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Summary 
Relaxation rate is an important determinant of axial of the body. Second, rostral muscles were found to contain 

muscle power production during the oscillatory significantly greater amounts of parvalbumin than caudal 
contractions of undulatory locomotion. Recently, muscles. Third, two soluble Ca2+-binding proteins, in 
significant differences have been reported in the relaxation addition to parvalbumin, were also detected in the rostral 
rates of rostral versus caudal white muscle fibers of the muscle samples yet were absent from the caudal samples. 
Atlantic cod Gadus morhua L. The present study This suite of rostral–caudal variations provides a strong 
investigates the biochemical correlates of this biochemical basis for regional differences in the relaxation 
rostral–caudal physiological variation. Using denaturing rates of cod white muscle. 
gel electrophoresis, a series of fresh muscle samples from 
the dorsal epaxial muscle region was analyzed and several 
differences were detected. First, a gradual shift occurs in Key words: axial muscle, relaxation, Atlantic cod, Gadus morhua, 
the expression of two troponin T isoforms along the length contractile protein, parvalbumin, troponin T, regional variation. 
Introduction 

Relaxation rate has been hypothesized to be an important 
determinant of contractile frequency (Altringham and 
Johnston, 1990) and power generation in the axial muscles of 
fish (Moon et al. 1991; Rome and Swank, 1992; Rome et al. 
1993; Johnson et al. 1994). After completing the shortening 
phase of its contraction cycle, a muscle must relax rapidly if it 
is to be extended with little resistance (Josephson, 1981). 
Hypothetically, maximum power can be achieved if muscle is 
‘turned on’ instantaneously at the start of shortening and 
‘turned off’ instantaneously just before lengthening (Marsh, 
1990). A longer caudal relaxation rate can increase differences 
in the phase relationship between muscle strain and excitation. 
Differences in this phase relationship can have profound 
effects on the mechanical behavior of skeletal muscle 
(Josephson, 1985; Altringham and Johnston, 1990; Johnson 
and Johnston, 1991; Altringham et al. 1993). The resistance of 
active caudal muscles to being stretched (negative work) can 
act to stiffen the tail region, which can increase tail thrust. 
Thus, the rate at which caudal muscle relaxes can play a vital 
role, not only in the amount of negative work the muscle 
performs but also in determining the overall thrust produced 
by the tail region, which ultimately affects the performance of 
the whole organism (Swank et al. 1997). 

Recent work by Davies et al. (1995), comparing rostral 
versus caudal mechanical properties of Atlantic cod Gadus 
morhua L. axial muscle fibers, documents a significant 
rostral–caudal difference in relaxation rates: the time required 
to relax to half peak isometric tension averaged 54.0±2.9 ms 
(mean ± S.E.M.) for rostral single fibers and 88.3±8.0 ms for 
caudal fibers. Similar differences have been reported for the 
white muscle fibers of pollack Pollachius virens (Altringham 
et al. 1993) and the red muscle fibers of scup Stenotomus 
chrysops (Rome et al. 1993). The present study explores the 
biochemical basis of rostral–caudal variation in cod axial 
muscle relaxation rate. 

Relaxation of skeletal muscle after a single twitch or tetanic 
contraction is initiated by a reduction in myoplasmic Ca2+ 

concentration. Four major mechanisms are implicated in 
controlling relaxation. The first mechanism involves 
dissociation of Ca2+ from troponin C. Troponin T is believed 
to affect this rate of dissociation, as has been shown in frogs 
(Baylor et al. 1983; Gillis, 1985) and rabbits (Schachat et al. 
1987). The second mechanism involves facilitated diffusion of 
Ca2+ from the myofibrils to regions near the sarcoplasmic 
reticulum. Parvalbumin, a low-molecular-mass Ca2+-binding 
protein, has been shown to play a key role in this process in 
both frogs (Hou et al. 1991) and mice (Müntener et al. 1995). 
A third mechanism involves uptake of Ca2+ into the 
sarcoplasmic reticulum by the Ca2+-ATPase pump (e.g. frog, 
Baylor et al. 1983; numerous vertebrates, Gillis, 1985; teleosts, 
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Rome et al. 1996; Swank et al. 1997). The number and/or 
efficiency of Ca2+-ATPase pumps determines the rate of Ca2+ 

uptake. A fourth mechanism involves changes in the 
actomyosin crossbridge detachment kinetics (rabbit, Greaser et 
al. 1988; Sweeney and Stull, 1990). Myosin isoforms can be a 
strong determinant of detachment kinetics. 

