
Appl Intell (2016) 45:777–792
DOI 10.1007/s10489-016-0791-1

Speeding up global optimization with the help of intelligent
supervisors

Grzegorz Pawiński1 ·Krzysztof Sapiecha1

Published online: 29 April 2016
© The Author(s) 2016. This article is published with open access at Springerlink.com

Abstract It is shown in the paper that Developmental
Genetic Programming is an efficient tool for evolutionary
development of intelligent supervisors that solve an exten-
sion of Resource-Constrained Project Scheduling Problem.
The extension assumes that resources are only partially
available. It also assumes that renewable resources affect the
project cost. The cost should be as low as possible and a
deadline of the project must be met. This is apparent with
regard to software houses and building enterprises. Compu-
tational experiments showed that supervisors find solutions
of the problem much faster than other genetic approaches.
A specific property of the supervisor is that it has vari-
ous strategies of allocating the resources to the tasks. The
supervisor uses the strategies in order to develop a proce-
dure for producing the best schedule for the whole project.
The analysis of the evolutionary process was performed and
experimental results were compared with the optimal ones
obtained by means of the exhaustive search method.

Keywords Project scheduling · Resource allocation ·
Global optimization · Evolutionary computations ·
Developmental genetic programming

� Grzegorz Pawiński
g.pawinski@tu.kielce.pl

Krzysztof Sapiecha
krzysztof.sapiecha@gmail.com

1 Department of Computer Science, Kielce University
of Technology, al.1000-lecia P.P. 7, 25-314 Kielce, Poland

1 Introduction

The researchers have been focusing their attention on
making the best use of scarce resources available since
PERT (Program Evaluation and Review Technique) and
CPM (Critical Path Method) were developed in the late
1950s [14]. Resource-constrained project scheduling prob-
lem (RCPSP) [18] addresses a task of allocating limited
resources over time, in order to perform a set of activities
subjected to constraints in the order, in which the activi-
ties may be executed. In the RCPSP resources are assumed
to be constantly available during the project execution. An
extension of the problem, where resources are only partially
available since they can be involved in many projects, was
investigated in [32, 33]. In [33, 34] it is shown that Devel-
opmental Genetic Programming (DGP) may be adapted for
the evolutionary development of intelligent supervisors that
solve the extension. The supervisors have their own strate-
gies and aim at allocating resources to project activities.
They take into consideration the availability of the resources
to minimize the total cost of the project and complete it
before a deadline (deadline problem [38]). The supervi-
sor develops a procedure that allocates the resources to the
activities. The best supervisor develops the best procedure.

The DGP and hyper-heuristics are relatively new
approaches to optimization that aim at managing solution
methods rather than solutions themselves. The DGP makes
it possible to investigate all areas of the search space without
being constrained by demands on the validity of the solution
space [40]. Hyper-heuristics work at a higher level when
compared with typical applications of meta-heuristics to the
optimization problems. In other words, a hyper-heuristic
can be understood as a (meta-) heuristic operating on lower

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Crossref

https://core.ac.uk/display/191365967?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://crossmark.crossref.org/dialog/?doi=10.1186/10.1007/s10489-016-0791-1-x&domain=pdf
mailto:g.pawinski@tu.kielce.pl
mailto:krzysztof.sapiecha@gmail.com

778 G. Pawiński and K. Sapiecha

level (meta-) heuristics. The hyper-heuristic has no knowl-
edge of either solution domain or a function of the low-level
heuristics and has an access only to the low-level heuristics
domain [4, 22].

The next section of the paper contains a brief overview of
related work. In Section 3 our research motivation is given.
Section 4 briefly outlines the main idea of creating super-
visors, and Section 5 focuses on the implementation of our
method. Computational experiments conducted in order to
evaluate our approach and compare it with other methods,
as well as with the optimal results, are given in Section 6.
The paper ends with conclusions.

2 Related work

Both exact and heuristic methods have been used to solve
the RCPSP. The solutions based on dynamic programming
e.g. [15], enumeration algorithm of [31], or branch and
bound algorithms of [6, 7, 11] were the first to be used.
However, heuristics have been preferred due to substan-
tial limitations of the exact methods. According to [1], the
optimal solution can be achieved by exact procedures only
for small projects that contain fewer than 60 activities and
are not highly constrained. Moreover, exact methods may
require a significant amount of computation time. There-
fore, heuristic approaches to the implementation of resource
allocation optimization algorithms are desired to enhance
the process. In-depth study of the performance of recent
RCPSP heuristics can be found in [20]. Genetic algorithms
(GAs) are some of the most commonly used meta-heuristics
to generate a solution to the problem [1, 5]. However, out
of five evolutionary based algorithms, GAs shows the worse
performance for the RCPSP [10]. Authors in [13] propose a
genetic programming (GP) as an option that makes it pos-
sible to find an acceptable solution to the problem within a
reasonable time. The method has achieved good results for
the generation of efficient programs in different domains,
e.g. mathematical calculations, robot control, text recog-
nition, etc [26]. Recently, other meta-heuristics including
particle swarm optimization [41] or ant colony optimization
[27, 29] have also been suggested. Most genetic approaches
do not distinguish between a genotype, i.e. a point in a
search space, and its phenotype, i.e. a point in a solu-
tion space [16, 17]. Thus, to solve many problems the
restrictions on the creation of the genotype structure are
imposed. A candidate solution is not only judged according
to its fitness or quality but has to obey certain restrictions
which exclude entire regions of solution space as infeasi-
ble. The exclusion of regions eliminates sequences of genes,
which may lead to high-quality solutions. The GP approach
established by Koza starts out from a tree representation
of the program. Each language obeys certain grammatical

rules. Thus constraints have to be followed by the expres-
sions in the respective language. Constraints imposed on the
solution space may lead to local hills or valleys which are
difficult to overcome with traditional methods of optimiza-
tion [3]. Searching in such a space may be time consuming
and does not give any satisfactory results. Moreover, it is
worth noticing that the evolution of a genotype that does
not fulfill constraints may lead to a genotype that constructs
a correct phenotype. There are several ways to deal with
constraints in GAs [12, 30]. One of them uses genotype-
phenotype mapping (GPM). It consists in transferring the
search space, where unrestricted search operators can be
applied, into the solution space, where the feasibility of
solutions is guaranteed. Each genotype is allowed in search
space, whereas an appropriate GPM provides for feasible
solutions in a solution space only [3]. The mapping is criti-
cal to the performance of the search process [17]. In Koza’s
work only those search operators are used that allow for
the production of valid program trees. In our approach, any
search operator may be used.

