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Abstract In this article we present a different approach to some of the results
published in our recent paper (Brzeźniak and Dawidowicz in Semigroup Forum,
78(1):118–137, 2009). This new approach is based on a deep result from a paper
(Ergod. Theory Dyn. Syst. 17(4):793–819, 1997) by Desch Schappacher and Webb.

Keywords Chaos · Semigroups of operators · Spectral properties · First-order
partial differential equations

1 Introduction

The problem of chaotic behavior of solutions of von Foerster partial differential equa-
tion was considered by many authors, e.g. the second named author [3, 4], Lasota
and Pianigiani [12], Rudnicki [15], Łoskot [14] and Lasota and Szarek [13]. The
most useful definition of chaos was given by Devaney [8]. According to Devaney a
dynamical system is chaotic if there exists a dense trajectory and the set of periodic
points is dense. In papers [5, 6] the existence of a periodic solution and a dense trajec-
tory of the equation ∂u

∂t
+ x ∂u

∂x
= λu, t ≥ 0, x ∈ [0,1], is proved under the assumption

that the parameter λ is strictly bigger that 1. In the paper [2] this result is improved
in the sense that the existence of a periodic solutions is proved for any λ > 0. In
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the present paper we use a different approach to the same problem. This approach is
based on applying some deep results from the paper [7]. Our main result in the most
general form, see Theorem 5.5 can be summarized as follows.

Theorem 5.5 Assume, that p ∈ [1,∞) and that h : [0,1] → C is a continuous func-
tion such that

∃δ > 0, λ > − 1

p
: Reh(x) > λ, x ∈ [0, δ].

Then the C0-semigroup on Lp(0,1) generated by the following first order PDE

∂u

∂t
+ x

∂u

∂x
= h(x)u (5.1)

is chaotic in the sense of Definition 2.2.

In Theorem 5.7 we formulate an analogous result for the Hölder spaces. The proof
of both Theorems 5.5 and 5.7 is based on applying similar results when function h

is constant, see Theorem in Sect. 4 An anonymous referee has asked whether our
method can be used to get alternative prove of the main result from the paper [16] by
Takeo. Our results from Sect. 5 not only give an affirmative answer to this question
but in fact are stronger than the corresponding ones from [16].

In a forthcoming publication we plan to generalize results presented he to prob-
lems in multidimensional domains.

Notation By C, respectively R, we will denote the set of complex, resp. real, num-
bers. By C

∗, respectively R
∗, we will denote the set of nonzero complex, resp. real,

numbers. A subset Z of C
∗ will be called bounded if there exists r > 0 such that

r ≤ |z| ≤ 1
r

for all z ∈ Z. A function f with values in C
∗ will be called bounded, if

the range of f is a bounded subset of C∗.

2 Formulation of the problem

Let consider the following differential equation

∂u

∂t
+ x

∂u

∂x
= λu, t ≥ 0, x ∈ [0,1], (2.1)

together with the initial condition

u(0, x) = v(x), x ∈ [0,1]. (2.2)

The paper [2] contains results about stability and chaos of the dynamical systems
generated by this equation in various Banach spaces of functions on the interval [0,1].
In particular we showed that for each such a space there is a threshold λc such that the
semigroup generated by (2.1) is chaotic or asymptotically stable depending whether
λ > λc or λ ≤ λc. Our approach to the chaos was based on a classical Avez method
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used earlier by Lasota and Pianigiani [12] and the second named authour [4] to study
the problem of the existence of chaos in the space of Lipschitz functions. The main
aim of the present paper is to present an alternative proof of our results from [2] based
on the aforementioned paper [7] by Desch, Schappacher and Webb. In that paper the
authours proved the following fundamental result.

Theorem 2.1 Let X be a separable complex Banach space and let A be the infinites-
imal generator of a strongly continuous semigroup {T (t)}t≥0 on X. Let U be open
subset of the point spectrum of A which intersects the imaginary axis iR. For each
γ ∈ U let uγ be a nonzero eigenvector of A, i.e. Auγ = γ uγ . For each Φ ∈ X∗, let us
define a function FΦ : U 	 γ 
→ 〈Φ,uγ 〉 ∈C. Assume, that for each Φ ∈ X∗ \ {0}, the
function FΦ is analytic and it does not vanish identically on U . Then the semigroup
{T (t)}t≥0 is chaotic on X.

