
Evaluating Test-Driven Development in an Industry-sponsored Capstone Project

John Huan Vu, Niklas Frojd, Clay Shenkel-Therolf, and David S. Janzen
California Polytechnic State University, San Luis Obispo, California

Abstract
Test-Driven Development (TDD) is an agile development
process wherein automated tests are created before
production code is designed or constructed in short, rapid
iterations. This paper discusses an experiment conducted
with undergraduate students in a year-long software
engineering capstone course. In this course the students
designed, implemented, deployed, and maintained a
software system to meet the requirements of an industry
sponsor who served as the customer. The course followed
an incremental process in which features were added
incrementally under the direction of the industry sponsor
and the professor. The fourteen students observed in the
study were divided into three teams. Among the three
teams were two experimental groups. One group
consisted of two teams that applied a Test-First (TDD)
methodology, while a control group applied a traditional
Test-Last methodology. Unlike Test-First, the tests in
Test-Last are written after the design and construction of
the production code being tested. Results from this
experiment differ from many previous studies. In
particular, the Test-Last team was actually more
productive and wrote more tests than their Test-First
counterparts. Anecdotal evidence suggests that factors
other than development approach such as individual
ambition and team motivation may have more affect than
the development approach applied. Although more
students indicated a preference for the Test-First
approach, concerns regarding learning and applying
TDD with unfamiliar technologies are noted.

Keywords: Test-Driven Development (TDD), Test-
First methodology, Test-Last methodology, software
engineering, capstone project.

1. Introduction

The software engineering industry has a constant
desire to improve the overall quality of the software
produced. One method to improve software quality is the
development of unit tests throughout implementation.
Test-driven development (TDD) takes this a step further
by using the development of automated unit tests to drive
the design of software, focusing the developer on testable
interfaces prior to implementation concerns. Although
improving the quality of a software can mean different

things to different people; this paper aims to help examine
two different testing methodologies—Test-First and Test-
Last—and their affects on both internal and external
quality of the software. This paper outlines the
experiment design along with an analysis and formalized
conclusions based on experimental results.

2. Related work

This section provides information about previous
studies of TDD. This includes related work and
experimental design completed at other institutions.

2.1. Previous studies

TDD has been studied in a number of prior
experiments. An early study explored the effects of TDD
versus a waterfall-like approach on code quality and test
coverage [5]. It was suggested that TDD encouraged the
implementation of unit tests. A study similar to the one
presented in this article found that undergraduate students
who used a TDD methodology as opposed to a more
traditional development process tended to write more tests
and were more productive [1]. Another study compared
Test-First methodology to Test-Last in early computer
science courses. This study reported that students who
followed Test-First wrote more tests than their Test-Last
counterparts [3]. Other experiments examined whether or
not TDD improves software design quality [4,6]. These
studies demonstrated that TDD led to smaller and simpler
methods and classes, and higher cohesion.

2.2. Test-First versus Test-Last methodologies

According to Test Driven, TDD can be described as to
“only ever write code to fix a failing test” [2]. Before any
production code is ever written, the programmer must
first write a test that will define the new functionality
being coded. That is why TDD is referred to in the
industry and throughout this paper as Test-First.

The traditional software development process is
referred to in the industry and throughout this paper as
Test-Last. In this case, the programmer writes test after
the production code is written.

2009 Sixth International Conference on Information Technology: New Generations

Unrecognized Copyright Information

DOI 10.1109/ITNG.2009.11

229

2009 Sixth International Conference on Information Technology: New Generations

978-0-7695-3596-8/09 $25.00 © 2009 IEEE

DOI 10.1109/ITNG.2009.11

229

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DigitalCommons@CalPoly

https://core.ac.uk/display/19136416?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Figure 2.2.1. Comparison of Test-First and Test-Last
methodologies [2].

The Test-First and Test-Last methodologies can be
summarized in Figure 2.2.1. These figures only describe
the detailed design, code, and unit test phases of the
software development lifecycle. Both Test-First and
Test-Last presume that requirements and high-level
architecture phases precede them, and that they are
followed by a quality assurance phase.