The DGP has already been successfully applied in the
design of electronic circuits, control algorithms [23], strat-
egy algorithms in computer games and synthesis of embed-
ded systems [9], etc. Many human-competitive results pro-
duced using runs of genetic programming with a develop-
mental process are described in [25]. An idea of intelligent
supervisors capable of solving a specific case of the RCPSP
which consists in efficient rescheduling of the project tasks
by using limited renewable resources was introduced in
[37]. The self-adaptive supervisor that can maintain the opti-
mality of the system in spite of disruptions that are likely to
occur dynamically is developed in [36]. Applications of the
DGP in optimization problems of real-time computer-based
systems including scheduling of real-time tasks in multipro-
cessor systems, hardware/software co-design of distributed
embedded systems and budget-aware real-time cloud com-
puting may be found in [8].

3 Motivation

Mhring [28] states that the RCPSP is one of the hard-
est problems of Operational Research. Assuming initial
resource workload, the problem better fits real-life project
management problems. It is common in IT business to deal
with more than one problem, for example, where managers
have to use a resource-sharing approach. Developmental
Genetic Programming [17, 40] is an adaptation of the GP
[24] to optimization problems. In the DGP a genotype space
(search space) and a phenotype space (solution space) are
operated separately and a mapping (encoding) is used to
derive a phenotype from a genotype. This separation enables
the DGP to investigate all areas of the genotype space. The

Speeding up global optimization with the help of intelligent supervisors 779

investigation is not constrained by the restrictions on the
validity of the phenotype space [40]. In [33] an adaptation
of the DGP to the evolution of the best supervisor, which
creates a procedure for schedule development, instead of the
schedule itself, is given. Genes contained in a genotype of
the supervisor decide on consecutive steps of the procedure.
The comparison of DGP with other genetic approaches
shows that it quickly produces good quality results. For
the projects containing 30 tasks, which is a relatively small
number for practical applications, the computation time and
the quality of final results of the adaptation and those of
the GA were comparable. However, it was observed that the
convergence of the adaptation was much faster. To achieve
a good quality result it did not require as many generations
as the GA and the GP. The results of the adaptation were
better after 5 generations than the ones obtained by the GA
after 100 generations. Moreover, uncorrected sample stan-
dard deviation of the population was lower than in other
methods. This means that the adaptation does not require as
many test reruns, because each individual is close to the best
one. Thus, on average the method is better.

The RCPSP is frequently present in a high scale project
management of software development, power plant build-
ing, and military industry projects that include design,
development, and building of nuclear submarines [35]. Such
projects are very complex, and may comprise many more
tasks than 30. Therefore, the usability of the DGP adaptation
to speed up global optimization of such projects should be
investigated. The PSPLIB contains projects including only
up to 120 tasks. However, it may be used to evaluate the
strengths of the supervisors in case of a high scale project
management.

4 Development of supervisors

A specific property of the supervisor is that it has strategies
of allocating the resources to the tasks. These are, for exam-
ple, use the fastest resource or use the cheapest resource.
The supervisor uses the strategies to develop a procedure for
producing the best schedule for the whole project [33, 37].

A genotype of the supervisor defines how the supervi-
sor uses resource allocation strategies to create a project
schedule. A genotype in the form of a tree comprises
nodes representing genes that specify construction functions
for a solution of the problem and edges that indicate an
order in which these functions are executed (a procedure
of construction]).1 The GPM is performed by an execution
of the procedure, starting from a root of the tree. So, if a

1A genotype in classical GAs represents a solution of the problem. In
the DGP a genotype comprises a procedure that constructs the solution.

target solution (a phenotype) is a sequence of tasks with
allocated resources, the construction of the solution is a
method for selecting a resource for the allocation of each
task. The method depends on a genotype of the supervisor.
The supervisor having the best genotype (with the optimal
allocation) is developed in an evolutional manner. Details of
the development of the supervisors are described in [34].

The cost of the project schedule reflects its fitness (a case
of the deadline problem). Actually, the cost is a measure of
the quality of the supervisor. The lower the cost the higher
the quality of the supervisor. The project cost (C) is defined
as follows:

C = Tp ·Cp+
r∑

j=1

(
Cu(j)·uj +Ce(j)·

m∑

i=1

T (i, j)·eij

)
(1)

where

uj =
{
0 if resource j has no assigned tasks
1 if resource j has at least one assigned task

eij =
{
0 if task i is not assigned to resource j

1 if task i is assigned to resource j

Tp – the project duration,
Cp – the project operating cost,

r – the number of resources in the library
Cu(j) – resource j unit cost,
Ce(j) – the cost of task execution by the resource j ,

T (i, j) – the time of task i executed by the resource j ,
m – the number of tasks,

The indirect costs result from the employment of renew-
able resources. For example, an enterprise periodically pays
salaries. The indirect costs are defined as the product of a
resource employment cost per unit and occupation time of
renewable resources (the first term). The indirect costs are
constant during execution time of the whole project no mat-
ter how high a workload of a team developing the project
is. The direct costs are associated with the consumption of
non-renewable resources. These are materials or machines
and tools that wear out during the execution of the project.
Direct costs are present only when a resource is assigned
to the project (the second term). They comprise a resource
deployment cost together with a sum of execution costs
related to all allocated activities.

