 
[t6]. Thus, ligand-mediated targeting allows MNK to func­
tion in both copper trafficking and in defense against 
copper accumulation. Although RANI lacks the leucine 
repeats that act as signals for ligand-mediated targeting 
[3°°] it is unclear whether RANt contains other plant-spe­
cific Golgi retention signals -indeed, it has not been 
determined whether RANt is localized to the plant post­
Golgi at all. It will be interesting to determine whether 
RANt can shuttle between the plasma membrane and 
some internal membrane, and if so, whether cytoplasmic 
copper levels influence this movement. 

Copper delivery and ethylene perception 
The rani mutant is altered in ethylene perception 
[3°°,4°°]. The ethylene receptor, ETRl, forms a homod­
imer and is probably present in the plasma membrane. 
The ETRI homodimer surrounds a single copper atom 
that is required for high-affinity ethylene binding [17°]. In 
Arabidopsis, there are five ethylene receptors all of which 
contain a conserved cysteine residue that has been shown 
to be critical for copper binding in ETRI [17°,18]. 
Therefore, it is probable that, like ETRi, all five ethylene 
receptors are copper-dependent. It has been suggested 
that the ethylene receptors dimerize and bind copper in 
the post-Golgi system as they move toward the membrane 
in which they act. If this is true, then RAN t is a strong can­
didate for the delivery of copper to the receptors. This 
hypothesis.is supported by the phenotype of ranI mutants. 



The ethylene response includes the 'triple response' in 
seedlings (i.e. hypocotyl elongation is inhibited, the 
hypocotyl exhibits radial swelling and the hypocotyl hook 
is exaggerated), the upregulation of ethylene-induced 
genes and the inhibition of cell expansion (see Figure 2) 
[19,20]. Ethylene recepwrs that have not bound ethylene 
negatively regulate the ethylene response through a cyw­
plasmic signaling domain [18,21°]. Ethylene binding 
probably induces a conformational change in the recepwr 
that inactivates the signaling domain and thereby allows 
the ethylene response w occur [22]. Mutations that elimi­
nate ethylene binding create dominant insensitivity w 
ethylene because the negative regulatory signaling domain 
is never inactivated [22]. Loss-of-function mutations that 
eliminate the receptors or disrupt the signaling domains 
show a constitutive ethylene response [21°]. 

Ronl mutants have two possible ethylene-related pheno­
types. First, the absence of copper from the 
ethylene-binding site could prevent ethylene binding and 
cause ethylene insensitivity. Second, and more likely, the 
absence of copper could prevent the functioning of the sig­
naling domain possibly by inducing a conformational change 
in the receptors that target them for degradation. Either way, 
the loss of signaling function would cause a constitutive eth­
ylene response. Indeed, plants in which RANI expression is 
undetectable because of co-suppression and ranI loss-of­
function mutants appear to have a constitutive ethylene 
response ([3°°,4°°]; E Himelblau, RM Amasino, unpub­
lished data) (Figure 2a). Loss-of-function mutants have 
been identified for four of the five ethylene receptors [21°]. 
Interestingly, genetic experiments in which double, triple 
and quadruple receptor mutants were constructed reveal 
that the strength of the constitutive ethylene-response phe­
notype increases with the number of receptors mutated 
[21°] (Figure 2b). The ronl mutant appears w have a 
stronger ethylene response than even the quadruple mutant 
(Figure 2b,c) ([3"°,4°°]; E Himelblau, RlVI Amasino, unpub­
lished data). It is possible, therefore, that the ranI mutation 
biochemically creates the 'quintuple mutant' in which all of 
the ethylene receptors are inactive. In addition, the loss of 
activity of copper-requiring proteins may contribute to the 
ranI phenotype. 

Gene expression studies of ~-chitinase, a gene known to be 
upregulated in response to ethylene [23] have revealed that 
the ranI phenotype is not entirely a product of the ethylene 
response. rafll mutants express ~-chitiflase throughout 
development, supporting the notion that ranI produces a 
constitutive ethylene response [4°°]. Double mutants have 
been constructed that contain mutations in both RANI and 
ETHYLENE-INSENSITIVE2 (EIN2) [4°°]. The EIN2 
gene product acts downstream of the ethylene receptors 
and is essential for the ethylene response. Therefore, loss­
of-function ein2 mutations cause ethylene insensitivity [24]. 
Because ein2 eliminates the ethylene response, the 
ranI; ein2 double mutant should theoretically display only 
ranI phenotypes that are independent of the ethylene 

