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The newly discovered iron-chalcogenide superconductor KxFe2−ySe2 exhibits a distinct electronic structure from other iron-based su-
perconductors. Exploiting polarization-dependent angle-resolved photoemission spectroscopy, we have determined the orbital char-
acters of band structure in a KxFe2−ySe2 superconductor. To a large extent, we find that KxFe2−ySe2 superconductor shares similar
orbital characters with other iron-based superconductors, but with its own characteristics. For example, we have resolved two highly
degenerate electron cylinders around the zone corner in the s and p geometries, respectively, indicating negligible interactions be-
tween them. Moreover, in contrast to the band calculation results, the small electron pocket around Z is found to be mainly consisted
of the dz2 orbital. The determined orbital characters would help to construct a realistic model for KxFe2−ySe2.
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KxFe2−ySe2, an iron-chalcogenide superconductor, exhibits
many unique properties that distinguish itself from other iron-
based superconductors [1]. While the parent compounds
of most iron-based superconductors are metallic [2–4], the
parent compound of KxFe2−ySe2 superconductor is found to
be either insulating or semiconducting [5–9]. The insulat-
ing parental phase even exhibits certain Mott-insulator sig-
natures, and it is phase separated from the superconduct-
ing phase in the KxFe2−ySe2 superconductor at a mesoscopic
scale [7, 10]. Moreover, angle-resolved photoemission spec-
troscopy (ARPES) studies have shown that its Fermi sur-
face is consisted of electron pockets only [7, 11, 12], which
is again distinct from most of the iron-based superconduc-
tors [13–17]. These unique properties of KxFe2−ySe2 have
raised a lot of interest. Since the low-energy electronic
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structures of the iron-based superconductors are dominated
by multiple 3d orbitals [18–20], the orbital degree of freedom
is known to play an important role in the superconductivity of
iron-based superconductors. For example, our recent ARPES
study on BaFe2(As1−xPx)2 indicates that the nodal supercon-
ducting gap there is likely induced by the strong mixing of
the dz2 orbital into a hole-like band [21]. Therefore, to com-
prehend the unique properties of KxFe2−ySe2, one needs to
determine its low-energy electronic structure, particularly the
orbital characters.

The sensitive response of different 3d orbitals in a
polarization-dependent ARPES measurement makes it a
powerful tool to explore the multi-orbital band structure
of iron-based superconductors [22]. Polarization-dependent
ARPES experiments have been conducted extensively on
the iron-based superconductors, including LaOFeAs [13],
BaFe2As2 [23–27], NaFeAs [28,29], and FeTe [17,27]. Here
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we report the polarization-dependent ARPES study on the or-
bital characters of KxFe2−ySe2 superconductor. The orbital
characters of low-energy electronic structure have been deter-
mined. Specifically, we found that the small electron pocket
near the Z point is mostly dominated by the dz2 orbital, and
the large Fermi cylinders around the zone corner are actually
contributed by two bands with highly degenerate Fermi cross-
ings. One of the two bands is dominated by the dxz and dyz or-
bitals, while the other one is dominated by the dxy orbital. The
weak interactions between these two Fermi cylinders suggest
that even if the superconducting order parameters on them
have opposite signs, gap nodes would be absent [30,31]. Our
results provide a foundation for the understanding and realis-
tic modeling of KxFe2−ySe2.

1 Experimental

KxFe2−ySe2 single crystals were synthesized by self-flux
method as described elsewhere in detail [32]. The samples
show flat shiny surfaces with black color, and their element
compositions were determined through energy-dispersive X-
ray (EDX) analysis as K0.75Fe1.69Se2. All the polarization-
dependent photoemission data have been taken with an MBS
A-1 analyzer at Beamline 7 of the ultraviolet synchrotron or-
bital radiation facility (UVSOR), and other photoemission
data were taken with a Scienta electron analyzer at the Beam-
line 5-4 station of the Stanford Synchrotron Radiation Light-
source (SSRL). The overall energy resolution is set to be
15 meV or better, and the typical angular resolution is 0.3
degree. The samples were all cleaved in situ and measured at
35 K under ultra-high-vacuum better than 3 × 10−11 torr.