5 Implementation

Our method2 was implemented in Java. A description
of methods used in the implementation process, and the
correspondence between the development of the genotypes

2It will be called supervisor (SV) method later on

780 G. Pawiński and K. Sapiecha

Table 1 Description of
methods used in the
implementation

Genotypes as vectors Genotypes as trees

Create genotype: Create genotype:

assign a randomly drawn number of the create a full-tree and assign a randomly

resource to each gene. drawn strategy and location of the

division to each node.

Evaluate genotype quality: Evaluate genotype quality:

take the task graph and the genotype take the tree-based genotype and cut off

with resource numbers and create a branches to fit to H , and repair invalid

project schedule, then save the results. nodes. Afterwards, traverse the tree to

create a list of strategies. Take the task

graph and the list to create a project

schedule, then, save the results.

Create a project schedule: Create a project schedule:

find a list of ready-to-start tasks. Go find a list of ready-to-start tasks. Go

through the following steps while the list through the following steps while

is not empty: the list is not empty:

· take a task from the list and a · take a task from the list and

corresponding resource number a corresponding strategy from the

from the vector of resources, list of strategies,

· remove the task from the list, · execute the strategy to calculate

a resource to allocate,

· calculate the earliest start time · remove the task from the list,

based on its predecessors,

· assign the task to the resource, · calculate the earliest start time

based on its predecessors,

· recalculate the list of · assign the task to the resource,

ready-to-start tasks

· recalculate the list of ready-to-start tasks
Finally, calculate the project Finally, calculate the project

duration and cost. duration and cost.

Assign a task to the resource:

check tasks already assigned to the resource and insert the task as soon as possible,

taking into account all precedence relationships and tasks from the initial schedule,

which cannot be moved.

Crossover: Crossover:

take two randomly drawn genotypes and take two randomly drawn genotypes and

a random cut position. Replace parts of a random cut positions. Replace subtrees

the vector that were cut off and evaluate that were cut off and evaluate the quality

the quality of offsprings. Add those of offsprings. Add those children who

children who fulfill the time constraints to fulfill the time constraints to a

a new population. new population.

Mutation: Mutation:

take a randomly drawn genotype and a take a randomly drawn genotype and a

random gene from the vector. Choose a random mutation mode. Basing on

resource number at random and replace the mode do as follows:

Speeding up global optimization with the help of intelligent supervisors 781

Table 1 (continued)
Genotypes as vectors Genotypes as trees

the gene. Evaluate the quality of the · set the strategy and the location of the

individual and add it to a new population

when it fulfills the time constraints. division to random values in a randomly

drawn tree node,

· remove a random subtree,

· add leaves at random position.

Then, evaluate the quality of the

individual and add it to a new population

when it fulfills the time constraints.

Check the time constraints (after genotype quality has been evaluated):

An individual fulfills the time constraints if the project is completed before the

deadline. When this holds true the individual is accepted. However, the individual is

also accepted when the deadline is missed but it has better quality (a lower cost)

then its parent. Otherwise, the individual is rejected.

in the form of trees, and in the form of vectors are given in
Table 1.

6 Experimental results

In order to highlight its strong and weak points the SV

method was tested on projects from PSPLIB [21]. How-
ever, in our experiments, only activities and their precedence
relationships were taken from project instances contained
in the PSPLIB. The renewable resources were randomly
generated. As a result the resource deployment cost Cu(j)

and the execution cost of the activity Ce(j) could differ
up to 10 % from default values, which were 20 and 1,

Table 2 Values of resource parameters in the experiments

j Ce(j) Cu(j)

1 0,95 20

2 0,96 20

3 1,07 20

4 0,9 22

5 1,03 19

6 0,97 20

7 1,0 22

8 0,99 19

9 0,91 20

10 1,1 22

respectively. As they were general-purpose resources, they
could execute each activity. The values of resource parame-
ters were set as shown in Table 2. We tested all 480 projects.
Each of them comprised 60 tasks. In each test instance, the
resources already had their own randomly allocated sched-
ule with 30 tasks (so-called initial schedule). Activities from
an initial schedule could not be moved, and therefore, the
resources were available only in some time periods. For
each project instance, 10 independent runs were performed
and the results were averaged. The number of generations
was limited to 100 because the experimental results showed
that the convergence of the SV method is fast enough (as
presented in Section 6.3 for all problems considered in this
paper).

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.2 0.3 0.4 0.5 0.6 0.7

γ

δ

Rvec
Svec
Rtree
Stree

Fig. 1 Values of probabilities for the methods that gave the best results
and were chosen for further tests

782 G. Pawiński and K. Sapiecha

Table 3 The relationship between a height of the tree and the number
of leaves

H Hmax Havg Ln Lnavg Un

6 6 4,85 32 6,41 350.657

8 8 5,48 128 7,73 594.680

10 10 5,83 512 8,57 747.538

12 10 6,03 2048 9,1 827.830

14 10 6,15 8192 9,43 865.492

H – the height of the initial tree, Hmax –the maximum tree height,
Havg – the average tree height, Ln the number of leaves in the initial
tree, Lnavg - the average number of leaves, Un – the number of unique
chromosomes

Evolution can be applied to a project schedule (like
in GAs), to an algorithm to develop the schedule (like
in the GP), or to a supervisor (schedule designer) that
can optimally develop the algorithm (like in our adap-
tation of the DGP). In the first case one operates on a
fixed-length string of chromosomes that use vectors of real

numbers as individuals [39], i.e. one operates directly on
resource numbers or decision strategies (like priority rules
of [2, 19]). The second case evolves tree-shaped individ-
uals strictly related to a solution space [39]. Binary trees
that comprise a resource number in each node can rep-
resent tree-shaped individuals. The SV method fits into
the third case, which uses the genotype-tree structures
containing decision strategies and the genotype-phenotype
mapping. However, we have not compared the results
of the experiments with the optimal ones, although the
PSPLIB was applied, because it was beyond the scope
of our research. Therefore, in the experiments, we com-
pared the use of tree-based methods vs. the use of a sim-
pler representation of genotypes as vectors, and the use
of decision strategies vs. the use of static assignment of
resources to tasks, which does not require any additional
computations. The components of our comparison were as
follows:

– trees containing decision strategies (Stree),
– trees containing resource numbers (Rtree),
– vectors of decision strategies (Svec),
– vectors of resources (Rvec).

