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1 Introduction

Gravitational tensor hierarchies are a common feature of gauged supergravity compact-

ifications as they result from the reduction of p-forms in the component spectrum that

are charged under the higher-dimensional superdiffeomorphisms [1–7]. Upon compactifica-

tion, some of the components of the gravitino generally become massive but leave behind

massless non-abelian gauge fields from mixed components of the frame and their super-

partners. What remains is a hierarchy of differential forms of various spacetime degrees, all

charged under the residual diffeomorphisms compatible with the splitting of the compacti-

fied spacetime. Further decoupling this structure from the lower-dimensional supergravity

fields, one is left with a hierarchy of p-forms charged under the non-abelian gauge algebra

of diffeomorphisms of the compactification manifold.

Such hierarchies of p-form fields, or “tensor hierarchies” as they have come to be known,

come in various forms including abelian, non-abelian, and gravitational hierarchies. The

simplest such hierarchy arises in any theory containing a p-form field (p > 0) on a product

spacetime X × Y : here the de Rham differential d → dX + dY becomes a sum and the

p-form splits into a collection of p-forms on X valued in q-forms on Y . (In this case the

“hierarchy” structure is encoded in the ordinary de Rham complex on Y .)

In particular, any dimensional reduction of a theory containing a p-form field will give

rise to a tensor hierarchy of this type. In the typical situation, the p-form fields in question
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are generalizations of the 1-form field of Mawell theory: abelian gauge transformations

of such fields are exterior derivatives of (p − 1)-form gauge parameters and the exterior

derivative of such a potential is an invariant (p + 1)-form field-strength. The presence

of such abelian p-forms is typical in extended supergravity and higher-dimensional super-

gravity theories: these theories have additional spinor degrees of freedom arising from a

larger gravitino, and the additional spin-0 and spin-1 degrees of freedom of the “gravi-p-

forms” are needed to balance this without introducing more spin-2. Well-known examples

include the graviphoton (+ scalar) of 4D, N = 2 supergravity and the 3-form of eleven-

dimensional supergravity.

Gravitational tensor hierarchies arise naturally, then, in extended supergravity and

higher-dimensional supergravity theories on product manifolds. More generally, the back-

ground spacetime can have the structure of a non-trivial bundle over Y , in which case the

mixed components of the graviton become the Kaluza-Klein gauge field for the algebra of

diffeomorphisms on Y . The reduced components of the gravi-p-forms are charged under

this non-abelian gauge algebra: in addition to their usual abelian p-form transformation,

they transform as matter fields under Y diffeomorphisms.

The structure of the gravitational tensor hierarchy can be generalized by replacing the

collection of dimensionally reduced forms with a more general set not necessarily resulting

from any dimensional reduction. Maps between these new forms must be defined to replace

the de Rham differential. Provided this is done in a manner compatible with the de Rham

complex of forms on X, there results an abelian tensor hierarchy of forms on X with values

in this new complex.

Abstracting further, the algebra of diffeomorphisms on Y can then be replaced with

a general non-abelian gauge algebra provided a representation is assigned to each degree

in the new hierarchy. The action of this algebra should satisfy certain “equivariance”

conditions with respect to the de Rham differential on X and the maps of the p-form

hierarchy. These conditions can be interpreted as gauging the abelian hierarchy with

respect to the new non-abelian gauge algebra; such hierarchies are referred to as “non-

abelian tensor hierarchies”.1 It is important to emphasize that the p-forms of the hierarchy

transform linearly under the non-abelian group. Despite the terminology, the non-abelian

aspect of the gauge structure is only that of the gauge field with the “tensors” transforming

as matter fields.

Motivated by applications to supergravity compactifications, the defining conditions

of such hierarchies were reformulated in [13] and interpreted as coming either from closure

of the algebra of abelian and non-abelian gauge transformations or from the requirement

that there exist enough gauge-covariant field-strengths. Assuming both of these conditions,

the resulting structure is that of a double chain complex that extends the superspace de

Rham complex and is equivariant under the action of the non-abelian gauge group. Being

a differential chain complex in superspace, such theories naturally define supersymmetric

characteristic classes, provided the appropriate traces are supplied. In particular, it is

1The conditions defining such a general non-abelian tensor hierarchy were formulated in [8] in an attempt

to construct six-dimensional superconformally invariant gauge theories (see also [9, 10]). The mathematical

structure of these models was investigated further in [11, 12].
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possible to define the analogs of Maxwell/Yang-Mills invariants, higher Chern/Pontryagin

classes, and Chern-Simons/BF -type invariants.

To better understand the four-dimensional phenomenology of such theories [4, 24, 56],

we first embedded the abelian [14] and later the non-abelian [13] tensor hierarchies into

flat, 4D, N = 1 superspace and explicitly constructed their manifestly supersymmetric

invariants. The field-strengths of such hierarchies satisfy their Bianchi identities identically2

and can be used to construct the usual Maxwell-type actions. The superspace differential

operators involved in the Bianchi identities turn out to be the adjoints of those appearing

in the gauge transformations of the super-p-form potentials. Because of this, the potentials

and field-strengths can be used to construct a quadratic BF -type invariant. By an abuse

of language, we will refer to this as a quadratic Chern-Simons-type invariant for reasons

that will hopefully become clear if they are not already.

In order to construct cubic and higher-order Chern-Simons-like actions (including the

dimensional reductions of actual abelian Chern-Simons invariants), what is needed is a

set of composite superfields constructed from the field-strengths that satisfy the same con-

straints (i.e. Bianchi identities) as the field-strengths themselves. Such a construction of the

Chern-Simons terms suffices since the inhomogeneous part of the p-form transformations

is abelian. Finding this set of composite superfields and checking the constraints requires

considerable effort in the prepotential formulation since the constraints are not linear in

superspace derivatives. Indeed, it is not clear a priori that such a set of composites exists

even in the abelian version of the hierarchy. In the non-abelian case the required interplay

between hierarchy identities, gauge-covariant superspace D-algebra identities, and Bianchi

identities seems miraculous.

This work originated in the desire to understand this “miracle” and to obviate the

cumbersome calculus of the prepotential formalism by reinterpreting it in superspace

differential-geometric terms. In such a formulation, the field-strengths are specific Lorentz-

irreducible parts of super-(p+1)-forms [15]. The complicated Bianchi identities they satisfy

are relations “descendant” from the condition that the superforms be closed (or exact by

the Poincaré lemma). Since the superspace de Rham operator is a graded derivation, the

wedge product of closed forms is closed and the miraculous cancellations of the prepo-

tential formalism would just be descendants of this trivial fact. Finally, it was imagined

that the Chern-Simons-like actions would simply be the integral of the (pullbacks of the)

higher-dimensional super-Chern-Simons form.

As it turns out, this interpretation is overly-simplistic for two reasons. The first is

that the closed superforms that define irreducible representations of the super-Poincaré

algebra do not form a ring under multiplication: to get an irreducible supermultiplet from

a superform, many parts must be set to zero as conventional constraints (similarly to what

is done to the torsion in superspace supergravity theories). On the other hand, when two

lower-degree forms are wedged together they will generally give contributions violating

these conditions and ruin the picture sketched above. This problem can be circumvented

2They are given explicitly in terms of off-shell “prepotential” superfields. Such a (finite) set of prepo-

tentials exists only because we have chosen to work in a superspace admitting no more than four real su-

percharges.
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by defining an improved form in the same cohomology class that satisfies the original

conditions on the irreducible superform.3

The second complication is that the Chern-Simons action is defined by a form that

is not closed whereas the “ectoplasm” method used to construct supersymmetric actions

specifically requires the use of closed forms [20, 21]. Fortunately, it is known how to handle

this situation [16, 17]: in addition to the Chern-Simons form C constructed by wedging

superform potentials and field-strengths, one constructs a second, inequivalent form K that

is both manifestly gauge invariant and satisfies dK = dC. (That such a form exists is a

phenomenon called “Weil triviality” [19], cf. section 4.1.) This gives a closed superform

J = C − K which, in turn, defines the superspace completion of the component Chern-

Simons action by the ectoplasm procedure (cf. section 4).

Despite these complications to the näıve geometrization of the prepotential hierarchy,

we will find that it is possible to give a recursive formula for the composite superfields

defining the Chern-Simons invariants of any non-abelian tensor hierachy of the type defined

in reference [13]. Furthermore, it is possible to solve these recursion relations to obtain all

of the superspace invariants explicitly. We demonstrate this in detail by reproducing the

cubic invariant found in [13] and deriving a new quartic invariant. The former was recently

used (in conjunction with a superspace Hitchin functional) to derive the scalar potential

of eleven-dimensional supergravity in backgrounds admitting a (not necessarily closed) G2

structure [23]. The quartic invariant would be a main ingredient in a similar analysis for

seven-dimensional supergravity backgrounds [22].