Before formulating the theorem we recall the definition of chaos formulated in
[8, p. 117], see also Appendix A of [2].

Definition 2.2 Let ϕ = (ϕt )t≥0 be a C0-semigroup of bounded linear operators on a
normed vector space (X, | · |). It is said that ϕ is chaotic iff it satisfies the following
three properties:

(i) ϕ is transitive, i.e. for all x, y ∈ X and ε > 0 there exists z ∈ X such that
dist(x, γ +(z)) < ε and dist(y, γ +(z)) < ε, where γ +(z) is the positive orbit
of ϕ through z, i.e. γ +(z) := {ϕt (z) : t ≥ 0}, see e.g. [10].

(ii) ϕ depends sensitively on initial data, i.e. there exists β > 0 such that for all x ∈ X

and ε > 0 there exists y ∈ B(x, ε) and t > 0 such that |ϕt (x) − ϕt (y)| ≥ β .
(iii) the periodic points of φ are dense in X.

Let us now assume that X is a certain Banach space of functions defined on the
interval [0,1] and an operator A defined informally by the following formula

Au = λu − x
∂u

∂x
.

For a given complex number γ let us define a function uγ by the following equality

uγ (x) = xλ−γ , x ∈ (0,1]. (2.3)

The function uγ is a candidate for the eigenvector uγ from Theorem 2.1. Clearly
if uγ ∈ X and Φ ∈ X∗, then the function FΦ introduced in Theorem 2.1 has the
following representation

FΦ(γ ) =
∞∑

k=0

1

k!Φ(fk)γ
k, γ ∈ C, (2.4)

where, for k ∈ N,

fk(x) = xλ(− lnx)k, x ∈ (0,1].
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Hence to prove the chaos property of the semigroup generated by the operator A

(whose domain is denoted by D(A)), it is sufficient to show that the following three
conditions are satisfied.

(i) The set {γ ∈ C : uγ ∈ D(A)} contains an open set with nonempty intersection
with the imaginary axis.

(ii) The set {fk : k = 0,1,2, . . .} is linearly dense in X.
(iii)

lim sup
k→∞

k

√ |fk|
k! < ∞.

In the following sections we will show how this program will be realized in the
cases when X = Lp(0,1) or X = Cα

0 ([0,1]), α ∈ (0,1).

3 The case of the space Lp

In the first we consider our problem in the space Lp(0,1), p ∈ [1,∞). As in [17] it
can be shown that in this case

D(A) =
{
u ∈ Lp(0,1) : u is almost everywhere differentiable

and
∫ 1

0
|xu′(x)|p dx < ∞

}
.

(3.1)

The function uγ defined by formula (2.3) is an element of the space Lp(0,1) if and
only if

∫ 1

0
|u(x)|pdx =

∫ 1

0
x(λ−Re (γ ))pdx < ∞.

Since
∫ 1

0 xrdx is finite iff r > −1, we infer that uγ ∈ Lp iff (λ − Re (γ ))p > −1.
The last condition is equivalent to the following one

Reγ < λ + 1

p
. (3.2)

Moreover, if the condition (3.2) is satisfied, then the function uγ is differen-
tiable on (0,1] and u′

γ (x) = (λ − Re (γ ))x(λ−Re (γ )−1). Therefore xu′
γ (x) = (λ −

Re (γ ))x(λ−Re (γ )) and in view of the equality (3.1) we infer that uγ ∈ D(A). Hence
we proved that uγ ∈ D(A) iff condition (3.2) is satisfied.

We are ready to state the main result of this section.

Theorem 3.1 For λ > − 1
p

the semigroup {T (t)} on the space Lp is chaotic.

