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Abstract In the paper, a new inverse method for viscous 2D laminar flows is developed. The method is
based on incompressible Navier–Stokes equations transformed to the stream-function coordinate system (von
Mises coordinates). The flow design problem with appropriate boundary conditions is formulated and solved
numerically. The geometrical shape of the boundary is obtained through the integration along streamlines. The
method may be coupled with a flow analysis solver to model the influence of known parts of geometry. Results
for two analytically solvable cases (the Poiseuille and the Jeffery–Hamel flows) are presented. Then, the foil
design problem is considered as an example. Potential applications and developments towards axisymmetric
and 3D flows are discussed.

1 Introduction

In many engineering problems, it is desired to design the flow system (e.g., the nozzle wall geometry or a
blading system) which satisfies prescribed conditions (Fig. 1). Some of these conditions do not refer directly to
geometric parameters, but to flow quantities (for example: the pressure distribution). Yet, since the geometry
is not known at this stage, the design process is brought to the field of inverse methods. Most of such methods
in fluid dynamics rely on some model simplifications (which affects accuracy) or iterative optimisation of
direct problems (which is computationally expensive) [1]. Consequently, there is a need of inverse methods to
circumvent those limitations.

With the growth of computer power, the optimisation techniques [1,2] have gained attention as less restric-
tive, general purpose methods. In parallel, inverse methods are still developed using such concepts as blade-
to-blade or through-flow models [3,4]. Mixed direct-inverse techniques, like moving boundary/transpiration
concepts, have been proposed even for viscous flows [5,6] in recent years. However, the moving boundary
method needs to handle time-consuming remeshing.

The history of stream-function coordinates (SFC, also known as the von Mises coordinates) goes back to
the boundary layer analysis in von Mises’ work [7] in 1927. For direct (analysis) problems, the SFC method
was used for potential and viscous flows in curved geometries [8–11] and even for multiphase flows [12]. The
SFC technique has also been adapted to inverse methods of various 2D and 3D design problems for inviscid
flows [8,10,13–15]. Keller [16] presented a 3D inverse method with possible extensions to viscous flows.
However, Scascighini et al. [17] proved that such an approach is applicable only to the so-called lamellar
flows. This is due to the use of natural coordinates [18] which exist if and only if the velocity field satisfies the
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Fig. 1 Statement of the design problem for a channel flow

condition u · (∇ × u) = 0 (where u is the velocity vector). Yet, the assumption about the flow being lamellar
is very restrictive. It is fully satisfied for 2D flows or irrotational 3D flows. Also, notable work was done for
the approximate treatment of viscous effects in 2D and quasi-3D flows [17,19] using the integral boundary
layer approach, suitable for inertia-dominated (high Reynolds number) flows.

A new, fully inverse method (without any solution of the direct problem) for 2D incompressible viscous
flows, without explicit remeshing, is presented in the paper. The method is based on the Navier–Stokes equations
and is suitable for laminar steady flows. In the direct problem (flow analysis), the system of governing equations
is solved to obtain fields of flow variables (velocity, pressure, etc.) for a given shape of the boundary, initial
and boundary conditions (e.g., no-slip wall, inlet, outlet, etc.). Yet, in inverse problems, at least a part of
the geometry is unknown. One can replace some of geometrical variables by fluid flow variables. That will
affect the boundary condition which must be changed, too. One of the possibilities is the replacement of one
geometrical variable through the transformation of equations to the stream-function coordinates. After the
transformation, one geometrical variable (here, y) is replaced by a flow variable (here, the stream-functionψ).
To the best knowledge of the authors, the present paper is a first attempt to use the idea of stream-function
coordinates to the inverse problem for viscous flows with the exact treatment of diffusion terms.

The essence of the approach and details of the mathematical model are described in Sect. 2. Since the
equation system after the transformation remains non-linear, a suitable numerical method is needed to solve it.
The computational domain in x − ψ coordinates is rectangular and can be easily meshed with a regular grid.
The space discretisation of the equations is done here by the finite difference method. A pseudo-time stepping is
performed to obtain the steady-state solution. Details of the numerical scheme are described in Sect. 3. In Sect. 4,
results and comparisons for a selection of design problems are presented. The numerical stability and accuracy
are tested on several grids. Geometrical shapes for different boundary pressure distributions are determined.
Next, some practical considerations are discussed in Sect. 5 on the basis of foil design. Concluding remarks
are promising as far as the use of the method for various kinds of design problems is concerned, including the
implementation of the present method to preliminary blade design process.