Outline. We begin in section 2 with a review of the non-abelian tensor hierarchy in

the prepotential formulation and use this to describe the problem of constructing Chern-

Simons-like gauge-invariant superspace actions. This pre-geometrical description is refor-

mulated in terms of super-p-forms in section 3 where the composite superfields appearing

in the construction of the (secondary) characteristic classes are interpreted as products

of closed superforms. In section 4 we relate these composite superforms to supersymmet-

ric invariants by way of “ectoplasm”. This method takes as input a closed superform of

spacetime degree four and returns a chiral superspace integral. As mentioned above, the

product of closed irreducible superforms is not a closed irreducible superform. In sec-

tion 4.1, we construct a gauge-invariant composite superform with which we modify the

original composite superform to obtain a closed, irreducible, composite superform. Ap-

plying the ectoplasm method, this corrected composite form gives the Chern-Simons-like

superspace action. Since the construction is in terms of superforms, the result is manifestly

supersymmetric and gauge-invariant by the same logic as that for bosonic Chern-Simons

invariants. In section 5, we use this technology to derive and solve a recursion formula

for all Chern-Simons-like actions for any non-abelian tensor hierarchy. We summarize our

conclusions in section 6.

3By “irreducible” we will always mean as a representation of the super-Poincaré algebra. In particular,

a form can be both composite (i.e. constructed by wedging non-composite forms) and irreducible (i.e. it

satisfies the same constraints as the non-composite form of the same degree).
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As we will see throughout our presentation, the use of superforms streamlines the con-

struction of geometric invariants and simplifies or obviates many cumbersome and delicate

calculations. We have attempted to make this paper self-contained but have been neces-

sarily brief in our review of superform methods. A pedagogical introduction to superforms

in the context of tensor hierarchies may be found in reference [30].

2 Prepotential formalism

The papers [13, 14] were motivated by the goal of writing a supersymmetric theory in

D > 4 dimensions, particularly eleven-dimensional supergravity, in 4D N = 1 language.

The results obtained were more general, with no assumptions being made about whether

the four-dimensional tensor hierarchy had been obtained from a higher-dimensional theory

or not. In the present work we will not be as careful to maintain this full generality, although

this choice is primarily made to keep the notation simple. Instead we will implicitly assume

that the four-dimensional tensor hierarchy arises from a p-form in D dimensions, where

the D-dimensional theory is being put on a background R4 × M , with M a (D − 4)-

dimensional internal space. Note that p should be odd in order for us to have a non-trivial

Chern-Simons action.

In this case, the bosonic four-dimensional tensor hierarchy is comprised of axions a,

which are zero-forms in spacetime and p-forms on M , spacetime one-forms Aa which are

(p − 1)-forms on M , spacetime two-forms Bab valued in internal (p − 2)-forms, spacetime

three-forms Cabc valued in internal (p−3)-forms, and spacetime four-forms Dabcd valued in

internal (p−4)-forms. Note that if p = 3 there simply are no Dabcd fields, and if p = 1 there

are only axions and 1-forms. These forms can be multiplied, using the wedge product for

forms on M , and if D = n(p+1)−1 for some n > 1, then we can construct a D-dimensional

Chern-Simons action by wedging one potential and n − 1 field-strengths and integrating

the resulting D-form over R4×M . By integrating just over M , we get a 4D Chern-Simons

action for the tensor hierarchy.

Additionally, if we are reducing a supergravity theory in D dimensions, then we can also

incorporate the 4D gauge fields coming from off-diagonal components of the D-dimensional

metric. These are spacetime one-forms which are tangent vectors on M , and their corre-

sponding non-abelian gauge group is the group of diffeomorphisms on M (whose Lie algebra

can be identified with Γ(TM), the space of vector fields on M with the usual Lie bracket).

In [13], it was explained how to embed these structures into 4D, N = 1 superfields.

The non-abelian gauge vectors Aa were promoted to TM -valued super-1-forms AA (with

the lowest components of the superfield Aa matching the bosonic fields of the same name)

which were used to build gauge covariant super-derivatives DA = {Da,Dα, D̄α̇} by

Da = ∂a − (LA)a, Dα = Dα − (LA)α, D̄α̇ = D̄α̇ − (LA)α̇. (2.1)

Here LA is the Lie derivative along the vector field A which acts on differential forms of

the internal space.
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The bosonic fields of the hierarchy are embedded in superfield prepotentials as [15]

a =
1

2
(Φ + Φ̄)

∣∣, (2.2a)

Aa = −1

4
(σ̄a)

α̇α[Dα, D̄α̇]V
∣∣, (2.2b)

Bab = − i
2

[(σab)
β
α DαΣβ − (σ̄ab)

α̇
β̇
D̄α̇Σ̄β̇ ]

∣∣, (2.2c)

Cabc =
1

8
εabcd(σ̄

d)α̇α[Dα, D̄α̇]X
∣∣, (2.2d)

Dabcd =
i

8
εabcd(D2Γ− D̄2Γ̄)

∣∣. (2.2e)

Here Φ is a covariantly chiral superfield valued in p-forms on M , V is a real superfield

valued in (p− 1)-forms, Σα is a covariantly chiral spinor superfield valued in (p− 2)-forms,

X is a real superfield valued in (p−3)-forms, and Γ is a covariantly chiral superfield valued

in (p−4)-forms. A vertical slash means that we take the lowest component of the superfield.

The non-abelian gauge transformations take the form δS = LλS for any of the hierar-

chy superfields S, where λ is a TM -valued real superfield parameterizing the non-abelian

gauge transformations and the super-1-form AA transforms as δAA = DAλ (with the

Lie derivative inside of DA now acting on vector fields). The gauge-invariant part of the

non-abelian vectors is captured by a TM -valued covariantly chiral spinor superfield Wα

satisfying DαWα = D̄α̇W̄ α̇.

The bosonic gauge transformations from the hierarchy now lift to superfield gauge

transformations parameterized by chiral Λ, real L, chiral spinor Υα, real Ξ, and chiral Π

superfields valued in (p − 1)-, (p − 2)-, (p − 3)-, (p − 4)-, and (p − 5)-forms respectively.

Note that if p = 3, as in the reduction from eleven-dimensional supergravity, then the last

two gauge parameters do not appear. The transformations are

δΦ = ∂Λ, (2.3a)

δV =
1

2i
(Λ− Λ̄)− ∂L, (2.3b)

δΣα = −1

4
D̄2DαL+ ∂Υα + (ιW)αΛ, (2.3c)

δX =
1

2i
(DαΥα − D̄α̇Ῡα̇)− ∂Ξ− Ω(ιW , L), (2.3d)

δΓ = −1

4
D̄2Ξ + ∂Π + (ιW)αΥα. (2.3e)

Here ∂ is the exterior derivative acting on differential forms on M , and ιv is contraction of

a form by a vector field v. The object Ω(·, ·) is the so-called Chern-Simons superfield,

Ω (ψ, S) ··= ψαDαS + ψ̄α̇D̄α̇S +
1

2

(
Dαψα + D̄α̇ψ̄α̇

)
S, (2.4)

which takes as input a covariantly chiral spinor superfield ψα and a real superfield S.4

4Its name derives from the property (in flat superspace for simplicity) D̄2Ω(ψ, S) = ψαD̄2DαS +
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It is possible to construct a set of gauge-invariant (under the hierarchy transforma-

tions (2.3), and covariant under the non-abelian gauge transformations) field-strength su-

perfields,

E = ∂Φ, (2.5a)

U =
1

2i
(Φ− Φ̄)− ∂V, (2.5b)

Wα = −1

4
D̄2DαV + ∂Σα + (ιW)αΦ, (2.5c)

H =
1

2i
(DαΣα − D̄α̇Σ̄α̇)− ∂X − Ω(ιW , V ), (2.5d)

G = −1

4
D̄2X + ∂Γ + (ιW)αΣα. (2.5e)

Of these, E, Wα, and G are chiral superfields, whereas U and H are real superfields. They

satisfy the Bianchi identities

0 = ∂E, (2.6a)

0 =
1

2i
(E − Ē)− ∂U, (2.6b)

0 = −1

4
D̄2DαU + ∂Wα + (ιW)αE, (2.6c)

0 =
1

2i
(DαWα − D̄α̇W̄ α̇)− ∂H − Ω(ιW , U), (2.6d)

0 = −1

4
D̄2H + ∂G+ (ιW)αWα. (2.6e)

In the next section we will relate the repeating patterns in (2.3), (2.5), and (2.6) to the

action of the superspace de Rham operator on superforms.

