
A NEURAL NETWORK APPROACH TO BORDER GATEWAY

PROTOCOL PEER FAILURE DETECTION AND PREDICTION

A Thesis

Presented to

the Faculty of California Polytechnic State University

San Luis Obispo

In Partial Fulfillment

of the Requirements for the Degree

Master of Science in Computer Science

by

Cory B. White

December 2009

c© 2009

Cory B. White

ALL RIGHTS RESERVED

ii

COMMITTEE MEMBERSHIP

TITLE: A Neural Network Approach to Border

Gateway Protocol Peer Failure Detection

and Prediction

AUTHOR: Cory B. White

DATE SUBMITTED: December 2009

COMMITTEE CHAIR: Franz Kurfess, Ph.D.

COMMITTEE MEMBER: Hugh Smith, Ph.D.

COMMITTEE MEMBER: Ignatios Vakalis, Ph.D.

iii

Abstract

A Neural Network Approach to Border Gateway Protocol Peer Failure

Detection and Prediction

Cory B. White

The size and speed of computer networks continue to expand at a rapid pace,

as do the corresponding errors, failures, and faults inherent within such extensive

networks. This thesis introduces a novel approach to interface Border Gateway

Protocol (BGP) computer networks with neural networks to learn the precursor

connectivity patterns that emerge prior to a node failure. Details of the design

and construction of a framework that utilizes neural networks to learn and mon-

itor BGP connection states as a means of detecting and predicting BGP peer

node failure are presented. Moreover, this framework is used to monitor a BGP

network and a suite of tests are conducted to establish that this neural network

approach as a viable strategy for predicting BGP peer node failure. For all per-

formed experiments both of the proposed neural network architectures succeed in

memorizing and utilizing the network connectivity patterns. Lastly, a discussion

of this framework’s generic design is presented to acknowledge how other types of

networks and alternate machine learning techniques can be accommodated with

relative ease.

iv

Acknowledgements

I am greatful for having a dedicated and reliable committee of professors who

were always willing to discuss my progress and offer constructive suggestions.

Thanks specifically to the chair of my committee–my mentor–Dr. Franz Kur-

fess. His guidance, interests, and eager enthusiasm provided me with a strong

motivation to explore the field of artificial intelligence and machine learning. He

has always maintained an optimistic sense of humor and has been understanding

and more than willing to work with me through any difficulties. His devotion to

the interests and paths of his students–myself being no exception–is exceptional.

Thank you for being such a great teacher, mentor, and friend.

Also, a very special thanks to my parents and grandparents. Throughout my

college experience, these members of my familiy have provided me with economic

stability, confidence, understanding, guidance, and always a listening ear during

the tougher times. Their self-sacrifice and selfless continual support have sculpted

me into the person I am today and has allowed me to accomplish my college goals

and earn this Master’s degree. My accomplishments as a son reflect their successes

as a family unit. Thank you for all that you have given.