Fig. 2 Experimental results for
different methods for � = 240.
costavg – the average project
cost; t imeavg – the average
project duration from the best
individuals in each test run,
genavg – the average number of
generations at which evolution
stopped, Comptime – the
average computation time

 940

 960

 980

 1000

 1020

 1040

 1060

 1080

 1100

 1120

 100 120 140 160 180 200

co
st

av
g

Time constraint

Rvec
Svec
Rtree
Stree

 130

 135

 140

 145

 150

 155

 160

 165

 170

 175

 100 120 140 160 180 200

tim
e a

vg

Time constraint

Rvec
Svec
Rtree
Stree

-10
 0

 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 100 120 140 160 180 200

ge
n a

vg

Time constraint

Rvec
Svec
Rtree
Stree

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 100 120 140 160 180 200

co
m

p t
im

e

Time constraint

Rvec
Svec
Rtree
Stree

(a) (b)

(c) (d)

Speeding up global optimization with the help of intelligent supervisors 783

Fig. 3 Average number of
generations at which evolution
stopped, for Rvec and Rtree and
� = 240 with respect to the
project number from PSPLIB
and stronger constraints

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300 350 400 450 500

ge
n

av
g

No. of project

Rvec
Rtree

(a) Time constraint = 150

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300 350 400 450 500

ge
n

av
g

No. of project

Rvec
Rtree

(b) Time constraint = 130

Fig. 4 Average number of
generations at which evolution
stopped, for Svec and Stree and
� = 240 with respect to the
project number from PSPLIB
and stronger constraints

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300 350 400 450 500

ge
n

av
g

No. of project

Svec
Stree

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300 350 400 450 500

ge
n

av
g

No. of project

Svec
Stree

784 G. Pawiński and K. Sapiecha

Fig. 5 Average project cost
from the best individuals in each
test run, for Rvec and Rtree and
� = 240 with respect to the
project number from PSPLIB
and stronger constraints

 750

 800

 850

 900

 950

 1000

 1050

 1100

 1150

 1200

 0 50 100 150 200 250 300 350 400 450 500

co
st

av
g

No. of project

Rvec
Rtree

 750

 800

 850

 900

 950

 1000

 1050

 1100

 1150

 1200

 0 50 100 150 200 250 300 350 400 450 500

co
st

av
g

No. of project

Rvec
Rtree

Fig. 6 Average project cost
from the best individuals in each
test run, for Svec and Stree and
� = 240 with respect to the
project number from PSPLIB
and stronger constraints

 750

 800

 850

 900

 950

 1000

 1050

 1100

 1150

 1200

 0 50 100 150 200 250 300 350 400 450 500

co
st

av
g

No. of project

Svec
Stree

 750

 800

 850

 900

 950

 1000

 1050

 1100

 1150

 1200

 0 50 100 150 200 250 300 350 400 450 500

co
st

av
g

No. of project

Svec
Stree

Speeding up global optimization with the help of intelligent supervisors 785

The characteristics of the evolutionary process concern-
ing adjustment of the genetic operators and the size of
population (�) may be found in [33, 34]. Figure 1 shows
the values of probabilities for the methods that gave the best
results. Those values were chosen for further tests. It can be
observed that in the vector-based methods the probability of
mutation is high which makes the evolution more stochas-
tic. Thus finding the optimum is more accidental. The SV

method uses knowledge coming from strategies associated
with the supervisor. Therefore, in the Stree the probability
of the crossover (which uses the existing genotype struc-
tures for creating new chromosomes) is more important. The
crossover steadily improves features contained in the super-
visors genotype whereas the mutation is used for getting out
of local minima.

At the very beginning, we tested initialization of the start
population in order to find out the diversity of generated
individuals and the impact of the tree height on the number
of proper genotype-tree structures. Next, we tested different
numbers of generations.

6.1 Testing the initialization of the population

A start population in vector-based methods comprises geno-
types with randomly drawn numbers (the sequence of

resource numbers and decision strategies for Rvec and
Svec, respectively). Initialization of the population in tree-
based methods is not so obvious. Tree structures were
generated randomly by creating nodes recursively until a
pre-established maximum height was reached (H). For sim-
plicity, in our tests, each node can have one of 4 strategies
(Stree) or 4 resource numbers (Rtree), assigned with the
same probability and a random location of the division,
which is inversely proportional to H . Values from leaves
of the tree can be assigned to each of 10 project activ-
ities, which leads to 1 048 576 possible results (410). A
relationship between the height of the tree and the num-
ber of leaves is shown in Table 3. The values are obtained
out of 2 mln individuals randomly generated (twice the
number of possible results). After generation of the ini-
tial tree, a ”replacing repair” mechanism is used to pre-
serve the correct tree structure. The number of unique
chromosomes obtained after the genotype-phenotype map-
ping is shown in the last column. The results show that
83 % of all possible chromosomes were generated in the
initialization method, for the initial H equal 14. How-
ever, the maximum tree height does not exceed 10 with
the average value of 6.15. The average number of leaves
is 9.43 while 10 leaves are needed to get all possible
variations. Yet, the higher the generated tree, the more

