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Abstract In most FEM codes, the isotropic-elastic

and transversely anisotropic-elastoplastic model using

Hill’s yield function has been widely adopted in 3D

shell elements (modified to meet the plane stress

condition) and 3D solid elements. However, when the

4-node quadrilateral plane strain or axisymmetric

element is used for 2D sheet metal forming simulation,

the above transversely anisotropic Hill model is not

available in some FEM code like Ls-Dyna. A novel

approach for explicit analysis of transversely aniso-

tropic 2D sheet metal forming using 6-component

Barlat yield function is elaborated in detail in this

paper, the related formula between the material

anisotropic coefficients in Barlat yield function and

the Lankford parameters are derived directly. Numer-

ical 2D results obtained from the novel approach fit

well with the 3D solution.

Keywords 4-Node quadrilateral element �
Transversely anisotropic � Sheet metal forming

1 Introduction

In order to accurately simulate sheet metal forming

processes, it is essential to describe correctly the

material constitutive behaviors. Since most sheet

metals exhibit anisotropic material behaviors, the use

of appropriate anisotropic yield criterion is important

to predict material behaviors accurately. Moreover,

anisotropy has an important effect on the strain

distribution in sheet metal forming process, and it is

closely related to thinning and formability of sheet

metal, so the anisotropy of the material should be

properly considered to capture the realistic material

behaviors.

The influence of plastic anisotropy on sheet metal

forming has been studied with the help of FEM codes

combined with appropriate anisotropic yield func-

tions. Many such functions have been proposed. The

quadratic yield function by Hill (1948) has long been

one of the popular choices to represent planar

anisotropy and has been widely used in FEM forming

simulation. Several non-quadratic criteria were devel-

oped by Hill (1979, 1990), Hershey (1954), Hosford

(1972), Bassani (1977), Gotoh (1977), Logan and

Hosford (1980), Barlat and Lian (1989), Karafillis and

Boyce (1993), Bron and Besson (2004), Banabic et al.

(2005) and Barlat et al. (1991, 1997, 2003, 2005). In

general, Hill (1948) has been useful for explaining

phenomena associated to anisotropic plasticity par-

ticularly for steels, the others can be used to improve

the yielding description of aluminum alloys. But in
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many circumstances Yld89 (Barlat and Lian 1989),

Yld91 (Barlat et al. 1991) can be used for steels or

aluminum alloys. In particular, the yield criteria

Yld89 for planar anisotropy, and Hill (1990) have

three stress components and are applicable to plane

stress condition. The analytical forms of these criteria

are relative simple. The criteria Yld91 account for six

stress components and can be applied to general 3D

elasto-plastic continuum codes. Barlat et al. (2007)

have made detailed discussion about the relation

between these yield criteria. In fact, Yld91 is a

particular case of Yld2004-18p (Barlat et al. 2005),

Yld89 is a particular case of Yld2000-2d (Barlat et al.

2003), the yield function proposed by Banabic et al.

(2005) is identical to Yld2000-2d. In some special

conditions, Yld91 can reduce to Hill (1948), Mises or

Tresca yield function.

Section analysis provides a faster and more efficient

alternative procedure for analyzing complex part

shapes in some cases. In this procedure, a cross

section is selected from the tooling along a direction of

interest. The problem is then analyzed in 2D, assuming

plane strain or axisymmetric conditions. Although

most sections in sheet forming do not completely

satisfy such assumptions, there are still many local

sections in a complicated sheet forming process which

can be successfully simulated by 2D section analysis.

In general, this method can provide a quicker analysis

and designers can modify local geometry of tools with

experience at preliminary design stages.

The present study attempts to conduct an explicit

section analysis of 2D sheet metal forming using the

4-node quadrilateral plane strain element. In most

FEM codes, the isotropic-elastic, transversely aniso-

tropic-elastoplastic model proposed by Hill (1948) has

been widely used in 3D shell elements (modified to

meet the plane-stress condition) and 3D solid elements.

However, the above transversely anisotropic model is

not available for simulating 2D sheet metal forming

process using 4-node quadrilateral plane strain or

axisymmetric element in some FEM code like Ls-Dyna

(Hallquist 2007). In this paper, a novel approach for the

explicit analysis of transversely anisotropic 2D sheet

metal forming using 6-component Barlat yield func-

tion (Barlat et al. 1991) is proposed, the related formula

and parameters are derived directly in detail, the

numerical 2D results obtained from the novel approach

fit well with the 3D solution.