2 The flow model

Consider two-dimensional, incompressible viscous flow governed by the Navier–Stokes equations in a
Cartesian coordinate system. The system has been arranged in a non-dimensional manner (with suitable
scales):
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where p is the pressure and Re is the Reynolds number.
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2.1 Coordinates transformation

Let us introduce the following coordinate transformation [10]:

(x, y) → (x ′, ψ), (2)

where x, y are Cartesian coordinates and ψ is the stream-function defined as

dψ = ux dy − uydx, (3)

so that

ux = ∂ψ

∂y
, uy = −∂ψ

∂x
, (4)

where ux , uy are components of velocity vector u in Cartesian coordinates. Above, x ′ corresponds to x direction
in the new coordinate system. The spatial derivatives are transformed by using the chain rule

∂

∂x
= ∂x ′

∂x

∂

∂x ′ + ∂ψ

∂x

∂

∂ψ
,

∂

∂y
= ∂x ′

∂y

∂

∂x ′ + ∂ψ

∂y

∂

∂ψ
. (5)

Substituting (4) into (5) and taking into account that ∂x ′/∂x = 1 and ∂x ′/∂y = 0, the transformation takes
the following form:

∂

∂x
= ∂

∂x ′ − uy
∂

∂ψ
,

∂

∂y
= ux

∂

∂ψ
. (6)

Equation (6) represents the resulting transformation to a new coordinate system. The back transformation may
be derived from the stream-function definition:

dy

dx
= uy

ux
. (7)

Then, we can obtain the streamline shape through integration from inlet to outlet. However, the SFC method
can only handle cases with no recirculation regions (no back-flow); there, ux = 0 at a certain point of the
streamline, and the transformation in Eq. (5) will become singular as the result of Jacobian properties:

J (x, y) =
[
∂x ′
∂x

∂x ′
∂y

∂ψ
∂x

∂ψ
∂y

]
=

[
1 0

−uy ux

]
= ux . (8)

So, the transformation is not directly invertible when ux = 0. Such a situation also appears at the walls due to
the no-slip and impermeability conditions. The right hand side of Eq. (7) has the indeterminate form 0/0. To
overcome this issue, we propose to use in the near-wall region the formula derived from Eq. (4) that may be
integrated down to the wall (here ψ = ψw) from the nearest available streamline ψ = ψw +�ψ :

yw =
ψw∫

ψw+�ψ

dψ

ux
+ yψw+�ψ , (9)

where yw is the wall shape and yψw+�ψ is the in-field streamline. Either, the above integral (9) does not behave
well at the wall, since the velocity goes to zero due to no-slip boundary condition. So the function under the
integral has a singularity on the boundary. This issue is resolved in Sect. 3.

Additionally, the problem with recirculating flow may arise, where the multivaluedness of the stream-
function transformation appears. The solution process, based on pseudo-time marching (described in the next
section), will diverge in that case, and no solution will be found. Also, the solver may detect existing separation
during the calculation (by checking that velocity in the field is restricted to ux > 0). The possible appearance
of a separation region is strictly related to the prescribed wall pressure distribution, mainly when an adverse
pressure gradient is set. It is the user who should set such a boundary condition that will not produce the flow
separation. Methods of choosing the pressure distribution were studied before [20,21]. This will be addressed
in Sect. 5. Also, the problem may be solved using multiple regions of computation. However, this approach is
far from trivial and as such is outside the scope of the present paper.
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2.2 Transformation of the equation system

One may transform Eq. (1) to the stream-function coordinates using Eq. (6). This gives the following system:
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(10)

After the transformation, the convective term is simplified, but the diffusive part becomes much more com-
plicated. However, in typical channel flow cases, one of the flow directions is dominant. The length scales
satisfy L y � Lx , and velocity scales behave as Uy � Ux , and then only diffusive terms u∂/∂ψ(u∂u/∂ψ) and
u∂/∂ψ(u∂v/∂ψ) are dominant. This may be used for further simplifications. However, in the present paper,
we will focus on the complete equation system (10).

2.3 Inverse problem

In the inverse problem, one wants to obtain the unknown shape yw(x) of the wall(s). First, we use Eq. (10)
to solve the steady velocity and pressure fields in the (x, ψ) stream-function coordinates domain. Next, using
Eqs. (7) and (9), we obtain the y shape of each streamline (including the wall).