The present study implicates the first two of these regulatory 
mechanisms in controlling rostral–caudal variation in the 
relaxation rate of cod axial muscle. 

Materials and methods 
Experimental animals 

Three specimens of fresh Atlantic cod Gadus morhua L. 
(cod GM01, 653 mm; cod GM02, 635 mm; cod GM03, 775 mm 
standard length) were obtained commercially from Maine 
waters during the months of May and June 1997 and March 
1998. A fourth specimen (cod GM04, 470 mm standard length) 
was captured off the Massachusetts coast, maintained in 
captivity for several days at Northeastern University’s Marine 
Science Laboratory in Nahant, MA, USA, and killed by pithing 
prior to axial muscle dissection. 

Myofibril preparation 

Fresh white muscle samples (0.5–1.0 g) were dissected 
from the epaxial arm and cone region of every sixth myomere 
and from one rostral and one caudal hypaxial cone site from 
cod GM01 (Fig. 1). Each muscle sample was minced on a 
chilled glass plate, transferred to an Eppendorf tube and 
suspended in 1 ml of buffer A, containing 15 mmol l− 1 Tris, 
pH 7.6, 100 mmol l− 1 NaCl, 4 mmol l− 1 EGTA, 2 mmol l− 1 

MgCl2, 7 mmol l− 1 β -mercaptoethanol, 0.1 mmol l− 1 

phenylmethylsulfonylfluoride (PMSF) and 75 ng ml− 1 each of 
antipain, leupeptin and pepstatin A. Samples were vortexed 
and centrifuged at 14 000 revs min− 1 (12,500 g) for 12 s in an 
Eppendorf 5415 microcentrifuge, and the resulting pellet was 
resuspended in 1 ml of buffer B (composition as for buffer A 
Fig. 1. Schematic drawing of cod axial muscle indicating sampling sit
myomere is numbered. Arm sample sites are depicted by asterisks, and 
labeled: HR, hypaxial rostral cone site; HC, hypaxial caudal cone site. 
help of Mark Johnston. 
 

but containing only 0.3 µ l ml− 1 leupeptin, antipain and 
pepstatin). The samples were vortexed and centrifuged (at 
12,500 g), and the resulting pellets were incubated in 1 ml of 
buffer C (buffer B plus 2 % Triton X-100) for 10 min. After 
recentrifugation at (12,500 g), the pellets were washed twice 
more with buffer B and resuspended in 1 vol of buffer B. 

To prepare myofibrillar homogenates, fresh superficial white 
muscle samples were dissected from the epaxial arm region of 
every sixth myomere from cod GM02 and GM03. All samples 
were minced as described above and suspended in 
approximately 5 vols of buffer A supplemented with 0.6 mol l− 1 

NaI. Samples were incubated on ice for 10 min and centrifuged 
at room temperature (21 °C) for 2 min at 12,500 g, and the 
supernatants were reserved for further characterization. 

SDS–PAGE 
Sample preparation 

Gel samples were prepared by 1:1 dilutions with 2× 
Laemmli reducing buffer (2 % SDS, 50 mmol l− 1 Tris, pH 6.8, 
20 % glycerol, 1 % β -mercaptoethanol, Bromophenol Blue). 
Samples were then heated for 3 min at 100 °C, frozen until 
solid, reheated for 2 min at 100 °C, and centrifuged. 
Supernatants were diluted as necessary in Laemmli reducing 
buffer (Laemmli, 1970). 

Preparation of gels 

SDS–PAGE was performed according to Laemmli (1970) 
using 10.5 %, 12.5 % and 15 % polyacrylamide–SDS gels as 
indicated. Mini-gels were run at room temperature on a BioRad 
Protean II cell, and full-sized gels were electrophoresed at 8 °C 
using Hoefer Scientific Instruments SE500 apparatus. Unless 
otherwise specified, all gels were fixed and stained with 
Coomassie Brilliant Blue G250 as described by Neuhoff et al. 
(1988). 