We can now write a candidate super-Chern-Simons action as

SSCS = Re

[
i

∫
d4xd2θTr(Φg + Σαwα + Γe)

]
+

∫
d4xd4θTr(V h−Xu), (2.7)

where e, u, wα, h, and g are composite superfields built out of the field-strengths (2.5),

with e, wα, and g chiral, and u and h real. Here the Tr represents an integration of the

internal (D − 4)-form over the internal space (and for cases other than those coming from

dimensional reduction, it is possible to assign a suitably generalized meaning). Then the

conditions for gauge invariance of SSCS under the hierarchy transformations (2.3) are the

1
2
(Dαψα − D̄α̇ψ̄α̇)S so if ψα → Wα = − 1

4
D̄2DαV , then − 1

4
D̄2Ω(W,V ) = WαWα gives the superspace

version of dΩ = F ∧ F . In terms of superforms, this corresponds to deforming the 3-form field strength

H → dB +X [51] by the Chern-Simons super-3-form X = tr
(

1
2
AdA+ 1

3
A3
)

[52, 53]. (Applications to the

chiral anomaly in superspace were studied in [54, 55].)
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“descent relations”

0 = ∂e, (2.8a)

0 =
1

2i
(e− ē)− ∂u, (2.8b)

0 = −1

4
D̄2Dαu+ ∂wα + (ιW)αe, (2.8c)

0 =
1

2i
(Dαwα − D̄α̇w̄α̇)− ∂h− Ω(ιW , u), (2.8d)

0 = −1

4
D̄2h+ ∂g + (ιW)αwα. (2.8e)

In other words, the composite fields must satisfy the same Bianchi identities (2.6) as the

field-strengths themselves. This means that to build a quadratic super-Chern-Simons ac-

tion, we should simply take e = E, u = U , wα = Wα, h = H, and g = G. To build

actions that are higher order in the number of fields apparently requires significantly more

work, and in [13, 14] this was done to cubic order essentially by writing down all possible

terms which could appear in the composites and then fixing the relative coefficients by

solving (2.8).

This concludes our review of our previous results on non-abelian tensor hierarchies and

their Chern-Simons invariants in 4D, N = 1 superspace. The main result of this paper

can now be stated precisely as the explicit construction of any Chern-Simons action of the

form (2.7). The lemma we will need to establish is the following

Claim 1. Suppose that we have constructed the composites en, un, wαn , hn, and gn that

solve the descent equations (2.8) and are of order n in the field-strength superfields. Then

the composite superfields

en+1 = Een, (2.9a)

un+1 =
1

2
(E + Ē)un +

1

2
U(en + ēn), (2.9b)

wαn+1 = Ewαn +Wαen +
i

4
D̄2(DαUun − UDαun), (2.9c)

hn+1 =
1

2
(E + Ē)hn +

1

2
H(en + ēn) + Ω(wn, U) + Ω(W,un) (2.9d)

− iDαU(ιW)αun − i(ιW)αUDαun + iD̄α̇U(ιW̄)α̇un + i(ιW̄)α̇UD̄α̇un,

gn+1 = Egn +Gen +Wαwnα +
i

4
D̄2(Hun − Uhn), (2.9e)

of order n+ 1 also satisfy the descent relations.

The most straightforward proof of Claim 1 is to substitute the expressions (2.9) into

the descent relations (2.8) and verify that all terms cancel using the Bianchi identities (2.6).

This, however, does not elucidate the structure of the recursion relation nor the underlying

reason the descent equations admit a non-trivial solution in the first place. Instead, a

constructive proof of this claim will be given in section 5 once we have developed the

necessary supergeometry.
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3 Superforms

In this section we geometrize the prepotential formalism of the previous section by recasting

it in terms of differential forms in superspace [15]. We define a superform ω of degree p by

the näıve extension of the coordinate expression of a bosonic p-form,

ω =
1

p!
dzMp ∧ · · · ∧ dzM1ωM1...Mp(z). (3.1)

Here zM = (xm, θµ, θ̄µ̇) stands for the Cartesian super-coordinates and dzM ∧ dzN =

−(−1)MNdzN ∧ dzM is the graded wedge product. The de Rham operator

d = dzM
∂

∂zM
= dzM∂M (3.2)

maps super-p-forms to super-(p+ 1)-forms with

dω =
1

p!
dzMp ∧ · · · ∧ dzM1 ∧ dzN∂NωM1...Mp(z)

=
1

p!
dzMp ∧ · · · ∧ dzM1 ∧ dzN∂[NωM1...Mp](z). (3.3)

Here [...] denotes graded anti-symmetrization of indices. The partial derivatives super-

commute [∂M , ∂N ] = ∂M∂N − (−1)MN∂N∂M = 0. Thus, the super-de Rham operator is a

differential and we can construct the superspace analog of the de Rham complex

Ω• : 0 −→ Ω0 d−→ Ω1 d−→ Ω2 d−→ Ω3 −→ . . . (3.4)

Gauge potentials A are defined by closed forms dF = 0 ⇒ F = dA through the

Poincaré lemma and we would like to extend this to superspace gauge potentials. The

näıve solution FM1...Mp = p! ∂[M1
AM2...Mp] does not define a linear representation of the

supersymmetry algebra because the fermionic coordinate derivatives do not commute with

the supercharges. The solution to this problem is to pass to a super-covariant basis of

forms by introducing flat superspace vielbeins EA
M and their inverses EM

A

d = dzMEM
AEA

M∂M = EADA. (3.5)

Similarly, we rearrange

ω =
1

p!
EAp ∧ · · · ∧ EA1ωA1...Ap(z). (3.6)

The flat superspace covariant derivatives DA = (Dα, D̄α̇, ∂a) commute with the super-

charges but now the frames carry torsion TA = dEA. This changes the formula (3.1) for

the exterior derivative to the covariant version

dω =
1

p!
EAp ∧ · · · ∧ EA1 ∧ EB

(
D[BωA1...Ap](z) +

1

2
T[BA1

Cω|C|A2...Ap](z)

)
. (3.7)

Here |...| indicates that ... is to be omitted from the anti-symmetization.
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The collection of superfields ωA1...Ap(z) is taken to be graded-anti-symmetric so that

the components of a p-form ω which are dimension-( 1
2(t + u) + v) are superfields of the

form

ωα1···αtα̇1···α̇ua1···av , t+ u+ v = p. (3.8)

They are symmetric under interchange of any two spinor indices, but anti-symmetric under

any other exchange of indices. To automatically keep track of these symmetry properties,

it can be useful to introduce commuting spinor variables sα and s̄α̇, and anti-commuting

vector variables ψa, which allows us to use more compact notation,

ωs···ss̄···s̄ψ···ψ = ωα1···αtα̇1···α̇ua1···avs
α1 · · · sαt s̄α̇1 · · · s̄α̇uψa1 · · ·ψav . (3.9)

(Note that since the spinor indices are symmetrized, we can have p-forms with p > 4 in four

dimensions. Such “over-the-top forms” appear in closely-related hierarchies [7, 37, 38].)

In flat 4D, N = 1 superspace there is only one non-vanishing torsion Tαα̇
a = −2i(σa)αα̇.

Thus the independent components appearing in the exterior derivative of a p-form (3.7)

can we written as

(dω)s···ss̄···s̄ψ···ψ = (−1)t+uv∂ψωs···ss̄···s̄ψ···ψ + tDsωs···ss̄···s̄ψ···ψ + uD̄s̄ωs···ss̄···s̄ψ···ψ

+ 2i(−1)p+1tu(σa)ss̄ωs···ss̄···s̄ψ···ψa, (3.10)

where t + u + v = p + 1, is the degree of dω. As in the ordinary case, we say that ω is

closed if dω = 0, and ω is exact if ω = dη.

We have ordered the terms so that the superfield in the first has the lowest dimension,

the next two have dimension one-half higher, and the last has dimension one higher. Solving

this covariant closure condition dF = 0 now gives covariant components for the potential

A but there are way too many components in a general potential p-form to define an

irreducible representation of the super-Poincaré algebra. (An unconstrained superfield is

reducible and we have a large collection of such superfields.) This is solved by setting the

lower-dimensional components of the covariant field strength F to zero. This is analogous

to the torsion constraints in superspace supergravity: when this doesn’t trivialize the form,

the conditions give a covariant superfield because the constraints are covariant. The first

component that is not set to vanish (i.e. that with the lowest dimension) must then satisfy

the relation

(σa)ss̄ωs···ss̄···s̄aψ···ψ = 0, (3.11)

which follows from (3.10) with the lower-dimension components set to zero.5 In table 1 we

give the solutions to this condition for all 4D, N = 1 p-form field-strengths [15].

One then inserts this component into the next-higher dimension closure condition and

solves the next-higher component in terms of D and D̄ on the first and so on. This gives

conditions on the superfields in the table below.6

5The exception is when the dimension- p
2

components are non-zero, which we have for the 1-form field-

strengths (cf. table 1).
6This seemingly ad hoc (and potentially inconsistent, if there is no solution to (3.11)) procedure can

be justified by interpreting the de Rham operator in terms of the Chevalley-Eilenberg differential of the

super-translation algebra. In this context, the procedure is computing the Lie algebra cohomology of this

superalgebra with values in the module of superfields [27].
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p strength constraints prepotential top component

0 Fα =DαU D̄2DU = 0 U = Φ+Φ̄ Fa =DσaD̄U+c.c.

1 Fαa = (σaW̄ )α DW̄ = 0 & D̄W̄ =DW W = D̄2DV Fab =DσabW+c.c.

2 Fαα̇a = (σa)αα̇H H = H̄ & D2H = 0 H =DΣ+D̄Σ̄ Fabc = εabcdDσ
dD̄H+c.c.

3 Fαβab = (σab)αβḠ D̄G= 0 G= D̄2X Fabcd = εabcdD
2G+c.c.

Table 1. Embedding of p-forms in closed superforms. The component p-forms are embedded into

closed super-(p + 1)-form field-strengths F as originally shown in [15]. Each field-strength can be

written in terms of an invariant scalar or spinor superfield. These satisfy constraints that can be

solved in terms of prepotentials. Numerical coefficients are neglected in this table for simplicity

but can be found in section 2 (for the constraints and prepotentials) and in appendix A (for the

superform components).