v

Contents

Contents vi

List of Tables x

List of Figures xi

List of Code Blocks xiv

1 Introduction 1

1.1 Overview of Problem Statement 1

1.2 Outline . 3

2 Related Work and Background 4

2.1 Neural Networks . 4

2.1.1 A Brief History . 4

2.1.2 Neural Networks As Predictive Tools 6

2.2 The Border Gateway Protocol . 7

2.2.1 BGP Monitoring Tools . 10

2.2.2 Network Monitoring Tools Utilizing Machine Learning . . 11

3 Domain Details 17

3.1 BGP and SNMP . 17

3.2 Neural Network Architecture . 20

vi

3.2.1 Biological Inspiration . 20

3.2.2 The Backpropagation Learning Algorithm 23

3.2.3 Architectural Design Decisions 27

4 Design and Implementation 29

4.1 High-Level Concept Design . 29

4.1.1 Utilizing Neural Networks 29

4.1.2 Training Data Collection Methodology 32

4.2 Software Implementation Details 35

4.2.1 The User Interface . 35

4.2.2 Relevant Configuration Options 40

4.2.3 Backend Programmatic Details 45

5 Experiments 58

5.1 Test Suite . 58

5.2 Experimental Network 1 . 59

5.2.1 General Neural Network Implementation 61

5.2.2 Expert Neural Network Implementation 66

5.3 Experimental Network 2 . 73

5.3.1 General Neural Network 78

5.3.2 Expert Neural Network . 84

5.4 Experimental Network 3 . 92

5.4.1 General Neural Network 94

5.4.2 Expert Neural Network . 98

6 Results and Conclusions 108

7 Future Work 111

vii

7.1 Extending the BGPNNF . 111

7.2 Other Machine Learning Techniques 112

7.3 Other Networks . 113

Appendices 119

A Neural Network Comparisons 119

A.1 Neural Networks for Five Router Full Mesh 120

A.2 Neural Networks for Forty Router Full Mesh 120

A.3 Neural Networks for Ten Router Sparsely Connected 123

Bibliography 125

viii

List of Tables

3.1 Representative BGP Speaker Numbers 18

4.1 XOR Truth Table . 52

5.1 Experiment 1 Trained General Neural Network Output for Router

SDND . 63

5.2 Experiment 1 Trained General Neural Network Output for Router

EDND . 65

5.3 Experiment 1 Trained General Neural Network Output for Router

Completely Down . 71

5.4 Experiment 1 Trained Expert Neural Network Output for Router

SDND . 72

5.5 Experiment 1 Trained Expert Neural Network Output for Router

EDND . 72

5.6 Experiment 1 Trained Expert Neural Network for Router Com-

pletely Down . 73

5.7 Experiment 2 Trained General Neural Network Output for Router

SDND . 81

5.8 Experiment 2 Trained General Neural Network Output for Router

EDND . 82

5.9 Experiment 2 Trained General Neural Network Output for Router

Completely Down . 83

ix

5.10 Experiment 2 SDND Prediction with General Neural Network . . 84

5.11 Experiment 2 EDND Prediction with General Neural Network . . 85

5.12 Experiment 2 Correlated Prediction with General Neural Network 85

5.13 Experiment 2 Expert Training Information 86

5.14 Experiment 2 Expert Neural Network Output for Router SDND . 88

5.15 Experiment 2 Expert Neural Network Output for Router EDND . 89

5.16 Experiment 2 Expert Neural Network Output for Router Com-

pletely Down . 90

5.17 Experiment 2 SDND Prediction with Expert Neural Networks . . 91

5.18 Experiment 2 EDND Prediction with Expert Neural Networks . . 91

5.19 Experiment 2 Correlated Prediction with Expert Neural Networks 92

5.20 Experiment 3 Trained General Neural Network Output for Router

SDND . 96

5.21 Experiment 3 Trained General Neural Network Output for Router

EDND . 97

5.22 Experiment 3 Trained General Neural Network Output for Router

Completely Down . 98

5.23 Experiment 3 Trained Expert Neural Network Output for Router

SDND . 103

5.24 Experiment 3 Trained Expert Neural Network Output for Router

EDND . 104

5.25 Experiment 3 Trained Expert Neural Network Output for Router

Completely Down . 104

x

List of Figures

2.1 The BGP FSM . 9

3.1 Full Mesh vs. Route Reflection iBGP 19

3.2 A Biological Neuron . 20

3.3 Connected Biological Neurons . 21

3.4 The Biological Neuron and Mathematical Counterpart 21

3.5 The Neuron Core . 22

3.6 Activation Functions . 22

3.7 Feedforward Neural Network . 23

3.8 The Training Loop . 24

3.9 Training Error Surface . 25

3.10 Exemplary Neural Network Utilization 26

3.11 The Two Neural Network Architectures Utilized 28

4.1 Simple BGP Network . 30

4.2 Interfacing the iBGP Network with an Adjacency Matrix 31

4.3 Interfacing the iBGP Adjacency Matrix to a Neural Network . . . 32

4.4 BGP Connection Failure Example 33

4.5 Adjacency Matrix to Neural Net Example 33

4.6 The BGPNNF User Interface . 36

4.7 Color Example of the BGPNNF User Interface 37

4.8 Save Dialog User Interface. 38

xi

4.9 Load Dialog User Interface. 38

4.10 New Neural Net User Interface. 39

4.11 Train Button User Interface. 40

4.12 The Input Test Network User Interface 41

4.13 Five-Node Network . 42

4.14 The BGPNNF Flow Diagram . 46

4.15 XOR Neural Network . 52

5.1 The First Experimental Network 60

5.2 Exemplary Patterns Memorized 60

5.3 Correlated Router Down Pattern 61

5.4 Experiment 1 General Neural Network Training RMSE 62

5.5 An Example of SDND . 64

5.6 An Example of EDND . 65

5.7 Example Router Completely Down 66

5.8 Experiment 1 EDND Prediction with General Neural Network . . 67

5.9 Experiment 1 SDND Prediction with General Neural Network . . 68

5.10 Experiment 1 Correlated Prediction with General Neural Network 69

5.11 Experiment 1 RMSE vs. Iterations for Each Expert Neural Network 70

5.12 Experiment 1 EDND Prediction with Expert Neural Networks . . 74

5.13 Experiment 1 SDND Prediction with Expert Neural Networks . . 75

5.14 Experiment 1 Correlated Prediction with General Neural Network 76

5.15 Large Fully-Connected Network. 77

5.16 Experiment 2 General Neural Network Failed Training RMSE . . 79

5.17 Experiment 2 General Neural Network Successful Training RMSE 80

5.18 Experiment 2 Expert RMSE Graphs 87

5.19 Experiment 3 Route Reflection Network 93

xii

5.20 Experiment 3 First General Training 95

5.21 Experiment 3 Second General Training 96

5.22 Experiment 3 EDND Prediction with General Neural Network . . 99

5.23 Experiment 3 SDND Prediction with General Neural Network . . 100

5.24 Experiment 3 Correlation Prediction with General Neural Network 101

5.25 Experiment 3 RMSE vs. Iterations for Each Expert Neural Network102

5.26 Experiment 3 EDND Prediction with Expert Neural Networks . . 105

5.27 Experiment 3 SDND Prediction with Expert Neural Networks . . 106

5.28 Experiment 3 Correlation Prediction with Expert Neural Networks 107

7.1 Two Exemplary Network Topologies 114

7.2 More Exemplary Network Topologies 114

7.3 Additional Exemplary Network Topologies 115

7.4 Still More Exemplary Network Topologies 116

7.5 Exemplary On-Chip Power Grid Network Model 117

7.6 Three-Phase, Breaker-Oriented IEEE 24-Substation Reliability Test

System . 118

A.1 Neural Network Training Comparisons for the Five Router Full Mesh121

A.2 Neural Network Training Comparisons for the Forty Router Full

Mesh . 122

A.3 Neural Network Training Comparisons for the Sparse Network

Topology . 124

xiii

List of Code Blocks

4.1 Example Node XML Element and Contents 42

4.2 Example Router Configuration . 43

4.3 Example neuralNet Element for Configuring a General Neural Network 44

4.4 Example neuralNet Element for Configuring an Expert Neural Network 44

4.5 Example Configuration of the historyQueue 45

4.6 NodeInfo Private Variables. 46

4.7 SNMP Poller Main Loop. 47

4.8 The createNodeDownList Method 49

4.9 The nodeDownCheck Method . 50

4.10 The OQueue’s lookback Method . 50

4.11 The initNeuralNet Method . 51

4.12 The XOR Training Data . 52

4.13 Creating the IP Map for the CoreModel’s Internal Matrix 54

4.14 CoreModel Update Method. 56

4.15 CoreModel makeStringPattern Method. 57

xiv

Chapter 1

Introduction

This chapter provides an exposition of the objectives of this thesis and the

layout for the remainder of the document.