Fig. 7 Experimental results for
different methods for � = 240.
minavg – the average project
cost from the best individuals in
each test run, min – the minimal
project cost, from all individuals
of a given generation and all test
runs, σ – the uncorrected sample
standard deviation, Comptime –
the computation time

 940

 960

 980

 1000

 1020

 1040

 1060

 1080

 1100

 1120

 0 10 20 30 40 50 60 70 80 90 100

co
st

av
g

No. of generation

Rvec
Svec
Rtree
Stree

 940

 960

 980

 1000

 1020

 1040

 1060

 1080

 1100

 1120

 0 10 20 30 40 50 60 70 80 90 100

co
st

m
in

No. of generation

Rvec
Svec
Rtree
Stree

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 0 10 20 30 40 50 60 70 80 90 100

co
m

p t
im

e

No. of generation

Rvec
Svec
Rtree
Stree

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0 10 20 30 40 50 60 70 80 90 100

σ

No. of generation

Rvec
Svec
Rtree
Stree

786 G. Pawiński and K. Sapiecha

tree leaves remain after the repair. In further tests, H

is set to 10 because for bigger values the difference of
the parameters has a little effect on the results. Sum-
marizing, the initialization method can produce almost
every genotype possible, which is a good start of the
evolution.

6.2 Testing the number of generations

Next, we studied how many generations are needed to find
a satisfactory result. A stop condition was added in order
to determine which method would be better to find a result
that fulfills the time constraints (duration). Figure 2 shows,
that according to the definition of the fitness function (1),
both the cost of the scheduled project and the makespan

are minimized. With weak time constraints, the evolution
of individuals does not occur because the initial popula-
tion is good enough to fulfill the constraints. When the
maximum acceptable project duration is decreased, addi-
tional generations are needed in the evolutionary process.
The comparison of the number of generations with respect
to time constraints is presented in detail in Fig. 3 for the
vector-based methods and in Fig. 4 for the tree-based meth-
ods. For comparison purposes the broken line in the figures
connects points obtained in the same experiment in order to
expose the nature of results.

The first method, which starts to evolve individuals
to improve the results is the Rtree. The Stree for time
constraint 150 still needed only a few generations, while
the processing of some projects by the Rtree finished at

Fig. 8 The minimal project
cost, from all individuals of a
given generation and all test
runs, for Rvec and Rtree and
� = 240 with regard to the
project number from PSPLIB

 800

 900

 1000

 1100

 1200

 1300

 0 50 100 150 200 250 300 350 400 450 500

T
he

 p
ro

je
ct

 c
os

t

No. of project

Rvec
Rtree

 800
 850
 900
 950

 1000
 1050
 1100
 1150
 1200
 1250
 1300

 0 50 100 150 200 250 300 350 400 450 500

T
he

 p
ro

je
ct

 c
os

t

No. of project

Rvec
Rtree

 800

 850

 900

 950

 1000

 1050

 1100

 1150

 1200

 1250

 0 50 100 150 200 250 300 350 400 450 500

T
he

 p
ro

je
ct

 c
os

t

No. of project

Rvec
Rtree

Speeding up global optimization with the help of intelligent supervisors 787

the hundredth (last) generation. Reducing time constraint to
130 enforced the evolution process in each of the methods.
However, the Stree still needed the lowest number of gener-
ations. Also, the results were improved. The cost reduction
was nearly linear for the time constraint decreased up to the
point where the evolution brought no further improvement.
Figures 5 and 6 show the comparison of vector-based and
tree-based methods in terms of quality and time constraints.
The Stree gave the best results (the lowest project cost). As
for the computation time, the Stree was slower than the Rvec

and the Svec only when the time constraint was too strict
to be fulfilled and the evolution lasted almost to the last
generation.

6.3 Comparative study

The performance test is executed in order to verify which
method gives the best results and what the resulting costs
are. At the beginning, all the methods were compared for the
same sample of the project with respect to the rate of cost
reduction, the complexity (computation time) and required
amount of reruns (uncorrected standard sample deviation).
Figure 7 shows that the SV method gives the best qual-
ity results from the very beginning of the evolution. The
same average project cost from the best individuals in each
population was obtained after the second generation by the
Stree, after the twentieth generation by the Svec and thirty

Fig. 9 The minimal project
cost, from all individuals of a
given generation and all test
runs, for Svec and Stree and
� = 240 with respect to the
project number from PSPLIB

 750
 800
 850
 900
 950

 1000
 1050
 1100
 1150
 1200
 1250
 1300

 0 50 100 150 200 250 300 350 400 450 500

T
he

 p
ro

je
ct

 c
os

t

No. of project

Svec
Stree

 750

 800

 850

 900

 950

 1000

 1050

 1100

 1150

 1200

 0 50 100 150 200 250 300 350 400 450 500

T
he

 p
ro

je
ct

 c
os

t

No. of project

Svec
Stree

 750

 800

 850

 900

 950

 1000

 1050

 1100

 1150

 1200

 0 50 100 150 200 250 300 350 400 450 500

T
he

 p
ro

je
ct

 c
os

t

No. of project

Svec
Stree

788 G. Pawiński and K. Sapiecha

more generations were still needed to compensate for the
difference in the quality of the results. Thus, the applica-
tion of strategies makes the evolution of good quality results
much faster. Project costs with regard to the number of gen-
erations are shown in detail for the vector-based methods
in Figs. 8 and 9 for the tree-based methods. If we stopped
the calculations after 20 generations, the Stree would allow
us to obtain a project cost lower by 1.4 % than the cost
obtained by the Svec and by 5.4 % than the cost obtained
by Rvec. Moreover, the Svec needed 40 generations (which
is 2 times slower) and the Rvec needed 100 generations