Proof of Theorem 3.1 Let us fix λ ∈ R such that λ > − 1
p

.
Then the condition (i) is an obvious consequence of condition (3.2).
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Next we shall show that the set of functions of the form

{(0,1] 	 x 
→ xλ(− lnx)n}, n ∈ N (3.3)

is linearly dense in Lp((0,1]).
We begin the proof by observing, that each of these functions belong to Lp(0,1].
Indeed, since λp + 1 > 0 we have

∫ 1

0
xλp(− lnx)npdx =

∫ ∞

0
e−sλpsnpe−sds =

∫ ∞

0
e−(λp+1)ssnp ds < ∞.

For a function f ∈ Lp(0,1) define a function If by the formula

If (x) = f
(
e−x

)
e
− x

p , x ∈ (0,∞).

One can easily show that If belongs to Lp(0,∞) and that the map I : Lp(0,1) →
Lp(0,∞) is an isometric isomorphism.

Moreover, the image by I of the set defined in (3.3) is equal to the set

{y 
→ yne
−(λ+ 1

p
)y : n ∈ N},

which, by [11, Proposition on p. 160], is linearly dense in Lp(0,∞). This proves that
the condition (ii) holds.

It remains to show the condition (iii) holds as well. For this aim we notice that

‖fk‖Lp =
(∫ 1

0
xλp(− lnx)kpdx

) 1
p

.

Using the change of variables z = −(λp + 1) lnx we obtain the following equality,
for k ∈N,

∫ 1

0
xλp(− lnx)kpdx = 1

(λp + 1)kp+1

∫ ∞

0
zkpe−zdz = 1

(λp + 1)kp+1
Γ (kp + 1).

Hence, we have

‖fk‖Lp =
(

1

(λp − 1)kp+1
Γ (kp + 1)

) 1
p

, k ∈N

and consequently

k

√‖fk‖Lp

k! = 1

(λp + 1)
1+ 1

kp

Γ (kp + 1)
1
kp

(k!) 1
k

= 1

(λp + 1)
1+ 1

kp

Γ (kp + 1)
1
kp

Γ (k + 1)
1
k

.

Therefore

lim
k→∞

k

√‖fk‖Lp

k! = p

λp + 1
< ∞,

which concludes the proof of condition (iii). In view of Theorem 2.1, Theorem 3.1
follows. �
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4 The case of the Hölder spaces

Let us assume that α ∈ (0,1]. By Cα([0,1]) we denote the Banach space of all com-
plex valued Hölder continues functions with exponent α equipped with the standard
norm:

|v|Cα([0,1]) = |v|L∞(0,1) + H1,α(v),

where

Hr,α(v) = sup
{ |v(x) − v(y)|

|x − y|α : x, y ∈ [0,1],0 < |x − y| < r
}
. (4.1)

By cα([0,1]) we denote the closed subspace of the Banach space Cα([0,1]) consist-
ing of those v ∈ Cα([0,1]) which satisfy

lim
r↘0

Hr,α(v) = 0. (4.2)

As in [2] we put

Vα = v ∈ cα([0,1]) which satisfy the conditions: v(0) = 0.

Obviously, Vα is a closed subspace of cα([0,1]).
The restriction of the function H1,α to the space Vα is a norm on that space

which is equivalent to the norm induced by the original norm induced from the space
cα([0,1]).

As in [17] it can be shown that in this case

D(A) = {u ∈ Vα : u ∈ C1([0,1]) and u′(·) ∈ Vα}. (4.3)

Before we formulate the main result in this section let us introduce some auxiliary
notation. We begin with recalling that the Sobolev space W

1,p

0 ([0,1]) is the Banach
space of all f ∈ Lp(0,1) such that the weak derivative f ′ belongs to Lp(0,1) and
f (0) = 0. Alternatively, W

1,p

0 ([0,1]) is the Banach space of all absolutely continu-
ous functions f : [0,1] → R such that f (0) = 0 and the derivative f ′ (which exists
as f is differentiable almost everywhere), belongs to Lp(0,1). The classical norm
on W

1,p

0 ([0,1]), the one inherited from W1,p([0,1]), is equivalent to the following
one

‖f ‖
W1,p

0
:=

∫ 1

0
|f ′(x)|p dx.

