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Abstract-Numerous Power Amplifier circuits are described in circuit topologies and implementation technologies, follow
the literature, which seem to follow many distinct design certain system-level rules, i.e. rules regarding the internal
approaches. While circuit implementations may be quite different voltage and current signals, dictated by the overall requirement
indeed, the underlining system-level signaling inside these circuits for efficient energy conversion.
follows similar conditions dictated by the common design
objective for high efficiency. This paper presents a general theory II. WHAT IS A "POWER AMPLIFIER" CIRCUIT?
for analyzing and designing power amplifiers, providing an
insight on the fundamental factors limiting the performance, The key to understanding PAs is the essential observation
irrespective of the implementation circuits or technology. that these circuits perform energy (power) conversion, NOT

power amplification. Rather than violate the first law of
thermodynamics as their name might suggest (energy cannot be

I. INTRODUCTION amplified!), PAs transfer power from DC to RF. The most
Electrical power amplification [1-3] has played a key important task they have is to do this process efficiently. Figure

function in electronic systems ever since Lee de Forest 1 shows the power balance diagram in a PA. Most power
invented the vacuum tube triode in 1906 and Tellegen flowing into the circuit comes through the DC lines (input RF
introduced the pentode tube in 1926. Soon after, electrical power is usually very small in comparison) and power flowing
engineers worked out the details of designing good class A. B. out is divided between desired output RF power and undesired
C Power Amplifiers (PAs). By the second part of the 20th heat loss. The efficiency is high if the loss is small and vice
century, this art became a mature and narrow EE specialty versa.
mastered by a few, which seemed to have little room left for A typical PA core circuit is shown in Figure 2. A striking
major innovations. However, the late century market explosion fact to the uninitiated is that, in general the PA is a highly non-
of mobile digital communication devices, such as cellular linear circuit despite its almost linear input/output behavior. It
phones and wireless LANs and the massive introduction of IC is quite common for the internal voltages and currents to
technology in everyday life have changed the electronic contain large harmonics. Traditionally, the presence of these
landscape dramatically, opening a new demand for developing harmonics is viewed as a byproduct of the various techniques
appropriate PAs. The new generation of PA designers much developed over the years for obtaining high efficiency. This is
larger in number than before had to adapt the old techniques to true for classical current-mode designs such as class AB PAs
the limitations and benefits of using integrated designs. This and modern switched-mode designs. Shortly, it will be shown
factor and the wholesale relearning of the old techniques have that internal harmonics are necessary for high efficiency and
created a true sense of "black art" in PA design. the only way to minimize loss is by nonlinear effects.

In this paper, we show that all basic PAs, irrespective of
III. PA INTERNAL SIGNALS

,...................\Classical current-mode PAs (Figure 2) operate in class A,
Heat A: AAB, B, or C. For all cases, the transistor drain voltage is

i:000:000:0; ~~~sinusoidal, assuming a sinusoidal input. The drain current is
p LS1loss sinusoidal only for class A operation, yielding 50%o maximum
DC i p efficiency. In all other cases, the drain current is limited to a
_ / ~ RF(out) portion of a sinusoidal, yielding higher than 5000O efficiency.

I )~> A Empirically, it seems that the more nonlinear is the drain
_ \ //~P current the better iS the PA effciency. Next, we show

t ~~~~~~~~~~~~~mathematically the validity of this observation.
l t ~~~~~~~~~Insteady state, under a sinusoidal excitation of frequency

p Ftn)RF, the drain voltage and current are periodic functions:
RF(in) ~~~~~v(t)= VDC + Vj cos(w)Rt+yfv1)+ EVk. cos(kwRFt+yjk (la)

Figure 1: Energy conversion in a PA k=2
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frequencies: harmonic "traps"
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Figure 2: A non-linear PA circuit with linear RF-in/RF-out characteristic

the possibilities to make this process power efficient, i.e., with
i(t) = I,D + II cos(WRFt + YjI) + E I, cos(kwRFt + Yjk) (lb) as small PFlos as possible.

k=2 The second term in the right hand side of (2) is essential to
the very function of the PA since it represents the fundamental

where fk and k arete he amplitudes and l vK and thK are the RF power to be delivered to the PA load. This term should be
phases of respective harmonics. The total loss at the drain is negative with as large as possible magnitude. A necessary
calculated by multiplying relations (la) and (ib) and condition for this objective is to create fundamental voltage
integrating over a period.. Since all orthogonal products (i.e, and current signals swinging in opposite directions (1800 phase
voltage and current harmonics having different frequencies) shift) to make the cosine factor equal to -1. This is
integrate to zero, we have: automatically accomplished if the transistor pushes current into

Ploss = VDC IDC + -V1i cos GoVi - Vii )+ a real impedance. Therefore, the two-port lossless network
2 (2) terminated by the PA load resistor must be designed to have a

1 - real input impedance at the fundamental frequency. An
2 Vk kCSkcoC k- I ) equivalent way to state this is that the two-port lossless

k=2 network terminated in the PA load resistor is a filter with a
Relation (2) gives important insights on how the PA pass-band at the fundamental RF frequency. Naturally, the

converts energy from DC to RF. The total loss PFoss must be a transistor parasitic capacitances must be included in the
positive quantity since the transistor considered as operating network.
with full voltages and currents is a passive device (transistors The generation of harmonic power represented by the last
do not generate power!), unlike its customary model used for summing term in the right hand side of (4) must be eliminated
small-signal analysis. Furthermore, the transistor physics forces for the following reasons. As discussed above, any negative
the DC drain current IDC as defined in Figure 2 to be always. '.