A key note to mention is that Test-First methodology
sequence uses the word “refactor” in Figure 2.2.1.
According to Koskela, “The final step of the Test-Driven
Development cycle of test-code-refactor is when we take
a step back, look at our design, and figure out ways of
making it better [2].” Although none of the steps in the
Test-Last methodology sequence contain the word
“refactor”, this does not imply that this activity is omitted.
Refactoring occasionally occurs during the test phase of
the Test-Last methodology when programmers are
addressing known software defects.

The following are the steps of Test-First methodology
[1] and are summarized in Table 2.2.1:

1. Pick a feature or a user requirement.
2. Write a test that fulfills a small task or piece of the

feature or user requirement (e.g. one method) and
have the test fail.

3. Write the production code that implements the
task and will pass the test.

4. Run all of the tests.
5. Refactor the production and test code to make

them as simple as possible, ensuring all tests pass.
6. Repeat steps 2 to 5 until the feature or user

requirement is implemented.
The following are the steps of Test-Last methodology

[1] and are summarized in Table 2.2.1:
1. Pick a feature or a user requirement.
2. Write the production code that implements the

feature or user requirement.
3. Write the tests to validate the feature or user

requirement.
4. Run all the tests.
5. Refactor if necessary.

Table 2.2.1. Comparison of Test-First and Test-Last
methodologies [1]

Test-First Test-Last
When are tests

written?
Written before

production code
Written after

production code

When are tests
run?

Alongside
production code and

frequently

After production
code and less

frequently

In summary, the Test-First methodology requires the
creation of tests which incrementally develops small
pieces of functionality until a feature is fully
implemented. In contrast, the Test-Last methodology first
develops the production code implementing a feature or
user requirement and then writes the tests afterward.

3. Experimental design

This section outlines the initial goals of the study,
describing the experiment design, proposing hypotheses,
analyzing the study subjects, laying out the experimental
procedure, and identifying the experiment variables and
formalized hypotheses.

3.1. Goals

The goal of this experiment is to compare the Test-
First methodology with the Test-Last methodology within
an undergraduate software engineering capstone course.
This experiment will evaluate the programmers’
productivity, internal and external quality of the product,
and the programmers’ perception of the methodology.

3.2. Experiment variables and formalized
hypotheses

The experiment examines a number of hypotheses that
are summarized in Table 3.2.1. There were also some
experiment variables to note and consider:

1. Two of the three teams that utilized a Test-First
methodology used different application
frameworks—Google Web Toolkit and Adobe
Flex. The other team that utilized a Test-Last
methodology used Google Web Toolkit.

2. One of the three teams used Adobe Flex Builder,
an Eclipse based development environment, that
offered a drag-and-drop interface.

3. The group that utilized a Test-First methodology
using Google Web Toolkit underwent a personnel
change (one person replaced) between the
requirements elaboration and construction phase
requiring some training in the new technology.

Code Code

Design Test

Test Refactor

Test-Last Test-First

230230

Table 3.2.1. Summary of hypotheses
Name Null Hypothesis Alternative Hypothesis

P1 ProdTF = ProdTL ProdTF > ProdTL
C1 #LinesTF = #LinesTL #LinesTF > #LinesTL
T1 #TestsTF = #TestsTL #TestsTF > #TestsTL
T2 #TestCovTF = #TestCovTL #TestCovTF > #TestCovTL
Q1 IQltyCCTF = IQltyCCTL IQltyCCTF < IQltyCCTL
Q2 IQltyWMTF = IQltyWMTL IQltyWMTF < IQltyWMTL
Q3 EQltyTF = EQltyTL EQltyTF < EQltyTL
S1 StuTF = StuTL StuTF > StuTL
S2 Stu|TFTF = Stu|TFTL Stu|TFTF > Stu|TFTL

Hypothesis P1 will examine whether the productivity,
measured by the number of hours per number of features
implemented, of Test-First programmers is higher than
their Test-Last counterpart. The measurements are
gathered through time logs and through the teams’ input
of what features were implemented. The analysis will be
covered in Section 4.2.