Gels were scanned into Adobe Photoshop v. 3.05 with an 
Agfa Arcus II Scanner and quantification was performed with 
NIH Image v. 1.61. When necessary, intensity plots were fitted 
es. Isolated white muscle myomeres are depicted in pink. Every sixth 
cone sample sites are depicted by numbers. Hypaxial cone samples are 
The drawing was constructed using Strata Studio Pro v. 1.75 with the 
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using Jandel PeakFit v. 4. The scanner was calibrated with a 
Kodak density step tablet (CAT 1523406), and dilutions of 
myofibril samples were run to ensure linearity of staining. 

Relative molecular mass (Mr) was determined by comparing 
the relative mobility of the cod myofibrillar proteins with that 
of proteins from rabbit psoas myofibrils, whose molecular 
masses are known from direct sequencing or cDNA analysis. 

Immunoblotting (western blotting) 

Gel samples were prepared from homogenates, myofibrils or 
supernatants as indicated. Based on the method of Davies et 
al. (1995), four sample sites were selected; one epaxial rostral 
site, one epaxial caudal site, one hypaxial rostral site and one 
hypaxial caudal site from the right side of two individuals (cod 
GM02 and GM03). To normalize to levels of actin, two lanes 
were run for each sample: one for Coomassie staining, and the 
second for immunoblotting. 

Parvalbumin was identified following transfer to 
nitrocellulose using monoclonal anti-parvalbumin mouse 
ascites fluid PA-235 (Sigma 3171) and the protocol outlined in 
the Vectastain ABC kit. The blot intensities were quantified 
densitometrically and normalized to actin using NIH Image. 

Ca2+-binding proteins 

Two-dimensional electrophoresis was performed using 
standard 12.5 % SDS–PAGE with all solutions supplemented 
with 1 mmol l− 1 EDTA in the first dimension and with 12.5 % 
SDS–PAGE with all solutions supplemented with 1 mmol l− 1 

CaCl2 in the second dimension. Lanes from the first dimension 
were excised and mounted horizontally on the stacker for the 
second dimension using an agarose solution containing 
0.125 mol l− 1 Tris, pH 6.8, 1.25 % low-melting-point agarose 
(FMC Corp.), 0.1 % SDS, 1:4000 β -mercaptoethanol and 
1 mmol l− 1 CaCl2. 

The gel was stained with Coomassie Brilliant Blue as 
described above. A right shift of the proteins away from the 
diagonal is an indicator of Ca2+ binding. Ca2+ binding to 
proteins displaces SDS, reducing the charge and mobility of 
Ca2+-binding proteins in the second dimension and resulting in 
an upward shift in position in the second dimension (Burgess 
et al. 1980). 

Protein purifications: myosin and troponin 

Owing to the inherent thermal instability of gadoid myosins 
(Connell, 1960; Castell et al. 1973; Laird and Mackie, 1981), 
special precautions were taken to ensure successful purification 
of the myosin and troponin myofibrillar subfractions. Axial 
muscle tissue samples were dissected from cod GM04, 
immediately frozen in liquid nitrogen and stored at − 80 °C for 
2 days. 

Approximately 2 g of muscle from the arm region of site 3 
(see Fig. 1) were pulverized in liquid nitrogen. The resulting 
powder was washed in 10 vols of chilled solution 1 
[50 mmol l− 1 Tris/HCl, 30 mmol l− 1 Tris base, 50 mmol l− 1 

LiCl, 15 % glycerol (BRL Molecular Biology Grade), 
7 mmol l− 1 β -mercaptoethanol, 0.1 mmol l− 1 PMSF, 1/10000 
(25 mg ml− 1) leupeptin] and centrifuged for 5 min at 3000 g in 
a Jouan CR412 refrigerated centrifuge. LiCl was incorporated 
into solution 1 since it has been shown to be more effective at 
extracting protein from fish muscle than either sodium chloride 
or potassium chloride under most conditions (Kelleher and 
Hultin, 1991). Glycerol was added to further stabilize against 
denaturation (Gekko and Timasheff, 1981). The supernatant 
from the first centrifugation was saved for the analysis of 
soluble proteins, and the pellet was washed a second time in 
10 vols of solution 1. Myosin, troponin and tropomyosin were 
prepared by incubating the pellet in 3 vols of chilled extraction 
buffer (1 mol l− 1 LiCl, 25 mmol l− 1 Tris/HCl, 7.5 mmol l− 1 Tris 
base, 15 % glycerol, 7 mmol l− 1 β -mercaptoethanol, 
0.1 mmol l− 1 PMSF) for 10 min at 0 °C. Following incubation, 
the sample was centrifuged for 75 min at 250,000 g at 2 °C in 
a 100Ti rotor in a Beckman tabletop ultracentrifuge. The 
supernatant, containing solubilized myofibrillar proteins, was 
dialyzed overnight at 4 °C against a low-salt solution (15 % 
glycerol, 25 mmol l− 1 LiCl, 30 mmol l− 1 Tris/HCl, 10 mmol l− 1 