1.1 Overview of Problem Statement

The size and speed of computer networks continue to expand at a rapid pace,

as do the corresponding errors, failures, and faults inherent within extensive

networks. With this growth, large Internet-based companies such as Amazon,

Google, and Yahoo! and even smaller companies with high reliance upon a com-

puting infrastructure depend upon the reliability of such networks in order to earn

revenue and remain dominant in competitive markets. Thus, the need grows for

network tools and techniques to maintain and monitor such systems in order to

quickly and efficiently detect problems and potentially even predict issues before

they occur. These tools must therefore ascertain and store knowledge about the

network topology and communication between nodes in order to draw inferences

about any potential problems that may arise.

1

The specific protocol of interest is the Border Gateway Protocol (BGP). Ac-

knowledged as the de facto interdomain routing protocol of the Internet, if a BGP

router becomes jeopardized or goes offline,

An autonomous system can have its traffic black-holed or other-
wise misrouted, and packets to or from it can be grossly delayed or
dropped altogether. Malfunctioning ASes harm their peers by forcing
them to recalculate routes and alter their routing tables...these events
can disrupt international backbone networks and have the potential
to bring a large part of the Internet to a standstill.[16]

This thesis introduces a novel approach to interface BGP computer networks

with neural networks to learn the precursor connectivity patterns that emerge

prior to a router failure. Such patterns are collected and then memorized by

neural networks which will then be able to detect or, potentially, even predict

future node failures if similar connective patterns emerge in the future. The co-

founder of the Artificial Intelligence Laboratory of the Massachusetts Institute of

Technology Marvin Minsky stated in 1991 that,

To program today, we must describe things very carefully, because
nowhere is there any margin for error. But once we have modules that
know how to learn, we won’t have to specify nearly so much–and we’ll
program on a grander scale, relying on learning to fill in the details.[56]

This thesis demonstrates how neural networks can fill in the details necessary

for subset of problems that can emerge within a computer network. Thus, the

work presented here takes another step in the direction that Minksy predicted

eighteen years ago.

2

1.2 Outline

This thesis will first acknowledge the background of neural networks, their

wide range of application, and their popular use as predictive tools. Next, some

relevant details of BGP will be presented along with a survey of current network

monitoring tools and techniques that utilize machine learning techniques will be

discussed. After the survey, a more in-depth look at BGP and the particular neu-

ral network learning algorithm utilized in this thesis will be assessed. Following

these details, the specific design applied in this thesis will be presented in both a

high-level perspective as well as the details of the lower-level software framework

implementation. Next, three representative network topologies will be considered

and tested using the written software, which will be followed by corresponding

results and conclusions. Lastly, a discussion of a wide range of potential future

work stemming from this thesis will be conducted.

3

Chapter 2

Related Work and Background

This chapter will assess work that is related to the content of this thesis.

The following sections will cover a brief history of neural networks, their use as

predictive tools, some relevant details on BGP, and network monitoring tools.

2.1 Neural Networks

This section will introduce a brief history of neural networks as well as provide

various examples of how neural networks have been used as predictive tools.

2.1.1 A Brief History

Artificial neural networks provide a new approach to solving ill-structured

problems that are not easily solved using procedural solutions. Neural networks

are composed of nodes, or neurons, that perform in a manner similar to that

of the biological neuron along with interconnecting weights between neurons.

These components allow neural networks to learn through training, generalize

4

from previous examples, and abstract characteristics from unclear data.

The epoch of neural network theory started in 1943 with the publication

by Warren McCulloch and Walter Pitts, where they considered the case of a

network made up of binary decision units (BDNs) and showed that such a network

could perform any logical function on its inputs [73]. Then, in 1962, Frank

Rosenblatt published his course book Principles of Neurodynamics [65] where

he showed that it is possible to train a network of BDNs, which he coined a

perceptron network, that could recognize a set of chosen patterns. However,

in 1969 Marvin Minsky and Seymour Papert [57] mathematically proved that

perceptrons were very limited, showing that they could not solve some very simple

pattern classification tasks, such as the XOR function.

Neural networks were then left relatively overlooked for several years until

Paul Werbos created the backpropagation algorithm in his 1974 PhD Thesis [79].

This algorithm allows the error of a neural network to be propagated back from

the output neurons to earlier layers in the network to make the correct modifica-

tion to all the hidden connections between neruons. An additional stimulus for

continued research came from John Hopfield in 1982 where he related the training

of BDNs to a gradient optimizations problem, followed by the introduction of the

Boltzman learning algorithm by Hinton and Sejnowski in 1983 [73].

As research continued, numerous architectural methodologies emerged and

two extremes arose: feedforward networks, where input flows from the input

layer neurons through any inner layer neurons and then to the output, and re-

current networks, where the neurons of the network provide constant feedback

to each other. Training strategies also developed into one of three categories:

supervised, where the error output of a network is used to train the network, re-

inforcement, which rewards the network for good performance (thereby strength-

5

ening the corresponding weights), and unsupervised, which increases connection

weights whenever two neurons are active together [73].