(which is 3.3 times slower) to obtain similar results. Fur-
thermore, if we stopped after 10 generations the project cost
obtained by the Stree would be worse only by 0.4 % than
the one obtained after 20 generations. However, in com-
parison with Svec and the Rvec the result would be better
by 3 % and 7.2 %, respectively. The solution with a sim-
ilar cost would be obtained 2.9 times slower by the Svec

and 5.3 times slower by the Rvec. The projects containing
60 tasks are too small for practical applications. Therefore,
further tests have been conducted in order to determine
how fast the SV method can find good quality results for

Fig. 10 Experimental results
for different methods and
different project complexity.
costavg – the average project
cost from the best individuals in
each test run, comptime – the
computation time

 960

 980

 1000

 1020

 1040

 1060

 1080

 1100

 1120

 0 10 20 30 40 50 60 70 80 90 100

co
st

av
g

No. of generation

Rvec
Svec
Rtree
Stree

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 0 10 20 30 40 50 60 70 80 90 100

co
m

p t
im

e

No. of generation

Rvec
Svec
Rtree
Stree

 1280
 1300
 1320
 1340
 1360
 1380
 1400
 1420
 1440
 1460
 1480

 0 10 20 30 40 50 60 70 80 90 100

co
st

av
g

No. of generation

Rvec
Svec
Rtree
Stree

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 0 10 20 30 40 50 60 70 80 90 100

co
m

p t
im

e

No. of generation

Rvec
Svec
Rtree
Stree

 1550

 1600

 1650

 1700

 1750

 1800

 1850

 0 10 20 30 40 50 60 70 80 90 100

co
st

av
g

No. of generation

Rvec
Svec
Rtree
Stree

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 0 10 20 30 40 50 60 70 80 90 100

co
m

p t
im

e

No. of generation

Rvec
Svec
Rtree
Stree

Speeding up global optimization with the help of intelligent supervisors 789

more complex projects with a very huge space of the can-
didate genotypes. For that purpose, we have performed a
test on 25 random projects that comprised from 60 to 120
tasks and an initial schedule with 30 extra tasks. Figure 10
shows that the Stree significantly limits the search space
and gives good quality results from the very beginning. The
Stree advantage over other methods grows with the increas-
ing number of tasks in a project. To verify the convergence
of the methods, we have calculated a point P in which the
improvement of results in relation to 10 previous genera-
tions is lower than 1 %. Table 4 shows the comparison of
the results in P for different methods. Only Svec and Stree

were able to reach P in 100 generations. However, the com-
putation time for the Svec was several times greater than
for the Stree. If we stopped the calculations when only the
Stree had reached P , we would get the best quality result,
(Table 5). It is worth noticing that the Stree needed only 10
generations in a project with 120 tasks to obtain a result
which is 6 % better than for the Svec. Furthermore, the
more complex the project the higher the superiority of the
Stree over the Svec. Finally, it can be observed that in all
cases computation times are nearly linear. The slopes of the
lines for tree-based methods and vector-based methods are
comparable.

6.4 Optimality

The final test was executed to verify whether the SV method
gave the optimal results. Because the optimal results for

Table 4 Comparison of results for different methods in P

No. tasks Svec Rvec Stree Rtree

No. generation

60 100 90 14 80

90 72 > 100 14 > 100

120 100 > 100 10 > 100

costavg

60 971.52 1015.11 979.32 1030.31

90 1288.25 – 1300.57 –

120 1590.48 – 1596.35 –

comptime

60 17238,39 13374,9 2527 10519,84

90 27723,98 – 5607,98 –

120 74679,81 – 8947,75 –

costavg – the average project cost from the best individuals in each test
run, comptime – the computation time

Table 5 Comparison of results for different methods in time in which
Stree reaches P

No. tasks Svec Rvec Stree Rtree comptime

No. generation

60 14 16 14 18 2527

90 14 23 14 23 5603

120 12 16 10 16 8947

costavg

60 999.66 1038.95 979.32 1051.91 2527

90 1315.28 1347.26 1300.57 1370.19 5603

120 1705.74 1670.62 1596.35 1705.43 8947

costavg – the average project cost from the best individuals in each test
run, comptime – the computation time

the problem are unknown, an exhaustive search was car-
ried out. For simplicity, only projects with 20 tasks and 3
resources with no initial schedule were tested. There are
320 schedules in such projects which means that one way
of executing the tasks, gives 3 486 784 401 possibilities of
resource allocations. The results showed that 28 670 sched-
ules could be calculated per second. Thus, if we wanted to
check the whole search space of the projects with, for exam-
ple, 30 tasks and 4 resources, we would need approximately
38.257 ∗ 1010 days.

We tested 16 randomly generated projects that could have
a maximum of 3 precedence relationships with the proba-
bility of 0.35. The values of resource parameters were set as
shown in Table 6. For each project instance, 50 independent
runs were performed. Table 7 shows that the optimum was
found in 8 out of 16 project instances. Moreover, the best
result from 50 reruns differs only by 0.14 % and the mean
result was, on average, greater from the optimum one by
3.04 %. This confirms that the method can find the optimal
result or the one close to it. Furthermore, the computation
time of the Stree was incredibly (few million times) fast
when compared to the exhaustive search method.