Hypothesis C1 will examine whether Test-First
programmers produced more production code than their
Test-Last counterpart. We will examine the number of
lines of code written during production and not part of
tests. The analysis will be covered in Section 4.3.

Hypothesis T1 will examine whether Test-First
programmers produced more tests than their Test-Last
counterpart. The measurements are the number of lines of
code written in the tests. The analysis will be covered in
Section 4.3.

Hypothesis T2 will examine whether Test-First
programmers produced tests that covered more lines of
production code than their Test-Last counterpart. Test
coverage will be measured as the percent of number of
production lines of code executed by the tests divided by
the total number of production lines of code. The analysis
will be covered in Section 4.4.

Hypothesis Q1 will examine whether the internal
quality, measured by cyclomatic complexity, of the
production code by Test-First programmers is lower than
their Test-Last counterpart. Cyclomatic complexity is “the
number of branches in the module” [7]. The analysis will
be covered in Section 4.5.

Hypothesis Q2 will examine whether the internal
quality, measured by weighted methods per class, of the
production code by Test-First programmers is lower than
their Test-Last counterpart. Weighted methods per class
are the sum of the complexities of methods [8]. The
measurements are gathered through automated metrics
described in Section 3.3. The analysis will be covered in
Section 4.5.

Hypothesis Q3 will examine whether the external
quality as measured by the total number of recorded
defects of the production code by Test-First programmers
is lower than their Test-Last counterpart. The
measurements are gathered through integration tests to
show the number of defects when modules are all

compiled together. The analysis will be covered in
Section 4.6.

Hypothesis S1 will examine whether the programmers
hold a higher opinion of the Test-First methodology than
Test-Last. Hypothesis S2 will examine whether the Test-
First programmers favor the Test-First methodology more
than Test-Last. The results of the programmers’ opinions
are gathered through a survey given out by the professor
of the course. The analysis will be covered in Section 4.7.

3.3. Experiment Design

Three teams participated in this experiment, consisting
of a total of fourteen students. Two of the three teams
utilized a Test-First methodology while the remaining
team utilized a Test-Last methodology. Although the
students were part of a year-long capstone project, this
experiment focused on the work done during the
construction phase.

During the construction phase, the three teams worked
from a common Software Requirement Specification
(SRS) document approved by the representatives of the
industry sponsor. The SRS described the functional
requirements, quality attributes, and a number of use
cases to be implemented.

Even though the three teams shared an SRS document,
the technologies and third-party software packages used
were not common. For a web application framework, two
of the three teams used Google Web Toolkit (GWT)
while the remaining team chose Adobe Flex. To control
the variability of the two web application frameworks, the
two teams utilizing the GWT were randomly split
between the Test-First and Test-Last methodologies.

All of the participants were notified that they were part
of a study on TDD for which they signed an agreement as
required by the Cal Poly Human Subjects Committee.

3.4. Subjects

The study participants were all upper-level
undergraduate and graduate students in the Computer
Science and Software Engineering programs. The group
sizes were kept between four and five people among a
total of fourteen students. Although the students range in
experience levels, the students were required to fulfill a
number of course prerequisites including a two-quarter
software engineering sequence and an intermediate
individual design and development course. In addition,
nearly all had hands-on work experience. All of the
students were educated with the Test-First and Test-Last
methodologies through lectures and student presentations.

3.5. Apparatus and Experiment Task

Three software packages were used during the
experiment to collect metrics on each group’s code base:

231231

1. EMMA: a code coverage tool for Java.
2. Chidamber and Kemerer Java Metrics

(CKJM): a software metrics tool for Java.
3. Metrics 1.3.6: a software metrics tool for Eclipse.
A representative from each of the three groups was

asked to collect the desired metrics using the above tools.

3.6. Procedure

Each group maintained a subversion code repository,
recorded their time logs, and completed a survey on their
perception of the Test-First and Test-Last methodology
before and after the experiment.