Along with the advances in the theory of neural networks is the continuous

developments in their widespread application. Neural networks have been applied

in the fields of vision, speech, signal analysis, robotics, expert systems, computers,

and process planning/control, just to name a few [42]. One of the most influential

and widely cited neural network papers is on the application of neural networks for

face detection [66]. Additionally, the most recent publications in neural networks

typically combine the newest training strategies to solve a very specific task, which

is often heavily interdisciplinary in nature. This development and future of neural

networks is exemplified in the work of Rui Xu and Donald Wunsch II and Ronald

Frank [84] as well as Jinmiao Chen and Narendra Chaudhari [17], where uniquely

structured and trained networks are used to aid in complex bioinformatics.

2.1.2 Neural Networks As Predictive Tools

Multi-layered feedforward neural networks that learn by the supervised train-

ing via the backpropagation algorithm will be utilized in this thesis and will be

discussed in further detail in Chapter 3.2.2. This section simply assesses a wide

range of recent work that utilizes the predictive power of neural networks.

The implementation and utilization of artificial neural networks dates back

to the early 1940s with vast breadth in domain of application. An early survey

of wide-spread uses of neural networks [27] is from 1992, which acknowledges

research in the prediction of mortgage loan performance among many others.

Moreover, a relevant survey of trends in neural network publications up until

1996 can be found in [77], which highlights the diversity of their usage. More

6

recently, in 2004, another survey on neural networks acknowledged several neural

network techniques applied to the prediction of categorization tasks [14].

Within the past year alone, several papers have been published that apply

neural networks to a domain that requires a predictive element. For example,

both [11] and [62] use feedforward neural networks to predict the failure strength

of composite tensile specimens. Additionally, [41] was able to predict defects

in castings through the use of backpropagation neural networks. Moreover,[78]

utilizes neural networks with temperature weather feature inputs for short-term

electricity load forecasting. Further, in [45] neural networks are used to predict

the short-term typhoon surge and surge deviation in Taichung Harbor, Taiwan.

And, as a last example, [25] employs neural networks as a means for protein

structural class prediction–a classic problem that has seen the utilization of neural

networks for many years [5, 10, 17, 18, 34, 43, 50].

With the surplus of aforementioned examples exploring the wide-range of var-

ious neural network publications, neural networks are certainly a popular choice

as a predictive tool. Having established this point, the domain in which neural

networks will be employed can now be explored.

2.2 The Border Gateway Protocol

The Border Gateway Protocol (BGP) is a protocol that is used to exchange

routing information among routers in different autonomous systems (ASs) [40].

An AS, as defined by Juniper Inc. is “a set of routers that are under a single

technical administration and normally use a single interior gateway protocol and a

common set of metrics to propagate routing information within the set of routers”

[39]. To other ASs, an AS appears to have a single internal routing plan and

7

presents a consistent picture of what destinations are reachable through it.

The routing information transmitted in BGP is comprised of the complete

route to a desired destination, rather than a simple one-hop step. This routing

information is used by BGP to maintain a database of network reachability in-

formation, which is exchanged with other BGP systems via peer-to-peer commu-

nication through BGP Speakers (routers that implement BGP). A BGP system

shares this reachability information with adjacent BGP systems, which are re-

ferred to as neighbors or peers. BGP uses the network reachability information

to construct a graph of AS connectivity, thus allowing BGP to remove routing

loops and enforce policy decisions at the AS level.

Two types of routing information exchange are allowed in BGP: information

transferred between two different ASs (external BGP or eBGP) and information

transferred within the same AS (internal BGP or iBGP). Thus, for eBGP, when

two BGP routers connect, the two routers are located in different ASs, thereby

performing inter-AS routing. As for iBGP, on the other hand, both BGP routers

exchanging information would be located within the same AS and exchanges of

information would be intra-AS routing.

When two BGP peers connect they can exchange four different types of mes-

sages to each other: open, update, keepalive, and notification. However, for a

connection to first be established, a Transmission Control Protocol (TCP) con-

nection must be made between the two BGP peers. With a TCP connection the

two routers can then exchange BGP open messages to create a BGP connection

between them. The complete connection-making process is described by a Finite

State Machine (FSM) as defined in RFC 1771 [63], and is shown in Figure 2.1.

Once the connection is established, the two systems can exchange other BGP

messages and routing information.

8

Figure 2.1: The Border Gateway Protocol connection Finite State Ma-
chine.

9

This thesis focuses primarily upon the connectionist perspective of BGP net-

works. However, for more information on the routing table and the various

attributes associated with BGP paths, see Cisco’s Internetworking Technology

Handbook BGP Documentation [22].

2.2.1 BGP Monitoring Tools

This section will first assess the current BGP monitoring tools available, fol-

lowed by various network monitoring tools that utilize some form of machine

learning for the detection of failures or faults within a network.

In terms of BGP network monitoring tools, each of the most recent tools as

listed in the incredibly verbose survey [24] will be briefly assessed. Of the four

listed tools, the first is BGPlay [23], which is a Java application that displays

animated graphs of routing activity within a specified time interval. Next is

BGPMon [75], which can monitor routes and alert in case of an ‘interesting’ path

change. Path changing became a high-interest topic when YouTube was taken

offline due to false path broadcast [54]. The next tool of interest is iBGPlay [8],

which is a free tool that, similar to BGPlay, graphically displays and animates

BGP routing data and thereby enables a user the ability to timely identify and

diagnose potential routing problems and anomalies. Lastly, LinkRank [44] offers

a different approach in visualization by creating graphs that weigh the links

between autonomous systems by the number of routing paths going through each

link. However, out of all four tools, none contain a machine-learning mechanism.