In a polarization-dependent ARPES measurement, the
photoemission intensity is given by

|Mk
f ,i| ∝ |〈φk

f |ε̂ · r|φk
i 〉|2,

where ε̂ is the unit vector of the electric field of the light, φk
i is

the initial-state wave funciton, and φk
f is the final-state wave

function which can be approximated by a plane-wave state
eik·r with k in the mirror plane for the experimental setup in
Figure 1(a). Here the analyzer slit and the sample surface nor-
mal define a mirror plane and the p (or s) experimental setup
corresponds to the ε̂ which is parallel (or perpendicular) to
the mirror plane. Considering the spatial symmetries of the
3d orbitals (Figure 1(b)), when the analyzer slit is along the
high-symmetry direction of the sample, the photoemission
signal of certain orbitals would appear or disappear by spec-
ifying the polarization directions as summarized in Table 1.
More detailed information about the polarization-dependent
ARPES could be found in [23, 28].

Since there are two types of locations for the selenium
ions, one unit cell contains two iron ions. We define the
x and y directions to be the two nearest-neighboring Fe-Fe
bond directions in Figure 1(c), and the corresponding two-
dimensional projected Brillouin zone (solid lines) and un-
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Figure 1 (Color online) (a) Experimental setup for polarization-dependent
ARPES. (b) Illustration of the spatial symmetry of the 3d orbital with re-
spect to the xz plane. (c) The schematic crystal structure of KxFe2−ySe2

superconductor. The right side is the top view of the FeSe trilayer, and the
x and y axes are along the two Fe-Fe bond directions. (d) Two-dimensional
projection of the Brillouin zone (solid line) and the unfolded Brillouin zone
(dashed line) [23].

Table 1 The possibility to detect the 3d orbitals along two high symmetry
directions in the p and s geometries, respectively, by polarization-dependent
APRES [23]

High-symmetry Experimental 3d orbitals

direction geometry dxz dx2−y2 dz2 dyz dxy

#1 Γ(Z)-M(A) p
√ √ √

s
√ √

#2 Γ(Z)-X(R) p
√ √ √ √

s
√ √ √

folded one for one iron ion per unit cell (dashed lines) are
shown in Figure 1(d). Two high symmetry directions, Γ(Z)-
M(A) and Γ(Z)-X(R), are labeled by #1 and #2, respectively,
in Figure 1(d).

2 Electronic structure around the zone center

The photoemission data taken around Γ are shown in Fig-
ure 2. In Figure 2(a), the upper panels are the photoemission
spectra taken along Γ-M (#1) direction in the s and p geome-
tries, respectively, and the lower panels are the corresponding
second derivatives with respect to energy. Figure 2(b) is sim-
ilar to Figure 2(a), except that the data were taken along Γ-X
(#2) direction. We could resolve three hole-like bands, α, β,
and γ, one electron-like band, ε, and two rather flat bands, ω
and ω′, around Γ in Figure 2.

The band assigned as α only emerges in the p geometry
along both #1 and #2 directions, and could not be observed in
the s geometry, which indicates its dxz or dz2 orbital character
based on Table 1. The β band shows opposite spatial symme-
try, as it could only be observed in the s geometry, thus
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Figure 2 (Color online) The polarization-dependent APRES data around
Γ taken with 21 eV photon. (a) The photoemission spectra and their cor-
responding second derivatives with respect to energy taken in the s and p
geometries, respectively, along Γ-M direction. (b) is the same as the panel
(a), but taken along Γ-X direction. The inset is the illustration of the cuts
along Γ-M (#1) and Γ-X (#2) directions and the band structure along Γ-M
direction.
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Figure 3 (Color online) The polarization-dependent APRES data around
Z taken with 30 eV photon. (a) The photoemission spectra and their cor-
responding second derivatives with respect to energy taken in the s and p
geometries, respectively, along Z-A direction. (b) is the same as the panel (a),
but taken along Z-R direction. The inset is the illustration of the cuts along
Z-A (#1) and Z-R (#2) directions and the band structure along Z-A direction.

we attribute it to dyz according to Table 1. The band tops of
α and β are below EF and degenerate with each other at the
Γ point. Note that, the tops of the bands with the dxz and dyz

orbitals should have the same binding energy at the Γ point
due to the four-fold symmetry of the lattice. Therefore, we
attribute the α band to the dxz orbital. The dxz and dyz or-
bitals have mixed symmetry along the Γ-X direction, and the
strong polarization dependence here might be caused by the
hybridization of dxz and dyz [23]. For the γ band, it emerges in
the s geometry along #1 direction, and the p geometry along
#2 direction, which is consistent with the symmetry of the dxy

orbital. In addition, an electron-like band, ε, only emerges in
the s geometry along both directions with weak intensity, thus
we attribute it to the dyz orbital along the Γ-M direction. We
will discuss its origin later.

