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Abstract The presence of internal variability (IV) in

ensembles of nested regional climate model (RCM) simu-

lations is now widely acknowledged in the community

working on dynamical downscaling. IV is defined as the

inter-member spread between members in an ensemble of

simulations performed by a given RCM driven by identical

lateral boundary conditions (LBC), where different mem-

bers are being initialised at different times. The physical

mechanisms responsible for the time variations and struc-

ture of such IV have only recently begun to receive

attention. Recent studies have shown empirical evidence of

a close parallel between the energy conversions associated

with the time fluctuations of IV in ensemble simulations of

RCM and the energy conversions taking place in weather

systems. Inspired by the classical work on global energetics

of weather systems, we sought a formulation of an energy

cycle for IV that would be applicable for limited-area

domain. We develop here a novel formalism based on local

energetics that can be applied to further our understanding

IV. Prognostic equations for ensemble-mean kinetic energy

and available enthalpy are decomposed into contributions

due to ensemble-mean variables (EM) and those due to

deviations from the ensemble mean (IV). Together these

equations constitute an energy cycle for IV in ensemble

simulations of RCM. Although the energy cycle for IV was

developed in a context entirely different from that of

energetics of weather systems, the exchange terms between

the various reservoirs have a rather similar mathematical

form, which facilitates some interpretations of their phys-

ical meaning.

Keywords Inter-member variability � Internal

variability � Atmospheric energy cycle � Regional

climate models � Ensemble of simulations

List of symbols

a Average Earth radius

ah Available enthalpy

ap, aT Pressure and temperature components of

available enthalpy

aS, aB, aC Available enthalpy referred to stratification,

baroclinicity and cross both effects

AEM Available enthalpy for ensemble-mean

AIV Available enthalpy for inter-member

variability

B Pressure-dependance part of ah

CA Conversion of enthalpy energy between AEM

and AIV

CEM Conversion term into the ensemble-mean state

CIV Conversion term into the deviation from

ensemble-mean state

CK Conversion of kinetic energy between

KEM and KIV

Cp Specific heat at constant pressure for dry air

DEM Term associated with the energy dissipation in

the EM state

DIV Term associated with the energy dissipation in

the IV state

EM Ensemble-mean

F Horizontal momentum sources/sinks

FAEM
Transport term for AEM

FAIV
Transport term for AIV

FB Transport term for B
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FKIV
Transport term for KIV

FKEM
Transport term for KEM

g Gravity constant

GEM Term associated with the energy generated in

the EM state

GIV Term associated with the energy generated in

the IV state

H Enthalpy

HAEM
Third-order terms of AEM prognostic equation

HAIV
Third-order terms of AIV prognostic equation

HKEM
Third-order terms of KEM prognostic equation

HKIV
Third-order terms of KIV prognostic equation

IAB Conversion term between AEM and B

IV Inter-member variability

K Kinetic energy

KIV Kinetic energy for inter-member variability

KEM Kinetic energy for ensemble-mean

n Index-number of the simulation

N Total number of simulations

PS, pT Pressure at bottom and top of atmosphere

P Pressure

Pr Reference value of Pressure

P00 Standard value of pressure

Q Total diabatic heating rate

R Gas constant for air

S Entropy

Sr Reference entropy

T Temperature

Tr Reference value of temperature

V
!

u; vð Þ Horizontal wind vector

z Altitude

a Specific volume

x Vertical movement in pressure coordinate

(dp/dt)

U Geopotential height

u Latitude

h Potential temperature

w General atmospheric parameter

hi Ensemble-mean operator

ðÞ0 Deviation operator from EM

ðÞ� Deviation operator from Tr

ðÞ� Deviation from horizontal average along

isobaric surfaces

ðÞ Horizontal average along isobaric surfaces

1 Introduction

During the last decade, ensembles of dynamical down-

scaling climate simulations have been increasingly used to

better understand our evolving climate at scales that are not

resolved by global climate models (GCM). Despite their

limited area of integration, regional climate models (RCM)

are now commonly used to downscale climate-change

projections from GCM. Regional models, as well as global

models, are sensitive to initial conditions (IC) due to the

chaotic character of the climate system. In an ensemble of

simulations performed with a given RCM driven by the

same external boundary conditions, but launched from

different IC, individual simulations evolve into different

weather sequences. The spread of the ensemble’s members

around the ensemble mean (EM) provides a quantitative

measure of internal variability (IV) in RCM simulations,

which will influence the estimates of uncertainty in

downscaling climate simulations and projections. There-

fore, it seems relevant to pay a particular attention on

statistics of IV in ensembles of RCM simulations.

Numerous previous studies have demonstrated the

presence of internal variability (IV) in ensembles of nested

RCM simulations (e.g., Giorgi and Bi 2000; Weisse et al.

2000; Rinke and Dethloff 2000; Christensen et al. 2001;

Caya and Biner 2004; Rinke et al. 2004; Lucas-Picher et al.

2004; Alexandru et al. 2007; de Elı́a et al. 2008; Lucas-

Picher et al. 2008; Nikiéma and Laprise 2011a, b). IV is

defined as the inter-member spread between members in an

ensemble of simulations performed by a given RCM driven

by identical lateral boundary conditions (LBC), where

different members are being initialised at different times.

In autonomous coupled atmosphere–ocean global climate

models (AOGCM), IV is equivalent to natural, transient-

eddy variability (TV) under steady forcing, in the limit of

long simulations and large ensembles, owing to the ergo-

dicity property (i.e. time and ensemble averages should all

be equal). In the context of nested models, it is important to

distinguish IV and TV because the ergodicity property is

violated due to the control exerted by LBC. Possibly a

better name for IV that avoids all ambiguity is that of

‘‘inter-member variability’’. In the following, the abbrevi-

ation IV will be referring to inter-member variability.

Recent work has been undertaken to further our under-

standing of the physical mechanisms responsible for the

maintenance of IV in nested RCM simulations despite the

control exerted by LBC, and the intermittent nature of IV

fluctuations. Working under the hypothesis that episodes of

rapid growth of IV coincide with hydrodynamic instabili-

ties of the flow, Diaconescu et al. (2012) have used singular

vector (SV) to analyse an ensemble simulations of the fifth-

generation Canadian RCM (CRCM5) over North America.

They found that a large part of the IV growth could be

explained by the rapid growth of initially small amplitude

perturbations represented by a set of the ten leading (i.e.

most unstable) SVs. They also found a high similarity

between the structure of the first SV after 24–36 h of the

tangent-linear model integration and the IV disturbances in

the CRCM5 simulation, the vertical structure of this SV
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revealing that baroclinic conversion is the dominant pro-

cess in the IV growth.

Nikiéma and Laprise (2011a, b) established detailed

prognostic equations for inter-member variance (or2
IV=ot)

of various atmospheric variables such as potential tem-

perature and vorticity. They applied these equations to

perform diagnostic budget studies to quantify the various

dynamical and diabatic contributions to the time variations

of IV that took place in an ensemble of 20 simulations of

the third-generation Canadian RCM (CRCM3) that differed

only in their IC. Results show that the dominant terms

responsible for the rapid increases of IV are either the

covariance term involving inter-member fluctuations of

temperature and diabatic heating, or covariance of inter-

member fluctuations acting upon ensemble-mean gradients.

By far the dominant term responsible for decreases of IV is

that of transport of r2
IV by the ensemble-mean flow out of

the domain. Although r2
IV greatly fluctuates in time, there is

no long-term trend. In a time-averaged sense, the IV budget

equation reduces to a balance between generation and

destruction terms. Nikiéma and Laprise (2011b) noted that

the dominant terms in the or2
IV

�
ot equation tend to con-

tribute systematically (either positively or negatively)

throughout the troposphere and most of the time. A note-

worthy result from these studies is that there appears to be

an undeniable parallel between the energetics of IV in

ensemble simulations of nested model and the energy

conversions taking place in weather systems, with gener-

ation of potential energy by diabatic processes such as

condensation, convection and radiation, and later conver-

sion to kinetic energy (e.g., Lorenz 1955, 1967). This led

the authors to conclude that RCM IV is a natural phe-

nomenon arising from the chaotic nature of the atmosphere,

and not a numerical artefact associated, for example, to the

nesting technique.

The motivation of this paper is to pursue further the

possibility of establishing a close parallel between the

energy conversions associated with time fluctuations of IV

in ensemble simulations of RCM and the energy conver-

sions taking place in weather systems. Inspired by the

classical work of Lorenz (1955, 1967) for global energetics

of weather systems, we aimed at a formulation of an energy

cycle for IV that would be applicable for limited-area

domain. Pearce (1978) and later Marquet (1991, 1994,

2003a, b) had developed a general conceptual framework

for local energy cycle that provided the sought formalism.

In this paper, the prognostic equations for ensemble-mean

kinetic energy and available enthalpy are decomposed into

contributions due to ensemble-mean variables (EM) and

those due to deviations from the ensemble mean (IV),

which leads to an energy cycle for inter-member variability

in ensemble simulations of RCM.

The paper is structured as follows. In Sects. 2 and 3, we

review the basic field equations and the different forms of

energy in the atmospheric system, respectively. Then in

Sect. 4, we establish tendency equations for EM and IV

contributions to kinetic energy and available enthalpy. In

Sect. 5, an energy cycle is built by linking the various

contributions to exchanges between the energy reservoirs,

and physical interpretations are discussed. Finally conclu-

sions are given in Sect. 6. Symbols and notations are

explained in ‘‘List of symbols’’.

2 Basic equations in the atmospheric system

The equations that form the basis of atmospheric component

of climate models describe the time evolution and spatial

structure of different atmospheric variables at scales that are

resolved by the computational mesh. The momentum,

thermodynamics and continuity equations express the

principles of conservation of momentum, energy and mass,

respectively. A diagnostic relation for the hydrostatic

equilibrium and the state law for an ideal gas complete the

primitive equations. Using pressure pð Þ as vertical coordi-

nate and a local Cartesian system x; yð Þ aligned with latitude

uð Þ and longitude kð Þ, these equations can be written under

the traditional approximation (e.g., Holton 2004) as follows:

oV
!

ot
þ V
!� r!V

!þ x
oV
!

op
þ f k̂ � V

!þ r!U� F
!¼ 0 ð1Þ

oT

ot
þ V
!� r!T þ x

oT

op
� xa

Cp

� Q

Cp

¼ 0 ð2Þ

r! � V
!þ ox

op
¼ 0 ð3Þ

oU
op
þ a ¼ 0 ð4Þ

a� RT

p
¼ 0 ð5Þ

where V
!

u; vð Þ is the horizontal wind vector with compo-

nents u ¼ a cos udk=dt and v ¼ adu=dt, and x ¼ dp=dt is

the pressure-coordinate vertical motion. The operators o
ot

and r! are respectively the local time derivative and the

lateral gradient, both taken along constant pressure surfaces

(vectors operations in spherical coordinates are given in

‘‘Appendix 1’’). All symbols have their standard meaning: a

is the average Earth radius, f ¼ 2X sin u is the Coriolis

parameter, X is the Earth’s rotation rate, U ¼ gz is the

geopotential height, z is the altitude, F
!

is horizontal

momentum sources/sinks, T is the air temperature, Q is the

total diabatic heating rate, Cp is the specific heat at a con-

stant pressure and R is the gas constant for dry air.
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3 The atmospheric energy equations

In the atmospheric system expressed in pressure coordi-

nate, the basic forms of energy are naturally the specific

kinetic energy K ¼ V~ � V~=2 and specific enthalpy H ¼ CpT

(the term specific will henceforth be omitted to lighten the

terminology). The kinetic energy equation is obtained by

taking the following operations:

V
!� Eq: 1ð Þ þ K þ Uð Þ Eq: 3ð Þ þ x Eq: 4ð Þ

resulting in the following equation (as detailed in

‘‘Appendix 2’’):

oK

ot
þ r! � K þ Uð ÞV!

h i
þ o K þ Uð Þx½ �

op
þ xa� V

!� F
!