Figure 2 
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The Arabidopsis ran 1 mutant has altered ethylene sensitivity. 
(a) Response of dark-grown seedlings to ethylene. Wild-type (WD 
seedlings grown in air have an etiolated phenotype (i.e. a long, thin 
hypocotyl). In the presence of ethylene WT seedlings show the 'triple 
response' (i.e. hypocotyl elongation is inhibited, the hypocotyl exhibits 
radial swelling and the hypocotyl hook is exaggerated) [191. A ran1-4 
mutant, shows a constitutive triple response when grown in either air or 
ethylene. The ran1·4 allele (E Himelblau, RM Amasino, unpublished 
data) is caused by a transfer-DNA insertion in the coding region of 
RAN1. (b) The ran1-4 mutant is phenotypically similar to plants with 
loss of ethylene receptor function. Lines were created in which 
increasing numbers of ethylene receptors are disrupted [21·1. The triple 
mutant has disruptions in the ethylene receptors ETR1 , ETR2 and 
EI N4. The quadruple mutant has disruptions in the ethylene receptors 
ETR1, ETR2, EIN4 and ERS2. The degree of inhibition of cell 
expansion is proportional to the number of ethylene receptors disrupted. 
The ran1 mutant is severely inhibited in cell expansion ([3··,4··); 
E Himelblau, RM Amasino, unpublished data). (c) The ran1 mutant 
shown next to a US penny. 

response. As expected the ranI; ein2 double mutailt 
appears to be ethylene insensitive as a seedling and does 
not exhibit ~-chitinose induction at any point in its develop­
ment, indicating that ethylene responses are absent in this' 
background [4°°]. Interestingly, the ranI .. ein2 adult is 
indistinguishable from the ranI mutant having severe inhi­
bition in cell expansion [4°']. Thus, it appears that the 
dwarfed phenotype of the ranI mutant is independent of 
the ethylene response, and that the ranI mutant is likely to 
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Changes in gene expression, copper concentrations and nitrogen 
concentrations during Arabidopsis leaf senescence. (8) Leaves of 
Arabidopsis thaliana at 23 and 28 days after germination (DAG). At 23 
DAG, the leaf is fully expanded but does not show the leaf-yellowing 
that is indicative of senescence. At 28 DAG, the leaf has lost 
approximately one-half of its chlorophyll and is midway through 
senescence. (b) An RNA blot analysis of copper-trafficking genes 
during senescence. The steadY'state levels of COPPER 
CHAPERONE (COl) and RESPONSIVE TO ANTAGONIST1 
(RAN1) are increased in the senescent leaf. The mRNA levels of 
CHLOROPHYLL AlB BINDING PROTEIN (CAB) were also 
determined. CAB is known to be downregulated in senescing leaves 
[39]. (c) Concentrations of nitrogen and copper in the leaves at 23 
and 28 DAG. The fall in nitrogen and copper concentrations indicate 
the extent of nutrient salvage from senescent leaves ([2001; 
E Himelblau, RM Amasino, unpublished data). 

be altered in many copper-related processes. The analysis 
of ranI phenotypes that are independent of ethylene per­
ception will be an interesting area of future research. 

23 

Copper transport during leaf senescence 
Both CCH and RANI are upregulated during leaf senes­
cence suggesting that they have a role in that process 
([ZOO); E Himelblau, RM Amasino, unpublished data) 
(Figure 3). During leaf senescence, nitrogen, phosphorus 
and certain metal ions contained in leaves are mobilized 
and transported to seeds, fruits, storage organs or other 
growing parts of the plants. This mobilization provides the 
plant with a means of 'recycling' important nutrients from 
old, shaded or damaged leaves that no longer contribute 
photosynthates to the plant [Z5). Copper is among the 
nutrients transported from senescent leaves in many 
species including Arobidopsis [zoo,Z6-Z8) (Figure 3). 