Figure 3 shows the polarization-dependent data around the
Z point. Four bands (α, β, γ, and ε) exhibit no energy shift or
orbital character change compared with those around the Γ
point. However, we have observed another two bands, κ and
η, around the Z point. The κ band exhibits strong kz depen-
dence and its Fermi surface surrounds the Z point [7, 11]. It
only emerges in the p geometry along both #1 and #2 di-
rections, so it could be either dxz or dz2 . If the κ band is
merely consisted of dz2 , it would not show up in the s geom-
etry. However, there indeed exist two pieces of weak Fermi
arcs around Z in the s geometry (Figure 5(a)), thus the κ band
should carry some dxz character. Meanwhile, the overwhelm-
ingly strong intensity in the p geometry over that in the s ge-
ometry suggests that the κ band should be dominated by the
dz2 orbital, with some trace of the dxz orbital, and thus some
dyz as required by symmetry. On the other hand, the disper-
siveless η band is neither predicted by theory or discovered
in previous ARPES experiments. It behaves similarly as the
γ band, so it might be consisted of the dxy orbital as well.

In Figures 2 and 3, we could observe two rather flat bands
assigned as ω′ andω at about 190 and 330 meV below EF, re-
spectively. Both bands only emerge in the p geometry along
both directions, and might constitute the broad feature be-
tween 180 and 410 meV below EF at the Z point along Z-A
direction in Figure 3(a). Based on Table 1, these two bands
are made of the dz2 and/or dxz orbitals. The ω and ω′ bands in
other iron-based superconductors were found to be made of
dz2 by both experiments and band calculations [13, 23], thus
here we could attribute them to the dz2 orbitals as well. How-
ever, since the dz2 orbital is mixed with the dxz orbital in the
κ band, there should be a finite mixing of the dxz orbital in
these two bands.

3 Electronic structure around the zone corner

Previous ARPES studies on KxFe2−ySe2 superconductors
have observed an electron pocket around the zone corner
[7, 11, 12], while two electron pockets could be resolved for
other iron-based superconductors [16, 17, 23, 24, 28]. In the
polarization-dependent photoemission data around the zone
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corner (Figure 4), we could observe a shallow electron-like
band (δ) with band bottom near −50 meV in both s and p
geometries, and a deep electron-like band (δ′) in the p ge-
ometry which quickly disperses to high binding energies in
Figure 4(c) at the temperature of 35 K [33]. Thus the Fermi
surface around the zone corner is made of two bands with
degenerate Fermi crossings.

The orbital characters of these two bands can be deduced
based on the polarization-dependent Fermi surface mappings
in Figure 5. In Figures 5(a) and (b), the electron pocket
observed in the s geometry has strong intensity at the two
vertical positions, while the electron pocket observed in the
p geometry has strong intensity at the left horizontal posi-
tion as summarized in Figure 5(c). The intensity imbalance
between the two horizontal positions are due to the matrix
element effects caused by the different take-off angles of the
photoemission electrons with respect to the incident light. A
particular orbital configuration of the Fermi surface would
exhibit a characteristic photoemission intensity distribution
as simulated in Figure 5(d) for both s and p polarizations.
As enforced by the 4-fold symmetry, dxz and dyz would make
the two configurations: Conf. #1 and Conf. #2. The observed
intense vertical and horizontal sectors under s and p po-
larizations respectively match the simulated photoemission
intensity of Conf. #1. Thus the two horizontal sectors of the
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and (b) Photoemission intensity maps taken around Γ, M, Z, and A in the s
and p geometries, respectively. (c) Summary of the photoemission intensity
distributions of the electron pockets around the zone corner. (d) The polar-
ization dependence of the 3d orbitals with different configurations around the
zone corner according to the simulated matrix element effects [28]. Based
on the four-fold symmetry of the band, the band with dxz, dyz, dxy, dx2−y2 or
dz2 horizontal sectors must have dyz, dxz, dxy, dx2−y2 or dz2 vertical sectors.
The thickness of the line here corresponds to the simulated intensity of each
configuration.

electron pockets are mainly contributed by the dxz orbital and
the two vertical sectors of the electron pockets are mainly
contributed by the dyz orbital, certainly with gradual transi-
tions among them.

However, the complete electron pockets observed in both s
and p geometries cannot be explained by just Conf. #1. More
orbitals have to be involved. In the p geometry, the two weak
vertical sectors should be consisted of even orbitals, such as
dxz, dx2−y2 , and dz2 . Based on the band calculations shown in
Figure 6, we assume that the electron pockets do not contain
any dx2−y2 and dz2 orbitals, therefore, the two vertical sectors
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Figure 6 (Color online) Contributions of various Fe 3d and Se 4p orbitals
to the calculated band structure of KxFe2−ySe2.

has to be of dxz. That is, there is some small contributions
from Conf. #2 to the electron cylinders, which explains the
weak horizontal sectors in the s geometry as well. The in-
tensity distributions of the electron pockets in Figure 5(c) are
thus explained by a dominating Conf. #1 plus a small portion
of Conf. #2. In Figure 4, since the δ band could be observed
in both geometries, it should be made of dxz and dyz in these
configurations.