As a closure of the equations system, standard boundary conditions may be applied except for the pressure
at the wall streamline. The Dirichlet boundary conditions at the inlet and outlet are used for velocity and
pressure. At the wall, the no-slip and impermeability conditions for velocity are set up.

Many solution approaches to the flow analysis problem use some boundary conditions for pressure at the
wall, for example, of the Neumann type. Nonetheless, the analysis problem itself is uniquely defined without
this boundary condition. The pressure distribution at the wall is then an explicit result of the method, directly
connected to the wall shape. In the synthesis (design) problem, however, the shape is not known a priori
and makes part of the solution. But, the shape handles the information how the velocity behaves near the wall
boundary. In order to solve flow equations without a known boundary shape, something should be known about
the pressure (similar to problem in [22]). This idea is readily understood if we consider the design of a nozzle
using a very simple 1D flow model. The mean velocity u(x) and the sought cross-section area S(x) are linked by
u(x)S(x) = const, whereas Bernoulli’s principle connects them to pressure p(x) as follows: u2(x)/2+ p(x) =
const. Consequently, the nozzle shape S(x) and velocity u(x) directly depend on the prescribed pressure
distribution. For the presented inverse method, we assume that the Dirichlet pressure boundary conditions are
known.

3 Numerical implementation

The SFC-transformed flow equations are solved by the time marching technique. As the divergence of the flow
field is preserved only at the end of the solution process, this method is commonly known as the pseudo-time
integration. Also, the artificial compressibility method was chosen to satisfy the continuity equation (with
artificial compressibility coefficient β = 1):

1

β

∂p

∂τ
+ ∂ux

∂x ′ − uy
∂ux

∂ψ
+ ux

∂uy

∂ψ
= 0. (11)

This brings us to a problem of three time-dependent equations. The equations are integrated numerically until
a steady state is reached. The explicit Euler scheme was used for the test cases. The method is only first order
accurate in time, but as the steady state is of interest, the pseudo-time integration scheme has no influence on
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the converged solution. For the solution of the flow fields in the pseudo-time, a stop criterion is chosen as a
maximum acceptable change of a flow variable φ in pseudo-time,

max

∣∣∣∣∂φ∂τ
∣∣∣∣ < εt . (12)

This criterion must be fulfilled for each of the fields u, v and p. We choose that each case should converge to
at least εt = 10−5.

The regular grid is used in the x direction of the (x, ψ) domain. Also, the uniform grid spacing is applied
in ψ direction. The second order upwind scheme was used for the convective term in Eq. (10). The diffusive
and pressure gradient parts in the momentum equation, as well as the continuity equation, were discretised
with the second order central scheme.

Next, Eq. (7) is integrated by the Simpson rule. To integrate Eq. (9), one may expand ux near the wall into
some chosen series ux (ψ) = 	

i
ci fi (ψ), with the desired accuracy, and integrate such a function analytically:

y =
ψw∫

ψw+�ψ

dψ

ux
=

ψw∫
ψw+�ψ

dψ

	
i

ci f (ψ)
. (13)

The integral (9) has a singularity at the wall boundary and cannot be computed in a usual way. That is, we
cannot use the expansion in the form

ux (ψ) = c0 + c1ψ + c2ψ
2 + · · · (14)

that, applied to 1/ux (ψ), will lead to divergent numerical error. It will be increasing in the direction ofψ → ψw
(where ux (ψw) = 0). But one may note that in Cartesian coordinates the velocity profile along the wall may
be expanded into a polynomial series:

ux (y) = c0 + c1 y + c2 y2 + · · · (15)

If we cut this expansion to

ux (y) ∼ y, (16)

and transform it to the stream-function coordinates, we obtain the following relation near the wall:

ux (ψ) ∼ √
ψ. (17)

On this basis, as firstly proposed by von Mises [7], the velocity field near the wall may be expanded in the
Puiseux series:

ux (ψ) = c0 + c1
√
ψ + c2(

√
ψ)2 + c3(

√
ψ)3 + · · · (18)

Concluding, the velocity field in the wall region is interpolated by series (18), using the velocity values on a
streamline aligned to the wall, and then analytically integrated, cf. Eq. (9). So, assuming that ψw = 0 (which
implies c0 = 0) and expanding velocity up to the second non-constant term ux (ψ) = c1