Table 6 Values of resource parameters in the experiments with 20
tasks

j Ce(j) Cu(j)

1 0,96 21

2 1,07 22

3 1,1 21

790 G. Pawiński and K. Sapiecha

Table 7 Comparison of Stree with optimal results, after 50 generations for � = 100

Lp copt topt [h] γ δ cmin cavg t[s]

201 352.52 31.538 0.25 0.3 352.86 366.57 8.51

202 354.66 39.201 0.2 0.1 354.92 377.15 8.58

203 330.98 30.838 0.25 0.2 331.26 342.82 8.31

204 336.9 37.374 0.25 0.2 342.88 347.57 8.49

205 338.34 27.897 0.25 0.2 338.37 344.74 7.97

206 321.5 30.498 0.25 0.2 321.65 336.52 8.35

207 343.16 36.396 0.25 0.2 343.16 343.2 8.2

208 325.82 29.687 0.15 0.2 325.82 329.12 8.21

209 318.46 30.123 0.25 0.25 318.46 330.05 8.24

2010 408.05 37.190 0.25 0.15 408.38 424.06 9.56

2011 340.2 31.087 0.3 0.2 340.2 352.55 8.16

2012 311.52 37.994 0.25 0.3 311.55 320.51 8.26

2013 319.56 45.719 0.25 0.35 319.56 331.7 8.84

2014 316.26 30.330 0.1 0.3 316.26 328.95 7.89

2015 362.54 34.382 0.25 0.2 362.54 371.47 8.71

copt – optimal cost obtained after exhaustive search, topt – computation time of the exhaustive search, γ – probability of the crossover for which
the best result was found, δ – probability of the mutation for which the best result was found, cmin – minimal project cost found by the SV method,
cavg – average project cost from the best results in each test rerun obtained by the SV method, t – computation time of Stree

7 Conclusions

Experimental results have shown that since the SV needs
the fewest generations; it is the fastest method that enables
one to find the result that meets the time requirements. The
Stree extensively uses the crossover. Therefore, new individ-
uals are mainly created from the existing genotypes, which
highly reduces the search space. The mutation is used for
getting out of local minima. The usage of strategies not
only results in genotypes of better quality from the very
beginning, but also accelerates the convergence, and thereby
the cost reduction. Moreover, combining strategies and a
genotype with a tree structure improves the results even
more.

A core of the SV method is the development of the best
genotype. To achieve this a classical construction method
can be used, but only for a very limited space of feasi-
ble genotypes. Since in practice the space of the candidate
genotypes can be very huge, we used evolution instead of
construction. Therefore, the SV method fits in with the
family of hyper-heuristics.

The main strength of the Stree is that it generates quite
good results for more complex projects, much faster than
other genetic approaches. The comparison of the results in
P showed that the computation time for the Svec was several
times greater than for the Stree. Therefore, the SV method is
especially suitable for real-time environments, where com-
putation time is critical and a deadline for task executions is
given. Moreover, the comparison of the Stree with the opti-

mal results for projects with 20 tasks and 3 resources shows
that the method can find a result which is optimal or close
to the optimum. On average, the best result found after 50
reruns was worse only by 0.14 % than the optimum.

Our future work will concentrate on analyzing other
parameters of the evolution and different strategies for allo-
cating resources. In general, the higher the generated tree,
the more leaves remain after the repair mechanism. The
number of leaves in the tree should be close to the num-
ber of activities in the project. The results showed that the
generation of individuals with twice the number of possible
solutions allows for obtaining 83 % of all possible geno-
types, which makes a good start for the evolution process.
Well-defined genotype structures and tuned genetic param-
eters may allow for successful adaptation of the SV method
to other disciplines. The supervisor preserves some fea-
tures of human supervisor. It can learn and react to dynamic
changes in a system. We will check if the method can
adapt to different resource requirements during the evolu-
tion. Since there is a lot of individuals in the population and
the evolution lasts for many generations the process may be
performed simultaneously. We will also work on the parallel
DGP model in order to reduce the computation time.

Open Access This article is distributed under the terms of the
Creative Commons Attribution 4.0 International License (http://
creativecommons.org/licenses/by/4.0/), which permits unrestricted
use, distribution, and reproduction in any medium, provided you give
appropriate credit to the original author(s) and the source, provide a
link to the Creative Commons license, and indicate if changes were made.

http:// creativecommons.org/licenses/by/4.0/
http:// creativecommons.org/licenses/by/4.0/

Speeding up global optimization with the help of intelligent supervisors 791

References

1. Alcaraz J, Maroto C (2001) A robust genetic algorithm for
resource allocation in project scheduling. Ann Oper Res 102:83–
109

2. Alvarez-Valdes R, Tamarit JM (1989) Heuristic algorithms for
resource-constrained project scheduling: a review and an empiri-
cal analysis. In: Advances in project scheduling, vol 9. Elsevier,
Amsterdam, pp 113–134

3. Banzhaf W (1994) Genotype-phenotype-mapping and neu-
tral variationa case study in genetic programming. In: Paral-
lel problem solving from naturePPSN III. Springer, pp 322–
332

4. Bouleimen K, Lecocq H (2003) A new efficient simulated
annealing algorithm for the resource-constrained project schedul-
ing problem and its multiple mode version. Eur J Oper
Res 149(2):268–281. http://linkinghub.elsevier.com/retrieve/pii/
S0377221702007610

5. Deiranlou M, Jolai F (2009) A new efficient genetic algorithm for
project scheduling under resource constrains. World Appl Sci J
7(8):987–997

6. Demeulemeester EL, Herroelen WS (1996) Optimal procedures
for the discrete time/cost trade-off problem in project networks.
Eur J Oper Res 88(1):50–68

7. Demeulemeester EL, Herroelen WS (1997) New benchmark
results for the resource-constrained project scheduling problem.
Manag Sci 43(11):1485–1492

8. Deniziak S, Ciopiński L, Pawiński G (2016) Design of real-
time computer-based systems using developmental genetic pro-
gramming. In: Handbook of genetic programming appliactions.
Springer, in print

9. Deniziak S, Gorski A (2008) Hardware/software co-synthesis of
distributed embedded systems using genetic programming. In:
Evolvable systems: from biology to hardware. Springer, pp 83–
93

10. Elbeltagi E, Hegazy T, Grierson D (2005) Comparison among
five evolutionary-based optimization algorithms. Adv Eng Info
19(1):43–53

11. Erenguc SS, Ahn T, Conway DG (2001) The resource constrained
project scheduling problem with multiple crashable modes: an
exact solution method. Naval Res Logist (NRL) 48(2):107–
127