whih mkesthefirt trm n te rghthan sie fcomponents in the sum would represent respective harmonicpositive, o power flowing out of the transistor only to be dissipated in the
(2) positive. This term is clearly identified as the power PA load. This is not allowed by the PA linearity requirements.
delivered into the PA by the DC power supply. The energy On the other hand, any positive components in the sum would
conservation law tells us that Ploss must be smaller than the DC be dissipated in the transistor to the detriment of power
power flowing into the PA therefore the second and third terms efficiency. The only alterative left is to make the harmonic
in the right hand side of (2) must add to a negative number. power summation zero.We can interpret the right hand side of (2) as the superposition
of the DC power flowing into the transistor from the DC power IV. ZERO HARMONIC POWER AND FDC RATIOS
supply and a portion of it flowing out of the transistor at RF The last sum in (2) becomes zero when at least one of the
fundamental and harmonics. Since the biasing choke blocks voltage or cuffrent harmonic magnitudes ( Vk or Ik) iS zero at anythe RF fundamental and harmonics, the only place the outgomg particular harmonic frequency. For example, all current-mode
power can go s1the PA load resistor through the lossless two- P
port. Thus, the PA accomplishes energy conversion: it extracts . .'.'' ~~~~~~~~~~~~Likewise,most switched-mode PAs (e.g., class, D, F) use oddpower at DC from the power supply and delivers a portion of it hamncitra.otg an eve hamoi inera curent
to the load at RF fundamental and harmonics. Next, we analyze



Class E PAs realize zero harmonic power through quadrature number of harmonics increases. In the limit, the maximum
voltage and current harmonics. FDC ratios possible are 4/x for a square wave, n/2 for a half-

For zero harmonic power and maximum fundamental wave rectified sinusoidal, and 2 for an ideal impulse. Next, we
power, we calculate the power efficiency from relation (2) with show how by combining these elementary function, we derive
the last term eliminated: the system-level behavior of all known PA structures.

RE VI II (3) V. PAEEFFICIENCY TABLES2 VDc DC
Table I compiles the maximum theoretical efficiencies for

The overall PA efficiency is the product of two "fundamental- all possible combinations of internal PA voltage and current
component to DC-component" (FDC) signal ratios. This is signals, which are either square waves, or half-wave rectified
explicit evidence that the PA efficiency is directly linked to its sinusoidals, or impulse functions (all are maximum FDC ratio
internal signal harmonics, whose presence in proper amount signals) such that the zero harmonic power condition is met
and phasing can increase the FDC ratios. Figure 3 illustrates and the fundamentals are out of phase. Table II shows the
the synthesis of elementary functions with even, odd, or all corresponding PA operating classes.
harmonic structures, which have increasing FDC ratios as their
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Table I: Maximum theoretical PA efficiency
for different waveform pairing
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The signals in Table I are paired such that either Vk or Ik is current) has only a fundamental and no harmonics and the
zero except for the pairing for class E operation, when Vk and other has both even and odd harmonics.
Ik are assumed in quadrature (hence the well-known difficulty If we consider the rows in Table III as giving the
of designing a good class E PA). In class A operation there are maximum internal voltage harmonics and the culumns as
no harmonics, corresponding to the traditional linear amplifier. giving the maximum internal current harmonics, the first row

demonstrates how the classical class A PA evolves towards a
VI. FINITEBANDWIDTH CONDITIONS class B PA by the addition of current even harmonics. A

The eficiencies in Table I are computed based on ideal comparison with the ideal case of Table 1 shows that using
functions with infinite number of harmonics. Naturally, within only the second and the forth current harmonics brings the PA
any real PA the voltage and current signals have limited efficiency to 71.lI%, which is close to the 78.500, efficiency of
bandwidths. It is instructive to calculate the theoretical PA the ideal class B. This helps explain the historical success of
performance under finite bandwidth conditions, which provide current-mode PAs.
a better upper bound for the expected perfromance in practice. The diagonal of Table III demonstrates what happens in
To this end, one can still use relation 3 with appropriate values practical class D/F operation. While these PAs promise 00%
for the FDC ratios. The latter were calculated with the program efficiency theoretically, in reality even after using a seventh
Maple for the functions in Figure 3 having a limited number of harmonic in voltage and a sixth harmonic in current, the
harmonics. The resulting efficiencies are shown in Table III efficiency reaches only 87.5%, which is respectable but still
and Table IV. Simillar considerations are given in [5] and [6]. some distance away from the ideal. This helps explain why

Table III shows the PA cases where the internal voltage audio class D PAs have been succefully developed but RF
and current have either even harmonics or odd harmonics, but implementations are extremely challenging. Interestignly, the
not at the same time such as to guarantee zero harmonic power. evolution of class-A into class-C as seen in Table IV yields the
Each row corresponds to a maximum number of odd harmonics same efficiency for the same number of current harmonics with
used and each column corresponds to a maximum number of no voltage harmonics.
even harmonics used. Both possibilities, i.e., odd-voltage/even-

V CONCLUSIONS
current or odd-current/even-voltage are valid. Table IV shows
the PA cases when one of the internal signals (voltage or Approaching the PA analysis and design from a high-level

system point of view and focusing on the PA DC-to-RF energy
Towards B (inv B) conversion process have important benefits. First, it is possible

to develop a simple unified theory for the proper understanding
1 2 4 6 ofmost circuits in this class, irrespective of the implementation

.----- ~. ~~l technology. Second, a fundamental tradeoff between efficiency
1 50.0% :66.7% 71.1 73.1 " and internal circuit bandwidth is substantiated. This is

| --------Q--------0, particularly important to set realistic expectations for the
3'56.3%975.0%Z 80.0 82.3 | practical performance, given a particular implementation3; 56.3% % technology and operating frequency.
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