After the construction phase, a committee was formed
to collect the data, formalize hypotheses as outlined in
Section 3.2, and conduct an analysis of the results. The
committee consisted of representatives from each of the
teams along with project leader.

The software metrics were gathered on each of the
group’s code repository using the software packages
stated in Section 3.5. The time logs were collected
through a spreadsheet collected by the professor on a
weekly basis. The surveys were collected online and
given to students before and after the experiment.

After all the data was gathered, statistical analysis
programs were used to test some of the hypotheses with a
resulting an analysis outlined in Section 4. The
experiment was facilitated by a professor who oversees
the year-long capstone project.

4. Data Analysis

The following sections provide an analysis of the data
collected along with the interpretations of the various
metrics obtained, including characterization of groups,
productivity, code size and test density, line coverage
from test density, internal and external quality, and
programmer perceptions. Some of the groups were
omitted with an “n/a” for not applicable because the data
was unable to be obtained. A summary of the analysis and
the hypotheses tests can be found in Section 3.2.

4.1. Characterization of Groups

The two experimental groups consisted nine subjects
utilizing the Test-First methodology and five students
utilizing the Test-Last methodology. To distinguish
between the two teams utilizing the Test-First
methodology, Test-First A was the team that utilized
Adobe Flex and Test-First B was the team that utilized
GWT.

4.2. Productivity

A hypothesis test, labeled P1 from Section 3.2,
examined whether the productivity, measured by the

number of hours per number of features implemented, of
Test-First programmers is higher than their Test-Last
counterpart. Table 4.2.1 reports effort in terms of total
hours spent in software construction, and the number of
features implemented by team.

The Test-Last team was clearly more productive in
terms of hours per feature. A two-sample t-test produced
a p-value of 0.998, indicating that the P1 null hypothesis
could not be rejected. Therefore, the productivity of the
Test-Last programmers was not less than their Test-First
counterparts, and in fact the opposite appears to be true.

Table 4.2.1. Team Productivity
Test-
Last

Test-
First A

Test-
First B

Number of Group Members 5 5 4
Number of Total Hours 169.05 140.25 133.8

Number of Features
Implemented 12 6 6

Hours per feature 14.09 23.38 22.30

4.3. Code Size and Test Density

A hypothesis test, labeled C1 from Section 3.2,
examined whether Test-First programmers produced more
production code than their Test-Last counterparts. A
hypothesis test, labeled T1 from Section 3.2, examined
whether Test-First programmers produced more tests,
measured by test code lines per source (production) code
lines, than their Test-Last counterpart. Table 4.3.1 reports
results on source and test code size. Although source size
is very similar, the Test-Last team actually wrote four
times as many lines of test code as both the Test-First
teams combined. A two-sample t-test gives a p-value of
0.803 for hypothesis C1 and a p-value close to 1 for
hypothesis T1. This indicated that neither null hypotheses
can be rejected.

Table 4.3.1. Production and Test Code Size
Code and Tests Test-

Last
Test-

First A
Test-

First B
Source lines of code 3393 3358 2468

Test lines of code 4140 560 423
Test lines per source line 1.220 0.1668 0.1714

4.4 Line Coverage from Tests

A hypothesis test, labeled T2 from Section 3.2,
examined whether Test-First programmers produced tests
that covered more lines of production code than their
Test-Last counterpart.

Table 4.4.1 summarizes the data showing the line
coverage of the production code by the student-written
tests. The data was separated into two parts—production
code that includes the graphical user interface (GUI) code

232232

and another without the GUI code focusing on the process
and system.

Because of technological differences, we were unable
to collect data for the Test-First A team resulting in
insufficient data to perform any statistical tests. Based on
simple observation, the Test-Last group covered more
lines of code for both the production with and without
GUI.

Table 4.4.1 Line Coverage
Code and Tests Test-Last Test-

First A
Test-

First B
Line coverage incl. GUI 34% n/a 10%
Line coverage excl. GUI 61% 23%

4.5 Internal Quality

A hypothesis test, labeled Q1 from Section 3.2,
examined whether the internal quality, measured by
cyclomatic complexity, of the production code by Test-
First programmers is lower than their Test-Last
counterpart. A two-sample t-test was conducted with the
summary of data in Table 4.5.1.