12. Fang HL, Ross P, Corne D (1993) A promising genetic algorithm
approach to job-shop scheduling, rescheduling, and open-shop
scheduling problems. University of Edinburgh, Department of
Artificial Intelligence

13. Frankola T, Golub M, Jakobovic D (2008) Evolutionary algo-
rithms for the resource constrained scheduling problem. In: Pro-
ceedings of 30th international conference on information technol-
ogy interfaces, vol 7269. Information Technology Interfaces, p
715–722

14. Hendrickson C, Au T (2008) Project management for construc-
tion: Fundamental concepts for owners, engineers, architects, and
builders. Chris Hendrickson

15. Hindelang T, Muth J (1997) A dynamic programming algo-
rithm for decision cpm networks. Oper Res 27(2):225–
241

16. Keller RE, Banzhaf W (1996) Genetic programming using
genotype-phenotype mapping from linear genomes into linear
phenotypes. In: Proceedings of the 1st annual conference on
genetic programming. MIT Press, pp 116–122

17. Keller RE, Banzhaf W (1999) The evolution of genetic code
in genetic programing. In: Proceedings of the genetic and evo-

lutionary computation conference (GECCO 1999). Information
Technology Interfaces, pp 1077–1082

18. Klein R (2000) Resource-constrained scheduling problems.
Springer

19. Kolisch R (1996) Serial and parallel resource-constrained project
scheduling methods revisited: theory and computation. Eur J Oper
Res 90(2):320–333

20. Kolisch R, Hartmann S (2006) Experimental investigation of
heuristics for resource–constrained project scheduling: an update.
Eur J Oper Res 174:23–37

21. Kolish R, Sprecher A (1996) Psplib a project scheduling library.
Eur J Oper Res 96:205–216

22. Koulinas G, Anagnostopoulos K (2013) A new tabu search-
based hyper-heuristic algorithm for solving construction leveling
problems with limited resource availabilities. Autom Construct
31:169–175

23. Koza J, Keane MA, Streeter MJ, Mydlowec W, Yu J, Lanza
G (2003) Genetic programming IV: routine humancompetitive
machine intelligence. Kluwer Academic Publishers

24. Koza JR (1992) Genetic programming: on the programming
of computers by means of natural selection. MIT Press,
Cambridge

25. Koza JR (2010) Human–competitive results produced by genetic
programming. Gen Program Evolv Mach 11:251–284

26. Koza JR, Poli R (2005) Search methodologies: introductory tuto-
rials in optimization and decision support techniques. Springer,
New York

27. Merkle D, Middendorf M, Schmeck H (2002) Ant colony opti-
mization for resource-constrained project scheduling. IEEE Trans
Evol Comput 6(4):333–346

28. Mhring RH, Shulz AS, Stork F, Utez M (2003) Solving project
scheduling problems by minimum cut computations. Manag Sci
49(3):330–350

29. Mohan BC, Baskaran R (2012) A survey: ant colony optimization
based recent research and implementation on several engineering
domain. Expert Syst Appl 39(4):4618–4627

30. Orvosh D, Davis L (1993) Shall we repair? genetic algorithm-
scombinatorial optimizationand feasibility constraints. In: Pro-
ceedings of the 5th international conference on genetic algorithms.
Morgan Kaufmann Publishers Inc, p 650

31. Patterson J, Harvey R (1997) An implicit enumeration algorithm
for the time/cost tradeoff problem in project network analysis.
Found Control Eng 4(2):107–117

32. Pawiński G, Sapiecha K (2014) Cost-efficient project manage-
ment based on critical chain method with partial availability of
resources. Control Cybern 43(1)

33. Pawiński G, Sapiecha K (2014) A developmental genetic
approach to the cost/time trade-off in resource constrained
project scheduling. In: 2014 Federated conference on computer
science and information systems (FedCSIS). IEEE, pp 171–
179

34. Pawiński G, Sapiecha K (2016) An efficient solution of the
resource constrained project scheduling problem based on an
adaptation of the developmental genetic programming. In: Recent
advances in computational optimization. Springer, pp 205–
223

35. Pinedo M, Chao X (1999) Operations scheduling with appli-
cations in manufacturing, 2nd edn. Irwin/McGraw–Hill,
Boston

36. Sapiecha K, Ciopiński L, Deniziak S (2016) Synthesis of self-
adaptive supervisors of multi-task real-time object-oriented sys-
tems using developmental genetic programming. In: Recent
advances in computational optimization. Springer, pp 55–74

http://linkinghub.elsevier.com/retrieve/pii/S0377221702007610
http://linkinghub.elsevier.com/retrieve/pii/S0377221702007610

792 G. Pawiński and K. Sapiecha

37. Sapiecha K, Ciopinski L, Deniziak S (2014) An applica-
tion of developmental genetic programming for automatic cre-
ation of supervisors of multi-task real-time object-oriented
systems. In: 2014 Federated conference on computer sci-
ence and information systems (FedCSIS). IEEE, pp 501–
509

38. Vanhoucke M (2005) New computational results for the discrete
time/cost tradeoff problem with time-switch constraints. Eur J
Oper Res 165(2):359–374

39. Weise T (2009) Global optimization algorithms-theory and appli-
cation. Self-Published

40. Wilson G, Heywood M (2006) Probabilistic adaptive mapping
developmental genetic programming (pam dgp): a new develop-
mental approach. In: Parallel problem solving from nature-PPSN
IX. Springer, pp 751–760

41. Zhang H, Li X, Li H, Huang F (2005) Particle swarm
optimization-based schemes for resource-constrained project
scheduling. Autom Construct 14(3):393–404

	Speeding up global optimization with the help of intelligent supervisors
	Abstract
	Introduction
	Related work
	Motivation
	Development of supervisors
	Implementation
	Experimental results
	Testing the initialization of the population
	Testing the number of generations
	Comparative study
	Optimality

	Conclusions
	Open Access
	References