√
ψ+c2ψ the formula

(9) may be discretised:

y =
0∫

�ψ

dψ

ux
≈

0∫
�ψ

dψ

c1
√
ψ + c2ψ

= 2

c2
log(c1 + c2

√
ψ) |0�ψ . (19)

This discretisation was used in the presented inverse method.
Also, please note that differential operators in stream-function coordinates are velocity dependent. Conse-

quently, the discretisation affects the velocity, and as a result the discretisation itself. One may expect that the
discretisation error will decrease better than the second order of accuracy.
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4 Validation tests and results

As mentioned before, two test cases have been considered. For these cases, the boundary shape corresponding
to the input velocity and pressure data is known exactly, so the design error can readily be measured. First, the
method was validated by comparison with the analytical solution for the Poiseuille flow case. The convergence
of the solution process is analysed. Next, the Jeffery–Hamel flow design problem—the linearly convergent
nozzle—is considered. The difference between the numerical and exact design shape is analysed.

4.1 Poiseuille channel flow

A steady laminar flow through a straight channel was chosen as a first test case. Its analytical solution is
well known, so one can easily estimate the error of the method. For channel flow, the steady Navier–Stokes
equations reduce to the following viscous relation (no convective terms):

∂p

∂x ′ = 1

2Re
ux
∂2u2

x

∂ψ2 , (20)

resulting in a quadratic velocity distribution (in y direction) and a linear pressure drop related to viscous
stresses. However, after the transformation to the stream-function coordinates, the velocity profile across the
channel (in ψ direction) is given by

u(ψ) = 1 − 4cos2

(
acos( 3

2ψ)+ 4π

3

)
. (21)

As the transformation is velocity dependent, the velocity itself influences the stream-function coordinates
distribution. Due to this, the profile (21) is steeper near the wall, where the velocity is lower (Fig. 2). That may
introduce instabilities into the solution process. The respective analytical solution will be used as the inlet and
the wall boundary conditions for the inverse design problem of the straight channel.

The Poiseuille flow channel was designed following the methodology just presented. Velocity and pressure
fields were obtained as the solution of (10). The velocity difference (between numerical and theoretical values)
taken at x = 0.5 may be useful to analyse the error of the solution field. So, let us define the measure across
the flow channel:

εu = ux,num − ux,th

ux,th
. (22)

Additionally, we may analyse the convergence dependent on grid density using the total error:

εu,total =
∫

|εu |dψ =
∫ ∣∣∣ux,num − ux,th

ux,th

∣∣∣dψ. (23)
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Fig. 2 The velocity profile of the Poisseuille flow case in stream-function coordinates
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Also, from the analytical solution, it is known that the channel walls should be parallel to the x direction.
The difference between the known (theoretical) and numerically designed shape represents an error of the
inverse method itself:

εy =
xout∫

xin

∣∣yw,th(x)− yw,num(x)
∣∣ dx . (24)

The order of the discretisation error in stream-function coordinates is dependent on the velocity fields (as
the differential operators are functionals of the velocity). As a result, the total error εu,total converges at a
non-constant rate (see Fig. 4). Moreover, Fig. 3 illustrates that the error εu increases near the wall. The velocity
ux near the wall boundary is very steep in ψ direction. Due to this, the error of discretisation of velocity is
higher near the wall. This proves that the error is related to a singularity at the wall.

As seen in Fig. 4, the total error εy of the designed shape decreases linearly with increasing grid density.
The maximal estimated error is satisfactorily small.

The pressure drop in Poiseuille flow (cf. Sect. 4.1) is connected to viscous stress. If the pressure change
along the wall is different from the one in the Poiseuille flow (for a given inlet velocity profile), the convective
term will participate in it. These possibilities bring us to a problem of curvilinear channel flow.

4.2 Jeffery–Hamel flow

The classical Jeffery–Hamel flow occurs between two divergent/convergent planes. The problem can be reduced
to a non-linear ordinary differential equation, solvable by numerical methods (the analytical solution exists
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Fig. 3 The inverse problem for the Poiseuille flow: estimated error εu , Eq. (22), as a function of ψ (suitably normalised) at the
cross-section x = 0.5
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Fig. 4 The inverse problem for Poiseuille flow: estimated error εu,total and εy Eq. (23) and (24), as a function of the number of
grid nodes in each direction
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Fig. 5 The inverse problem for Jeffery–Hamel flow: computed wall shape and the flow fields
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Fig. 6 The difference between exact and numerical solution ∈y of the inverse problem for Jeffery–Hamel flow

in the form of elliptic integrals). The pressure distribution of the Jeffery–Hamel analytical solution at the
prescribed angle α was used as the Dirichlet boundary condition along the walls. The inlet and outlet conditions
of the inverse problem were calculated from the analytical solution, too. As a result, the geometry of the
convergent nozzle and flow fields were obtained (Fig. 5).