Based on table 1, we again see a pattern (as was mentioned in the previous section)

between the structures of the constraints and prepotential solutions. Although not included

in the table, this pattern extends to the gauge variations as well. It is not always appreciated

that these rhyming structures are simply consequences of nilpotency at various levels of the

complex. In the original superforms paper [15] this is observed as prepotential solutions

having a “memory” of the gauge transformations and in [14] it is remarked that there is

a “beautiful symmetry” between the constraints, solutions, and variations. This is not

a coincidence and merely follows from ω = dχ solving dω = 0 identically and δχ = dσ

leaving ω invariant. However, when this is checked by crunching through D-calculus it

appears quite a bit more impressive. This is because the linear closure condition dω = 0 is

not necessarily linear in D’s when expressed in terms of superfields. Closure of the 3-form

involves the quadratic operator D2, while closure of the 1-form is cubic in D. This means

that at each degree, the nilpotency of d is in terms of non-trivial higher-order D-identities.

For example, the prepotential solution for Wα in the super-de Rham complex works because

DαD̄2Dα = D̄α̇D
2D̄α̇. (3.12)

Since this is equivalent to the nilpotency relation d(dF ) ≡ 0 (for deg(F ) = 1), we did

not need to know (3.12) to write down the prepotential solution. In more complicated

superspaces (e.g., higher-dimensional, N > 1, curved, etc.) these identities are often

significantly more complicated and ways to avoid having to rely on them are subsequently

more valuable. Without this geometric perspective, checking things as simple as gauge

covariance can become forbiddingly involved.

Returning to the matter at hand, the procedure above gives irreducible, off-shell rep-

resentations of the Poincaré group. Achieving these properties required that certain lower-

dimensional components of the superform vanish. This condition is not preserved by the

wedge product, as is easy to see by considering the product of two 1-form field-strengths F

and F ′: the lowest non-vanishing components are Fss = FsF
′
s, Fss̄ = FsF

′
s̄ and their conju-

gates. This is in contradiction with the conditions for an irreducible 2-form field-strength

since, as we see from the second row of table 1, the lowest-dimension non-vanishing com-

ponent of an irreducible, closed 2-form is Fsψ.
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Contrary to the case of ordinary de Rham forms then, irreducible superforms do not

give rise to a differential graded superalgebra. In section 4 we will construct superspace

actions from closed irreducible 4-forms. To apply this to composite forms we will have to

address this apparent obstruction to irreducibility.

3.1 Differential supergeometry of tensor hierarchies

We are now in a position to complete the geometrization of the non-abelian tensor hi-

erarchies reviewed in section 3.1. At the most abstract level such hierarchies are double

complices of superspace de Rham forms (3.4) with values in a differential complex of rep-

resentations GL(Ki) of some Lie algebra [14]:

K• : 0 −→ K0 q−→ K1 q−→ K2 q−→ K3 −→ . . . (3.13)

When the Lie algebra is gauged, the de Rham operator d→ D acquires a connection and

the new differential q must commute (in the appropriately graded sense) with this covariant

exterior derivative [13].

A large family of realizations of this setup arise in compactification scenarios in which

a higher-dimensional theory of differential forms is reduced on a super-vector bundle over a

smooth bosonic base Y of some dimension n. Then the representation spaces Ki = Ωi(Y )

are the spaces of forms on Y and the differential q is the de Rham operator on Y . The

gauging is by the diffeomorphisms on Y with the gauge field identified with the mixed

components of the frame (with one leg in the tangent directions of the base and one in the

superspace fiber). In the apparently more general situation of the abstract hierarchy, the

notation needed to keep track of the many ingredients defining the representation complex

and gauging can be quite cumbersome. To avoid this, we will proceed using the notation

and language arising from compactifications.7

A q-form of the abelian hierarchy is a sum of super-p-forms with values in Ωq−p(Y ) for

p = 0, . . . , q,

Ωq =

q⊕
p=0

Ωp(R4|4)⊗ Ωq−p(Y ). (3.14)

Denoting, as in section 2, the de Rham operator on Y by ∂, the differential Q on this

abelian hierarchy is

Q = d+ q, with q = (−1)p+1∂ on Ωp(R4|4)⊗ Ωq−p(Y ). (3.15)

Here d is the superspace de Rham operator acting on superforms as defined by (3.10) and

the alternating sign is needed to have q anti-commute with d. Redoing the analysis of

closed (q + 1)-form field-strengths for this complex is unnecessary since this is just the

usual double complex construction in which QF = 0 is solved by F = QA for some q-form

7This is much less of a restriction than it may initially seem since it applies to any situation in which the

complex (3.13) admits a free resolution [29]. In this case there will be an analog of Y with its local coordinate

derivatives and 1-forms so that we can continue to use the concepts and notation from compactifications

for this new formal bosonic space.
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A.8 In terms of prepotentials, one sees that this is (2.5) with Wα turned off. We note that

F now also has a degree-zero part

F (0) = (QC)(0) = ∂C(0) =
1

2
(E + Ē), where E = ∂Φ. (3.16)

Gauge symmetry again takes the form δC = QΛ, where Λ(p−1) is obtained from the

expressions for C(p−1) by substituting the gauge parameter superfields Λ, L, Υα, Ξ, and Π

in for the prepotentials Φ, V , Σα, X, and Γ respectively. The invariance of the superforms

F (p+1) again follows from nilpotence of the differential, Q2 = 0.

Gauging the hierarchy means that we replace the superspace de Rham differential

d → dA with the gauge-covariant exterior derivative defined by (2.1). This is no longer a

differential, since

d2
A = −LF , (3.17)

where F is the non-abelian super-2-form field-strength related to the superfield W of sec-

tion 2 by Fsψ = sσψW̄ (cf. table 1). Using the compactification language, we may think

of F as a super-2-form valued in vector fields on Y so that it is sensible to contract it with

forms on Y . A differential can then be constructed as

Q = dA + q + ιF , (3.18)

where the contraction operator is such that [13]

qιF + ιFq = LF . (3.19)

Explicitly, the contraction term acts on superforms by

ιFωs...ss̄...s̄ψ...ψ = (−1)v+1tv(ιFsψ)ωs...ss̄...s̄ψ...ψ + (−1)v+1uv(ιFs̄ψ)ωs...ss̄...s̄ψ...ψ

+
1

2
(−1)p+1v(v − 1)(ιFψψ)ωs...ss̄...s̄ψ...ψ. (3.20)

Having constructed a covariant superspace differential (3.18), the rest is straightfor-

ward. Gauge transformations, gauge-covariant field-strengths, and Bianchi identities are all

given in terms of Q. We collect the explicit expressions for the superform gauge fields and

field-strengths in appendix A. The covariant constraints coming from superform closure

are displayed in (2.6). (To see how exactly these constraints arise, see §5 of [30].)

4 Ectoplasm

The ectoplasm formalism [20, 21] is a way of constructing supersymmetric D-dimensional

actions from closed, irreducible superforms of degree D. Specializing to D = 4, let us

first consider the case of standard super-de Rham cohomology. Suppose J is a closed

super-4-form and define

SJ ··=
1

24

∫
d4xεabcdJabcd

∣∣. (4.1)

8Explicitly, F =
∑q+1
p=0 F[p,q+1−p] with F[p,q] = dA[p−1,q] + (−1)p+1∂A[p,q−1] for A =

∑q
p=0 A[p,q−p].
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This is supersymmetric because under a supersymmetry transformation we have

δSJ =
1

24
εα̂
∫
d4xεabcdQα̂Jabcd

∣∣ =
1

24
εα̂
∫
d4xεabcdDα̂Jabcd

∣∣
=

1

6
εα̂
∫
d4xεabcd∂aJα̂bcd

∣∣ = 0, (4.2)

where for brevity we combined εα̂Qα̂ ≡ εαQα + ε̄α̇Q
α̇. Here the second equality holds be-

cause Q̄ and D̄ differ by a spacetime derivative, while the third equality holds by closure:

0 = (dJ)α̇abcd = D̄α̇Jabcd− 4∂[aJ|α̇|bcd]. Furthermore, if the lowest-dimension non-vanishing

components of J are Jα̇β̇ab = −4(σ̄ab)α̇β̇J0 and its conjugate (as is the case if J is irre-

ducible, as shown in table 1), then J0 will be a chiral superfield and the highest-dimension

component of J will be Jabcd = i
8εabcd(D

2J0− D̄2J̄0). Therefore, the action (4.1) takes the

manifestly supersymmetric form

SJ = Re

[
i

∫
d4xd2θJ0

]
. (4.3)

Note that SdL = 0 for any globally defined 3-form L. We can use this as follows: as

pointed out in section 3, if the closed super-4-form J is obtained from lower-degree forms

by wedging, Jα̇β̇ab will generally not be the lowest-dimensional component. Then we can

try to shift J by an exact form, J ′ = J − dL (for some gauge-invariant 3-form L), so that

the lowest dimensional component of J ′ is J ′
α̇β̇ab

. In this case,

SJ = SJ ′ = Re

[
i

∫
d4xd2θJ ′0

]
. (4.4)

We now extend this construction to the non-abelian hierarchy.