10

2.2.2 Network Monitoring Tools Utilizing Machine Learn-

ing

The following is a brief survey of tools and techniques that monitor a network

utilizing some form of machine learning.

The first technique is dynamic syslog mining for network failure monitoring,

as presented in [85]. In this work, the authors pursue network failure correlation

and detection through monitoring syslogs. A syslog is a sequence of events which

are collected using the BSD syslog protocol and are used to address a wide range

of important issues including network failure symptom detection and event cor-

relation discovery. The authors propose a new methodology of dynamic syslog

mining in order to detect failure symptoms with higher confidence, to discover

sequential alarm patterns among computer devices, and to detect event correla-

tions among syslogs for different devices. As stated by the authors, the key ideas

of dynamic syslog mining are 1) to represent syslog behavior using a mixture of

Hidden Markov Models, 2) to adaptively learn the model using an on-line dis-

counting learning algorithm in combination with dynamic selection of the optimal

number of mixture components, and 3) to give anomaly scores using universal

test statistics with a dynamically optimized threshold. Strictly with respect to

machine learning techniques, a mixture of a hybrid Baum-Welch algorithm for

learning Hidden Markov Models and a Naive Bayes model to learn patterns were

utilized within the syslog data. The validity of this technique has been demon-

strated through the use of real syslog data in the scenarios of failure symptom

detection, emerging pattern identification, and dynamic correlation discovery.

Another technique is predicting node availability in peer-to-peer networks,

as presented in [55]. In this work the authors improve upon the accuracy of

11

previous peer-to-peer availability models, which are often too conservative to

dynamically predict system availability at a fine-grained level. Three types of

availability predictors are utilized: 1) A graph-based representation to represent

likelihood of traversal, 2) linear prediction (a common statistical technique for

predicting time series), and 3) hierarchical accuracy tournaments to dynamically

select the most accurate sub-predictor for a particular lookahead interval. Here,

the machine learning techniques used are saturating counter predictors and a

linear predictor which are trained via availability traces. Though this technique

does not consider fault detection, network administrators often need notification

of availabilities just as much as for failures.

An additional technique is manifold learning visualization of network traffic

data, as presented in [61]. In this work, the authors present a manifold learning-

based tool for the visualization of large sets of data and allows for an easy com-

parison of data maps over time. This tool emphasizes the unusually small or

large correlations that exist within a given data set along with an online Java-

based GUI which allows interactive demonstration of the use of the visualization

method. Moreover, data collection for visualization is made possible through the

use of sensors which are located through a network that measure a chosen traffic

statistic and divide traffic by source or destination IP address, port, autonomous

system, time period, link, or router. Furthermore, this technique mainly consid-

ers monitoring a network for changes over time, across space (at various routers

in the network), over source and destination ports, IP addresses, or AS numbers.

Another technique is detecting anomalies in network traffic using maximum

entropy estimation, as proposed in [33]. In this technique, the authors develop

a behavior-based anomaly detection method that detects network anomalies by

comparing the current network traffic against a baseline distribution. The maxi-

12

mum entropy learning technique provides a flexible and fast approach to estimate

the baseline distribution, which also gives the network administrator a multi-

dimensional view of the network traffic by classifying packets according to a set

of attributes carried by a packet. By computing a measure related to the relative

entropy of the network traffic under observation with respect to the baseline dis-

tribution, this technique can distinguish anomalies that change the traffic either

abruptly or slowly. Moreover, information is given regarding the type of anomaly

detected and has a low false positive rate.

The next technique is an agent-based simulation of behavioral anticipation,

specifically with regard to anticipatory fault managment in computer networks,

as proposed in [67]. In this work, the authors explore the concept of anticipatory

behavior to develop an intelligent agent-based network management model. An

anticipatory agent is used to proactively detect occurrence of faults using a pre-

dictive model pertaining to network performance. Prediction is possible through

the machine learning technique of a Bayesian classifier trained with past data.

The agent is therefore an entity which uses the knowledge of predicted future

states to decide what actions need to be taken at the present.

Another technique is anomaly detection by finding feature distribution out-

liers, as proposed in [71]. Here, the authors develop a means to detect traf-

fic anomalies based on network flow behavior. First, baseline distributions for

meaningful traffic features are estimated and measures of legitimate correspond-

ing deviations are taken. Observed network behavior is then compared to the

baseline behavior by means of a symmetrized version of the Kullback-Leibler di-

vergence. The achieved dimension reduction enables effective outlier detection

to flag deviations from the legitimate behavior with high precision. The actual

machine learning mechanism is the application of probability mass functions in

13

conjunction with Kullback-Leibler divergence for learning the baseline network

function. This technique supports online training and provides enough infor-

mation to efficiently classify observed anomalies and allows in-depth analysis on

demand.

The next technique involves exploring event correlation for failure prediction,

as shown in [30]. In this work, the authors develop a spherical covariance model

with an adjustable timescale parameter to quantify the temporal correlation and

a stochastic model to describe spatial correlation. This is accomplished through

the use of failure signatures, which extract the essential characteristics from a

system state that are associated with a failure event and consider the hierarchical

structure and interactions among components of the system. The authors further

utilize the information of application allocation to discover more correlations

among failure instances. Failure events are clustered based on their correlations

and then used to predict similar future occurrences. The actual tool implemented

is a failure prediction framework, called PREdictor of Failure Events Correlated

Temporal-Spatially (hPREFECTs, where the ‘h’ stands for hierarchical), which

explores correlations among failures and forecasts the time-between-failure of

future instances, making use of both a neural network approach and a Bayesian

network to learn and forecast failure dynamics based on the temporal and spatial

data among the failure signatures.