¼ 0 ð6Þ

The enthalpy equation is readily obtained by taking the

following operation:

Cp Eq: 2ð Þ þ T Eq: 3ð Þ½ �

which gives

o CpT
� �

ot
þ r! � CpT V

!� �
þ

o CpTx
� �

op
� xa� Q ¼ 0 ð7Þ

Once integrated over the entire atmospheric column, the

sum of kinetic energy (6) and enthalpy (7) equations

expresses the change of the total energy, defined as

K þ CpT:

o K þ CpT
� �

ot
þ r! � K þ Uþ CpT

� �
V
!h i

þ
o K þ Uþ CpT
� �

x
� �

op
� V
!� F
!� Q ¼ 0

ð8Þ

Upon global averaging over the entire atmosphere, noted as

fg, and with suitable lower boundary conditions (e.g.

eq. 2.12 and 2.16 of Laprise and Girard 1990), the

celebrated result of atmospheric energetics obtains:

o Kf g
ot
þ xaf g � V

!� F
!n o
¼ 0

o CpTf g
ot
� xaf g � Qf g ¼ 0

o KþCpTf g
ot

� V
!� F
!n o
� Qf g ¼ 0

8
>>><

>>>:

ð9Þ

The last equation expresses conservation of global total

energy K þ CpT
	 


in the absence of net external sources/

sinks of mechanical energy V
!� F
!n o

and diabatic heat

Qf g. Hence fxag represents a conversion between kinetic

energy and enthalpy (e.g., Lorenz 1967; Peixoto and Oort

1992).

In energetics studies it is useful to decompose the terms

appearing in the budget equations into contributions from

some mean and deviations thereof, where the mean may be

either an average taken over time, around a latitude circle

or, as will be the case in this paper, the average of the

members in an ensemble of nested model simulations. For

quadratic terms such as kinetic energy in (6), the decom-

position leads to separate contributions from mean winds

and from deviation winds. The same decomposition

applied to linear terms such as enthalpy in (7), however,

does not bring out any apparent contribution from devia-

tions upon averaging and hence it is not possible to clearly

identify contributions from mean and deviations in

exchanges between kinetic and thermodynamic energies

(e.g., Boer 1989). This and the fact that enthalpy appears to

be overwhelmingly large compared to kinetic energy for

typical atmospheric states, makes it advantageous to

modify (7) in order to operate as deviation from some

reference state, thus reducing the magnitude of the ther-

modynamic energy contribution. Casting the thermody-

namic equation in a quadratic (or some other nonlinear)

form also allows decomposing into contributions from

mean and deviations.

The most widely used approach for global energetics is

that pioneered by Lorenz (1955, 1967) of using the concept

of available potential energy (APE). APE has the advan-

tage of being a much smaller quantity than enthalpy and a

positive definite quantity. It requires however defining a

minimum potential energy reference state that can only be

established globally, and ‘‘APE is a global concept defined

for a system as a whole, not for a portion of it’’ (van

Mieghem 1973, section 14.8); hence APE is not mean-

ingful locally or over limited-area domains.

Following the approach of available potential energy

described by Pearce (1978), Marquet (1991, 1994, 2003a,

b) discussed the concept of locally defined available

energy. He showed that the desired properties are

obtained with using a variable called Available Enthalpy

ah ¼ H � Hrð Þ � Tr S� Srð Þ combining enthalpy H ¼
Cp T � Trð Þ þ Hr and entropy S ¼ Cp ln h=hrð Þ þ Sr, with

Tr, Hr and Sr three constants, and where h ¼ T poo=pð ÞR=Cp

is the potential temperature, hr ¼ Tr poo=prð ÞR=Cp is a con-

stant with units of temperature and pr a constant with units

of pressure. An equation for ah is thus obtained from the

enthalpy and entropy equations

dH

dt
� xa� Q ¼ 0 ð10Þ

dS

dt
� Q

T
¼ 0 ð11Þ

by taking the operation Eq: 10ð Þ � Tr Eq: 11ð Þ, which gives

dah

dt
� xa� 1� Tr

T

� �
Q ¼ 0 ð12Þ
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A Lagrangian form of the kinetic energy equation may be

obtained by taking the operation V
!� Eq: 1ð Þ þ x Eq: 4ð Þ:

dK

dt
þ V
!� r!Uþ x

oU
op
þ xa� V

!� F
!¼ 0 ð13Þ

Taking the sum Eq: 12ð Þ þ Eq: 13ð Þ gives

d K þ ahð Þ
dt

þ V
!� r!þ x

o

op


 �
U� V
!� F
!� 1� Tr

T

� �
Q

¼ 0 ð14Þ

where the term ½V!� r!þ x o
op
�U represents fluxes of grav-

itational potential energy. The set (12)–(14) offers an

alternative form to the conventional energy equations to

(6)–(8) and to Lorenz APE. Compared to the conventional

set, this set has the advantages that available enthalpy is a

much smaller quantity than enthalpy and it is not a linear

function of temperature, which will allow decomposing the

energy cycle into contributions from the ensemble mean

and deviations thereof, as we shall see shortly. Compared to

Lorenz energy cycle based on APE that can only be applied

globally, the set (12)–(14) is amenable to be applied on

limited-area domains (e.g., Marquet 1994, 2003a, b).

Marquet (1991) pointed out that available enthalpy can

be slit into separate contributions depending solely on

temperature and pressure:

ah T ; pð Þ ¼ aT Tð Þ þ ap pð Þ ð15Þ

where

aT Tð Þ ¼ CpTr

T � Tr

Tr

� �
� ln

T

Tr

� �
 �
ð16Þ

and

ap pð Þ ¼ RTr ln
p

pr

� �
ð17Þ

The equation for ah may be split into separate equations

for aT and ap as follows:

daT

dt
� Rx

p
T � Trð Þ � 1� Tr

T

� �
Q ¼ 0 ð18Þ

dap

dt
� Rx

p
Tr ¼ 0 ð19Þ

Equations (18) and (19), together with the kinetic energy

equation (13), form a valid (and exact) local energy cycle

system for hydrostatic flow; these are the pressure-coordinate

equivalent of equations (14) of Marquet (1991). Alternatively

Eqs. (18) and (19) may be cast in flux form using (3):

oaT

ot
þ r! � aT V

!� �
þ o aTxð Þ

op
� Rx

p
T � Trð Þ

� 1� Tr

T

� �
Q ¼ 0

ð180Þ

oap

ot
þ r! � ap V

!� �
þ

o apx
� �

op
� Rx

p
Tr ¼ 0 ð190Þ

We note that in pressure coordinates Eq. (19) is an

identity since
oap

ot
¼ 0, r!ap ¼ 0 and

oap

op
¼ RTr

o
op

ln p ¼ RTr

p
.

It is noteworthy that, despite the fact that ap is constant

locally in pressure coordinates, its integral over a finite

domain fluctuates as a result of changes in surface pressure

pS:

� 1

g

d

dt

ZpT

pS

apdp ¼ �RTr

g

d

dt

ZpT

pS

ln
p

pr

dp

¼ �RTr

g

d

dt
p ln

p

pr

� p


 
pT

pS

¼ RTr

g

d

dt
pS ln

pS

pr

� 1

� �
 �

ð20Þ

Marquet (1991) noted that the constant pr can be chosen

so that the global average of the absolute value of ap is

zero; this is achieved by defining ln pr as the time and

space average of ln p, which means that pr � poo=e if poo is

approximately the mean of pS.

Following Marquet (1991), the temperature-dependent

component aT Tð Þ can be written as

aT Tð Þ ¼ CpTr = vð Þ ð21Þ

where

= vð Þ ¼ v� ln 1þ vð Þ ð22Þ

and

v ¼ T � Tr

Tr

ð23Þ

It is noteworthy that the function = vð Þ is positive

definite for v[ -1, which corresponds to T [ 0; this

property is most valuable when working with available

energy concepts. The constant Tr may be chosen to

minimise the value of v over the domain of interest, as in

Pearce (1978). Marquet (1991) proposed to define it such

that T�1
r corresponds to the time and space average of

T�1 over the domain of interest, which would give Tr �
250 K if integrated over the entire atmosphere. With this

choice, the actual temperature generally deviates from Tr

only by less than �20 %, and hence v is a small quantity.

This allows approximating aT Tð Þ by series expansion

around aT Trð Þ, i.e. expand = vð Þ around = 0ð Þ. Noting that

= 0ð Þ ¼ =0 0ð Þ ¼ 0 and =00 0ð Þ ¼ 1, this gives to leading

order

aT Tð Þ � CpTr

2

T � Tr

Tr

� �2

ð24Þ
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The positive-definite character of aT Tð Þ is maintained

by the quadratic form under this approximation. The

consequences of the small-v approximation on the

thermodynamic equation are discussed in ‘‘Appendix

4’’. Equations (13), (18) and (19), together with the

definition (17) and the approximation (24), constitute an

approximate set that can be used to establish an energy

cycle (Pearce 1978; Marquet 1991) in terms of ensemble

mean and deviations thereof, for ensembles of limited-

area, regional climate simulations. In the next section, the

approximate Eq. (24) will be used to establish the

available enthalpy energy equations associated with EM

and IV. It will be showed that the quadratic expression of

aT leads to an IV available-enthalpy that is proportional

to the inter-member variance of temperature ( T 02
� �

, e.g.

Nikiéma and Laprise 2001a). This retains the

conventional definition of IV and allows an immediate

physical interpretation.