The ectoplasmic invariants for the non-abelian tensor hierarchy are the natural analogs

of (4.1) suggested by the substitution d → Q. More specifically, the condition is that if

{J (p)}Dp=0 is a collection of superforms with bi-degree (p,D−p) and with (QJ)(5) = 0, then

SJ =
1

24

∫
d4x

∫
M
εabcdJ

(4)
abcd

∣∣ (4.5)

is a supersymmetric action. Moreover, if the lowest-dimension component of J (4) is J
(4)

α̇β̇ab
=

−4(σ̄ab)α̇β̇J0 then

D̄α̇J0 = 0, SJ = Re

[
i

∫
d4xd2θ

∫
M
J0

]
. (4.6)

The proofs of these statements follow the same steps as above, but with some extra terms

getting dropped. For instance,

δSJ =
1

24
ε̄α̇
∫
d4x

∫
M
εabcdQ̄α̇J

(4)
abcd

∣∣ =
1

24
ε̄α̇
∫
d4x

∫
M
εabcdD̄α̇J

(4)
abcd

∣∣
=

1

24
ε̄α̇
∫
d4x

∫
M
εabcd(4DaJ (4)

α̇bcd + ∂J
(5)
α̇abcd + 4(ιF )α̇aJ

(3)
bcd)
∣∣ = 0. (4.7)
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Here the first term vanishes because it is a combination of a total spacetime derivative and

a piece that is a Lie derivative of a top form on M . The second term vanishes because it

is a total derivative on M . Finally, the last form J (3) must be zero because it is a bosonic

(D − 3)-form on a (D − 4)-dimensional manifold. The other proofs proceed similarly.

By using the same manipulations, we can also show that if the polyform J is Q-exact

then SJ = 0.

4.1 Weil triviality

Our interest is in supersymmetrizing Chern-Simons actions. The basic bosonic action can

be given by defining a Chern-Simons super(-poly)form using the potential and field-strength

superforms C =
∑

pC
(p) and F =

∑
p F

(p),

ωn = C ∧ Fn−1, (4.8)

and then integrating ω
(4)
n

∣∣ over four-dimensional spacetime and the internal space,

SCS,n =
1

24

∫
d4xεabcd

∫
M
ω

(4)
nabcd

∣∣. (4.9)

This action is gauge invariant under both the non-abelian gauge transformations (since it

is invariant under internal diffeomorphisms by construction) and under the abelian gauge

transformations which leave F invariant and transform C by δC = QΛ. To see this,

δSCS,n =
1

24

∫
d4xεabcd

∫
M

(Q(Λ ∧ Fn−1))abcd
∣∣ = 0, (4.10)

where we exploit the fact that the integral of a Q-exact form is zero from integration by

parts on spacetime and on the internal manifold, and the fact that a top (bosonic) form

cannot be the contraction of anything.

Of course ωn is not Q-closed in general, and in particular (Qωn)(5) 6= 0 except in the

trivial case of n = 1, so SCS,n is not supersymmetric in general. The case n = 1 is special

and does give a supersymmetric result

SSCS,1 = SCS,1 =
1

24

∫
d4xεabcd

∫
M
C

(4)
abcd

∣∣ = Re

[
i

∫
d4xd2θ

∫
M

Γ

]
. (4.11)

For n > 1, the act of supersymmetrization involves finding a different polyform Kn that is

invariant under abelian gauge transformations and satisfies QKn = Fn = Qωn. (Actually

we only need it to hold in degree five, (QKn)(5) = (Fn)(5).) In this case the form Jn =

ωn −Kn is Q-closed and can be used to build a supersymmetric, gauge-invariant action.

The existence of the gauge-invariant class K is a phenomenon known as Weil triviality [19].

We will use (relative [31]) cohomology [32, 33] to construct the relevant superinvariants.

This was applied to the construction of Chern-Simons-like invariants in [16–18] based on

earlier work on Weil triviality [19]. In the next section we will implement this procedure

in the case of the quadratic and higher-order Chern-Simons actions.
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5 All Chern-Simons actions

In this section we prove Claim 1 in subsection 5.1 and use it to find all possible Chern-

Simons-like invariants of the form (2.7) in subsection 5.2. The two subsections are indepen-

dent and so the reader interested only in the solution can skip directly to subsection 5.2.

We begin by dispensing with an ambiguity in the formalism of section 2: suppose

we have another set of globally defined (so built from the basic field-strengths E, U ,

Wα, H, and G) composite superfields {φ, v, σα, x, γ}. Then we can always get a solution

to (2.8) by constructing {e, u, wα, h, g} from {φ, v, σα, x, γ} in the same way that the set

{E,U,Wα, H,G} is constructed from {Φ, V,Σα, X,Γ} in (2.5). That is, the composite field-

strengths would be exact in the field-strengths, not the prepotentials. The corresponding

action (2.7) can then be written, after integrations by parts, in terms of field-strengths

alone. So if we are interested in super-Chern-Simons actions which are not equivalent to

completely gauge-invariant constructions, then such actions are trivial. This is consistent

with the cohomological formulation of Chern-Simons actions presented in [13].

Moreover, an “exact” (in the cohomological sense) composite action of this sort can

even give zero contribution to the action. For constructions involving dimensional reduc-

tion, where we expect the composite fields to be internal forms of the appropriate degree

and we restrict the engineering dimension to match the standard Chern-Simons action, this

can only happen in contributions to x. In particular, we can have

x =

n−3∑
k=0

akE
kĒn−3−kUH +

n−4∑
k=0

(bkE
kĒn−4−kUDαUWα + c.c.)

+
n−5∑
k=0

(ckE
kĒn−5−kUDαUD̄α̇UDαD̄α̇U + c.c.), (5.1)

with ak, bk, and ck being complex constants (and with āk = an−3−k). Constructing the

corresponding h = −∂x and g = −1
4D̄

2x and plugging into the action (2.7) gives zero

after integration by parts (it will be proportional to the wedge product of two U ’s, which

vanishes since U is an odd degree form on the internal space). We must keep this ambiguity

in mind when constructing solutions to (2.8).

5.1 Proof of claim 1

As mentioned below Claim 1, the most obvious way to verify the stated recursion relations

is to plug them into the Bianchi identities and check that they are satisfied identically.

Doing so would prove the claim but does not give any insight into how the recursion

relation is found or why a solution may be expected to exist in the first place, so we have

decided to present a constructive proof in terms of the supergeometry underlying the non-

abelian tensor hierarchy instead. The proof of the all-orders action (section 5.1.2) is longer

and more technical than that for the quadratic action (section 5.1.1) so we present the

latter first.
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5.1.1 Quadratic action

We need to find a polyform K2 which is gauge invariant (so only constructed out of field-

strength superfields), and that satisfies (QK2)(5) = (F 2)(5). Because of the way the Q
operator mixes different degrees, we must proceed systematically. Define the weight of a

superform component to be the sum of the number of vector and un-dotted spinor indices.

Then any component of QK2 of weight w only depends on components of K2 whose weights

are less than or equal to w (cf. eq. (3.10)). For this reason, we can build K2 starting with

the lowest weights. Within a given weight, we start at the highest degree and work down.

The components of the superforms used here are reviewed and defined in appendix A.

The lowest-weight component of (F 2)(5) is

(F 2)
(5)
s̄s̄s̄ψψ = 6F

(1)
s̄ F

(4)
s̄s̄ψψ = 24i(σ̄ψψ)s̄s̄D̄s̄UG. (5.2)

Comparing with9

(QK2)
(5)
s̄s̄s̄ψψ = 3D̄s̄K(4)

2 s̄s̄ψψ, (5.3)

we deduce that we can set

K
(4)
2 s̄s̄ψψ = 8i(σ̄ψψ)s̄s̄UG. (5.4)

We now have the relevant components of a polyform J2 = ω2−K2 satisfying (QJ2)(5) = 0,

but we still need to put it in the form where we can read off the action. (The remaining,

higher-weight components of K2 necessary to fully fix (QJ2)(5) = 0 do not enter into the

following analysis so we will not bother to present them here.) To do this, we must remove

the component J
(4)
2 ss̄s̄ψ by subtracting an exact piece (QL2)(4) which will not affect the

action. We have

J
(4)
2 ss̄s̄ψ = −2C

(1)
s̄ F

(3)
ss̄ψ + 2C

(3)
ss̄ψF

(1)
s̄ = −2(σψ)ss̄D̄s̄V H + 2(σψ)ss̄XD̄s̄U. (5.5)

We can remove this by choosing a polyform L2 with no weight zero or one components,

and whose first weight two component is

L
(3)
2 s̄ψψ = −i(σ̄ψψ)α̇s̄(D̄α̇V H −XD̄α̇U). (5.6)

Then the action can be read off from the component

(J2 −QL2)
(4)
s̄s̄ψψ = C(0)F

(4)
s̄s̄ψψ − 2C

(1)
s̄ F

(3)
s̄ψψ − 8C

(2)
s̄ψ F

(2)
s̄ψ − 2C

(3)
s̄ψψF

(1)
s̄

+ C
(4)
s̄s̄ψψF

(0) −K(4)
2 s̄s̄ψψ − 2D̄s̄L(3)

s̄ψψ

= −4(σ̄ψψ)s̄s̄

[
ΦG+ ΣαWα + ΓE +

i

4
D̄2(V H −XU)

]
. (5.7)

Note that all explicit ∂’s and ι’s have canceled out of this expression.