An additional technique is an adaptive distributed mechanism used against

flooding network attacks, as introduced in [9]. Here, the authors focus on early

detection and the stop of distributed flooding attacks and network abuses. The

framework cooperatively detects and reacts to abnormal behaviors before the

target machine collapses and network performance degrades. In this framework,

nodes in an intermediate network share information about their local traffic ob-

14

servations, improving their global traffic perspective. Also, the authors add to

each node the ability of learning independently with a Naive Bayesian method to

classify different types of traffic, therefore allowing each node to react differently

according to its situation in the network and local traffic conditions. The learn-

ing component also allows the system to create, adjust, and renew the behavior

models. This then frees the administrator from having to guess and manually set

the parameters distinguishing attacks from non-attacks; now such thresholds are

learned and set from experience or past data.

Another technique involves detecting attack signatures in the real network

traffic with ANNIDA (Artificial Neural Network for Intrusion Detection Appli-

cation) which is discussed in both [69] and [26]. In these works, a Hamming Net

artificial neural network methodology was used with good results where strings

in computer network packets are inserted in these neural networks for pattern

classification. Test results highlight the high accuracy and efficiency of the appli-

cation when submitted to real data from HTTP network traffic containing actual

traces of attacks and legitimate data.

Another technique utilizes a cascading neural network (CNN) for traffic man-

agement of computer networks, as shown in [19]. In this work, the machine

learning component consists of a two-level neural network model where one level

(the back-propagation neural model), detects whether the tested network is over-

loaded and the second level, a counter-propagation neural model, classifies and

excludes the status of congestion derived from the overload of tested network.

In this way, if the effect gained from the first level neural model is positive, the

second level neural model will be triggered to help reroute the traffic of computer

networks. To validate this two-level neural network feasibility, the proposed CNN

has been applied to a local area network environment. The experimental results

15

demonstrate that the developed CNN can efficiently and effectively provide sub-

stantial assistance for decision making in network traffic management.

16

Chapter 3

Domain Details

This chapter will discuss, in further detail, the two domains of interest for

this thesis: BGP and neural networks.

3.1 BGP and SNMP

The primary work in this thesis is focused on the rigorously defined connection

protocol for two BGP peers to start a session (as shown in the previous chapter),

rather than the functionality of BGP in exchanging and storing routing informa-

tion. Additionally, the focus of this work is oriented around network management

of a single AS of interest, such as the domain that an administrator would have

control over changing. Thus, the focus of this thesis is placed on iBGP rather

then eBGP since only the network health of a single AS is of concern.

To provide some idea of the number of BGP Speakers in large Internet Service

Provider (ISP) networks, see Table 3.1. These numbers will allow for designing

representative experiments for scalability purposes in terms of the number of

17

ASN ISP Name Total Routers BGP Speakers

7018 AT&T 731 46

1239 Sprint 497 56

701 WorldCom/UUNet 4556 235

2914 Verio 865 80

3561 Cable & Wireless 2236 238

3356 Level3 483 61

6461 AboveNet 247 39

3967 Exodus 213 32

Table 3.1: BGP Speaker numbers for representative Internet Service
Providers Backbones, as shown in [48].

BGP Speakers in Chapter 5.

One additional detail regarding iBGP is the moderately recent addition of

route-reflection (RR), as shown in RFC 2796 [6] and RFC 4456 [7]. Route-

reflection serves as an alternative to a fully-meshed iBGP network in that it can

drastically reduce the number of required TCP sessions between BGP peers. A

fully-meshed set of N BGP speakers must have N(N−1)
2

unique TCP Sessions,

which presents obvious scalability issues when only 40 nodes yields 780 TCP

sessions.

The best way to describe how route-reflection works is by example, as dis-

cussed in [6]. Given a simple three-node network as shown in Figure 3.1, both

Figure 3.1a and Figure 3.1b represent the same three-node BGP network within

the same AS and all links are iBGP sessions. In the case of Figure 3.1a, when

RTR-A receives an external route that is selected as the best path, it must then

advertise that path to both RTR-B and RTR-C. Once received, RTR-B and

18

(a) Full mesh iBGP (b) Route reflection iBGP

Figure 3.1: Full Mesh vs. Route Reflection iBGP.

RTR-C will not re-advertise this path. However, in the case of Figure 3.1b,

when RTR-A receives the same route, it would then advertise only to RTR-C. In

the case of route reflection, RTR-C is now allowed to re-advertise (or reflect) the

path learned from RTR-A to RTR-B and vice versa. This shows that the need for

the additional iBGP session between RTR-A and RTR-C is unnecessary. Thus,

the option of route reflection seems appropriate for large-scale networks and a

representative topology will be assessed during experimentation.

Lastly, the particular monitoring methodology will be via the Simple Network

Management Protocol (SNMP). As stated in [72], “SNMP enables network ad-

ministrators to manage network performance, find and solve network problems,

and plan for network growth”. Moreover, SNMP is a fairly common methodology

for network and BGP monitoring [37], and fits well into the scope of this thesis.

19

3.2 Neural Network Architecture

3.2.1 Biological Inspiration

The name “neural” network makes a direct connection to that of biological

neural structures. Such a connection is very appropriate since the concept of

mathematical and computation neural networks were inspired and designed, in

part, thanks to the connectionist theories of the brain. For this reason, a brief

overview of biological neurons will be considered and translated into the mathe-

matical model that is used in this thesis.

First of all, the typical structure of a biological neuron is shown in Figure 3.2.