4 Ensemble-mean energy equations

An ensemble of simulations of an RCM will be analysed in

terms of basic statistics such as ensemble mean and vari-

ance and covariance of deviations thereof. The statistics

will be calculated from an archive of an ensemble of N-

member simulations produced with the same nested model

driven by identical LBC, but launched at different starting

times; for instance, the initial conditions (IC) of two suc-

cessive simulations will be shifted by 1 day. A represen-

tative ensemble-mean (EM) state, as well as deviations

from the ensemble mean, can be computed from the

member simulations in the ensemble. Thus, each atmo-

spheric variable Wn 2 Tn; un; vn; xn; Un; . . .f g where n

represents the index number of each simulation, will be

split into ensemble-mean Wh i and deviation W0 compo-

nents as

W ¼ Wh i þW0 ð25Þ

where the ensemble-mean operator hi is calculated as

Wh i ¼ 1

N

XN

n¼1

Wn ð26Þ

and the deviations as

W0 ¼ W� Wh i

with the property that W0h i ¼ 0. Without ambiguity, the

index n is ignored to facilitate reading and writing of

equations.

Quadratic quantities such as the product of two variables

w and v can be decomposed as

w v ¼ wh i vh i þ wh iv0 þ w0 vh i þ w0v0 ð27Þ

so that

w vh i ¼ wh i vh i þ w0v0h i ð28Þ

In particular, the ensemble-mean kinetic energy Kh i ¼
hV!� V

!
=2i can be decomposed into two components as

follows:

Kh i ¼ KEM þ KIV ð29Þ

where KEM ¼ hV
!i � hV!i=2 is the kinetic energy of the

ensemble-mean wind and KIV ¼ hV 0
!
� V 0
!
i=2 is ensemble-

mean kinetic energy of the deviation winds. Similarly,

using the quadratic approximation to the temperature

component aT of available enthalpy, its ensemble mean

A ¼ haTi can be decomposed as

A ¼ AEM þ AIV ð30Þ

where AEM ¼ Cp

2Tr
hT � Tri2 and AIV ¼ Cp

2Tr
hT 02i (see

‘‘Appendix 3’’ for details).

It can be noted that AIV is proportional to the inter-

member variance (r2
IV ) for the temperature (Nikiéma and

Laprise 2001a). Unlike the exact formulation of aT

(Eq. 21), the quadratic expression leads to convenient

definitions of AEM and AIV, which are proportional to hTi2

and hT 02i, respectively.

The ensemble-mean equations for kinetic energy and

available enthalpy are readily obtained by applying the

operator hi on (6), (180) and (190):

ohKi
ot
þ r! � K þ Uð ÞV!

D E
þ o

op
K þ Uð Þxh i þ R

p
hxTi

� V
!� F
!D E
¼ 0 ð31Þ

ohaTi
ot
þ r! � aT V

!D E� �
þ o aTxh ið Þ

op
� R

p
x T � Trð Þh i

� l
T � Tr

Tr

� �
Q

� �
¼ 0 ð32Þ

o ap

� �

ot
þ r! � ap V

!D E� �
þ

o apx
� �� �

op
� RTr

p
xh i ¼ 0 ð33Þ

where l in (32) is a factor of order unity (details are pro-

vided in ‘‘Appendix 4’’).

These equations embody the approximate energetics

applicable to an ensemble of regional climate model sim-

ulations. We now proceed in separating ensemble-mean

kinetic energy and enthalpy into components resulting of

the ensemble-mean variables and components resulting of

covariances of deviations from the ensemble mean. This

will reveal the physical processes responsible for conver-

sions from one type of energy to another.
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4.1 Kinetic energy equations for KEM and KIV

The kinetic energy equation for the ensemble-mean wind

(KEM) is obtained by taking the following operation:

V
!D E
� Eq: 1h i þ KEM þ Uh ið Þ Eq: 3h i þ xh i Eq: 4h i

þ V
!D E
� V 0
!

Eq: 3� Eq: 3h ið Þ
D E

After a few rearrangements (see details in ‘‘Appendix 5’’),

the following equation is obtained:

oKEM

ot
¼ CEM � CK � DEM � FKEM

� HKEM
ð34Þ

where

KEM ¼ hV
!i � hV!i=2

CEM ¼ � xh i ah i

CK ¼ � V 0
!
� V 0
!
� r!

� �
V
!D ED E

� V 0
!
� x0

o V
!D E

op

0

@

1

A
* +

DEM ¼ � V
!D E
� F
!D E

FKEM
¼ r! � V

!D E
KEM

� �
þ o

op
xh iKEMð Þ

HKEM
¼ r! � V

!D E
� V 0
!

V 0
!D E� �

þ r! � V
!D E

Uh i
� �

þ o

op
V
!D E
� V 0
!

x0
D E� �

þ o

op
xh i Uh ið Þ

The kinetic energy equation due to the wind deviations

from the ensemble mean, KIVð Þ, can be established by

considering the definition KIV ¼ Kh i � KEM to calculate

Eq: 31ð Þ � Eq: 34ð Þ. After a few manipulations (details

are provided in ‘‘Appendix 6’’), and noting that

K V
!D E
� KEM V

!D E
¼ KIV V

!D E
þ KV 0

!D E
, we get

oKIV

ot
= CIV + CK � DIV � FKIV

� HKIV
ð35Þ

where

KIV 	 kh i; k ¼ V 0
!
� V 0
!
=2

CIV ¼ � x0a0h i

CK ¼ � V 0
!
� V 0
!
� r!

� �
V
!D ED E

� V 0
!
� x0

o V
!D E

op

0

@

1

A
* +

DIV ¼ � V 0
!
� F0
!D E

FKIV
¼ r! � KIV V

!D Eh i
þ o KIV xh ið Þ

op

HKIV
¼ r! � k þ U0ð ÞV 0

!D E
þ o k þ U0ð Þx0h i

op

4.2 Equations for the temperature-dependent part

of available enthalpy AEM and AIV

It was established in (24) that the ensemble-mean of the

part of available enthalpy arising from temperature only is

a positive-definite field A ¼ aTh i that could be split in a

contribution AEM arising from ensemble-mean temperature

Th i and a contribution AIV arising from the deviations T 0 of

temperature from the ensemble-mean value, as in (30).

The prognostic equation for AEM is obtained by taking the

operation
T�Trh i

Tr
Eq: 7h i, which gives after some approximations

oAEM

ot
¼ GEM þ IAB � CEM � CA � FAEM

� HAEM
ð36Þ

where

AEM ¼
Cp

2Tr

T�h i2; T� ¼ T � Tr

GEM ¼
l

Tr

T�h i Qh i

CEM ¼ � xh i ah i

CA ¼ � V
!0 T 0

Tr

� �
� r! CpT
� �

� x0
T 0

Tr

� �
o CpT
� �

op

FAEM
¼ r! � V

!D E
AEM

� �
þ o xh iAEMð Þ

op

HAEM
¼ Cp

Tr

r! � T�h i V
!0

T 0�

D E� �
þ Cp

Tr

o T�h i x0T 0�
� �� �

op

IAB ¼ �
RTr

p
xh i

where l is an order unity factor (see ‘‘Appendix 7’’ for

details).

The prognostic equation for AIV is obtained by taking

the operation
CpT 0

Tr
Eq: 7� Eq: 7h ið Þ

D E
, which gives after

some approximations

oAIV

ot
¼ GIV � CIV þ CA � FAIV

� HAIV
ð37Þ

where

AIV ¼
Cp

2Tr

T 02
� �

GIV ¼ l
T 0

Tr

Q0
� �

CIV ¼ � x0a0h i

CA ¼ �
V 0
!

T 0
D E

Tr

� r! CpT
� �

� x0T 0h i
Tr

o CpT
� �

op

FAIV
¼ r! � V

!D E
AIV

� �
þ o xh iAIVð Þ

op

HAIV
¼ Cp

2Tr

r! � V 0
!

T 02
� �

þ o x0T 02ð Þ
op

� �
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where l is an order unity factor (see ‘‘Appendix 8’’ for

details).

There appears to be some analogy between Eq. (37) for

local AIV and that for global APE as established in the

seminal work by Lorenz (1955, 1969). By analogy with

the work of Pearce (1978) and Marquet (2003a, b) on the

concept of APE, AIV and AEM can be assimilated to res-

ervoirs attributed to ‘eddy’ and ‘zonal’, namely aE and aZ,

respectively. An advantage of the present formulation over

Lorenz’ is the absence of a division by o�h=op, which is

problematic in the neutral planetary boundary layer. A

disadvantage is that AIV contains not only available but

also some unavailable potential energy, due to the fact

that the basic state temperature Tr does not correspond to

the state of minimum potential energy as in Lorenz’

formulation.

4.3 Equations for the pressure-dependent part

of available enthalpy

The system of equations is completed by Eq. (33) for

ap ¼ RTr ln p
pr

� �
. Since we are working in pressure coor-

dinates, it follows that B ¼ ap

� �
¼ ap and a0p ¼ 0. Then

(33) simply becomes

oB

ot
¼ �FB � IAB ð38Þ

where

FB ¼ r
! � B V

!D E� �
þ o B xh ið Þ

op

IAB ¼ �
RTr

p
xh i

5 Ensemble-mean energy cycle

Equations (34)–(38) constitute an approximate set of

equations describing the exchanges of ensemble-mean

kinetic and available enthalpy energies decomposed into

ensemble-mean state variables and deviations thereof,

appropriate for the study of an ensemble of simulations

performed with a same limited-area model under identical

boundary conditions. These equations could easily be

integrated over any domain of interest, as long as the lower

pressure level does not intersect the topography, resulting

in the energy cycle illustrated in Fig. 1. Boxes represent the

different energy reservoirs over the domain of interest and

arrows indicate energy exchanges between the reservoirs

and with regions outside the domain of interest. At this

stage, the direction of the arrows is arbitrary and only

reflects the choice of sign used in writing the equations.

There are 5 reservoirs corresponding to the each of the 5

prognostic equations (34)–(38): KEM corresponds to the

kinetic energy associated with the ensemble-mean wind,

KIV is the kinetic energy associated with the wind devia-

tions from the ensemble mean, AEM is the temperature-

dependent part of available enthalpy associated with the

ensemble-mean temperature, AIV is the temperature-

dependent part of available enthalpy associated with the

deviations of temperature from the ensemble mean, and B

is the pressure-dependent part of available enthalpy. In

global energetics cast in terms of zonal mean and devia-

tions thereof (e.g. Lorenz 1955, 1969; Peixoto and Oort

1992), there would be 4 reservoirs, namely 2 kinetic energy

reservoirs and 2 available potential energy reservoirs, each

one associated with zonally averaged variables and their

deviations. The local energy cycle renders an additional,

fifth reservoir B that reflects the fact that mass is not

constant over a limited-area domain, unlike the case when

considering the entire globe. By re-examining the formu-

lation of the concept of APE defined by Lorenz, Peace

(1978) showed that it is possible to separate the APE into

three local energy components (APE = AS ? AZ ? AE)

referred to as static-stability, zonal and eddy reservoirs,

respectively, resulting in 5 energy reservoirs for the global

circulation. In a similar approach, Marquet (2003a, b)

separated the kinetic energy into 3 components

(K = KS ? KZ ? KE), resulting to a cycle of 6 reservoirs

in addition of the 3 available enthalpy components estab-

lished by Pearce. By analogy with the separation made by

Pearce (1978) and Marquet (1991), the energy cycle

illustrated in Fig. 1 will be modified in the next section in

order to reduce the large value of the AEM energy con-

trolled by the difference between T and Tr.