This leads to the action

S = Re

[
i

∫
d4xd2θ

∫
M

(ΦG+ ΣαWα + ΓE)

]
+

∫
d4xd4θ

∫
M

(V H −XU). (5.8)

9We can assume that K2 has no components of weight zero above degree two, weight one above degree

three, or weight two above degree four since they are not required to match any non-zero components

of (F 2)(5).
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5.1.2 Higher-order actions

Now we will show that the procedure above can be adapted for higher orders in the number

of fields as well. By our previous arguments and the structure of Q-cohomology, it will

always be possible to find polyforms Kn and Ln such that Jn = ωn−Kn satisfies (QJn)(5) =

0 and (Jn − QLn)(4) has (Jn − QLn)
(4)
s̄s̄ψψ = −4(σ̄ψψ)s̄s̄Jn 0 as its lowest non-vanishing

component. In practice however, this can be very computationally intensive for n > 3 and

is a significant calculation even for n = 3. However, we will argue that there is a shortcut.

Suppose one can find a gauge-invariant polyform Mn such that Fn = Fn−1−QMn has the

same components as F . That is,

• the only weight zero components of Fn are F
(1)
n s̄ = −iD̄un and F

(0)
n = 1

2(en + ēn),

where un is a real superfield and en is chiral;

• the only weight one component of Fn above degree one is F
(2)
n s̄ψ = −(σψ)αs̄(w

α
n −

i(ιW)αun), where wαn is chiral;

• the only weight two components of Fn above degree two are F
(4)
n s̄s̄ψψ = −4(σ̄ψψ)s̄s̄gn,

F
(3)
n ss̄ψ = i(σψ)ss̄hn, and F

(3)
n s̄ψψ = −(σ̄ψψ)α̇s̄D̄α̇hn, where gn is chiral and hn is real;

• and the superfields en, un, wαn , hn, and gn are gauge-invariant composites, constructed

from (and of degree n− 1 in) the field-strengths {E,U,Wα, H,G}.

If we can find such an Mn, then we have

ωn = C ∧ Fn −Q(C ∧Mn) + F ∧Mn. (5.9)

The third term above is already completely gauge invariant and corresponds to adding

a piece to the action which can be written purely in terms of field-strengths (and hence

represents an ambiguity in the super-Chern-Simons action). The second term is Q-exact

and hence will not contribute to the action. Thus, we are free to replace ωn by C ∧ Fn

in our construction of Jn. Once we have done that, the procedure to find the action

proceeds exactly as in the quadratic case. In particular, we need to find Kn such that

(QKn)(5) = F ∧ Fn. The only component we need comes from

(F ∧ Fn)
(5)
s̄s̄s̄ψψ = 3F

(1)
s̄ F

(4)
n s̄s̄ψψ + 3F

(4)
s̄s̄ψψF

(1)
n s̄ = 12i(σ̄ψψ)s̄s̄(D̄s̄Ugn +GD̄s̄un), (5.10)

leading to

K
(4)
n s̄s̄ψψ = 4i(σ̄ψψ)s̄s̄(Ugn +Gun). (5.11)

To get rid of

J
(4)
n ss̄s̄ψ = −2C

(1)
s̄ F

(3)
n ss̄ψ + 2C

(3)
ss̄ψF

(1)
n s̄ = −2(σψ)ss̄(D̄s̄V hn −XD̄s̄un), (5.12)

we set

L
(3)
n s̄ψψ = −i(σ̄ψψ)α̇s̄(D̄α̇V hn −XD̄α̇un). (5.13)

Putting the pieces together, this gives

Jn 0 = Φgn + Σαwnα + Γen +
i

4
D̄2(V hn −Xun), (5.14)
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and

SSCS,n = Re

[
i

∫
d4xd2θ

∫
M

(Φgn + Σαwnα + Γen)

]
+

∫
d4xd4θ

∫
M

(V hn −Xun). (5.15)

What remains is to find Mn and the components of Fn. Suppose that we have already

found the solution for n− 1. We need Mn to satisfy

QMn = Fn−1 − Fn = F ∧ Fn−2 − Fn = F ∧ Fn−1 +Q(F ∧Mn−1)− Fn, (5.16)

so we can set Mn = F ∧Mn−1 + δM , where δM is such that F ∧ Fn−1 −Q(δM) has the

same components as F . But this is a short task since both F and Fn−1 have been put

into the same simple form and so the procedure to find δM is the same as finding K2,

though here we need to find more components. As we construct δM , we can also read off

the components of Fn = F ∧ Fn−1 −QδM .

Starting with weight zero, we have at degree two

(F ∧ Fn−1)
(2)
s̄s̄ = 2F

(1)
s̄ F

(1)
n−1 s̄ = 2D̄s̄UD̄s̄un−1, (5.17)

leading to

δM
(1)
s̄ = UD̄s̄un−1. (5.18)

At degree one we have

(F ∧ Fn−1 −QδM)
(1)
s̄ = F (0)F

(1)
n−1 s̄ + F

(1)
s̄ F

(0)
n−1 + ∂δM

(1)
s̄

= − i
2

(E + Ē)D̄s̄un−1 −
i

2
D̄s̄U(en−1 + ēn−1)

+ ∂UD̄s̄un−1 − UD̄s̄∂un−1

= −iED̄s̄un−1 −
i

2
D̄s̄Uen−1 −

i

2
D̄s̄Uēn−1 −

i

2
UD̄s̄ēn−1

= −iD̄s̄un + D̄s̄δM (0), (5.19)

where

un =
1

2
(E + Ē)un−1 +

1

2
U(en−1 + ēn−1), δM (0) = − i

2
(E − Ē)un−1, (5.20)

and where we made use of the Bianchi identities

∂U = − i
2

(E − Ē), ∂un−1 = − i
2

(en−1 − ēn−1), (5.21)

which are simply a consequence of the Q-closure of F and Fn−1, respectively. The final

weight zero piece is at degree zero,

(F ∧ Fn−1 −QM)(0) = F (0)F
(0)
n−1 − ∂δM

(0)

=
1

4
(E + Ē)(en−1 + ēn−1) +

i

2
(E − Ē)∂un−1

=
1

2
(en + ēn), (5.22)
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where

en = Een−1. (5.23)

Note that we have now derived the recursion relations (2.9) for en and un. Proceeding with

weight one, we have at degree three,

(F ∧ Fn−1 −QδM)
(3)
s̄s̄ψ = 2F

(1)
s̄ F

(2)
n−1 s̄ψ − 2F

(2)
s̄ψ F

(1)
n−1 s̄ − 2(ιF )s̄ψδM

(1)
s̄

= 2i(σψ)αs̄(D̄s̄U(wαn−1 − i(ιW)αun−1)

− (Wα − i(ιW)αU)D̄s̄un−1)

+ 2(σψ)αs̄(ιW)α(UD̄s̄un−1)

= 2i(σψ)αs̄(D̄s̄Uwαn−1 −WαD̄s̄un−1

− iD̄s̄U(ιW)αun−1 − iUD̄s̄(ιW)αun−1), (5.24)

which leads to

δM
(2)
s̄ψ = i(σψ)αs̄(Uw

α
n−1 +Wαun−1 − iU(ιW)αun−1). (5.25)

At degree two — recalling that M
(1)
s is fixed to be the conjugate of M

(1)
s̄ since all of our

superforms are real —

(F ∧ Fn−1 −QδM)
(2)
ss̄ = −F (1)

s F
(1)
n−1 s̄ − F

(1)
s̄ F

(1)
n−1 s −DsδM

(1)
s̄ − D̄s̄δM (1)

s

= −DsUD̄s̄un−1 − D̄s̄UDsun−1

−Ds(UD̄s̄un−1)− D̄s̄(UDsun−1), (5.26)

which can be canceled by choosing

δM
(1)
ψ = − i

2
(σψ)αα̇(DαUD̄α̇un−1 + D̄α̇UDαun−1 +

1

2
U{Dα, D̄α̇}un−1). (5.27)

We can then read off wαn from

(F ∧ Fn−1 −QδM)
(2)
s̄ψ = F (0)F

(2)
n−1 s̄ψ + F

(1)
s̄ F

(1)
n−1ψ − F

(1)
ψ F

(1)
s̄ + F

(2)
s̄ψ F

(0)
n−1

− D̄s̄δM (1)
ψ +DψδM

(1)
s̄ − ∂δM

(2)
s̄ψ − (ιF )s̄ψδM

(0)