2 Fundamental theory

2.1 Basic finite element equation

The sheet metal forming process can be treated as a

dynamic contacting problem. In the forming process,

the whole system should satisfy the following finite

element equation:

M €U ¼ Fext þ Fc � Fint ð1Þ

where Fext is the vector of external force, Fc the vector

of contact force, Fint the vector of internal force, and

M the mass matrix. In the explicit algorithm, Eq. (1)

can be solved as follows:

€Un ¼ M�1
n Fext

n þ Fc
n � Fint

n

� �
ð2Þ

_Unþ1=2 ¼ _Un�1=2 þ Dt � €Un ð3Þ

Unþ1 ¼ Un þ Dt � _Unþ1=2 ð4Þ

If a concentrated mass matrix is assumed, it is not

necessary to solve the assembled equations since the

mass matrix becomes diagonal. The acceleration

vector €Un at tn can be solved by Eq. (2) furthermore,

the displacement vector Un?1 at tn?1 can be solved by

Eqs. (3) and (4).

2.2 Transversely anisotropic model

2.2.1 The general Hill orthotropic anisotropic

yield criteria

In 1948, Hill proposed a orthotropic anisotropic yield

function (Hill 1948) according to Mises criteria:

2f ¼F r22 � r33ð Þ2þQ r33 � r11ð Þ2þH r11 � r22ð Þ2

þ 2Lr2
23 þ 2Mr2

31 þ 2Nr2
12 ¼ 1

ð5Þ

where F, Q, H, L, M and N are anisotropic constants

relating with the material yield behaviors. When

F = Q = H = L/3 = M/3 = N/3, (5) reduces to

Mises criteria. For the general anisotropic material

behaviors, they meets the follow condition:

F þ H ¼ 1=r2
s2
; Qþ H ¼ 1=r2

s1
; F þ Q ¼ 1=r2

s3

L ¼ 1=2r2
s23
; M ¼ 1=2r2

s31
; N ¼ 1=2r2

s12
ð6Þ

where rs1
; rs2

; rs3
; rs23

; rs31
and rs12

are the tension or

shear yield stresses in corresponding directions.
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2.2.2 Transversely anisotropic criteria

For the plane strain problems, Hill’s orthotropic yield

function can be simplified:

2f ¼ Fðr22 � r33Þ2 þ Qðr33 � r11Þ2

þHðr11 � r22Þ2 þ 2Mr2
31 ¼ 1

ð7Þ

For transversely anisotropic sheet material,

F ¼ Q; rs1
¼ rs2

. The following relation can be

derived from (6).

Q ¼ 1=2r2
s3

; H ¼ 1=r2
s1
� 1=2r2

s3
ð8Þ

The Lankford parameter is determined as follows:

R ¼ _ep
11=_ep

33 ¼ _ep
22=_ep

33 ¼ H=Q ¼ 2r2
s3
=r2

s1
� 1 ð9Þ

2.3 6-Component Barlat model

A more elaborate yield model (Barlat et al. 1991,

1997) was proposed (Yld91) where the yield function

is formulated in the following way:

U Sk rij; a; b; c; f ; g; h;m
� �� �

¼ S1 � S2j jmþ S2 � S3j jmþ S3 � S1j jm¼ 2�rm ð10Þ

In this equation Sk (k = 1–3) represents the three

eigenvalues of the following matrix:

s ¼
sxx sxy szx

sxy syy syz

szx syz szz

2

4

3

5 ¼
cC�bB

3
hH gG

hH aA�cC
3

fF
gG fF bB�aA

3

2

4

3

5

ð11Þ

where

A ¼ ryy � rzz; B ¼ rzz � rxx; C ¼ rxx � ryy

F ¼ ryz; G ¼ rzx; H ¼ rxy

ð12Þ

From (11) the characteristic equation for computing

the three eigenvalues of the matrix can be expressed

as:

P Skð Þ ¼ det s� SkIj j ¼ 0

S3
k � 3I1S2

k � 3I2Sk � 2I3 ¼ 0
ð13Þ

where I is the identity matrix, I1, I2 and I3 are the

following tensor invariants:

I1 ¼ ðsxx þ syy þ szzÞ=3 ¼ 0 ð14Þ

I2 ¼ ðs2
yz þ s2

zx þ s2
xy � syyszz � szzsxx � sxxsyyÞ=3

¼ ðfFÞ
2 þ ðgGÞ2 þ ðhHÞ2

3

þ ðaA� cCÞ2 þ ðcC � bBÞ2 þ ðbB� aAÞ2

54

ð15Þ

I3 ¼ ð2syzszxsxy þ sxxsyyszz � sxxs2
yz � syys2

zx � szzs
2
xyÞ=2

¼ ðcC � bBÞðaA� cCÞðbB� aAÞ
54

þ fghFGH

� ðcC � bBÞðfFÞ2

6

� ðaA� cCÞðgGÞ2 þ ðbB� aAÞðhHÞ2

6
ð16Þ

h ¼ arccos
I3

I
3=2
2

 !

; 0� h� p ð17Þ

Therefore, the 6-component Barlat anisotropic yield

function (Yld91) can also be expressed as:

U ¼ð3I2Þm=2
2 cos

2hþ p
6

� �� �m�

þ 2 cos
2h� 3p

6

� �� �m

þ �2 cos
2hþ 5p

6

� �� �m	

¼ 2�rm ð18Þ

In fact, if m = 2 or 4, Yld91 reduces to Hill (1948)

model; it can further reduce to Mises model if

a = b = c = f = g = h = 1. If m = 1 or ?, and

a = b = c = f = g = h = 1, Yld91 reduces to Tres-

ca model.

U ¼ 2�rm ¼ 2f m; f ¼ U
2

� �1=m

ð19Þ

of

orij
¼ 1

2m

U
2

� �1=m�1
oU
orij
¼ 1

2m�rm�1

oU
orij

ð20Þ

After some manipulations, Eq. (20) can be described

explicitly in details, given in Appendix.

2.4 The relation between material anisotropic

coefficients

In general, the Lankford parameters R in three

directions (i.e., 0�, 45� and 90�) should be available
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when sheet metals are provided. On the other hand,

the six material anisotropic coefficients a, b, c, f, g

and h are generally not available. In order to use

the above derived model, it is necessary to obtain

their quantitative values from the Lankford param-

eters.

The arbitrary Lankford parameters R/ can be

described as:

R/ ¼
_ep
t

_ep
z

ð21Þ

where _ep
t is the plastic strain rate which is perpendic-

ular to tensile axis of the uniaxial tensile sheet

metal specimen, _ep
z the plastic strain rate which is

along the thickness direction of sheet metal, and / the

angle between the tensile axis and the rolling

direction.

The stress status of a body unit in the uniaxial

tensile sheet metal specimen is shown in Fig. 1. From

Fig. 1 it can be obtained that:

rxy ¼ r11 sin / cos /; rxx ¼ r11 cos2 /;

ryy ¼ r11 sin2 /

_ep
11 ¼ cos2 /_ep

xx þ sin2 /_ep
yy þ 2 sin / cos /_ep

xy;

_ep
22 ¼ sin2 /_ep

xx þ cos2 /_ep
yy � 2 sin / cos /_ep

xy ð22Þ

Assuming that the sheet metal material is incom-

pressible, the Lankford parameter can be derived:

R/ ¼
_ep
t

_ep
z
¼ � _ep

22

_ep
11 þ _ep

22

ð23Þ

Substituting formula (22) into Eq. (23), it can be

obtained:

R/ ¼ �
sin2 /_ep

xx þ cos2 /_ep
yy � 2 sin / cos /_ep

xy

_ep
xx þ _ep

yy

ð24Þ

According to the related flow criteria, the relation

between R/ and the yield function can be

derived:

R/ ¼ �
sin2 / of

orxx
� sin 2/ of

orxy
þ cos2 / of

oryy

of
orxx
þ of

oryy


 � ð25Þ

Applying formula (20), Eq. (25) can be represented in

detail as follows:

R/ ¼
m
2

W
I2

oI2

orxy
þ oW

orxy


 �
sin 2/

m
2

W
I2

oI2

orxx
þ oW

orxx
þ m

2
W
I2

oI2

oryy
þ oW

oryy

�
m
2

W
I2

oI2

orxx
þ oW

orxx


 �
sin2 /

m
2

W
I2

oI2

orxx
þ oW

orxx
þ m

2
W
I2

oI2

oryy
þ oW

oryy

�
m
2

W
I2

oI2

oryy
þ oW

oryy


 �
cos2 /

m
2

W
I2

oI2

orxx
þ oW

orxx
þ m

2
W
I2

oI2

oryy
þ oW

oryy

¼
m
2

W
I2

oI2

orxy
sin 2/� oI2

orxx
sin2 /� oI2

oryy
cos2 /


 �

m
2

W
I2

oI2

orxx
þ oI2

oryy


 �
þ oW

orxx
þ oW

oryy

þ
oW
orxy

sin 2/� oW
orxx

sin2 /� oW
oryy

cos2 /

 �

m
2

W
I2

oI2

orxx
þ oI2

oryy


 �
þ oW

orxx
þ oW

oryy

ð26Þ

In order to obtain the relation explicitly between R/

and the six material anisotropic coefficients a, b, c, f, g

and h, for simplicity and not losing generality, it can be

obtained by assuming m = 2:

W ¼ 4 cos2 2hþ p
6
þ 4 cos2 2h� 3p

6
þ 4 cos2 2hþ 5p

6

¼ 6

K h; pð Þ ¼ � 8

3

 

cos
2hþ p

6
sin

2hþ p
6
þ cos

2h� 3p
6

� sin
2h� 3p

6
þ cos

2hþ 5p
6

sin
2hþ 5p

6

!

¼ 0

oW

orij
¼ K h; pð Þ oh

orij
¼ 0

R/ ¼
oI2

orxy
sin 2/� oI2

orxx
sin2 /� oI2

oryy
cos2 /

oI2

orxx
þ oI2

oryy

¼ 18h2H sin 2/
2a2þ abð ÞA� 2b2þ abð ÞBþ bc� acð ÞC

� sin2 / ab� acð ÞA� 2b2þ bcð ÞBþ 2c2þ bcð ÞC½ �
2a2þ abð ÞA� 2b2þ abð ÞBþ bc� acð ÞC

� cos2 / 2a2þ acð ÞAþ bc� abð ÞB� 2c2þ acð ÞC½ �
2a2þ abð ÞA� 2b2þ abð ÞBþ bc� acð ÞC

ð27Þ

Applying formula (12) and (22), it can be obtained:
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R/

¼2sin2/cos2/ 18h2�a2�b2�4c2�2bc�2acþabð Þ
2 b2þbcð Þcos2/þ2 a2þacð Þsin2/þ ab�ac�bcð Þ

þ 2c2þacþbc�abð Þ
2 b2þbcð Þcos2/þ2 a2þacð Þsin2/þ ab�ac�bcð Þ

ð28Þ

Substituting three angles (/ = 0�, 45�, 90�) into

Eq. (25), it can be obtained:

R0 ¼
2c2 þ acþ bc� ab

2b2 þ bcþ ab� ac
ð29Þ

R45 ¼
18h2 � a2 � b2 � ab

2a2 þ 2b2 þ 2ab
ð30Þ

R90 ¼
2c2 þ acþ bc� ab

2a2 þ abþ ac� bc
ð31Þ

The three Eqs. (29)–(31), contain four unknown

coefficients a, b, c and h. They can’t be solved

deterministically. However, it is noted that the

coefficients f, g and h represent the influences of

material anisotropy applying to the stress component

(ryz, rzx, rxy). For isotropy materials, the six

coefficients a, b, c, f, g and h are all equal to 1.

When the anisotropy of the sheet metal is described,

it can approximately be made that f = g = h = 1. It

is now possible to solve a, b and c in the assembled

Eqs. (29)–(31).

For transversely anisotropic sheet metal, it’s easy to

see that:

R0 ¼ R45 ¼ R90 ¼ R ¼ 2r2
s3
=r2

s1
� 1 ð32Þ

The three coefficients a, b and c can be solved in the

Eq. (32).

3 Numerical example

The tool geometry data of sheet metal drawing and

bending is defined in Fig. 2, the plate is L 9 W 9

H = 210 9 40 9 0.65 mm, and the hoderforce is

32 kN. The material property of the sheet is the

isotropic-elastic transversely anisotropic-elastoplas-

tic, whose parameters are listed below:

E ¼ 2:1� 105 MPa; m ¼ 0:3;

rs1
¼ rs2

¼ 330 MPa; rs3
¼ 495 MPa

Et1 ¼ Et2 ¼ 210 MPa; l ¼ 0:15

where l is Coulomb friction coefficient. For trans-

versely anisotropic sheet metal, we assume f =

g = h = 1 as discussed earlier. For BCC materials,

when Yld91 is used, let m = 6, but the three

coefficients a, b and c can still be solved from (32)

for simplicity and almost not losing accuracy. For

this example, they are a = b = 0.866, c = 1.