There are 5 terms that occur, each one, in two of the

prognostic equations, but with opposite sign: CK , CA, CIV ,

CEM and IAB. These terms represent conversion of energy

between reservoirs. CA represents a conversion of tem-

perature-dependent part of available enthalpy between its

AEM and AIV forms, and CK represents a conversion of

kinetic energy between its KEM and KIV forms. CEM rep-

resents a conversion between the temperature-dependent

part of available enthalpy and kinetic energy associated

with the ensemble-mean state, AEM and KEM , respectively;

CIV represents a conversion between the temperature-

dependent part of available enthalpy and kinetic energy

associated with the deviation from ensemble-mean state,

AIV and KIV , respectively. The fifth term IAB represents a

conversion between the temperature-dependent part of

available enthalpy associated with the ensemble-mean state

AEM and the pressure-dependent part of available enthalpy

B. Only the first four terms have counterparts in global

energetics.

838 O. Nikiéma, R. Laprise

123



The term CA represents the effect of covariance of

fluctuations (involving T 0 and V 0
!

) acting in the direction of

the EM temperature gradient. Nikiéma and Laprise (2011b)

have shown that, in a CRCM simulation over a North

American domain, the horizontal and vertical components

of CA tend to have positive and negative signs, respec-

tively, but the vertical term dominates, so CA acts as a loss

of AEM in favour of AIV .

The term CK represents the effect of variance and

covariance of wind perturbations in the direction of gradi-

ents of the EM horizontal wind. By making a parallel with

the energy cycle of weather systems, we will say that this

term corresponds to a ‘‘barotropic’’ conversion of kinetic

energy between the reservoirs KEM and KIV .

The terms CEM and CIV represent covariances of vertical

motion and density, � xh i ah i and � x0a0h i, respectively. By

making again a parallel with the energy cycle of weather

systems, we will say that they correspond to ‘‘baroclinic’’

conversions between reservoirs of kinetic energy and

temperature-dependent part of available enthalpy, between

AEM and KEM for CEM , and between AIV and KIV for CIV .

Apart from conversion terms, other terms act as sources

or sink of energy in the reservoirs. Terms GEM ¼
l

Tr
T�h i Qh i and GIV ¼ l

Tr
T 0Q0h i arise due to covariances of

diabatic heating and temperature, and they generally act as

sources of AEM and AIV , respectively. Nikiéma and Laprise

(2011a, b) found that GIV exhibits a large intense positive

contribution in the troposphere over a North American

domain in summer. Terms DEM ¼ � V
!D E
� F
!D E

and

DIV ¼ � V 0
!
� F0
!D E

generally act as sinks of kinetic energy

KEM and KIV , respectively, mostly due to surface friction.

The 5 terms Fw, with w 2 KEM ;KIV ;AEM;AIV ;Bf g,
correspond to transport of inter-member variability in w. In

their study of IV in the potential temperature and vorticity

fields, Nikiéma and Laprise (2011b) have shown that the

terms Fw always contribute negatively as they correspond

to export of IV out of the regional domain.

Finally, terms H represent divergence of covariances

involving two or more perturbations from the ensemble

mean. These terms would average to zero upon integration

over the entire globe, but they must be retained locally or

over limited-area domain. Terms HKIV
and HAIV

are third-

order terms, and are usually much smaller than other terms

in the budget.

6 Further decomposition in horizontal average

on pressure surfaces and deviation thereof

While a clear advantage of the proposed approach in terms

of intrinsically defined variable is that the equations possess

a local meaning; its main drawback is that aT cannot readily

be associated to some kind of available potential energy as

with Lorenz’ APE. This is clearly seen in the vertical profile

of aT : from a local minimum at the level where T is close to

Tr on average, its magnitude increases markedly above and

below this level as a result of the significant departure of T

from Tr, owing to the stratification in the atmosphere. These

large departures do not by any means imply de facto some

CEM

GEM

F
AEM

+ H
AEM

F
KEM

+ H
KEM

F
KIV

+ H
KIV

DEM

GIV

DIV

CK

CA

AEM

AIV

KEM

KIV

F
AIV

+ H
AIV

B

FB

IAB

CIV

Fig. 1 The energy cycle of the

atmosphere as simulated by

RCM. The arrows indicate the

various fluxes of energy
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larger reservoir of available potential energy in the upper

and lower parts of the atmosphere. There is hence a clear

advantage to further splitting aT into separate components

due to mean stratification and deviations thereof, as did

Marquet (1991) in his Section 5.

Unlike Marquet (1991), however, here we start from the

quadratic approximation to aT :

aT ¼
Cp

2Tr

T � Trð Þ2 ð39Þ

We introduce T , the horizontal average on a pressure

surface, such that Tm p; tð Þ is a function of member m,

pressure p and time t, and decompose aT as follows:

aT ¼
Cp

2Tr

T � T
� �

þ T � Tr

� �	 
2

¼ aB þ aS þ aC

ð40Þ

where

aB ¼
Cp

2Tr

T � T
� �2

aS ¼
Cp

2Tr

T � Tr

� �2

aC ¼
Cp

2Tr

2 T � T
� �

T � Tr

� �

The term aB is referred to as the baroclinicity component as

it depends on deviations from the horizontal averages along

isobaric surfaces; the term aS represents the effect of the

mean stratification, and aC is a cross term involving both

effects. The interpretation of the term aB most closely

resembles Lorenz’s APE, while aS is a much larger term

that exhibits a local minimum at the level where T is close

to Tr on average, with marked increases in magnitude

above and below this level. It is important to realise

however that the individual components aB, aS and aC are

no more intrinsically defined, as they depend on the extent

of the domain considered in carrying the horizontal

average.For later use, we introduce the notation

ðÞ�¼ ðÞ � ðÞ ð41Þ

for deviations from horizontal averages along isobaric

surfaces, so that

aB ¼
Cp

2Tr

T�ð Þ2 ð42Þ

A noteworthy feature of the components aB, aS and aC is

that aC ¼ 0 and aS ¼ aS so that

aT ¼ aB þ aS

¼ Cp

2Tr

T�ð Þ2 þ Cp

2Tr

T � Tr

� �2 ð43Þ

It was demonstrated earlier that the ensemble mean of the

temperature contribution aT to potential enthalpy,

A ¼ aTh i, could be decomposed as A ¼ AEM þ AIV with a

component AEM ¼ Cp

2Tr
T � Trh i2 that depends solely on

ensemble-mean variables, and a component AIV ¼ Cp

2Tr
T 02
� �

that depends on deviations from the ensemble mean. The

aforementioned typical vertical structure of aT , with a local

minimum at the level where T is close to Tr on average, and

marked increases in magnitude above and below this level,

is only present in the term AEM that depends on ensemble-

mean variables. Next we will proceed to further decompose

AEM into contributions from horizontal averages along

isobaric surfaces and deviations thereof, and finally we will

average these quantities on isobaric surfaces.

The term AEM ¼ Cp

2Tr
T � Trh i2 can be decomposed as

AEM ¼ AEM B þ AEM S þ AEM C ð44Þ

where

AEM B ¼
Cp

2Tr

T � T
� �2

AEM S ¼
Cp

2Tr

T � Tr

� �2

AEM C ¼
Cp

2Tr

2 T � T
� �

T � Tr

� �

After taking the average along isobaric surfaces, the

equation becomes

AEM ¼ AEM B þ AEM S ð45Þ

where AEM B ¼ Cp

2Tr
T � T
� �2

and AEM S ¼ Cp

2Tr
T � Tr

� �2

‘‘Appendix 9’’ gives the algebraic details to establish a

prognostic equation for AEM B:

oAEM B

ot
¼ GEM B � CEM B þ CEM BS � CA B � FAEM B

� HAEM B ð46Þ

where

AEM B ¼
Cp

2Tr

T�h i2 and T� ¼ T � T

GEM B ¼
l

Tr

T�h i Qh i¼ T�h i Q

T

� �
¼ T�h i Q

T

� ��� �

� l

Tr

T�h i Q�h i

CEM B ¼ � x�h i a�h i

CEM BS ¼ �
Cp

Tr

oT

op
x�

� �
T�h i

CAB ¼ �
Cp

Tr

V
!0

T�0
D E

� r! T�h i � Cp

Tr

x0T�0h i o

op
T�h i

¼ �Cp

Tr

V
!0

T�0
D E

� r! Th i � Cp

Tr

x0T�0h i o

op
T�h i
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FAEM B ¼ r
! � AEM B V

!D E� �
þ o

op
AEM B xh ið Þ

HAEM B ¼
Cp

Tr

r! � T�h i V
!0

T�0
D E� �

þ Cp

Tr

o

op
T�h i x0T�0h ið Þ

Using the relation AEM S ¼ AEM � AEM B, a prognostic

equation for AEM S ¼ Cp

2Tr
T � Tr

� �2
can be obtained by

subtracting the equation just obtained for AEM B ¼
Cp

2Tr
T � T
� �2

from that for AEM ¼ Cp

2Tr
T � Trh i2 (details

are provided in ‘‘Appendix 10’’)

o

ot
AEM S ¼ GEM BS � CEM S � CEM BS � CA S � FAEM S

� HAEM S ð47Þ

where

GEM S ¼
l

Tr

T
� �
� Tr

� �
Qh i

n o

CEM S ¼ CEM � CEM B � IAB ¼ � xh i ah i � arð Þ

CEM BS ¼ �
Cp

Tr

oT

op
x�

� �
T�h i

CA S ¼ �
Cp

Tr

V
!0

T 0
D E

� r! Th i
� �

� Cp

Tr

x0T 0h i o
op

T
� ��

þ x0T 0
� � o

op
T�h i

�

FAEM S ¼ r
! � V

!D E
AEM S

� �
þ o

op
xh iAEM S

HAEM S ¼
Cp

Tr

r! � T�h i V
!0

T 0
D E� �

þ T�h i V
!0

T 0
D E� �� �

þ Cp

Tr

o

op
T�h i x0T 0h i þ T�h i x0T 0

� �n o

‘‘Appendix 11’’ summarizes the isobaric energy cycle

equations.

Figure 2 illustrates and summarizes the energy cycle

obtained by considering the average on pressure surfaces and

deviation thereof. As a consequence, there are 6 reservoirs

corresponding to four prognostic equations of AIV, KIV, KEM

and B defined over the isobaric surfaces (see ‘‘Appendix

11’’) and two equations resulting to the decomposition of

AEM into two contributions: AEM S and AEM B referred to the

stratification and the baroclinic components, respectively.

The further decomposition along the isobaric surfaces leads

to new conversion terms: CEM BS, CAS, CAB, CEM B and CEM S.