=: −i(σψ)αs̄(w
α
n − i(ιW)αun), (5.28)

which gives (after some algebra)

wαn = Ewαn−1 +Wαen−1 +
i

4
D̄2(DαUun−1 − UDαun−1). (5.29)

Moving on to weight two, we have at degree five,

(F ∧ Fn−1)
(5)
s̄s̄s̄ψψ = 3F

(1)
s̄ F

(4)
n−1 s̄s̄ψ + 3F

(4)
s̄s̄ψψF

(1)
s̄

= 12i(σ̄ψψ)s̄s̄(D̄s̄Ugn−1 +GD̄s̄un−1), (5.30)

which can be canceled by setting

δM
(4)
s̄s̄ψψ = 4i(σ̄ψψ)s̄s̄(Ugn−1 +Gun−1). (5.31)
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Going down to degree four, we must first cancel

(F ∧ Fn−1)
(4)
ss̄s̄ψ = −F (1)

s̄ F
(3)
n−1 ss̄ψ + F

(3)
ss̄ψF

(1)
n−1 s̄

= (σψ)ss̄(−D̄s̄Uhn−1 +HD̄s̄un−1), (5.32)

which can be done by setting

δM
(3)
s̄ψψ = i(σ̄ψψ)α̇s̄(D̄α̇Uhn−1 −HD̄α̇un−1). (5.33)

Then we can read off gn from

(F ∧ Fn−1 −QδM)
(4)
s̄s̄ψψ = F (0)F

(4)
n−1 s̄s̄ψψ − 2F

(1)
s̄ F

(3)
n−1 s̄ψψ − 4F

(2)
s̄ψ F

(2)
n−1 s̄ψ

− F (3)
s̄ψψF

(1)
n−1 s̄ + F

(4)
s̄s̄ψψF(0) − 2D̄s̄δM (3)

s̄ψψ

− ∂δM (4)
s̄s̄ψψ + (ιF )s̄ψδM

(2)
s̄ψ

=·· −4(σ̄ψψ)s̄s̄gn, (5.34)

where, again suppressing some algebra,

gn = Egn−1 +Gen−1 +Wαwn−1α +
i

4
D̄2(Hun−1 − Uhn−1). (5.35)

Finally, we have

(F ∧ Fn−1 −QM)
(3)
ss̄ψ = F (0)F

(3)
n−1 ss̄ψ + F (1)

s F
(2)
s̄ψ + F

(1)
s̄ F

(2)
sψ − 2F

(2)
sψ F

(1)
s̄

− 2F
(2)
s̄ψ F(1)

s + F
(3)
ss̄ψF(0) −DsδM (2)

s̄ψ − D̄s̄δM
(2)
sψ

− (ιF )sψδM
(1)
s̄ − (ιF )s̄ψδM

(1)
s

=·· i(σψ)ss̄hn + 2iσass̄δM
(2)
ψa . (5.36)

We do not have to directly compute δM
(2)
ψψ because hn can be isolated by contracting,

yielding hn = i
8(σ̄a)α̇α(F ∧ Fn−1 −QM)

(3)
αα̇a. This leads to

hn =
1

2
(E + Ē)hn−1 +

1

2
H(en−1 + ēn−1) + Ω(wn−1, U) + Ω(W,un−1)

− iDαU(ιW)αun−1 − i(ιW)αUDαun−1

+ iD̄α̇U(ιW̄)α̇un−1 + i(ιW̄)α̇UD̄α̇un−1 (5.37)

and completes the derivation of the recursion relations (2.9).

5.2 Solution of the recursion relations

In this section, we solve the recursion relations (2.9) to all orders in n. To do this, we will

first treat n as a continuous parameter. Then the first recursion relation can be written as

(e
d
dn − E)en = 0, (5.38)

which has the general solution

en = cEn (5.39)
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for some n-independent quantity c. Since we want e2 = E, this fixes c = E−1 and the

general solution is en = En−1.

Moving on to the next equation we have(
e
d
dn − E + Ē

2

)
un =

1

2
(En−1 + Ēn−1)U. (5.40)

In general, for constants a and b we have

(e
d
dn − a)−1[bn] =

{
bn

b−a , if b 6= a,

nan−1, if b = a.
(5.41)

Then we can find the solution for un by adding the homogeneous solution to a particular

solution,

un = c

(
E + Ē

2

)n
+

1

2

(
e
d
dn − E + Ē

2

)−1

[(En−1 + Ēn−1)U ]

= c

(
E + Ē

2

)n
+
En−1 − Ēn−1

E − Ē
U. (5.42)

Demanding that u2 = U fixes c = 0, so

un =
En−1 − Ēn−1

E − Ē
U. (5.43)

Note that the denominator can always be canceled, so the solution is always polynomial in

the fields.

Proceeding, we have

wαn = cαEn + (e
d
dn − E)−1

[
En−1Wα − i

2
D̄2

(
En−1 − Ēn−1

E − Ē
UDαU

)]
= cαEn + nEn−2Wα − i

2
D̄2

[(
nEn−2

E − Ē
+

Ēn−1

(E − Ē)2

)
UDαU

]
. (5.44)

Matching n = 2 requires

cα = −E−2Wα +
i

2
E−2D̄2

(
2E − Ē

(E − Ē)2
UDαU

)
, (5.45)

giving

wαn = (n− 1)En−2Wα − i

2
D̄2

[(
(n− 1)En−2

E − Ē
− En−1 − Ēn−1

(E − Ē)2

)
UDαU

]
= (n− 1)En−2Wα − i

2
D̄2(εnUDαU), (5.46)

where

εn =
∂

∂E

un
U

=
(n− 1)En−2

E − Ē
− En−1 − Ēn−1

(E − Ē)2
. (5.47)
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The solutions for hn and gn can be obtained similarly, but the expressions are unil-

luminating. Instead, we will simply list the results for n = 3 and n = 4. The cubic

Chern-Simons invariant is defined by the composite superfields

e3 = E2, (5.48a)

u3 = (E + Ē)U, (5.48b)

wα3 = 2EWα − i

2
D̄2(UDαU), (5.48c)

h3 = (E + Ē)H + 2Ω(W,U)− 2iDαU(ιW)αU + 2iD̄α̇U(ιW̄)α̇U, (5.48d)

g3 = 2EG+WαWα −
i

2
D̄2(UH), (5.48e)

The solution agrees with the results found in [13]. The quartic Chern-Simons invariant is

defined by the following solution to the descent relations:

e4 = E3, (5.49a)

u4 = (E2 + EĒ + Ē2)U, (5.49b)

wα4 = 3EWα − i

2
D̄2[(2E + Ē)UDαU ],

h4 = (E2 + EĒ + Ē2)H

+ [(2E + Ē)(2DαUWα + UDαWα) + 2DαEUWα + c.c.]

+
i

4
UDαU(D̄2DαU − 2D̄α̇DαD̄α̇U +DαD̄2U)

− i

4
UD̄α̇U(D2D̄α̇U − 2DαD̄α̇DαU + D̄α̇D2U)− iUDαD̄α̇UD̄α̇DαU

+
i

2
UD2UD̄2U + iDαUD̄α̇UDαD̄α̇U − iDαUD̄α̇UD̄α̇DαU

− 2i(E + Ē)(DαU(ιW)αU − D̄α̇U(ιW̄)α̇U) + iDαEU(ιW)αU

− iD̄α̇ĒU(ιW̄)α̇U − i(ιW)α(E + Ē)UDαU + i(ιW̄)α̇(E + Ē)UD̄α̇U, (5.49c)

g4 = 3E2G+ 3EWαWα −
i

2
D̄2((2E + Ē)UH + 2UDαUWα + UD̄α̇UW̄ α̇

− iUDαU(ιW)αU + iUD̄α̇U(ιW̄)α̇U). (5.49d)

This result is new and would be relevant, for example, for a reduction of seven-dimensional

supergravity to four dimensions.

6 Conclusions

In this paper we have elucidated the supergeometry underlying gauged p-form hierarchies

in 4D, N = 1 superspace and used it to construct all of the associated Chern-Simons-like

invariants. This was done by describing the four-dimensional part in terms of superforms

and extending the resulting de Rham complex to a double complex of forms covariantly

coupled to non-abelian gauge fields. This construction defines field-strengths of the super-

de Rham complex which can be wedged together to make superforms that extend the
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bosonic Chern-Simons forms. For each such Chern-Simons superform, we could construct

a second manifestly gauge-covariant superform such that their difference was closed (Weil

triviality). These closed forms then defined manifestly supersymmetric actions by the

ectoplasm method of integration.

For the cubic Chern-Simons invariant, this procedure recovers the action first con-

structed in [13] and used in [23] to compute the exact scalar potential of M-theory on

backgrounds with G2 structure. More generally, these constructions are expected to apply

to higher-dimensional/extended supergravity theories. As an illustration of our general

solution, we explicitly wrote out the quartic invariant which is new and could, in principle,

be used to compute the scalar potential for seven-dimensional supergravity.

Extensions of the method to N = 2 superspace [39], 5D, N = 1 [40], and 6D, N =

(1, 0) [35, 36, 44, 50] should also be possible. Complications arise in these superspaces in (at

least) two ways. First, if we intend to keep the representations off-shell, we must consider

embeddings into projective [47–49] and harmonic [45, 46] superspaces [43]. Second, there

is an additional subtlety if we wish to connect super-p-forms to their bosonic counterparts

at the component level (although this is not necessary for the abstract construction). It is

well-known that the 4D, N = 1 super-de Rham complex of irreducible super-p-forms defines

multiplets which include bosonic p-forms. In superspaces with more than four supercharges

this is no longer universally true. In 5D, N = 1 superspace, for example, the irreducible

“3-form” is instead a multiplet of superconformal gauge parameters [27, 57].