For the purpose of computational neural networks, the key features of the neuron

are the dendrites, the axon/axon terminal, and the cell body. In a biological

neural network, the dendrites collect neurotransmitters from the axon terminals

of adjacent neurons, as shown in Figure 3.3. These signals are accumulated within

the cell body and, if a certain level have been ascertained, the neuron will also

fire, sending its own signal out through its axon [58]. These high-level functions

are translated directly into the mathematical model of a neuron.

Figure 3.2: The structure of a typical biological neuron [29].

20

Figure 3.3: Two connected biological neurons [31].

To explain the translation from the biological neuron to a computational

model, consider Figure 3.4. As shown in 3.4a and 3.4b, the dendrites on the

biological neuron are represented by the inputs and synapses of the mathematical

model, the cell body is the neuron core, and the axon retains the name axon but

is simply the output of the mathematical neuron.

(a) Biological Neuron [60] (b) Mathematical Model [32]

Figure 3.4: The biological neuron and mathematical counterpart.

The internals of the computational neuron’s core contains two things: a sum-

mation transfer function which feeds into an activation function. A closer look

21

at these features can be seen in Figure 3.5. With regard to activation functions,

several types are permissible, ranging from a simple step function to a hyper-

bolic tangent with output typically constrained within [0, 1] or [-1, 1]. Some

representative activation functions are shown in Figure 3.6. And finally, when

many mathematical neurons are connected together in layers, a resulting artificial

neural network forms, as shown in Figure 3.7.

Figure 3.5: Details on the mathematical neuron core [83].

Figure 3.6: Common activation function used in the neuron core [4].

22

3.2.2 The Backpropagation Learning Algorithm

As noted in the previous chapter, the backpropagation algorithm was first

introduced in 1974 [79] yet is still highly applicable today. All neural networks

implemented in this thesis will be trained via this algorithm. The mathematical

learning function associated with this algorithm will be described visually followed

by a high-level perspective on how this learning technique can be utilized in a

simple problem.

Since the purpose of this thesis is to propose a novel utilization of the well-

established neural network backpropagation learning algorithm rather than to

modify or enhance the learning algorithm itself, the algorithm’s mathematical

details will not be assessed in rigor. Rather, for an in-depth exposition on the

backpropagation algorithm, see [64]. However, to summarize, the backpropaga-

tion learning algorithm is designed for a multi-layered feedforward neural network,

as shown in Figure 3.7.

Figure 3.7: This is a standard multi-layered feedforward neural net-
work, as shown in [21].

To train a neural network, the end-goal of training would be to have the

network map a set of training inputs (input to the first layer of the neural network)

where each individual input has a desired corresponding output value (outputs

23

on the last layer of the neural network). So, given a multi-layered feed-forward

neural network such as the one shown in Figure 3.7, along with a set of inputs

and corresponding set of outputs, the backpropagation algorithm trains the neural

network on the input/output set so that it learns to map each of the inputs with

the desired result. This is accomplished through modifying the weights on each

of the synapses that inter-connect the neurons. These weights scale the input to a

given neuron, which thereby modifies the output from a neuron’s axon. Typically,

the weights on a neural network start out randomized, meaning that for each

input string the output will be some unmeaningful string since the network has

not yet been trained. Therefore, before the backpropagation algorithm runs, an

error term can be calculated for each input based upon the current output for that

value as compared with the desired output. This (desired result - actual result)

error term is precisely what the backpropagation algorithm minimizes–thereby

reducing the error discrepancy between the real output and desired output of the

current neural network. This feedback loop is shown visually in Figure 3.8.

Figure 3.8: The training loop for a neural network, as shown in [21].
In this case the Training Algorithm is the backpropagation algorithm.

The backpropagation algorithm is also iterative–running a variable number

of times, where each iteration is a step closer to the global minimum [21]. Also,

24

since the error term is slowly being minimized during each training iteration of

the backpropagation algorithm, the training error can be visualized as a multi-

dimensional error-surface, shown in Figure 3.9, where the current state of the

neural network error is shown to be the dot on the error surface. Thus, as this

figure shows, the end goal of training would be to reach the global minimum on

the error surface, which corresponds to the point at which all the desired inputs

map as closely as possible to the appropriate outputs. Furthermore, there are

two specific parameters that can be fine-tuned on the backpropagation algorithm:

learning rate and momentum. The learning rate parameter essentially represents

the ‘speed’ of the virtual point on the error surface, basically specifying the step-

size of the point for each iteration. Momentum, on the other hand, represents the

‘inertia’ of the point meaning that the degree of change to the weight of a given

edge in the neural network during one training iteration impacts the change to

that weight during the next iteration.

Figure 3.9: An example of a three-dimensional error surface for a
training neural network, as shown in [52].

One potential problem while training neural networks is the potential for

over-training or over-fitting. Over-training occurs when a network has learned

25

not only the basic mapping associated with input and output data, but also

the subtle nuances and even the errors specific to the training set. If too much

training occurs, the network essentially only memorizes the training set and loses

its ability to generalize to new data input. The result is a network that performs

well on the training set but performs poorly on out-of-sample test data.

One exemplary visual example for the utilization of neural networks would

be for filling in the blanks on a mathematical function. Consider Figure 3.10. In

this example, the graphed training data as shown in Figure 3.10a would be used

by a simple neural network to generate the corresponding neural network output

as shown in Figure 3.10b. Though a very simple example, this illustrates an

inherently beneficial property of neural networks to “fill-in” the blanks between

the training data points.

(a) Graphical training data (b) Trained neural network output

Figure 3.10: Exemplary neural network utilization.