The difference between numerically designed and exact shape, Eq. (24), was calculated for various grid
sizes, as shown in Fig. 6. The absolute value of the difference is higher than in Poiseuille flow, as more terms
participate in the solution. However, the error is at an acceptable level, and the convergence rate is constant.

As another flow case, we also computed the curvilinear convergent and divergent nozzle design problems
with, respectively, a linear pressure decrease or increase in the main flow direction. The resulting geome-
tries were then input to a commercial flow solver and compared with our pressure distributions. The results
(not shown) are very much similar to the case of Jeffery–Hamel flow.

5 Airfoil design–practical aspects

The convergent-divergent channel design problem is another important issue in turbomachinery, since this type
of flows arises in the blade passages. The results presented here constitute a first step towards creating the 2D
blade geometry in a flow channel (left for future work).

Two aspects need to be included into the consideration. First, the real inlet/outlet conditions may depend on
parts of known geometry (like intake), but also may be influenced by the flow field in inverse design domain. So
one may combine the flow analysis with geometry synthesis in a block-to-block manner, as shown in Fig. 7. On
the other hand, for the purpose of inverse design of a convergent-divergent nozzle, one has to know a boundary
pressure distribution at the walls. However, an additional constraint will appear for the blade channels that
should have the same height at the inlet as well as at the outlet. Then, at the outlet, we have two boundary
conditions (one for pressure p and one for geometry y) which makes the system overdetermined. In the blade
design, this leads to the trailing edge closure problem, for which a pressure distribution is not known exactly
at the designing stage. As shown by Mangler [20] and Lighthill [21], the pressure distribution is constrained
by three integral relations to ensure a uniform free-stream velocity at infinity and to keep the foil closed at
the trailing edge. Improper pressure distributions will lead to a blade profile with overly large or non-physical
negative trailing edge thickness as shown in Fig. 8. Many authors addressed the problem in the past, and some
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Fig. 7 The convergent-divergent nozzle as an archetype of foil design problem

Fig. 8 The unacceptable foils due to different pressure distributions. Left plot: too large trailing edge thickness (“unclosed”
airfoil); right plot: negative trailing edge thickness

of them include an additional degree of freedom to the pressure boundary conditions (as we can see in [19]).
A similar solution to that problem has been adopted here, as follows.

The requirement of an admissible (generally, positive) thickness at the trailing edge (in the meaning of
blade design, cf. Fig. 7) is tantamount to saying that the flow domain as a whole has a convergent nozzle-like
geometry. Otherwise, a negative thickness is equivalent to a divergent overall shape of the blading channel. In
the inverse design process, one can note that a monotonically increasing pressure distribution will generally lead
to divergent nozzle geometry, and a monotonically decreasing pressure distribution will result in a convergent
nozzle or straight (as in Poiseuille flow) channel geometry. This brings the idea of prescribing the pressure
distribution in the inverse method not only as a function of x direction but also as being dependent on the
trailing edge thickness history τte(t) during the iteration process. According to this idea, the trailing edge
thickness τte will be going to zero, as a result of adding a correction (a divergent/convergent update) to the
originally assumed pressure distribution. So, at a given pseudo-time step, the pressure distribution will have
the form:

pw(x; τte) = pw(x)+ pw-up(x; τte). (25)

We propose now to prescribe the additional pressure update as a linear function of x multiplied by an unknown
functional f [τte] related to the pseudo-time history of τte and scaled by a suitably chosen constant c0:

pw-up(x, τte) = c0x f [τte]. (26)

The functional f [τte] may be assumed as an integral over the pseudo-time:

f [τte] =
t∫

0

τte dt. (27)

It is easy to see that if the iteration process with an updated pressure distribution leads to a zero trailing edge
thickness, f will tend to be constant over the pseudo-time. That is because the thickness τte = 0 will no longer
affect the integral (27), and a steady solution will be obtained. So finally, the pressure distribution at the nozzle
wall will be described as:

pw(x, τte) = pw(x)+ c0x

t∫
0

τte dt. (28)