As for the δ′ band, its intensity would be rather strong if
it had been dominated by the same dxz and dyz orbitals. Con-
sidering that the low energy electronic structure at the zone
corner is dominated by dxy besides dxz and dyz in the band
calculations, δ′ would be most likely dominated by the dxy

orbital. Since the intensity of simulated matrix element ef-
fect of dxy (#3 configuration) is much weaker than that of dyz

as shown in Figure 5(d) [28], the overall contributions to the
photoemission would still satisfy the observed intensity. On
the other hand, the δ′ band could be observed in the p geom-
etry with weak intensity, and cannot be distinguished in the s
geometry due to the strong intensity from the β and γ band in
Figure 4, it should be dominated by dxy with a small portion
of dxz, or Conf. #1. On the other hand, as the dxy orbital is
mixed with the dxz orbital in the δ′ band, there should be a
small portion of the dxy orbital in the δ band as well.

4 Discussion and conclusion

Figure 6 shows the contributions of various Fe 3d and Se 4p
orbitals to the band structure of KxFe2−ySe2 superconductors

by the first-principles calculations, where the full potential
linearized augmented plane wave (LAPW) method was im-
plemented in the WIEN2k code [34], using the local den-
sity approximation (LDA). The low-energy electronic struc-
ture are mostly dominated by the Fe 3d orbitals with little
contribution from the Se 4p orbitals. The bands are labeled
in Figure 6(a), following the experimental convention. We
note that a band is usually dominated by certain orbital along
high symmetry directions, but when away from the high sym-
metry directions, the band would exhibit some orbital mix-
ing. Moreover, strong orbital mixing would happen when
two bands cross with each other or in the transition region be-
tween two different orbitals. The strong kz dispersion of the
κ band and two-dimensional character of other bands in Fig-
ure 6 agree well with our experiments, thus we only show the
summary of the orbital characters along Z-A direction and the
orbital character distributions on the Fermi surface around Γ,
M, Z, and A (Figure 7). Although the band calculations well
capture most of our experimental results, there are still a few
discrepancies. For example, the band calculations miss the
orbital character of the κ band that contributes to the Fermi
surface. Experimentally, the κ band is found to be mainly
made of dz2 with just a trace of dxz/dyz, while it is dominated
by dxz/dyz in the calculations. A previous ARPES study sug-
gests that the κ band is the mixture of the Se 4p and Fe 3d
orbitals [35]. Although our calculations show a minimal in-
volvement of the Se 4p orbitals, our polarization-dependent
study cannot distinguish the Se 4pz from the Fe 3dz2 orbitals,
thus we leave this issue open.

Interestingly, the η and ε bands observed in the experiment
are not found in the calculations. It is likely that the η band
might be a surface state. As shown in Figures 7 and 8, the δ
and ε bands have similar Fermi surface pocket and dispersion
behavior, except the intensity of the ε band is much weaker. It
seems that the ε band is folded from the δ band, which should
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be originated from the
√

2 × √2 ordering in KxFe2−ySe2 su-
perconductor revealed in the scanning tunneling microscopy
(STM) and transmission electron microscopy (TEM) stud-
ies [36, 37]. However, the ε band could only be observed in
the s geometry, while the δ bands could be observed in both
geometries. Such an orbital-dependent folding may require
further theoretical and experimental studies.

To summarize, we have carried out a systematic investiga-
tion of orbital characters in KxFe2−ySe2 superconductor based
on the strong polarization-dependent photoemission response
of the low-energy electronic structure. The α, β, γ, δ, and δ′
bands are dominated by similar orbitals in KxFe2−ySe2 and
other iron-based superconductors [27, 28]. However, the δ
and δ′ bands are weakly hybridized in KxFe2−ySe2, instead
of being strongly hybridized in the other iron-based super-
conductors. Besides, the κ and ε Fermi surfaces have only
been reported in KxFe2−ySe2 superconductor. Moreover, the
κ band exhibits the dz2 orbital character, which is different
from the band calculations, while the ε band, which is not
predicted in the band calculations, is made of the dyz orbital.
These explicit conclusions on the orbital characters of the
band structure would help understand the unique properties
of KxFe2−ySe2.
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