Tris base, 2 mmol l− 1 MgCl2, 1 mmol l− 1 EGTA, 14 mmol l− 1 β 
mercaptoethanol, 0.1 mmol l− 1 PMSF) to precipitate the 
myosin. The dialysis solution was changed after the first 4 h 
and replaced with a fresh solution devoid of EGTA. Following 
dialysis, the sample was centrifuged at 4 °C, and the pelleted 
myosin and the supernatant (containing mainly actin, 
tropomyosin and troponin) were separated. The supernatant 
was supplemented with 5 mmol l− 1 phosphate buffer and 
loaded onto a 5 ml hydroxyapatite column. The column was 
washed with 2 vols of 5 mmol l− 1 phosphate buffer (5 mmol l− 1 

phosphate, 0.6 mol l− 1 LiCl, 1 mmol l− 1 MgCl2, 14 mmol l− 1 β 
mercaptoethanol, 0.1 mmol l− 1 PMSF, pH 7) and eluted with a 
linear 5 mmol l− 1 to 200 mmol l− 1 phosphate gradient in the 
same salt at 4 °C. Fractions (1 ml) were collected and analyzed 
using SDS–PAGE. 

Results 
Identification of the myosin, troponin and tropomyosin 

subunits 

The abundance of myofibrillar actin and myosin heavy chain 
makes them readily identifiable on denaturing polyacrylamide 
gels (Fig. 2). Unambiguous identification of the remaining 
myofibrillar proteins requires purified or enriched preparations. 
Myosin, troponin and tropomyosin were purified from the arm 
region of site 3 (Fig. 1), a site where all the major muscle 
proteins and their isoforms are expressed. Initial attempts at 
protein purification using standard techniques, however, 
resulted in aggregated and denatured proteins. Both 
formylation and thermal denaturation have been implicated in 
inducing aggregation of gadoid muscle proteins (Connell, 
1960; Tokunaga, 1964; Castell et al. 1973; Laird and Mackie, 
1981). To combat potential formylation, muscle samples were 
dissected immediately after the fish had been killed, flash-
frozen in liquid nitrogen and stored at − 80 °C. The samples 
were then pulverized in liquid nitrogen and placed in a 
homogenization buffer supplemented with Tris, a primary 
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Fig. 2. Electrophoresis of purified cod contractile proteins. 12.5 % 
SDS–PAGE was used to identify the subunits of cod axial muscle 
proteins. Myofibrils (lane a) were run for comparison with an 
enriched myosin preparation (lane b) and purified fractions of 
troponin (lane c) and tropomyosin (lane d). The three fast myosin 
light chains in the purified myosin sample are labeled mlc-1f, mlc-2f 
and mlc-3f, and the two fast troponin T species are labeled TnT-1 
and TnT-2, where the numbers reflect the relative mobility of the 
proteins in ascending order. mhc, myosin heavy chain; TnI, troponin 
I; TnC, troponin C; Tm, tropomyosin. 
amine that inhibits protein formylation by mass action. Further 
protein denaturation was prevented by (1) supplementing 
solutions with glycerol, (2) using the leiotrophic salt LiCl in 
place of NaCl or KCl, and (3) performing all procedures at or 
below 0 °C, except for the hydroxyapatite chromatography 
which was performed at 4 °C. 