Eventually, one would like to go beyond the computation of scalar potentials and

obtain the effective action for such theories complete with gravity couplings (including all

gravitino superfields). This is not trivial and it would be interesting to know what the

conditions on the general hierarchy might be that would make this possible. Partial results

come from minimal coupling to old-minimal supergravity [30] or, as emphasized in [25, 26],

even more simply from conformal superspace [41, 42].
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A Superform components

In section 2, we reviewed the embedding of the bosonic p-form potentials into superfield

prepotentials (cf. eq. (2.2)). In this appendix, we further embed these components and

prepotentials in superforms. It is not necessary to understand the details of this embedding

to construct the Chern-Simons super-invariants, but we will be explicit in our presentation
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as they are needed to project the superspace action to components and because we use

some of the expressions here in the proofs of section 5.

We begin with the zero-form bosonic potential, the axion, which was given by

a =
1

2
(Φ + Φ̄)

∣∣. (A.1)

It is clear how we can lift this to a super-zero-form, also known as a superfield; we just

remove the
∣∣ and write

C(0) =
1

2
(Φ + Φ̄). (A.2)

In this section our goal is to find superforms C(p) which will have the bosonic potentials

sitting in their bottom components and a set of field-strengths F (p) related to them by

F (p+1) = dC(p). Since we have already defined C(0), we can compute

F (1)
s =

1

2
DsΦ, F

(1)
s̄ =

1

2
D̄s̄Φ̄, F

(1)
ψ =

1

2
∂ψ(Φ + Φ̄). (A.3)

With some foresight, we can rewrite these expressions in terms of the superfield U =

(Φ− Φ̄)/2i,

F (1)
s = iDsU, F

(1)
s̄ = −iD̄s̄U, F

(1)
ψ = −1

4
σ̄α̇αψ [Dα, D̄α̇]U. (A.4)

Note the similarity between F
(1)
ψ and (2.2b). We can take this as a sign to make the

(justifiable [27, 30]) ansatz that

C(1)
s = iDsV, C

(1)
s̄ = −iD̄s̄V, C

(1)
ψ = −1

4
σ̄α̇αψ [Dα, D̄α̇]V. (A.5)

That is, we have simply replaced U with V to go from F (1) to C(1). But now that we have

C(1), we can compute F (2) = dC(1),

F (2)
ss = F

(2)
ss̄ = F

(2)
s̄s̄ = 0, F

(2)
sψ = −(σψ)sα̇W̄

α̇, F
(2)
s̄ψ = −(σψ)αs̄W

α,

F
(2)
ψψ = − i

2

[
(σψψ) β

α DαWβ − (σ̄ψψ)α̇
β̇
D̄α̇W̄

β̇
]
. (A.6)

Using the same trick we substitute Σα in for Wα to get C(2),

C(2)
ss = C

(2)
ss̄ = C

(2)
s̄s̄ = 0, C

(2)
sψ = −(σψ)sα̇Σ̄α̇, C

(2)
s̄ψ = −(σψ)αs̄Σ

α,

C
(2)
ψψ = − i

2

[
(σψψ) β

α DαΣβ − (σ̄ψψ)α̇
β̇
D̄α̇Σ̄β̇

]
. (A.7)

Then F (3) = dC(2) has non-vanishing components

F
(3)
ss̄ψ = i(σψ)ss̄H, F

(3)
sψψ = (σψψ) α

s DαH, F
(3)
s̄ψψ = −(σ̄ψψ)α̇s̄D̄α̇H,

F
(3)
ψψψ =

1

8
εψψψa(σ̄

a)α̇α[Dα, D̄α̇]H. (A.8)
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Similarly,

C
(3)
ss̄ψ = i(σψ)ss̄X, C

(3)
sψψ = (σψψ) α

s DαX, C
(3)
s̄ψψ = −(σ̄ψψ)α̇s̄D̄α̇X,

C
(3)
ψψψ =

1

8
εψψψa(σ̄

a)α̇α[Dα, D̄α̇]X, (A.9)

F
(4)
ssψψ = 4(σψψε)ssḠ, F

(4)
s̄s̄ψψ = −4(εσ̄ψψ)s̄s̄G, F

(4)
sψψψ =

1

2
εψψψaσ

a
sα̇D̄

α̇Ḡ,

F
(4)
s̄ψψψ =

1

2
εψψψaσ

a
αs̄D

αG, F
(4)
ψψψψ =

i

8
εψψψψ(D2G− D̄2Ḡ), (A.10)

and

C
(4)
ssψψ = 4(σψψε)ssΓ̄, C

(4)
s̄s̄ψψ = −4(εσ̄ψψ)s̄s̄Γ, C

(4)
sψψψ =

1

2
εψψψaσ

a
sα̇D̄

α̇Γ̄,

C
(4)
s̄ψψψ =

1

2
εψψψaσ

a
αs̄D

αΓ, C
(4)
ψψψψ =

i

8
εψψψψ(D2Γ− D̄2Γ̄). (A.11)

One can check that dC(4) = 0, so the hierarchy stops here.

Moreover, the gauge transformations can also be cast in this language with

δC(p) = dΛ(p−1), (A.12)

where the components of the forms Λ(p−1) are obtained by taking the expressions for

C(p−1) and substituting Λ, L, Υα, and Ξ for Φ, V , Σα, and X respectively. The

field-strengths F (p+1) are invariant by the nilpotency of the super-de Rham differential,

δF (p+1) = d2Λ(p−1) = 0.

For the non-abelian tensor hierarchy, we can almost take the same expressions for the

polyforms C and F = QC as in the abelian tensor hierarchy [14] but using the full non-

abelian expressions (2.5). The only additional modifications we need to make are in degree

two, where we need to modify the expressions as

C
(2)
sψ = −(σψ)sα̇(Σ̄α̇ + i(ιW̄)α̇V ), C

(2)
s̄ψ = −(σψ)αs̄(Σ

α − i(ιW)αV ),

C
(2)
ψψ = (σψψ) β

α

(
− i

2
DαΣβ −

1

2
(ιDW)αβV + (ιW)βDαV

)
+ (σ̄ψψ)α̇

β̇

(
i

2
D̄α̇Σ̄β̇ − 1

2
(ιD̄W̄) β̇

α̇ V + (ιW̄)β̇D̄α̇V
)
, (A.13)

and similarly for F (2) with Σ→W and V → U . For a more explicit step-by-step derivation,

we refer to [30].

As before, the gauge symmetry is simply δC = QΛ with δF = Q2Λ = 0 by the

nilpotency of Q. The expressions for Λ are obtained by substituting the gauge parameter

superfields in for the prepotentials in the expressions for C (including the given modifica-

tions in degree two).

A.1 Composite forms

We also need to be able to take wedge products of superforms. For the four-dimensional

part of the forms, this works in a straightforward way with numerical factors determined

– 26 –



J
H
E
P
0
4
(
2
0
1
7
)
1
0
3

in the same way as for ordinary differential forms and signs determined by the character of

the relevant indices (i.e., spinor or vector). The wedge product of two polyforms is given by

extending the usual wedge product by linearity. For our purposes there is one additional

wrinkle, which is that our objects are also ordinary differential forms in the internal space.

Since we generally write our objects with the spacetime indices explicit and the internal

indices implicit, the wedge product of two objects ω ∧ ξ can get an additional sign when

the internal degree of ω and the spacetime degree of ξ are both odd. As examples, here

are the rules for constructing the components of F ∧ F up to degree two10

(F ∧ F )(0) = F (0)F (0), (A.14a)

(F ∧ F )(1)
s = 2F (0)F (1)

s , (A.14b)

(F ∧ F )
(1)
ψ = 2F (0)F

(1)
ψ , (A.14c)

(F ∧ F )(2)
ss = 2F (0)F (2)

ss − 2F (1)
s F (1)

s , (A.14d)

(F ∧ F )
(2)
ss̄ = 2F (0)F

(2)
ss̄ − 2F (1)

s F
(1)
s̄ , (A.14e)

(F ∧ F )
(2)
sψ = 2F (0)F

(2)
sψ − 2F (1)

s F
(1)
ψ , (A.14f)

(F ∧ F )
(2)
ψψ = 2F (0)F

(2)
ψψ − 2F

(1)
ψ F

(1)
ψ . (A.14g)

Of course some of these are zero since F
(2)
ss = F

(2)
ss̄ = 0, but those terms are included to

give the general pattern. For a more complicated relevant example,

(F ∧ F )
(4)
s̄s̄ψψ = 2F (0)F

(4)
s̄s̄ψψ − 4F

(1)
s̄ F

(3)
s̄ψψ − 4F

(1)
ψ F

(3)
s̄s̄ψ + 2F

(2)
s̄s̄ F

(2)
ψψ − 8F

(2)
s̄ψ F

(2)
s̄ψ . (A.15)
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