Moreover, the space W
1,p

0 ([0,1]) is isometrically isomorphic to the space Lp([0,1])
and the corresponding isomorphism is the derivative map

D : W
1,p

0 ([0,1]) 	 f 
→ f ′ ∈ Lp([0,1]).
Let us recall that according to the Morrey’s inequality, see [9, Sect. 5.6, Theorem 5],
if 1 − α > 1

p
, then W

1,p

0 ([0,1]) is continuously embedded into the space Vα . More-

over, W
1,p

0 ([0,1]) is a dense subset of Vα . Indeed, if u ∈ Vα then we can define
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a piece-wise linear function on un : [0,1] → R such that un(
k
n
) = u( k

n
) for every

k = 0, . . . , n. It is easy to notice, that

|vn(x) − vn(y)|
|x − y|α ≤ 4 sup

0<|ξ−η|≤ 1
n

|u(ξ) − u(η)|
|ξ − η|α , (4.4)

where vn = u − un. Since the functions un belong to W1,p for every p ≥ 1 and by
(4.2) H1,α(un − u) → 0, the proof of our claim is complete.

Theorem 4.1 If λ > α then the semigroup {T (t)} is chaotic in the space Vα .

Proof Analogously to proof of the Theorem 3.1 we notice, that the function uγ

defined by (2.3) belongs to Vα if and only if Re (λ − γ ) > α. Since the function
[0,1] 	 x 
→ xρ belongs to Vα if and only if Reρ > α we infer that uγ ∈ Vα for
Reγ < λ − α. Moreover, by (4.3) it follows that in this case uγ ∈ D(A) as well.

Let us now fix λ ∈ R such that λ > α. Let us choose an auxiliary number p such
that λ − 1 > 1

p
.

First we shall prove, that the set of the functions

{[0,1] 	 x 
→ xλ(− lnx)n : n ∈N}
is linearly dense in Vα .

Let us define a function gλ
n by

gλ
n(x) = xλ(− lnx)n, x ∈ (0,1].

We can notice, that

Dgλ
n = λgλ−1

n − ngλ−1
n−1 .

Since D : W
1,p

0 ([0,1]) → Lp([0,1]) is an isomorphism and the set {gλ−1
n : n ∈ N}

is linearly dense in Lp([0,1]), we infer that the set {gλ
n : n ∈ N} is linearly dense

in W
1,p

0 ([0,1]). Since W
1,p

0 ([0,1]) is dense in Vα , it follows, that the set {gλ
n : n ∈ N}

is linearly dense in Vα as well. This completes the proof of condition (ii).
Now, we shall prove, that

lim sup
k→∞

k

√‖fk‖
k! < ∞,

where ‖ · ‖ = ‖ · ‖Vα . Clearly

fk(x)
1
α = x

λ
α (− lnx)

k
α , x ∈ (0,1].

It is easy, to notice, that

∣∣∣∣
d

dx

(
fk(x)

1
α

)∣∣∣∣ ≤ λ + k

α
exp

(
−k

(
1

α
− 1

λ

))(
k

λ

) k
α

, x ∈ (0,1].
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Hence, for all x, y ∈ [0,1]
∣∣∣fk(x)

1
α − fk(y)

1
α

∣∣∣ ≤ λ + k

α
exp

(
−k

(
1

α
− 1

λ

))(
k

λ

) k
α |x − y|

Since α < 1 the function x 
→ x
1
α is convex and vanishing in 0,

|fk(x) − fk(y)| 1
α ≤

∣∣∣fk(x)
1
α − fk(y)

1
α

∣∣∣ , x, y ∈ [0,1].

Therefore, for all x, y ∈ [0,1],

|fk(x) − fk(y)| ≤
(

λ + k

α

)α

exp
(
−k

(
1 − α

λ

))(
k

λ

)k

|x − y|α.