Since the cyclomatic complexity shows the number of
paths through a source code, the analysis is composed of
the classes that did not implement the graphical user
interfaces. The consensus for this analysis was to focus on
the classes containing the algorithm and logic because the
classes to implement the graphical user interface were
geared towards the cosmetics of the program.

The test gave a resulting p-value of 0.732. This
indicated that the null hypothesis could not be rejected.
Therefore, the cyclomatic complexity of the Test-Last
groups did not differ from their Test-First counterpart.

Table 4.5.1 Cyclomatic Complexity
Cyclomatic Complexity Test-Last Test-First

Sample Size 76 69
Mean 3.00 3.64

Standard Deviation 2.70 8.11
P-value 0.732 (not rejected)

A hypothesis test, labeled Q2 from Section 3.2,
examined whether the internal quality, measured by
weighted methods per class, of the production code by
Test-First programmers is lower than their Test-Last
counterpart. A two-sample t-test was conducted with the
summary of data in Table 4.5.2.

Since the weighted methods per class determines
where a class should be refactored into more classes, the
analysis is composed of all of the classes including the
classes to implement the graphical user interfaces.

The test gave a resulting p-value near 0. This indicated
that the null hypothesis is rejected. Therefore, the
weighted methods per class for the Test-Last groups is
higher than their Test-First counterpart.

Table 4.5.2 Weighted Methods per Class
Number Test-Last Test-First

Sample Size 128 49
Mean 7.66 4.04

Standard Deviation 6.75 2.63
P-value 0.000 (rejected)

4.6 External Quality

A hypothesis test, labeled Q3 from Section 3.2,
examined whether the external quality, measured by the
total number of recorded defects, of the production code
by Test-First programmers is lower than their Test-Last
counterpart. Table 4.6.1 summarizes the data showing the
number of defects for each group.

Defect data was collected during the third quarter of
the capstone project. At the beginning of this third
quarter, the three groups reduced down to two groups—
Test-Last and Test-First A. As a result, no defect data is
available for Test-First B. The data does indicate that the
Test-Last group had 39% more defects than their Test-
First counterpart.

Table 4.6.1 Number of Defects
Code and Tests Test-

Last
Test-

First A
Test-

First B
Number of Defects 78 56 n/a

4.7 Programmer Perceptions

A hypothesis test, labeled S1 from Section 3.2,
examined whether the programmers hold a higher opinion
of the Test-First methodology than Test-Last. A
hypothesis test, labeled S2 from Section 3.2, examined
whether the Test-First programmers favor the Test-First
methodology more than Test-Last. The results from the
questionnaire can be seen in Table 4.7.1.

Ten out of the fourteen students preferred Test-First
over Test-Last. Interestingly, for students who utilized the
Test-First methodology, five out of nine preferred Test-
First. Overall, students prefer Test-First over Test-Last.

Table 4.7.1 Student Opinions
Preference Test-Last Test-First
All students 4 10

Test-First students 4 5

5. Threats to Validity

The most obvious threat to validity was the small
sample size of fourteen students. In addition, the
differences in implementing the project were significant
since two of the three teams implemented the project
using GWT while the other team implemented the project
using Adobe Flex. While GWT provided documentation
to help program the widgets and set up the framework,

233233

Adobe Flex provided a capability to easily drag and drop
the widgets with the ability to export the program as a
SWF file that is compatible with any Adobe Flash player.

Furthermore, TDD was also a relatively new concept
to many of the students who were used to the traditional
approach. Given this, some of the students reported
challenges with applying the TDD process properly.

6. Conclusions and Future Work

The experiment evaluated effects of TDD conducted
with undergraduate and graduate students in a year-long
software engineering capstone course working alongside
an industry sponsor and a professor. The study compared
the Test-First methodology with Test-Last through the
programmer’s productivity, internal and external quality
of the product, and the programmer’s perceptions. The
metrics were analyzed with a number of results through a
statistical hypothesis testing.