From the hydroxyapatite column chromatography fractions, 
the major myofibrillar protein subunits were readily identified 
using SDS–PAGE. Comparison of the homogenate with the 
Fig. 3. Comparison of arm and cone myofibrillar proteins in cod 
myomeres. A 10.5 % SDS gel stained with Coomassie Brilliant 
Blue G250, comparing samples from arm (A1–A8) and 
corresponding cone (C1–C8) myofibrils from eight sequential 
myomeres of cod GM01 (standard length 653 mm). Note that the 
arm and cone samples show similar muscle protein expression. 
Both regions show a rostral–caudal shift in two troponin T 
isoforms. A, arm; C, cone; Myo, myosin heavy chain; Tm, 
tropomyosin; TnT, troponin T. Note that the faster-migrating 
rostral troponin T, TnT-2, is gradually replaced by the slower-
migrating caudal isoform TnT-1. At the level of the third dorsal 
fin (site A6, approximately two-thirds of the way down the 
body), all myofibrillar troponin T in both the arm and cone 
regions is of the slower-migrating TnT-1 isoform. 
myosin-enriched fraction (Fig. 2, lanes a and b, respectively) 
revealed the presence of three myosin light chain species 
designated mlc-1f, mlc-2f and mlc-3f. The relative mobility of 
these light chains (compared with the mobility of rabbit fast 
myosin light chains) indicates that their relative molecular 
masses (Mr) are 21 100, 18 670 and 18 240, respectively. 

The purified troponin fraction (Fig. 2, lane c) revealed the 
presence of two TnT species (TnT-1 and TnT-2 ) with Mr 

values of 32 110 and 30 900, respectively, a troponin I (Mr 

19 040) and a troponin C (Mr 16 940), which migrates just 
above mlc-2f and is often difficult to resolve. Tropomyosin (Mr 

34 580) is shown in Fig. 2, lane d. 

Arm versus cone 

SDS–PAGE of myofibrils from the arm and cone regions of 
the same myomere did not demonstrate significant differences 
in myofibrillar protein expression (Fig. 3), although a 
rostral–caudal transition in TnT isoforms was apparent. 
Because of the overall similarity between the arm and cone 
regions, subsequent investigations focused on rostral–caudal 
differences in the arm region alone. The less complicated 
morphology of the arm region also simplified the dissection of 
muscle samples from individual myomeres. 

Rostral versus caudal 

Investigation of both myofibrils (Fig. 3) and homogenates 
(Fig. 4) along the rostral–caudal axis by SDS–PAGE revealed 
a marked difference in the ratio of the TnT isoforms. The 
faster-migrating rostral TnT isoform, TnT-2, is gradually 
replaced by the slower-migrating caudal isoform, TnT-1. 
Fig. 5 quantifies the shift in TnT isoforms as a function of 
myomere position in the three cod sampled. Each animal 
exhibits a rostral to caudal shift from TnT-2 to TnT-1 
expression; at the level of the third dorsal fin, site A6 (Fig. 1) 
(approximately two-thirds of the way down the body), all the 
TnT in both the arm and cone regions is composed of the 
slower-migrating TnT-1 isoform. 

While the difference in TnT expression was the only 
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A 

B 

Fig. 4. Rostral–caudal variation in cod axial muscle homogenates. 
(A) A 12.5 % SDS gel stained with Coomassie Brilliant Blue G250, 
comparing arm (A1–A8) myofibrillar homogenates from eight 
sequential myomeres of cod GM02 (standard length 635 mm). 
(B) Magnification of the portion of the gel containing the troponin T 
isoforms. Four differences are detectable along the rostral–caudal 
axis: (1) a shift in the troponin isoforms from TnT-2 rostrally to 
TnT-1 caudally, (2/3) the presence of two Ca2+-binding proteins 
(Ca1 and Ca2) in the rostral arm sites (A1–A4) and their absence 
from the caudal arm sites (A5–A8), and (4) larger amounts of 
parvalbumin (Parv) in the rostral arm sites (A1–A4) than in the 
caudal arm sites (A5–A8). Tm, tropomyosin. 
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Fig. 5. Rostral–caudal variation in troponin T isoforms. The 
percentage of TnT-1 to total TnT (TnT1 plus TnT2) is plotted versus 
the axial sampling site (see Fig. 1) for the three cod in this study. 