The first one represents the conversion term between the two

new reservoirs (AEM S and AEM B), whereas the other ones

are contributions of two main conversion terms, namely CEM

(=CEM B þ CEMS þ IAB) and CA (=CAB þ CAS). This decom-

position is advantageous because the large values of CEM are

now separated in several components.

7 Conclusions

The motivation of this paper was to establish a formalism

that would allow studying the energetics associated with

the time fluctuations of inter-member spread (or internal

variability, IV) in an ensemble of simulations of a nested,

limited-area model driven by a given set of lateral

boundary conditions, when only the timing to start each run

differs amongst the members of the ensemble. This

framework implies that IV develops internally to the RCM

domain. The lateral sponge zone along the perimeter of the

regional domain constitute a transition zone between the

imposed lateral boundary condition and the free internal

domain. In the sponge zone the RCM internal solution is

forced towards the same driving data for all members, and

hence IV is suppressed there. The regional domain where

the diagnostic equations would be applied should therefore

exclude the sponge zone.

The challenge was to write a set of consistent energy

equations that could be used locally or over a limited-area

domain, unlike classical energetics studies of weather

systems following the seminal work of Lorenz (1955,

1967) that are only meaningful globally (van Mieghem

1972). Following the work of Nikiéma and Laprise (2011b)

on inter-member variance, and by analogy with the

frameworks of Pearce (1978) and Marquet (1991) for

atmospheric energetics, prognostic equations for ensemble-

mean kinetic energy and available enthalpy were approx-

imated and decomposed into contributions due to ensem-

ble-mean variables (EM) and due to deviations from the

ensemble mean (IV). This led to a set of approximate

equations corresponding to an energy cycle for inter-

member variability in ensemble simulations of a nested

model. These equations were then averaged on pressure

surfaces. Interestingly enough, several terms in the energy

cycle for IV have a form similar to that of the energetics

studies of weather systems (Lorenz 1955; Pearce 1978;

Marquet 1991, 2003a, b), including for example baroclinic

and barotropic conversions, diabatic generation of avail-

able enthalpy and friction dissipation of kinetic energy.

This study purposely used a quadratic expression of the

available enthalpy because it offers the great advantage of

separating the contribution of aTh i into AEM and AIV that

are proportional to Th i2 and T 02
� �

, respectively, thus

allowing an immediate physical interpretation and retain-

ing the conventional definition of IV (i.e. rIV � T 02
� �

) in

regional climate modelling studies.

While most models are cast in terrain-following coor-

dinate to facilitate the implementation of the kinematic

lower boundary condition, we chose to formulate our

diagnostic equations in pressure coordinates, following a

long tradition in diagnostic studies, whose advantages have
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been argued for example by Boer (1982). Amongst the

reasons is that this choice avoids the presence of several

metric terms that appear in terrain-following coordinates,

which do not have an immediate physical interpretation.

When lateral averaging is applied, such averaging along

terrain-following coordinate would not lead to an easy

interpretation. Finally, we would want eventually to scale-

decompose the terms in the budget equations, and such

decomposition would be inappropriate in anything but

roughly horizontal surfaces. As mentioned briefly in rela-

tion to (20), the field equations are only valid above

ground, i.e. on pressure levels satisfying the condition

p 
 pMin, where pMin is the minimum value of surface

pressure encountered in the time and space domain under

study. Levels intersecting topography could in principle be

treated using the masking procedure of Boer (1982); we

will not pursue this avenue here however.

In a forthcoming work (Nikiéma and Laprise, in

preparation), the contribution of each term in the energy

cycle for IV will be evaluated for an ensemble of 50

simulations performed over an annual cycle with version

5 of the Canadian RCM (CRCM5). Previous work

(Nikiéma and Laprise 2011a, b) lend us confidence to

obtain a quantitatively acceptable accuracy despite the

numerous approximations involved in evaluating each

term, such as interpolations from model coordinates to

pressure levels, interpolating variables from their Arak-

awa C-grid staggering in the model, calculating transport

in Eulerian flux form rather than with the semi-

Lagrangian scheme as in the model, and using only

samples of time steps that are archived, to name but a

few.
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842 O. Nikiéma, R. Laprise

123



Open Access This article is distributed under the terms of the

Creative Commons Attribution License which permits any use, dis-

tribution, and reproduction in any medium, provided the original

author(s) and the source are credited.

Appendix 1: Vector operations in spherical coordinates

k; u; rð Þ

In spherical coordinates, the horizontal axes are the longi-

tude k and the latitude u, and a horizontal wind vector

V
!

u; vð Þ has components u ¼ a cos udk=dt and v ¼ adu=dt.

The horizontal gradient of a scalar w is defined as

r!w ¼ 1

a cos u
ow
ok

îþ cos /
ow
ou

ĵ


 �
ð48Þ

where a represents the mean radius of the Earth following

the traditional approximation. The horizontal advection of

the scalar w by the wind vector is evaluated as

V
!� r!w ¼ u

a cos u
ow
ok
þ v

a

ow
ou

ð49Þ

The horizontal divergence of a flux V
!

w is written as

follow:

r! � V
!

w
� �

¼ 1

r cos u
o uwð Þ

ok
þ o vw cos uð Þ

ou


 �
ð50Þ

Appendix 2: Kinetic energy (K) equation

The kinetic energy equation is obtained by taking the fol-

lowing operations:

V
!� Eq: 1ð Þ þ K þ Uð Þ Eq: 3ð Þ þ x Eq: 4ð Þ ð51Þ

The first term of this expression V
!� Eq: 1ð Þ gives:

1

2

o V
!� V
!� �

ot
þ V
!� V

!� r!
� �

V
!h i
þ x

2

o V
!� V
!� �

op

þ f V
!� k̂ � V

!� �
þ V
!� r!U� V

!� F
!¼ 0

ð52Þ

Noting that f V
!� ðk̂ � V

!Þ ¼ 0 and using the notation

K ¼ 1
2
ðV!� V

!Þ ¼ 1
2
ðu2 þ v2Þ, we obtain the following

equation:

oK

ot
þ ðV!� r!Þ K þ Uð Þ þ x

oK

op
� V
!� F
!¼ 0 ð53Þ

The second and the third terms in (51) can be developed as

follows,

K þ Uð Þr! � V
!þ K

ox
op
þ U

ox
op
¼ 0 ð54Þ

x
oU
op
þ xa ¼ 0 ð55Þ

Adding the last three equations gives the kinetic energy

equation in flux form:

oK

ot
þ r! � K þ Uð ÞV!

h i
þ o K þ Uð Þx½ �

op
þ xa� V

!� F
!

¼ 0

ð56Þ
Appendix 3: Decomposition of aTh i

Here we show the details of the decomposition of the

temperature component aT of Potential Enthalpy under the

quadratic approximation

aT Tð Þ � CpTr

2

T � Tr

Tr

� �2

ð57Þ

Separating T in its components T ¼ Th i þ T 0 and

substituting in the above gives

aT Tð Þ � CpTr

2

Th i þ T 0 � Tr

Tr

� �2

¼ CpTr

2

T � Trh i þ T 0

Tr

� �2

¼ CpTr

2

T � Trh i2

T2
r

þ 2
T � Trh iT 0

Tr

þ T 02

T2
r

 !
ð58Þ

Taking the ensemble average gives

A ¼ aTh i ¼
CpTr

2

T � Trh i2

T2
r

þ
T 02
� �

T2
r

 !

ð59Þ

Hence we can write A ¼ AEM þ AIV with AEM ¼
Cp

2Tr
T � Trh i2 and AIV ¼ Cp

2Tr
T 02
� �

.

Appendix 4: Effective thermodynamic equation

When using the exact definition for aT

aT Tð Þ ¼ CpTr

T � Tr

Tr

� �
� ln

T

Tr

� �
 �
ð60Þ

the prognostic equation

daT

dt
� R

p
x T � Trð Þ � 1� Tr

T

� �
Q ¼ 0 ð61Þ

is exact in the sense of resulting from the thermodynamic

equation. When the small-v approximation

aT Tð Þ � CpTr

2

T � Tr

Tr

� �2

ð62Þ

is used however, the equation actually corresponds to an

approximate form of the thermodynamic equations, as we
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shall show here.Starting from the small-v approximation

for aT , we have

daT

dt
¼ Cp

Tr

T � Trð Þ dT

dt
ð63Þ

so that

Cp

Tr

T � Trð Þ dT

dt
� R

p
x T � Trð Þ � 1� Tr

T

� �
Q ¼ 0 ð64Þ

which gives the effective, approximate form of the

thermodynamic equation implied by the small-v
approximation for aT :

Cp

dT

dt
� R

p
xTr �

Tr

T
Q ¼ 0 ð65Þ

By comparing to the exact thermodynamic equation

Cp

dT

dt
� R

p
xT � Q ¼ 0 ð66Þ

we note a factor of Tr

T
affecting the last two terms. This

factor is of order unity in the assumed limit of small v for

which the quadratic-form approximation for aT was

obtained. For consistency the approximate form will hence

be used in the decomposition of available enthalpy.

Returning to the prognostic equation for aT

oaT

ot
þ r! � aT V

!� �
þ o aTxð Þ

op
� R

p
x T � Trð Þ

� 1� Tr

T

� �
Q ¼ 0

ð67Þ

the equation for aTh i is readily obtained:

o aTh i
ot
þ r! � aT V

!D E� �
þ o aTxh ið Þ

op
� R

p
x T � Trð Þh i

� 1� Tr

T

� �
Q

� �
¼ 0

ð68Þ

The last term may be approximated as follows

1� Tr

T

� �
Q

� �
¼ Tr

T

T � Tr

Tr

� �
Q

� �

� l
T � Tr

Tr

� �
Q

� � ð69Þ

with l � Tr

T

� �
a factor of order unity that will be henceforth

considered constant equal to one, a valid approximation in

the small-v limit. Hence

o aTh i
ot
þ r! � aT V

!D E� �
þ o aTxh ið Þ

op
� R

p
x T � Trð Þh i

� l
T � Tr

Tr

� �
Q

� �
¼ 0 ð70Þ

to leading order.

Appendix 5: Prognostic equation for KEM

The kinetic energy equation for the ensemble-mean wind

(KEM) is obtained by taking the following operation:

V
!D E
� Eq: 1h i þ KEM þ Uh ið Þ Eq: 3h i þ xh i Eq: 4h i

þ V
!D E
� V 0
!