Several possible {"ales have been suggested for CCH and 
RANt in the process of copper recycling during senes­
cence. One role could be to sequester copper as it is 
released by the degradation of copper-containing proteins 
in the chloroplast. Such sequestration would prevent free 
copper from poisoning the cell and preventing the salvage 
of nutrients. Potentially, CCH could bind newly freed cop­
per in the cytoplasm and then interact with RANI to 
further sequester the copper in a storage vesicle. A second 
possible role for CCH and RANI could be to deliver cop­
per to a system that exports it from the leaf. In this 
scenario, cytoplasmic copper could be bound by CCH, 
passed to RANI and then into a post-Golgi vesicle. Within 
the vesicle, copper carriers bind the copper prior to fusion 
of the vesicle with the plasma membrane. In a third possi­
ble scenario, RANI could pump copper out of the cell 
directly if, like MNK, RANI is localized to the plasma 
membrane during periods when copper is accumulating in 
the cytoplasm [16). The unique carboxy-terminal helix of 
CCH may a)so have a senescence-specific role either in 
targeting or protein-protein interactions or in targeting 
CCH to a distinct intracellular location, but this remains to 
be determined. It will be important to determine whether 
a mutation in CCH or RANI can prevent the export of 
copper from senescing leaves. 

Studies of leaf senescence have focused on identifying genes 
that are upregulated during senescence [Z9). These 'senes­
cence-associated genes' (SAGs) are thought to carry out the 
processes that constitute leaf senescence. Several of the SAGs 
identified thus far appear to be involved in maintaining cop­
per homeostasis. As discussed above, because copper is so 
reactive, sequestration of newly freed copper would seem to 
be necessary to prevent its toxic effects that would kill the cell 
before the senescence process was complete. One metalloth­
ionein encoding gene METALLOTHlONE1N I (MTJ), is 
upregulated during leaf senescence in Arabidopsis [30'). MTI 
expression in leaves is typically low but this gene is induced 
in leaves that have higher than normal copper concentrations, 
suggesting that MTI has a role in toxicity defense [zo·,31). 
Indeed, the Arabidopsis MTI can defend transgenic yeast 
from toxic concentrations of copper in the growth medium 
[31). These observations are consistent with a role for MTI in 
thwarting copper toxicity during leaf senescence when 



copper is freed from the chloroplasts. A similar metalloth­
ionein, LSCS4, that is also upregulated during leafsenescence 
has been identified in Brossico napus [32]. Interestingly, MT2, 
another Arabidopsis metallothionein gene is expressed in 
leaves prior to senescence but is not a SAG [31]. , 
COPPER-BINDING PROTEIN (BCB) is also uprel 
during senescence yet its contribution to the senescen 
drome is less well defined [30']. BCB, a membrane· 
protein that is related to plastocyanin, is probably cap 
electron transport [33]. As chloroplast membranes 
down, the disruption of normal electron flow through the 
light-harvesting complexes could result in oxidative damage. 
BCB may sequester copper freed as the photosystems are 
broken down (i.e. form an early step in the salvage of copper 
from the senescing leaf cell). 

The findings that several genes encoding copper-bind­
ing proteins are upregulated during leaf senescence 
indicate that copper sequestration is an important activi­
ty, even in a cell undergoing the final stage of 
development. Indeed, all of the genes discussed above 
are expressed in other tissues at other times during 
development in addition to being upregulated during 
leaf senescence. These genes therefore have important 
housekeeping functions that may be required to a 
greater extent during senescence when catabolic 
processes are releasing copper into the cytoplasm. 

Conclusions 
CCH and RANI are components of the first copper deliv­
ery system to be identified within plant cells. In yeast and 
humans, other trafficking pathways deliver copper to super­
oxide dismutase [34] and to the mitochondria [35]. Given 
the high degree to which the CCH/RANI pathway is con­
served among yeast, plants and animals, it is reasonable to 
assume that plants also contain homologs of the superoxide 
dismutase and mitochondrial delivery pathways. It will be 
of particular interest to determine how copper is delivered 
to the chloroplast as this may represent a novel form of cop­
per trafficking. Ultimately, research in plants, yeast and 
animals will develop a complete picture of the ways in 
which potentially toxic copper atoms are delivered within 
cells to the organelles in which they are needed. 

Update 
Recent work suggests a role for Arabidopsis BCB in 
defense against aluminum toxicity. This work involved 
the generation of transgenic Arabidopsis plants expressing 
BCB under the control of a strong, constitutive promoter. 
The roots of these plants are resistant to levels of alu­
minum shown to inhibit the growth of wild-type roots.. 
Nevertheless, when challenged with levels of copper suf­
ficient to inhibit root growth, the transgenic plants 
expressing BCB were inhibited to the same extent as 
wild-type plants. This finding indicates that ectopic 
expression of BCB is not sufficient to confer resistance to 
copper toxicity in roots [40]. 
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