A B 

Fig. 6. Identification of parvalbumin by western blotting. (A) A 
12.5 % SDS–polyacrylamide gel of rostral arm (A1), rostral hypaxial 
(HR), caudal arm (A8) and caudal hypaxial (HC) myofibrillar 
homogenates stained with Coomassie Brilliant Blue G250. (B) 
Western blot of the same sample. Parvalbumin (Parv) is identified by 
reaction with a monoclonal antibody. Note that the rostral muscle 
sites A1 and HR contain significantly greater amounts of 
parvalbumin than do the caudal sites A8 and HC. Loads were 
balanced by actin content. Tm, tropomyosin; TnT-1, TnT-2, isoforms 
of troponin; Ca1, Ca2, Ca2+-binding proteins. 
myofibrillar variation, three additional rostral–caudal 
differences were characterized in the muscle homogenates 
(Fig. 4A). These differences appear to involve differential 
expression of low-molecular-mass cytosolic Ca2+-binding 
proteins in the rostral axial white muscle. 

Of these three proteins, the protein with an intermediate Mr 

was identified as parvalbumin by western blotting. Greater 
amounts of parvalbumin (Mr 10 320) are present rostrally than 
caudally, as demonstrated by western blotting (Fig. 6) and gels 
stained with Coomassie Brilliant Blue G250 (Fig. 4; Table 1). 
The relative abundance of parvalbumin was assessed by 
determining its concentration relative to that of actin. In cod 
GM03, the epaxial rostral site, A1, contains 8.3 times more 
parvalbumin than the caudal site A8. In cod GM02, a similar 
bias in rostral parvalbumin expression was observed. In the 
hypaxial muscle samples (HR and HC), both cod GM02 and 
GM03 show a similar elevation of rostral parvalbumin 
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Table 1. Parvalbumin content of rostral and caudal sites of 
cod axial muscle 

Fish GM02 Fish GM03 
parvalbumin parvalbumin 

Sample site content content 

A1 0.143±0.001 0.215±0.026 
A8 ND 0.026±0.004 
HR 0.169±0.0003 0.176±0.003 
HC ND 0.003±0.001 

For details, see Fig. 1. 
Values are means ± S.D. (N=3); ND, not detectable. 
Levels of parvalbumin are normalized to levels of actin as 

determined densitometrically using NIH Image from gels stained 
with Coomassie Brilliant Blue G250. 

Note that the rostral sites (A1, HR) have significantly greater 
amounts of parvalbumin than do caudal sites (A8, HC) (t-test; 
P<0.05). 

A
 

B
 

Fig. 7. Identification of two Ca2+-binding proteins by a mobility-shift 
assay. Two-dimensional gels, each containing 12.5 % SDS 
polyacrylamide, electrophoresed in the presence of 1 mmol l− 1 EDTA 
in the first dimension and 1 mmol l− 1 CaCl2 in the second dimension, 
were run to identify putative Ca2+-binding proteins. A replicate of 
the first-dimension gel is shown in A, while B shows the 
electrophoretogram after the second dimension had been run. The 
sample was taken from the arm region indicated (X) in the diagram 
of the fish in B. The diagonal line represents the expected mobility 
boundary for proteins that are unaffected by Ca2+. Three major 
proteins whose mobility is shifted to the right are indicated by 
arrows. They correspond to troponin C (TnC), Ca1 and Ca2. Ca1 and 
Ca2 are cytosolic proteins that are preferentially expressed in rostral 
myomeres (see Fig. 4). The reduced mobility in the presence of Ca2+ 

(and the increase in apparent molecular mass) is typical of Ca2+
binding proteins (Burgess et al. 1980). 
expression with exceedingly low caudal parvalbumin levels 
(Table 1). 

In addition to parvalbumin, two cytoplasmic proteins, 
designated Ca1 and Ca2 (Mr 14 800 and 9 900, respectively), 
are present in rostral samples (A1–A4) but are absent from 
caudal samples (A5–A8). Their identification as Ca2+-binding 
proteins is based on a mobility-shift assay. As shown in the 
two-dimensional gel in Fig. 7, proteins Ca1 and Ca2 shift to 
the right of the diagonal when electrophoresed in the presence 
of 1 mmol l− 1 Ca2+. Such Ca2+-dependent mobility shifts are 
indicative of Ca2+ binding (Burgess et al. 1980). Like 
parvalbumin, both proteins are expressed at high levels in 
rostral sites and are undetectable in the most caudal sites 
(Fig. 4A). 