688. A 320 9 4, mesh of 320 elements along the

length direction and 4 elements across the thickness

are used. The plane strain element in Ls-Dyna code

is used. The deformed shapes and distributions of

equivalent stress at punch depth 60 mm are shown

in Fig. 3. It can be seen from Fig. 3 that the peak

equivalent stress appears near the corner of the die.

In Fig. 4, the 3D solution using the same Barlat

model and the 3D BT shell element model is provided

by Ls-Dyna code. Figure 5 shows the punch force as a

function of the time for the 2D and 3D results. From

Figs. 3 and 4, it can be concluded that the peak

equivalent stress and equivalent stress distribution of

the 2D results are almost same as those of the 3D

results. From Fig. 5, it shows that there is a good

agreement of punch force between 2D and 3D results.

Fig. 1 The stress status of a body unit in the uniaxial tensile

sheet metal specimen Fig. 2 Initial sheet shape and tool data
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Therefore, the novel approach for transversely aniso-

tropic section analysis is successful and valid.

4 Conclusions

The explicit analysis of transversely anisotropic plane

strain sheet metal forming is implemented in Ls-Dyna

code using 6-component Barlat yield function. The

related formula and parameters has been derived

explicitly. The transversely anisotropic property of

sheet metal can be described by the three parameters a,

b, and c. Numerical results demonstrated the validity

of this approach.
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Appendix

It’s made that:

W ¼
(

2 cos
2hþ p

6

� �� �m

þ 2 cos
2h� 3p

6

� �� �m

þ �2 cos
2hþ 5p

6

� �� �m
)

ð33Þ

From formula (18), then:

oU
orij
¼ o 3I2ð Þm=2

orij
W þ 3I2ð Þm=2oW

orij

¼ 3I2ð Þm=2 m

2

W

I2

oI2

orij
þ oW

orij

� �
ð34Þ

where:

Fig. 3 Deformed shapes and equivalent stress at punch depth

60 mm

Fig. 4 Deformed shapes and equivalent stress at punch depth

60 mm

Fig. 5 Comparison of 2D and 3D results for punch force versus

time
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oW

orij
¼
(

�m

3
2 cos

2hþ p
6

� �� �m

tg
2hþ p

6

� �

�m

3
2 cos

2h� 3p
6

� �
� tg 2h� 3p

6

� �
:

� �1ð Þmm

3
2 cos

2hþ 5p
6

� �m

tg
2hþ 5p

6

� �	
oh
orij

¼ � 2m

3
m

oh
orij

(

cosm�1 2hþ p
6

� �
sin

2hþ p
6

� �

þ cosm�1 2h� 3p
6

� �
� sin

2h� 3p
6

� �

þ �1ð Þmcosm�1 2hþ 5p
6

� �
sin

2hþ 5p
6

� �)

ð35Þ

oh
orij
¼ � 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� I3

I
3=2

2

� �2
s

oI3

orij
I

3=2
2 � I3

3
2

I
3=2�1
2

oI2

orij

I
3=2
2


 �2

¼
3I3

oI2

orij
� 2I2

oI3

orij

2I2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I3
2 � I2

3

p ð36Þ

where:

oI2

orxx
¼ c cC� aAð Þ þ bþ cð Þ cC� bBð Þ þ b aA� bBð Þ

27

ð37Þ
oI2

oryy
¼ aþ cð Þ aA� cCð Þ þ c bB� cCð Þ þ a aA� bBð Þ

27

ð38Þ
oI2

orxy
¼ 2

3
h2H ð39Þ

oI3

or
¼ �

c oC
or � b oB

or

� �
fFð Þ2þ a oA

or � c oC
or

� �
gGð Þ2

6

�
b oB

or � a oA
or

� �
hHð Þ2

6

þ
c oC

or � b oB
or

� �
aA� cCð Þ bB� aAð Þ

54

þ
cC � bBð Þ a oA

or � c oC
or

� �
bB� aAð Þ

54

þ
cC � bBð Þ aA� cCð Þ b oB

or � a oA
or

� �

54
ð40Þ

(where:r = rxx or ryy )

oI3

orxy
¼ fghFG� 1

3
bB� aAð Þh2H ð41Þ
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