The value of c0 is chosen to assure and accelerate the convergence of the method. The constant was set to
c0 = 0.1 here. The final geometry of the convergent-divergent nozzle (the equivalent of a properly enclosed
foil) designed in the above way is shown in Fig. 9. Generally, the foils need to have precise design in the
leading edge region. However, there appears the limitation to avoid the singularity where ux = 0. This leads
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Fig. 9 The properly enclosed symmetrical foil geometry. The zoom of the cusped leading edge
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Fig. 10 The pressure distribution along the channel wall-initial pw(x) and with update pw(x, τte)

to a cusped leading edge. For practical purposes, the leading edge section of the foil will need to be replaced
by a predesigned shape (e.g., a circular arc).

The total CPU time overhead due to the correction procedure is negligible, which is important from the
numerical point of view. Figure 10 shows the pressure distribution pw(x, τte) and its original set up pw(x) at
the steady state. This shows that the final pressure distribution may be different from that initially prescribed,
pw(x). This fact simply reflects the nature of inverse methods: for given flow parameters, the solution may not
exist (as the system with prescribed pw(x) is overdetermined [sic!]).

The method has an additional advantage that the pressure distribution in the inverse problem may be
assumed to be also a function of other variables like efficiency or dissipation coefficient. In that way, it will be
straightforward to include the optimisation process within the inverse method pseudo-time stepping algorithm
with only a minor increase of the design time.

6 Conclusions

The new inverse method for 2D viscous flow design was formulated and implemented. We explicitly excluded
recirculating flow regions (normally, reflecting a bad design) and situations where the streamwise velocity
component ux is zero (non-cusped leading edge). However, for the unavoidable treatment of walls (where,
obviously, both velocity components are zero), we have proposed a technique to deal with the indeterminacy
of backward transformation at the domain boundary as described in Sect. 2.1. To the best of the authors’
knowledge, the presented method is the first inverse numerical solution of the Navier–Stokes equations in two
dimensions in the SFC formulation with direct treatment of diffusive terms.

The simple pseudo-time stepping technique was adopted. The second order numerical scheme for space
discretisation was implemented, however with a caveat of only linear convergence in certain cases (Sect. 3).
Comparisons with analytically known cases of the Poiseuille channel and the Jeffery–Hamel flow served to
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Fig. 11 The stream-function ψ on λ surfaces in the three-dimensional model

validate the approach. The total error of the method was kept at an acceptable level. Convergence of the solution
process may be seen indirectly as a proof of existence of the inverse problem solution.

An extension of the method to a two-dimensional axisymmetric model is straightforward as well as an
extension to compressible flow problems. In such a case, we need to change the stream-function formulation.
For example, in compressible flow, the stream-function depends not only on the velocity field but also on the
mass density ρ and its reference level ρ0:

ρux = ρ0
∂ψ

∂y
, ρuy = −ρ0

∂ψ

∂x
. (29)

The full, three-dimensional extension of the method is the subject of current work of the authors. However,
in 3D space, a second stream-function must be prescribed [3,13]. An example can be seen in Fig. 11 where
λ surfaces represent an additional stream-function (e.g., blade-to-blade). So, the approach can be extended to
3D in a straightforward way with the methodology similar to [15,16].

The method has shown its flexibility, and other extensions may be attempted as well. The application of the
model to turbulent regimes is rather straightforward. The eddy viscosity or Reynolds stress models can be used
for this purpose (we have already implemented it for the case of the blade-to-blade flow). Yet, by definition,
the method is unable to solve the inverse problem with reverse flow regions (like boundary layer separation),
which may be seen as a disadvantage. In engineering, one does not want to design such a geometry, which
(due to reverse flow) will imply additional losses, usually to be avoided. Therefore, a variety of geometries
which may be designed with the method may encourage to implement a general purpose, inverse solver of the
Reynolds-averaged Navier–Stokes equations in the same manner as direct problem solvers appear in modern
Computational Fluid Dynamics.

The authors hope that the proposed approach with further developments may be useful as a fast tool
in turbomachinery design process, especially for the preliminary design where state-of-the-art optimisation
methods are still quite expensive.

Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use,
distribution, and reproduction in any medium, provided the original author(s) and the source are credited.
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