In contrast to the systematic rostral–caudal variation in TnT 
and Ca2+-binding proteins, SDS–PAGE revealed no 
rostral–caudal differences in the expression of tropomyosin or 
alkali myosin light chains (Fig. 3A). The ratio of myosin light 
chains is virtually invariant rostrocaudally. Low-percentage 
polyacrylamide gel electrophoresis also failed to detect 
differences in the rostrocaudal distribution of the myosin heavy 
chain (data not presented). Given the observations of Davies 
et al. (1995), who report rostral–caudal differences in maximal 
contraction velocity, it is likely that higher-resolution 
techniques (e.g. cDNA sequencing) will reveal rostral–caudal 
variation in myosin heavy chain expression. 

Discussion 
The results of this study implicate several cod axial muscle 

proteins in the regulation of relaxation rates along the length 
of the body. Changes in the proportions of these proteins are 
likely to alter the dynamics of Ca2+ dissociation from the thin 
filament and affect the rate at which Ca2+ is removed from the 
myoplasm. The differences detected include (1) a 
rostral–caudal shift in isoform expression of troponin T, a 
subunit of the thin filament Ca2+ regulatory complex, (2) a 
significant decrease in the amount of the Ca2+-binding protein 
parvalbumin in caudal axial muscle sites and (3) the presence 
of two soluble Ca2+-binding proteins in rostral muscle. 
Together, these factors provide compelling molecular 
correlates to measured differences in relaxation rates along the 
length of cod white axial muscle. 

TnT isoforms 

Although the properties of the two identified TnT isoforms 
have not been measured, differences in troponin T have been 
found to correlate with differences in Ca2+-sensitivity of 
muscle activation in numerous vertebrates, including rabbits 
(Schachat et al. 1987; Greaser et al. 1988; Nassar et al. 1991), 
chickens (Reiser et al. 1992), rats (Akella et al. 1995) and 
humans (Mesnard et al. 1995). Studies in which mammalian 
myofibrils were reconstituted with specific TnT isoforms (e.g. 
bovids, Tobacman and Lee, 1987; human, Wu et al. 1995) 
provide experimental support for a role for TnT in determining 
the Ca2+ concentration needed for half-maximal activation of 
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the thin filament. Different combinations of TnT isoforms in 
rabbit axial and limb muscle have also been found to influence 
thin filament cooperativity, i.e. the ease with which the thin 
filament switches between the active and inactive states in 
response to the binding and release of Ca2+ (Schachat et al. 
1987). 

Several researchers have attempted to make simple 
correlations between the sensitivity and cooperativity of Ca2+ 

activation and the length and charge of the variable N-terminal 
region that defines TnT isoforms (e.g. rabbit skeletal muscle, 
Greaser et al. 1988; dragonfly flight muscle, Fitzhugh and 
Marden, 1997). Others have found that length and charge are 
not the critical variables influencing muscle fiber physiology 
(Schachat et al. 1987; Briggs et al. 1987). Using rabbit skeletal 
muscle, they find that what distinguishes fibers with the lowest 
cooperativity is not a difference in molecular mass or in the 
charge structure of the muscle fiber TnT isoforms, but rather 
the regulated expression of TnTs that include a specific amino 
acid sequence encoded by mammalian exon 4. Similar 
specificity has been reported for chicken skeletal muscle 
(Reiser et al. 1992; Schachat et al. 1995) and would probably 
hold true for fish skeletal muscle as well. 

To establish a direct molecular explanation for how TnT 
isoform variation affects the Ca2+ responsiveness and 
relaxation rates of cod axial muscle, sequence data coupled 
with substitution of specific TnT isoforms into myofibrils from 
which pCa/tension curves can be generated, is necessary. 

Parvalbumin 

In the case of parvalbumin, direct correlations between 
parvalbumin levels and rates of muscle relaxation have been 
modeled and measured experimentally (Kretsinger and 
Nockholds, 1973; Müntener et al. 1995). Parvalbumin has been 
shown to affect relaxation rates in a dose-dependent manner in 
both frogs (Hou et al. 1991) and mammals (Müntener et al. 
1995), and it appears to affect regional relaxation rates in cod 
axial muscle in a similar manner. The greater the amount of 
parvalbumin, the faster the muscle relaxes. 