In contrast to several previous studies, our data
analysis indicates that the Test-First methodology did not
outperform Test-Last in many of the measures. In fact,
the Test-Last group appeared to be more productive than
their Test-First counterpart in terms of hours per
implemented feature and total features completed. All
three teams wrote about the same amount of lines of
production code but the group utilizing Test-Last
outperformed the groups utilizing Test-First with more
than seven times the amount of test code. The group
utilizing Test-Last had higher line coverage than their
Test-First counterpart. The only area where the group
utilizing Test-Last didn’t differ significantly from the
groups utilizing Test-Last was in the cyclomatic
complexity. The group utilizing Test-Last produced
higher weighted methods per class than the Test-First
groups indicating that they wrote larger, more complex
classes. Concerning the programmer’s perception, the
results indicated a preference for Test-First, but they were
not significant enough to state that the class, as a whole,
preferred the Test-First methodology over Test-Last. This
was the same perception for those who programmed with
the Test-First methodology throughout the study.

The professor observed that the Test-First teams
struggled to consistently and properly apply TDD.
Students reported that the use of unfamiliar technologies
(Flex and GWT) made learning and applying TDD
particularly difficult.

Regarding the volume of test data reported in Table
4.3.1, although the Test-First and Test-Last teams had
similar ratios of test lines of code to production lines of
code through much of the software construction phase,
the Test-Last team made a significant late effort to
improve test-coverage percentages. This difference is
attributed more to team dynamics and individual ambition
than to the development approach applied.

In conclusion, the study does not imply a
generalization to other contexts since multiple factors
could have biased the results. For example, further studies
are needed with a larger sample size and with differing
programming experiences from students to professionals.
In addition, better metric tools are able to provide better
accounts of the programming experience. This would
increase the validity of the TDD approach versus a
traditional development approach to motivate others
whether or not to adopt this different approach.

7. Acknowledgements

We would like to thank Kevin Carr and Ross Wampler
for contributing to this research. We would like to
acknowledge Cyril Aspuria, Victor Fehlberg, and Bryan
Yee for their role as industry customer in this project. We
would also like to thank all of the participants of the
experiment whom we were fortunate enough to work with
throughout the capstone project.

8. References

[1] H. Erdogmus, M. Morisio, and M. Torchiano, “On the
Effectiveness of the Test-First Approach to Programming”,
IEEE Transactions on Software Engineering, vol. 31, no. 3,
IEEE Press, Piscataway, New Jersey, USA, March 2005, pp.
226-237.

[2] L. Koskela, Test Driven, Manning Publications, Greenwich,
Connecticut, USA, 2008.

[3] D. Janzen, and H. Saiedian, “Test-Driven learning in early
programming courses”, ACM SIGCSE Bulletin, vol. 40, no. 2,
ACM, New York, New York, USA, 2008, pp. 532-536.

[4] D. Janzen, and Hossein S., “Does Test-Driven Development
Really Improve Software Design Quality?”, IEEE Software, vol.
25, no. 2, IEEE Press, Piscataway, New Jersey, USA,
March/April 2008, pp.77-84.

[5] B. George, and L. Williams, “An initial investigation of test
driven development in industry”, Symposium on Applied
Computing, ACM, New York, New York, USA, 2003, pp. 1135-
1139.

 [6] D. Janzen, “Software architecture improvement through
test-driven development”, Conference on Object Oriented
Programming Systems Languages and Applications, ACM, New
York, New York, USA, 2005, pp. 240-241.

[7] S. R. Schach, Classical and Object-Oriented Software
Engineering, third edition, Richard D. Irwin, a Times Mirror
Higher Education Group, Inc. company, 1996.

[8] J. Michura and M.A.M. Capretz, “Metrics suite for class
complexity”, Information Technology: Coding and Computing,
vol. 2, no. 3, IEEE Press, Piscataway, New Jersey, USA, 2005,
pp. 404-409.

234234