Eq: 3� Eq: 3h ið Þ
D E

ð71Þ

By applying the ensemble-mean operator to this equation,

we obtain:

o V
!D E

ot
þ V
!� r!V

!D E
þ x

oV
!

op

* +

þ f k̂ � V
!D E
þ r!U
D E

þ F
!D E
¼ 0 ð72Þ

Applying the Reynolds rules to this equation gives:

o V
!D E

ot
þ V
!D E
� r! V

!D E
þ xh i

o V
!D E

op
þ f k̂ � V

!D E

þ r! Uh i � F
!D E
þ V 0
!
� r!V 0
!D E
þ x0

oV 0
!

op

* +

¼ 0 ð73Þ

Taking the dot product V
!D E
� gives

oKEM

ot
þ V
!D E
� r!KEM þ xh i oKEM

op
þ V
!D E
� r! Uh i

� V
!D E
� F
!D E
þ V
!D E
� V 0
!
� r!V 0
!D E

þ V
!D E
� x0

oV 0
!

op

* +

¼ 0

ð74Þ

where KEM ¼ 1
2

V
!D E
� V
!D E

. Adding to this equation

KEM þ Uh ið Þ Eq: 3h i þ xh i Eq: 4h i, gives the flux form as:

oKEM

ot
þ r! � KEM þ Uh ið Þ V

!D Eh i
þ o KEM þ Uh ið Þ xh i

op

þ xh i ah i � V
!D E
� F
!D E
þ V
!D E
� V 0
!
� r!

� �
V 0
!D E

þ V
!D E
� x0

oV 0
!

op

* +

¼ 0 ð75Þ

Taking Eq: 3� Eq: 3h ið Þ gives:

r! � V 0
!
þ ox0

op
¼ 0 ð76Þ

And taking V
!D E
� V 0
!

Eq: 3� Eq: 3h ið Þ
D E

gives:

V
!D E
� V 0
!
r! � V 0
!� �D E

þ V
!D E
� V 0
!ox0

op

� �
¼ 0 ð77Þ
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Adding (75) and (77) gives:

oKEM

ot
þ r! � KEM þ Uh ið Þ V

!D Eh i
þ o KEM þ Uh ið Þ xh i

op

þ xh i ah i � V
!D E
� F
!D E
þ V
!D E
� V 0
!
� r!

� �
V 0
!D

þV 0
!
r! � V 0
!� �E

þ V
!D E
� x0

oV 0
!

op
þ V 0
!ox0

op

* +

¼ 0

ð78Þ

and by simplifying

oKEM

ot
þ r! � KEM þ Uh ið Þ V

!D Eh i
þ o KEM þ Uh ið Þ xh i

op

þ xh i ah i � V
!D E
� F
!D E
þ V
!D E
� r! � V 0

!
V 0
!D E� �

þ V
!D E
�
o V 0
!

x0
D E

op
¼ 0 ð79Þ

or equivalently

oKEM

ot
þ r! � KEM þ Uh ið Þ V

!D Eh i
þ o

op
KEM þ Uh ið Þ xh i½ �

þ xh i ah i � V
!D E
� F
!D E
þ r! � V

!D E
� V 0
!

V 0
!D E� �

þ o

op
V
!D E
� V 0
!

x0
D E� �

� V 0
!
� V 0
!
� r!

� �
V
!D ED E

� V 0
!
� x0

o V
!D E

op

0

@

1

A
* +

¼ 0 ð80Þ

Appendix 6: Prognostic equation for KIV

The kinetic energy equation due to the deviation from the

ensemble-mean can be established in two equivalent ways. A

first method would consist of starting from the equation for

V 0
!

by taking Eq: 1ð Þ � Eq: 1h i, then to take the dot product of

this equation with V 0
!

, and then to apply the ensemble-mean

operator to the resulting equation. A second way, and this is

the procedure we will follow, consists in using the definition

KIV ¼ Kh i � KEM to calculate Eq: 6h i � Eq: 34ð Þ. We start

with the ensemble-mean Eq: 6h i written as

o Kh i
ot
þ r! � K þ Uð ÞV!

D E
þ o

op
K þ Uð Þxh i þ xah i

� V
!� F
!D E
¼ 0

ð81Þ

and subtract Eq: 34ð Þ:

o Kh i
ot
�oKEM

ot
þr!� KþUð ÞV!

D E
�r!� KEMþ Uh ið Þ V

!D Eh i

þ o

op
KþUð Þxh i� o

op
KEMþ Uh ið Þ xh i½ �

þ xah i� xh i ah i� V
!� F!
D E

þ V
!D E
� F
!D E

�r!� V
!D E
� V 0
!

V 0
!D E� �

� o

op
V
!D E
� V 0
!

x0
D E� �

þ V 0
!
� V 0
!
� r!

� �
V
!D ED E

þ V 0
!
� x0

o V
!D E

op

0

@

1

A
* +

¼ 0 ð82Þ

After rearranging:

o

ot
Kh i � KEMð Þ þ r! � K V

!D E
� KEM V

!D E� �

þ r! � UV
!D E
� Uh i V

!D E� �

þ o

op
Kxh i � KEM xh ið Þ þ o

op
Uxh i � Uh i xh ið Þ

þ xah i � xh i ah i � V
!� F
!D E
þ V
!D E
� F
!D E

� r! � V
!D E
� V 0
!

V 0
!D E� �

� o

op
V
!D E
� V 0
!

x0
D E� �

þ V 0
!
� V 0
!
� r!

� �
V
!D ED E

þ V 0
!
� x0

o V
!D E

op

0

@

1

A
* +

¼ 0

ð83Þ

Recalling that

K ¼ 1

2
V
!� V
!	 1

2
V
!D E2

þ2 V
!D E
� V 0
!
þ V 0
!
� V 0
!
 �

ð84Þ

so that

Kh i ¼ 1

2
V
!D E
� V
!D E
þ V 0
!
� V 0
!D Eh i

¼ KIV þ KEM

ð85Þ

We note that

K V
!D E
¼ Kð Vh i þ V 0Þh i

¼ Kh i Vh i þ KV 0h i
¼ Vh iKEM þ Vh iKIV

þ 1

2
V
!D E2

þ2 V
!D E
� V 0
!
þ V 0
!
� V 0
!� �

V 0
!� �

ð86Þ

Hence,
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K V
!D E
� V
!D E

KEM

¼ V
!D E

KIV þ
1

2
V
!D E2

V 0
!
þ 2 V

!D E
� V 0
!� �

V 0
!
þ V 0
!
� V 0
!� �

V 0
!
 �� �

¼ V
!D E

KIV þ V
!D E
� V 0
!� �

V 0
!D E
þ 1

2
V 0
!
� V 0
!� �

V 0
!� �

¼ V
!D E

KIV þ V
!D E
� V 0
!� �

V 0
!D E
þ kV 0

!D E

ð87Þ

where k ¼ 1
2

V 0
!
� V 0
!
	 1

2
u02 þ v02ð Þ. Similarly for the terms

involving x:

Kxh i � xh iKEM ¼ xh iKIV þ V
!D E
� V 0
!� �

x0
D E

þ kx0h i

ð88Þ

Using Reynolds decomposition leads to these relations:

UV
!D E
� Uh i V

!D E
¼ U0V 0

!D E

Uxh i � Uh i xh i ¼ U0x0h i
xah i � xh i ah i ¼ x0a0h i

V
!� F
!D E
� V
!D E
� F
!D E
¼ V 0
!
� F0
!D E

ð89Þ

When (86)–(89) are introduced in (83), we obtain:

oKIV

ot
þ r! � V

!D E
KIV þ V

!D E
� V 0
!� �

V 0
!D E
þ kV 0

!D E� �

þ o

op
xh iKIV þ V

!D E
� V 0
!� �

x0
D E

þ kx0h i
� �

þ r! � U0V 0
!D E� �

þ o

op
U0x0h ið Þ þ x0a0h i � V 0

!
� F0
!D E

� r! � V
!D E
� V 0
!

V 0
!D E� �

� o

op
V
!D E
� V 0
!

x0
D E� �

þ V 0
!
� V 0
!
� r!

� �
V
!D ED E

þ V 0
!
� x0

o V
!D E

op

0

@

1

A
* +

¼ 0

ð90Þ

which can be reduced to:

oKIV

ot
þ r! � V

!D E
KIV

� �
þ o

op
xh iKIVð Þ þ x0a0h i

þ r! � k þ U0ð ÞV 0
!D E
þ o k þ U0ð Þx0h i

op
� V 0
!
� F0
!D E

þ V 0
!
� V 0
!
� r!

� �
V
!D ED E

þ V 0
!
� x0

o V
!D E

op

0

@

1

A
* +

¼ 0

ð91Þ

Appendix 7: Prognostic equation for aT EM

We will here develop a prognostic equation for

AEM ¼
Cp

2Tr

T � Trh i2 ð92Þ

Working with the approximate form of the thermodynamic

equation valid for small v, we take Eq: 65h i � T Eq: 3ð Þ,
which gives

oT

ot
þ r! � T V

!� �
þ o Txð Þ

op
� R

Cpp
xTr �

Tr

Cp

Q

T
¼ 0 ð93Þ

Apply the operator hi
o Th i
ot
þ r! � T V

!D E
þ o Txh i

op
� R

Cpp
xh iTr �

Tr

Cp

Q

T

� �
¼ 0

ð94Þ

Consistently with the small-v limit, the last term can be

rewritten approximately as

Tr

Q

T

� �
� Tr

T

� �
Qh i ¼ l Qh i ð95Þ

where l is an order unity factor. This hence gives

approximately

o Th i
ot
þ r! � T V

!D E
þ o Txh i

op
� R

Cpp
xh iTr � l

1

Cp

Qh i ¼ 0

ð96Þ

From the definition of AEM

o

ot
AEM ¼

Cp

Tr

T � Trh i o

ot
Th i ð97Þ

Multiplying the (94) by
Cp

Tr
T � Trh i gives

Cp

Tr

T � Trh i o Th i
ot
þ Cp

Tr

T � Trh ir! � T V
!D E

þ Cp

Tr

T � Trh i o Txh i
op

� Cp

Tr

T � Trh i R

Cpp
xh iTr

� l
1

Cp

Cp

Tr

T � Trh i Qh i ¼ 0

ð98Þ

Taking Eq: 98h i � Cp

Tr
T � Trh iTr Eq: 3ð Þ gives

o

ot
AEM þ

Cp

Tr

T�h ir
! � T� V

!D E
þ Cp

Tr

T�h i
o T�xh i

op

� R

p
xh i T�h i �

l

Tr

T�h i Qh i ¼ 0

ð99Þ

where T� ¼ T � Tr. Using the equation of continuity, the

second and third terms can be expanded as
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r! � T� V
!D E
þ o T�xh i

op
¼ V
!� r!T�

D E
þ x

oT�
op

� �

¼ V
!D E
� r! T�h i þ xh i o T�h i

op

þ V
!0 � r!T 0�

D E
þ x0

oT 0�
op

� �

ð100Þ

and (99) becomes:

o

ot
aT EM þ

Cp

2Tr

V
!D E
� r! T�h i2þ

Cp

2Tr

xh i o T�h i2

op

þ Cp

Tr

T�h i V
!0 � r!T 0�

D E
þ Cp

Tr

T�h i x0
oT 0�
op

� �
� R

p
xh i T�h i

� l

Tr

T�h i Qh i ¼ 0

ð101Þ

We use the equation of continuity again to rewrite this last

equation into flux form:

o

ot
aT EM þ r

! � V
!D E

aT EM

� �
þ o xh iaT EMð Þ

op

þ Cp

Tr

T�h i r
! � V

!0
T 0�

� �
þ ox0T 0�

op

� �
� R

p
xh i T�h i

� l

Tr

T�h i Qh i ¼ 0

ð102Þ

The 4th term can be expanded as follows:

Cp

Tr

T�h i r
! � V

!0
T 0�

� �
þ ox0T 0�

op

� �

¼Cp

Tr

r! � T�h i V
!0

T 0�

D E� �
þ Cp

Tr

o T�h i x0T 0�
� �� �

op

� Cp

Tr

V
!0

T 0�

D E
� r! T�h i �

Cp

Tr

x0T 0�
� � o T�h i

op

¼Cp

Tr

r! � T�h i V
!0

T 0�

D E� �
þ Cp

Tr

o T�h i x0T 0�
� �� �

op

� Cp

Tr

V
!0

T 0
D E

� r! Th i � Cp

Tr

x0T 0h i o Th i
op

ð103Þ

Thus, (102) becomes

o

ot
aT EM þ r

! � V
!D E

aT EM

� �
þ o xh iaT EMð Þ

op

� V
!0 T 0

Tr

� �
� r! CpT
� �

� x0
T 0

Tr

� �
o CpT
� �

op

þ Cp

Tr

r! � T�h i V
!0

T 0�

D E� �
þ Cp

Tr

o T�h i x0T 0�
� �� �

op

þ RTr

p
xh i � xh i ah i � l

Tr

T�h i Qh i ¼ 0

ð104Þ

Appendix 8: Prognostic equation for aT IV

We will here develop a prognostic equation for

AIV ¼
Cp

2Tr

T 02
� �

ð105Þ

by taking the following operations
CpT 0

Tr
Eq: 65� Eq: 65h ið Þ

D E

where (65) is the approximate thermodynamic equation for

the small v (i.e. Tr

T
� 1):

Cp

dT

dt
� R

p
xTr �

Tr

T
Q ¼ 0 ð106Þ

We get the deviation equation by taking Eq: 93�ð
Eq: 93h iÞ:
oT 0

ot
þ r! � T V

!� �
� T V

!D Eh i
þ o

op
Txð Þ � Txh i½ �

� R

Cpp
x0Tr �

1

Cp

Tr

T
Q� Tr

T
Q

� �� �
¼ 0 ð107Þ

Using the Reynolds decomposition

V
!

T � V
!

T
D E

¼ V 0
!

Th i þ V
!D E

T 0 þ V 0
!

T 0 � V 0
!

T 0
D E

xT � xTh i ¼ x0 Th i þ xh iT 0 þ x0T 0 � x0T 0h i

we get

oT 0

ot
þ r! � V 0

!
Th i þ V

!D E
T 0 þ V 0

!
T 0 � V 0

!
T 0

D Eh i

þ o

op
x0 Th i þ xh iT 0 þ x0T 0 � x0T 0h i½ � � R

Cpp
x0Tr

� 1

Cp

Tr

T
Q� Tr

T
Q

� �� �
¼ 0 ð108Þ

Taking Eq: 96ð Þ � T 0 Eq: 3h i � Th i Eq: 3� Eq: 3h ið Þh i gives

oT 0

ot
þ V
!D E
� r!T 0 þ xh i oT 0

op
þ V 0
!
� r! Th i þ x0

o Th i
op

þ r! � V 0
!

T 0
� �

þ o x0T 0ð Þ
op

� r! � V 0
!

T 0
D E

� o x0T 0h i
op

� RTr

Cpp
x0 � 1

Cp

Tr

T
Q� Tr

T
Q

� �� �
¼ 0 ð109Þ

Now multiplying by T 0 and applying the operator hi gives

1

2

o T 02
� �

ot
þ

V
!D E

2
� r! T 02
� �

þ xh i
2

o T 02
� �

op
þ V 0
!

T 0
D E

� r! Th i

þ x0T 0h i o Th i
op
þ T 0r! � V 0

!
T 0

� �D E
þ T 0

o x0T 0ð Þ
op

� �

� RTr

Cpp
x0T 0h i � 1

Cp

Tr

T
QT 0

� �
¼ 0

ð110Þ
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And multiplying by
Cp

Tr
gives

o

ot
AIV þ V

!D E
� r!AIV þ xh i oAIV

op
þ

V 0
!

T 0
D E

Tr

� r! CpT
� �

þ x0T 0h i
Tr

o CpT
� �

op
þ CpT 0

Tr

r! � V 0
!

T 0
� �� �

þ CpT 0

Tr

o x0T 0ð Þ
op

� �
� x0a0h i � T 0

T
Q

� �
¼ 0

ð111Þ

Taking Eq: 111ð Þ þ AIV Eq: 3h i gives the flux form of this

equation:

o

ot
AIV þ �r

!
AIV V
!D E� �

þ oAIV xh i
op

þ
V 0
!

T 0
D E

Tr

� r! CpT
� �

þ x0T 0h i
Tr

o CpT
� �

op
þ CpT 0

Tr

r! � V 0
!

T 0
� �� �

þ CpT 0

Tr

o x0T 0ð Þ
op

� �
� x0a0h i � T 0

T
Q

� �
¼ 0

ð112Þ

The small value of v leads to an approximate form of the

last term as:

� T 0

T
Q

� �
¼ � Tr

T

T 0

Tr

Qh i þ Q0ð Þ
� �

� � l

Tr

T 0Q0h i

where l is an order unity factor. Using the continuity

equation for deviation, the third-order terms can be

rewritten in term of flux as

CpT 0

Tr

r! � V 0
!

T 0
� �� �

þ CpT 0

Tr

o x0T 0ð Þ
op

� �

¼ Cp

2Tr

V 0
!
� r!T 02 þ x0

oT 02

op

� �

¼ Cp

2Tr

r! � V 0
!

T 02
� �

þ o x0T 02ð Þ
op

� �

Finally

oAIV

ot
þ r! � V

!D E
AIV

� �
þ o xh iAIVð Þ

op
þ

V 0
!

T 0
D E

Tr

� r! CpT
� �

þ x0T 0h i
Tr

o CpT
� �

op
þ Cp

2Tr

r! � V 0
!

T 02
� �

þ o x0T 02ð Þ
op

� �

� x0a0h i � l
T 0

Tr

Q0
� �

¼ 0

ð113Þ

Appendix 9: Prognostic equation for AEM B

We proceed to develop a prognostic equation for AEM B.

Starting from the ‘‘effective’’ thermodynamic equation

consistent with the quadratic approximation for aT :

Cp

oT

ot
þ V
!� r!T þ x

oT

op

� �
� RTr

p
x� Tr

Q

T
¼ 0 ð114Þ

apply the operator ðÞ:

Cp

oT

ot
þ V
!� r!T þ x

oT

op

� �
� RTr

p
x� Tr

Q

T

� �
¼ 0

ð115Þ

Then subtract these two equations:

Cp

oT�

ot
þ V
!� r!T þ x

oT

op
� V
!� r!T � x

oT

op

� �

� RTr

p
x� � Tr

Q

T
� Q

T

� �( )

¼ 0

ð116Þ

and add �Cp V
!� r!T ¼ 0 and Cp �x oT

op
þ x oT

op

n o
¼ 0 to

get:

Cp

oT�

ot
þ V
!� r!T� þ x

oT�

op
� V
!� r!T � x

oT

op

� �

þ Cp

oT

op
x� RTr

p
x� � Tr

Q

T
� Q

T

� �( )

¼ 0

ð117Þ

Now apply the operator hi to get:

Cp

o T�h i
ot
þ V
!� r!T�
D E

þ x
oT�

op

� �� �

� Cp V
!� r!T þ x

oT

op

� �
þ Cp

oT

op
x

� �

� RTr

p
x�h i � Tr

Q

T
� Q

T

� �* +

¼ 0

ð118Þ

and multiply by T�h i=Tr:

Cp

Tr

T�h i o T�h i
ot
þ T�h i V

!� r!T�
D E

þ T�h i x
oT�

op

� �� �

� Cp

T�h i
Tr

V
!� r!T þ x

oT

op

� �
þ Cp

T�h i
Tr

oT

op
x

� �

� R

p
x�h i T�h i � T�h i Q

T
� Q

T

� �* +

¼ 0

ð119Þ

The second and third terms can be expanded as
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V
!� r!T�
D E

þ x
oT�

op

� �
¼ V
!D E
� r! T�h i þ xh i o T�h i

op

þ V
!0 � r!T�0
D E

þ x0
oT�0

op

� �
ð120Þ

so that:

Cp

Tr

T�h i o T�h i
ot
þ T�h i V

!D E
� r! T�h i þ T�h i xh i o T�h i

op

� �

þ Cp

Tr

T�h i V
!0 � r!T�0
D E

þ x0
oT�0

op

� �� �

� Cp

T�h i
Tr

V
!� r!T þ x

oT

op

� �
þ Cp

T�h i
Tr

oT

op
x

� �

� R

p
x�h i T�h i � T�h i Q

T
� Q

T

� �* +

¼ 0 ð121Þ

Using the definition AEM B ¼ Cp

2Tr
T�h i2, the equation may be

written as:

oAEM B

ot
þ V
!D E
� r!AEM B þ xh i oAEM B

op

þ Cp

Tr

T�h i V
!0 � r!T�0
D E

þ x0
oT�0

op

� �� �

� Cp

T�h i
Tr

V
!� r!T þ x

oT

op

� �
þ Cp

T�h i
Tr

oT

op
x

� �

� R

p
x�h i T�h i � T�h i Q

T
� Q

T

� �* +

¼ 0 ð122Þ

and using the continuity equation:

oAEM B

ot
þ r! � AEM B V

!D E� �
þ o

op
AEM B xh ið Þ

þ Cp

Tr

T�h i r! � T�0 V
!0D E

þ o

op
T�0x0h i

� �

� Cp

T�h i
Tr

V
!� r!T þ x

oT

op

� �
þ Cp

T�h i
Tr

oT

op
x

� �

� R

p
x�h i T�h i � T�h i Q

T
� Q

T

� �* +

¼ 0 ð123Þ

Now apply the operator ðÞ to get:

oAEM B

ot
þ r! � AEM B V

!D E� �
þ o

op
AEM B xh ið Þ

þ Cp

Tr

T�h i r! � T�0V
!0D E

þ o

op
T�0x0h i

� �

þ Cp

Tr

oT

op
x�

� �
T�h i � R

p
x�h i T�h i � T�h i Q

T

� �
¼ 0

ð124Þ

because ðÞ� ¼ 0. The 4th term can be expanded as follows:

Cp

Tr

T�h i r! � T�0 V
!0D E

þ o

op
T�0x0h i

� �

¼ Cp

Tr

r! � T�h i V
!0

T�0
D E� �

þ Cp

Tr

o T�h i x0T�0h ið Þ
op

� Cp

Tr

V
!0

T�0
D E

� r! T�h i � Cp

Tr

x0T�0h i o T�h i
op

ð125Þ

Thus

oAEM B

ot
þ r! � AEM B V

!D E� �
þ o

op
AEM B xh ið Þ

� Cp

Tr

V
!0

T�0
D E

� r! T�h i � Cp

Tr

x0T�0h i o

op
T�h i

þ Cp

Tr

r! � T�h i V
!0

T�0
D E� �

þ Cp

Tr

o

op
T�h i x0T�0h ið Þ

þ Cp

Tr

oT

op
x�

� �
T�h i � R

p
x�h i T�h i � T�h i Q

T

� �
¼ 0

ð126Þ

Appendix 10: Prognostic equation for AEM S

Given the relation AEM S ¼ AEM � AEM B, a prognostic

equation for AEM S can readily be obtained using by sub-

tracting the equation for AEM B ¼ Cp

2Tr
T � T
� �2

from that for

AEM ¼ Cp

2Tr
T � Trh i2. Hence

oAEM

ot
¼ GEM � CEM � IAB

� �
� CA � FAEM

� HAEM
ð127Þ

oAEM B

ot
¼ GEM B þ CEM BS � CEM B � CA B � FAEM B

� HAEM B ð128Þ

o

ot
AEM S ¼

o

ot
AEM � AEM B

� �

¼ GEM � GEM B

� �
þ IAB � CEM BS

� CEM � CEM B

� �
� CA � CA B

� �

� FAEM
� FAEM B

� �
� HAEM

� HAEM B

� �

¼ GEM BS þ IAB � CEM BS � CEM S � CA S

� FAEM S � HAEM S

ð129Þ

Some details of algebraic manipulations follow.
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AEM � AEM B ¼
Cp

2Tr

T � Trh i2 � Cp

2Tr

T � T
� �2

¼ Cp

2Tr

T � Tr

� �2

¼ Cp

2Tr

T � Tr

� �2

¼ AEM S

ð130Þ

GEM � GEM B ¼
l

Tr

T�h i Qh i � l

Tr

T�h i Q�h i

¼ l

Tr

T � Trh i Qh i � T � T
� �

Q� Q
� �n o

¼ l

Tr

Th i Qh i � Tr Qh i � Th i Qh i � T
� �

Q
� �n

þ Th i Q
� �
þ T
� �

Qh i
o

¼ l

Tr

T
� �
� Tr

� �
Qh i

n o

¼ GEM S ð131Þ

CEM � CEM B ¼ � xh i ah i � x�h i a�h i
n o

¼ � xh i ah i � x� xh i a� ah i
n o

¼ �
n

xh i ah i � ah i xh i � xh i ah i

þ xh i ah i þ xh i ah i
o

¼ � xh i ah i
¼ CEM S þ IAB

ð132Þ

CA � CA B ¼ �
Cp

Tr

V
!0

T 0
D E

� r! Th i � V
!0

T�0
D E

� r! Th i
n o

� Cp

Tr

x0T 0h i o

op
Th i � x0T�0h i o

op
T�h i

� �

¼ �Cp

Tr

V
!0

T 0
D E

� r! Th i � V
!0

T 0 � T 0
� �D E

� r! Th i
n o

� Cp

Tr

x0T 0h i o

op
Th i � x0 T 0 � T 0

� �� � o

op
T � T
� �

� �

¼ �Cp

Tr

V
!0

T 0
D E

� r! Th i � V
!0

T 0
D E

� r! Th i þ V
!0

T 0
D E

� r! T�h i
n o

� Cp

Tr

x0T 0h i o

op
Th i � x0T 0h i o

op
Th i þ x0T 0h i o

op
T
� �
þ x0T 0
� � o

op
T�h i

� �

¼ �Cp

Tr

V
!0

T 0
D E

� r! Th i
� �

� Cp

Tr

x0T 0h i o

op
T
� �
þ x0T 0
� � o

op
T�h i

� �

¼ CA S

ð133Þ

FAEM
� FAEM B ¼ r

! � V
!D E

AEM

� �
� AEM B V

!D E� �n o

þ o

op
xh iAEMð Þ � AEM B xh ið Þ

n o

¼ r! � V
!D E

AEM � AEM Bð Þ
� �

þ o

op
xh i AEM � AEM Bð Þ

¼ r! � V
!D E

AEM S

� �
þ o

op
xh iAEM S

¼ FAEM S

ð134Þ

HAEM
� HAEMB ¼

Cp

Tr

r! � T�h i V
!0

T 0�

D E� �
� T�h i V

!0
T�0

D E� �n o
þ Cp

Tr

o

op
T�h i x0T 0�
� �� �

� T�h i x0T�0h ið Þ
n o

¼ Cp

Tr

r! � T � Trh i V
!0

T 0
D E� �

� T � T
� �

V
!0

T 0 � T 0
� �D E� �n o

þ Cp

Tr

o

op
T � Trh i x0T 0h ið Þ � T � T

� �
x0 T 0 � T 0
� �� �� �n o

¼ Cp

Tr

r! � Th i V
!0

T 0
D E

� Tr V
!0

T 0
D E

� Th i V
!0

T 0
D E

þ T
� �

V
!0

T 0
D E

� T � T
� �

V
!0

T 0
D En o

þ Cp

Tr

o

op
Th i x0T 0h i � Tr x0T 0h i � Th i x0T 0h i þ T

� �
x0T 0h i � T � T

� �
x0T 0
� �n o

¼ Cp

Tr

r! � T
� �
� Tr

� �
V
!0

T 0
D E

þ T�h i V
!0

T 0
D En o

þ Cp

Tr

o

op
T
� �
� Tr

� �
x0T 0h i þ T�h i x0T 0

� �n o

¼ Cp

Tr

r! � T�h i V
!0

T 0
D E

þ T�h i V
!0

T 0
D En o

þ Cp

Tr

o

op
T�h i x0T 0h i þ T�h i x0T 0

� �n o

¼ HAEMS

ð135Þ
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A useful list of identities concerning various means and

deviations follows:

T� ¼ T � Tr

T� ¼ T � T

T 0 ¼ T � Th i
T 0� ¼ T� � T�h i ¼ T � Trð Þ � T � Trh i ¼ T � Th i ¼ T 0

T�� ¼ T � Trð Þ � T � Tr

� �
¼ T � T ¼ T�

T�0 ¼ T � T
� �

� T � T
� �

¼ T � Th ið Þ � T � Th i
� �

¼ T 0 � T 0r!T� ¼ r! T � T
� �

¼ r!T

ð136Þ
Appendix 11: Isobaric energy cycle

Here is the summary of equations and definitions of various

terms entering the isobaric energy cycle.

oB

ot
¼ �FB � IAB ð137Þ

where

B 	 B ¼ RTr ln
p

pr

� �

FB ¼ r
! � B V

!D E� �
þ o

op
B xh i
� �

IAB ¼ �ar xh i

o

ot
AEM S ¼ GEM BS �CEM S�CEM BS�CA S�FAEM S�HAEM S

ð138Þ

where

AEM S ¼
Cp

2Tr

T � Tr

� �2

GEM S ¼
l

Tr

T
� �
� Tr

� �
Qh i

n o

CEM S ¼ � xh i ah i � arð Þ

CEM BS ¼ �
Cp

Tr

oT

op
x�

� �
T�h i

CA S ¼ �
Cp

Tr

V
!0

T 0
D E

� r! Th i � Cp

Tr

x0T 0h i o
op

T
� ��

þ x0T 0
� � o

op
T�h i

�

FAEM S ¼ r
! � V

!D E
AEM S

� �
þ o

op
xh iAEM S

HAEM S ¼
Cp

Tr

r! � T�h i V
!0

T 0
D E

þ T�h i V
!0

T 0
D En o

þ Cp

Tr

o

op
T�h i x0T 0h i þ T�h i x0T 0

� �n o

oAEM B

ot
¼ GEM B � CEM B þ CEM BS � CA B � FAEM B

� HAEM B ð139Þ

where

AEM B ¼
Cp

2Tr

T�h i2 and T� ¼ T � T

GEM B ¼
l

Tr

T�h i Q�h i

CEM B ¼ � x�h i a�h i

CEM BS ¼ �
Cp

Tr

oT

op
x�

� �
T�h i

CA B ¼ �
Cp

Tr

V
!0

T�0
D E

� r! Th i � Cp

Tr

x0T�0h i o

op
T�h i

FAEM B ¼ r
! � AEM B V

!D E� �
þ o

op
AEM B xh ið Þ

HAEM B ¼
Cp

Tr

r! � T�h i V
!0

T�0
D E� �

þ Cp

Tr

o T�h i x0T�0h ið Þ
op

oAIV

ot
¼ GIV � CIV þ CA � FAIV

� HAIV
ð140Þ

where

AIV ¼
Cp

2Tr

T 02h i

GIV ¼
l

Tr

T 0Q0h i

CIV ¼ � x0a0h i

CA ¼ �
Cp

Tr

V 0
!

T 0
D E

� r! Th i � Cp

Tr

x0T 0h i o

op
Th i

FAIV
¼ r! � V

!D E
AIV

� �
þ o

op
xh iAIVð Þ

HAIV
¼ Cp

2Tr

r! � V 0
!

T 02
� �

þ o

op
x0T 02ð Þ

� �

oKEM

ot
¼ CEM � CK � DEM � FKEM

� HKEM
ð141Þ

where
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KEM ¼
1

2
V
!D E
� V
!D E

CEM ¼ � xh i ah i

CK ¼ � V 0
!
� V 0
!
� r!

� �
V
!D ED E

� V 0
!
� x0

o

op
V
!D E� �� �

DEM ¼ � V
!D E
� F
!D E

FKEM
¼ r! � V

!D E
KEM

� �
þ o

op
xh iKEMð Þ

HKEM
¼ r! � V

!D E
� V 0
!

V 0
!D E� �

þ r! � V
!D E

Uh i
� �

þ o

op
V
!D E
� V 0
!

x0
D E� �

þ o

op
xh i Uh ið Þ

oKIV

ot
¼CIVþCK � DIV � FKIV

� HKIV
ð142Þ

where

KIV ¼
1

2
V 0
!
� V 0
!D E

CIV ¼ � x0a0h i

CK ¼ � V 0
!
� V 0
!
� r!

� �
V
!D ED E

� V 0
!
� x0

o

op
V
!D E� �� �

DIV ¼ � V 0
!
� F0
!D E

FKIV
¼ r! � KIV V

!D E� �
þ o

op
KIV xh ið Þ

HKIV
¼ r! � 1

2
V 0
!
� V 0
!D E
þ U0

� �
V 0
!� �
þ o

op
k þ U0ð Þx0h i
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