Hence

‖fk‖Vα ≤
(

λ + k

α

)α

exp
(
−k

(
1 − α

λ

))(
k

λ

)k

and thus

k

√‖fk‖Vα

k! ≤ k

√(
λ + k

α

)α

exp
(α

λ
− 1

)
k

√
1

λ

k
k
√

k!
from which it follows that

lim sup
k→∞

k

√‖fk‖Vα

k! ≤ e
α
λ < ∞.

This completes the proof. �

5 The case of non-constant function h

In the paper [16] a theorem similar to our Theorem 3.1 has been proved but with
the constant λ being replaced by a continuous function h : [0,1] → C satisfying the
following two conditions.

1. There exists a number δ > 0 such that Reh(x) ≥ 0 for x ∈ [0, δ].
2. Reh(x) > − 1

p
, x ∈ [0,1].

Takeo’s result is different from ours, because for λ < 0, a constant function h = λ

does not satisfy condition (1). We will prove a result stronger than Theorem 3.5 in
[16]. For this purpose let us consider the following first order partial differential equa-
tion.

∂u

∂t
+ x

∂u

∂x
= h(x)u (5.1)

At first we will show that the asymptotic behavior of the C0-semigroup generated by
equation (5.1) depends only on the behavior of the function h in the neighborhood of
0. To be precise we will prove the following.
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Proposition 5.1 Let X be a Banach space consisting of complex valued functions
defined on the interval [0,1]. Assume that h and ĥ the two continuous C-valued
functions defined on [0,1] such that for some δ > 0

h(x) = ĥ(x), for every x ∈ [0, δ].
Consider also the following differential equation

∂u

∂t
+ x

∂u

∂x
= ĥ(x)u. (5.2)

Assume, that both equations (5.1) and (5.2) generate C0-semigroups on X denoted
by, respectively, {Tt }t≥0 and {T̂t }t≥0.

Then, there exist such t0 > 0 and a continuous function g : [0,1] →C
∗, such that

g(x) = 1 for x ∈ [0, e−t0 ] (5.3)

and

Ttu = gT̂tu for every t ≥ t0. (5.4)

Proof Let us begin with the observation that for every u ∈ X we have

Ttu(x) = exp

(∫ 0

−t

h(x es)ds

)
u(x e−t ), x ∈ [0,1] (5.5)

and

T̂tu(x) = exp

(∫ 0

−t

ĥ(x es)ds

)
u(x e−t ), x ∈ [0,1]. (5.6)

Let us next choose t0 > 0 such that e−t0 < δ. Let us then take t > t0. Then we have
the following train of equalities for every x ∈ [0,1].

Ttu(x) = exp

(∫ 0

−t

h(x es)ds

)
u(x e−t )

= exp

(∫ −t0

−t

h(x es)ds +
∫ 1

−t0

h(x es)ds

)
u(x e−t )

= exp

(∫ −t0

−t

ĥ(x es)ds +
∫ 0

−t0

h(x es)ds

)
u(x e−t )

= exp

(∫ −t0

−t

ĥ(x es)ds +
∫ 0

−t0

ĥ(x es)ds −
∫ 1

−t0

ĥ(x es)ds

+
∫ 1

−t0

h(x es)ds

)
u(x e−t )
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= exp

(∫ 0

−t0

(
h(x es) − ĥ(x es)

)
ds

)
exp

(∫ 0

−t

ĥ(x es)ds

)
u(x e−t )

= exp

(∫ 0

−t0

(
h(x es) − ĥ(x es)

)
ds

)
T̂tu(x).

This implies that with a function g defined by the formula

g(x) = exp

(∫ 0

−t0

(
h(x es) − ĥ(x es)

)
ds

)
, x ∈ [0,1]. (5.7)

we have, for every t > t0,

Ttu(x) = g(x)T̂tu(x), x ∈ [0,1]. (5.8)

The proof is complete. �

Remark 5.2 If the operation of multiplication by the function g is an isomorphism of
X, then the chaos property of the system generated by (5.1) is equivalent to the chaos
property of the system generated by (5.2).