Regional expression of parvalbumin, the major component 
of the soluble fraction of fast teleost muscle (Hamoir, 1974; 
Zawadowska and Supikova, 1992; Perry, 1996), has been 
studied by other researchers (Huriaux et al. 1996, 1997). In the 
adult barbel Barbus barbus, total parvalbumin concentration 
decreases caudally, as in cod. Huriaux et al. (1992) propose 
that temporal and spatial variations in total parvalbumin 
concentration and differential expression of parvalbumin 
isoforms in barbel reflect the functional requirements of the 
fish axial musculature according to fish size and myomeric 
location. To date, however, the present investigation is the first 
to correlate regional changes in physiology with regional 
differences in parvalbumin concentration. 

We also performed a preliminary investigation of axial 
muscle proteins from a short-horned sculpin Myoxocephalus 
scorpius (standard length 312 mm). Unlike the cod, the 
relaxation rate of short-horned sculpin axial muscle remains 
constant along the body (Johnston et al. 1993). Consistent with 
the effects of parvalbumin in mammals, no significant 
differences were detected in the parvalbumin content of rostral 
versus caudal white muscle samples in short-horned sculpin 
axial muscle. 

Other Ca2+-binding proteins 

The final difference detected between rostral and caudal 
muscle fibers is the rostral presence of two Ca2+-binding 
soluble proteins: Ca1 and Ca2 (Figs 4, 6). If and how these 
proteins affect muscle performance is unknown. Given their 
relative molecular mass, a possible candidate for the higher
molecular-mass protein, Ca1, is calmodulin, a member of the 
troponin C family, with four Ca2+-binding sites. Calmodulin 
plays a pivotal role in many cellular processes controlled by 
Ca2+ (Cheung, 1980); however, its concentration in 
mammalian skeletal muscle is typically so low (5 µ mol l− 1) that 
it cannot usually alter the cytosolic [Ca2+] by the mere binding 
of Ca2+ (Gillis, 1985). 

On the basis of its low relative molecular mass, a possible 
candidate for the Ca2 protein is another isoform of 
parvalbumin. While Ca2 does not react with the parvalbumin 
antibody, it may be parvalbumin-like and have similar effects 
in relaxation. Multiple parvalbumin isoforms have been 
reported in numerous species of fish (Gerday, 1982). 

To determine the specific identity of both Ca1 and Ca2, 
micro-sequence data establishing amino acid sequence 
homologies with other known Ca2+-binding proteins would be 
informative. 

Other mechanisms controlling relaxation 

Two other mechanisms may play a part in governing 
rostral–caudal differences in the relaxation rate of white axial 
muscle in fishes. These include (1) a difference in the 
concentration or activity of sarcoplasmic reticulum Ca2+
ATPase (as shown to be the case in the red axial muscle of 
scup Stenotomus chrysops; Swank et al. 1997) and/or (2) 
differences in myosin (as reviewed in Gillis, 1985). Whereas 
neither the myosin nor the volume and surface densities of T-
tubules and sarcoplasmic reticulum (Davies et al. 1995) appear 
to vary significantly from rostral to caudal in cod white axial 
muscle, it is possible that the activity of the sarcoplasmic 
reticulum Ca2+-ATPase may differ rostrocaudally. 
Experiments similar to those conducted on scup red muscle by 
Swank et al. (1997) could address this possibility. 

Compared with the red axial muscle system of the scup, 
however, the white muscle system of the cod appears to 
regulate regional differences in relaxation rate through 
distinctly different mechanisms. Interestingly, while the red 
and white muscle systems of the scup and cod, respectively, 
may utilize different molecular mechanisms, the end result is 
similar. Both systems appear to increase the rate at which Ca2+ 

is removed from the myoplasm of rostral muscles. The scup 
appears to increase the efficiency of the sarcoplasmic 
reticulum Ca2+ pump in its rostral red muscle (Swank et al. 
1997), while in rostral cod white muscle, increased expression 
of parvalbumin and differential expression of other 
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myofibrillar and myoplasmic proteins appear to facilitate the 
rate of Ca2+ transport from the thin filament to the 
sarcoplasmic reticulum. 

In conclusion, few studies provide direct links between 
molecular differences in Ca2+ regulatory proteins and their 
physiological function in whole muscles and whole-organism 
performance. This study describes a suite of rostral–caudal 
biochemical variations that provide compelling molecular 
correlates to the significantly slower relaxation rates of cod 
caudal axial white muscle fibers compared with rostral white 
muscle fibers. 
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