Justification of the claim made in Remark 5.2 Let us denote by C the linear operator
of multiplication by g. It follows from formulae (5.5) and (5.6) that the functions Ttu

and T̂t u depend only on the values of u on the interval [0, e−t ]. Therefore, assumption
(5.3) implies that g(x)u(x) = u(x), on this interval, provided that t > t0. Hence, we
infer that TtC = Tt for t > t0. On the other hand, in view of Proposition 5.1, from
assumption (5.3) implies that TtC = CT̂t . �

Example 5.3 Let X = Lp([0,1]). If a function g : [0,1] → C
∗- is bounded, then the

linear operator G of multiplication by g is an isomorphism of Lp([0,1]). Since the
function g : [0,1] → C

∗ defined by equality (5.7) is continuous and hence bounded,
we infer that the corresponding operator G is an isomorphism of Lp([0,1]).

Example 5.4 Let X = Vα for some α ∈ (0,1]. Assume that both functions h and ĥ

belong to the space cα([0,1]). Then both equations (5.1) and (5.2) generate a C0-
semigroup on Vα and, by Proposition A.1, the operator C is an isomorphism.

Now we shall prove the theorems analogous to 3.1 and 4.1 in the case if h is not
constant.

Theorem 5.5 Let h : [0,1] → C be the continuous function satisfying the following
condition

(H) There exist numbers δ > 0 and λ > − 1
p

such that

Reh(x) > λ for x ∈ [0, δ].
Then the C0-semigroup generated by equation (5.1) on the space Lp is chaotic.
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Remark 5.6 It is obvious, that if a continuous function h : [0,1] → C satisfies condi-
tions (1) and (2) from the beginning of this section, then h also satisfies our assump-
tion (H). Hence our theorem 5.5 is stronger, than that in [16]

Proof Let us choose λ and δ > 0 so that assumption (H) holds. Hence, the function
ρ : [0,1] → C defined by

ρ(x) = exp

(
−

∫ 1

x

h(s) − λ

s
ds

)
, x ∈ [0,1], (5.9)

is well-defined, continuous and ρ(0) = 0. In particular, ρ is a bounded function.
Therefore, the multiplication by ρ defines a bounded, injective linear operator R on
the space Lp . It is easy to verify that if u is a solution to problem (2.1), then ũ defined
by the following formula

ũ(t, x) = ρ(x)u(t, x)

is the solution to problem (5.1). Moreover, the diagram

Lp Lp

Lp Lp

�Tt

�
R

�
R

�
T̃t

where {T̃t }t≥0, resp. {Tt }t≥0, is the dynamical system generated by (5.1), resp. (2.1),
is commuting.

To complete the proof it is sufficient to show that the range of R, i.e. the set R(Lp),
is dense in Lp . To prove this let us notice that for every ε > 0 there exits δ > 0 such
that ρ(x) ∈ [δ, 1

δ
] for all x ∈ [ε,1].

Take now u ∈ Lp and let define an Lp(0,1)-valued sequence
(
un

)∞
n=1 by

un(x) =
{

u(x), if x ∈ ( 1
n
,1],

0, if x ∈ [0, 1
n
].

Clearly limn→∞ ‖un −u‖Lp = 0 and by the property of ρ the functions un

ρ
belong

to Lp . Therefore, un = R(un

ρ
) ∈ R(Lp) what completes the proof. �

The above Theorem 5.5 can be generalized to the framework analogous to the one
studied in [16].

Theorem 5.7 Assume that α ∈ (0,1]. Assume that h : (0,1] → C is a Lebesgue mea-
surable function satisfying the following condition.

(H2) There exist a real number λ such that λ > α that
∫ 1

0

∣∣∣∣
Reh(x) − λ

x

∣∣∣∣ dx < ∞. (5.10)

Then the C0 semigroup generated by equation (5.1) on the space Vα is chaotic.
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Proof From the condition (5.10) it follows that

∫ 1

0

∣∣∣∣
Reh(x) − λ

x

∣∣∣∣dx < ∞. (5.11)

Define next a function ρ : [0,1] → C by the following formula

ρ(x) = exp

(
−

∫ 1

x

h(s) − λ

s
ds

)
, x ∈ [0,1].

It follows from the above formula that

1

ρ(x)
= exp

(∫ 1

x

h(s) − λ

s
ds

)
, x ∈ [0,1]

and hence, in view of (5.11), both functions ρ and 1
ρ

are bounded and Lipschitz on
[0,1]. Hence by Proposition A.1 the operator R of multiplication by ρ is an isomor-
phism of Vα . We can complete the proof by following the same argument as in proof
of Theorem 5.5. �
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Appendix A: Multiplication operators in the space Vα

We will prove the following result.

Proposition A.1 Assume that α ∈ (0,1]. Then for all g ∈ cα([0,1]) and u ∈ Vα , the
product gu belongs to Vα . Moreover,

Hr,α(gu) ≤ |g|L∞(0,1)Hr,α(u) + Hr,α(g)|u|L∞(0,1). (A.1)

Proof Take and fix g ∈ cα([0,1]) and u ∈ Vα . Obviously gu ∈ L∞(0,1) and

|gu|L∞ ≤ |g|L∞|u|L∞ .

Moreover, for x, y ∈ [0,1] such that x �= y:

|g(x)u(x) − g(y)u(y)|
|x − y|α ≤ |g(x)| |u(x) − u(y)|

|x − y|α + |g(x) − g(y)|
|x − y|α |u(y)|.

Hence, for every r ∈ (0,1], we have

Hr,α(gu) ≤ |g|L∞Hr,α(u) + Hr,α(g)|u|L∞ . (A.2)
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In particular, taking r = 1, we deduce inequality (A.1). It remains to prove that gu ∈
Vα . But, taking the lim supr→0 in (A.2) we infer that

lim sup
r→0

Hr,α(gu) ≤ |g|L∞ lim sup
r→0

Hr,α(u) + lim sup
r→0

Hr,α(g)|u|L∞ .

The last inequality concludes the proof. �

Remark A.2 As far as we are aware Proposition A.1 is known in the case of spaces
Cα , see for instance [1]. Another proof of Proposition A.1 would be to use this result
together with the fact that the spaces cα and Vα are closures in the Cα space of
appropriate spaces of smooth functions.
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2. Brzeźniak, Z., Dawidowicz, A.L.: On periodic solutions to the von Foerster-Lasota equation. Semi-
group Forum 78(1), 118–137 (2009)

3. Dawidowicz, A.L.: On the existence of an invariant measure for a quasi-linear partial differential
equation. Zesz. Nauk. Uniw. Jagiell., Pr. Mat. 23, 117–123 (1982)

4. Dawidowicz, A.L.: On the existence of an invariant measure for the dynamical system generated by
partial differential equation. Ann. Pol. Math. XLI, 129–137 (1983)

5. Dawidowicz, A.L., Haribash, N.: On the periodic solutions of von Foerster type equation. Univ. Iag-
ellonicae Acta Math. 37, 321–324 (1999)

6. Dawidowicz, A.L., Haribash, N.: On the dense trajectory of Lasota equation. Univ. Iagellonicae Acta
Math. 43, 61–66 (2005)

7. Desch, W., Schappacher, W., Webb, G.F.: Hypercyclic and chaotic semigroups of linear operators.
Ergod. Theory Dyn. Syst. 17(4), 793–819 (1997)

8. Devaney, R.L.: An Introduction to Chaotic Dynamical Systems, 2nd edn. Addison-Wesley Studies in
Nonlinearity. Addison-Wesley, Redwood City (1989)

9. Evans, L.C.: Partial Differential Equations. American Mathematical Society, Providence (1998)
10. Hale, J.K.: Asymptotic Behavior of Dissipative Systems. Mathematical Surveys and Monographs,

vol. 25. American Mathematical Society, Providence (1988)
11. Horváth, M.: Some saturation theorems for classical orthogonal expansions. II. Ann. Math. Hung.

58(1–2), 157–191 (1991)
12. Lasota, A., Pianigiani, G.: Invariant measures on topological spaces. Boll. Unione Mat. Ital. 5(15-B),

592–603 (1977)
13. Lasota, A., Szarek, T.: Dimension of measures invariant with respect to Ważewska partial differential
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