26

3.2.3 Architectural Design Decisions

In deciding on which type of neural network architecture to implement, a

traditional feedforward approach was favored rather than recurrent neural net-

works, since recurrent neural networks face inherent disadvantages as stated by

Alessandro Sperduti:

...it is well known that training recurrent networks faces severe
problems (Bengio, Simard, and Frasconi, 1994) and the generaliza-
tion ability might be considerably worse compared to standard feed-
forward networks (Hammer, 2001). [70]

Moreover, several studies have evaluated the computing capacity of multi-

layered feed-forward neural networks [51, 68, 76, 80, 81, 82]. One such study

found that

Feed-forward networks with a single hidden layer and trained by
least-squares are statistically consistent estimators of arbitrary square-
integrable regression functions under certain practically-satisfiable as-
sumptions regarding sampling, target noise, number of hidden units,
size of weights, and form of hidden-unit activation function. [80]

Essentially, such results have proven that multi-layered feed-forward neural

networks with a single hidden layer are capable of approximating any real-valued

function to any desired degree of precision.

The primary neural network architecture to be utilized in this thesis is a three-

layered feed-forward neural network: one input layer, one hidden layer, and one

output layer. However, two neural network versions will be utilized, both of

which are shown in Figure 3.11. The neural network shown in Figure 3.11a is

defined to be a General neural network, whereas the neural network shown in

Figure 3.11b is defined as an Expert neural network. These two architectures

27

are nearly identical and differ only in the number of output nodes in the output

layer. For the purposes of this thesis, the value of output nodes on the neural net-

works correspond to the predicted health state of a corresponding router. Thus,

these two architectures differ only in the number of routers they are responsible

for. Additional details on the specific utilization of these architectures will be

discussed in the next chapter.

(a) A General neural network

(b) An Expert neural network

Figure 3.11: The two neural network architectures utilized.

28

Chapter 4

Design and Implementation

This chapter will go over the high-level conceptual design for constructing a

BGP Failure detection and prediction tool as well as the specific details of the

software implementation.

4.1 High-Level Concept Design

This section will discuss interfacing a iBGP network with a neural network,

followed by the approach utilized in collecting training data.

4.1.1 Utilizing Neural Networks

The objectives of the design are to interface a generic iBGP network with a

neural network, train the neural network with relevant past data, and then utilize

the trained neural network along with the current iBGP connection statuses to

make predictions and detections regarding the health of the BGP nodes. In order

to assist the explanation, consider the visualization of a simple iBGP network as

29

shown in Figure 4.1. Shown in the figure is the iBGP network of interest in AS

4 and R1-R5 represent BGP routers 1 through 5 in a full mesh of connectivity.

Figure 4.1: An example of a simple BGP network.

In preparation to interface the iBGP network to a neural network, an adja-

cency matrix is utilized to represent each of the edge connections in the full mesh,

as shown in Figure 4.2. In the adjacency matrix, the connection from R2 to R5

(as an arbitrary example), would be found by locating the cell whose column is

R2 and whose row is R5. Moreover, in the case of this particular matrix, each

entry contains a BGP finite state machine that stores the current state of the

corresponding connection from one router to another. In this way, each of the

six states associated with representing a peer-to-peer connection can be assigned

a numeric value between 0 and 1 representing the degree of connectedness for

the given session. With numbers assigned to each potential state, these values

can then be the inputs to a neural network, as shown in Figure 4.3a. In this

case, the neural network is defined to be a General neural network, since it is

responsible for outputing the belief states of all nodes in the iBGP network. An

alternative to this approach would be to interface the adjacency matrix with five

30

unique Expert neural networks, as shown in Figure 4.3b.

Figure 4.2: Interfacing the iBGP network with an adjacency matrix.

Now, consider the following simple example of how this high-level design

should function end-to-end. For this example, the same iBGP network will be

utilized with the modification that Router 1 loses connection with three of its

neighbors, as shown in Figure 4.4. These lost connections can be followed down

into the adjacency matrix and then into the neural network as shown in Figure 4.5.

In this example, the neural network sees that even though Router 1 has not lost

connection with all of its neighbors, a prediction is made that it is about to

go down since the majority of connections has been lost while the other four

routers are predicted to remain online. This example, of course, is under the

assumption that a similar event has transpired in the past, training data had

31

(a) Interfacing the iBGP adjacency ma-

trix with a General Neural Network

(b) Interfacing the iBGP adjacency ma-

trix with an Expert Neural Network

Figure 4.3: Interfacing the adjacency matrix to a neural network.

been collected from the event, and the General neural network had been trained

with the relevant data.

4.1.2 Training Data Collection Methodology

Though the methodology for collecting training data is not the focal point

of this thesis, the design details are important nonetheless. The end goal in

ascertaining representative training data would be to select a connectivity pattern

from the network prior to a node being detected as going offline. Thus, the first

requirement would be to detect whenever a node goes down.

For the purposes of this work, BGP peer failure is defined to be the case where

a given BGP speaker loses connection with other speakers. This is considered

32

Figure 4.4: Router 1 loses connection to three of its neighbors.

Figure 4.5: The resulting adjacency matrix and neural network output
from Router 1 losing three connections.

33

a failure due to the fact that if a BGP speaker loses connection to its peers,

then routing information cannot be transmitted–the BGP peer has failed its job

and purpose. More specifically, two types of node-down failure patterns will be

considered. First, an “externally-detected-node-down” (EDND) will refer to the

case when, given node N, all nodes in the network have lost connection to N. In

this case, all routers in the network would be incapable of updating the EDND

router’s routing table. On the other hand, a “self-detected-node-down” (SDND)

will refer to the case when a given node N is found to have lost connection

to all nodes it was previously connected to. In this case, the SDND router

would be incapable of updating any other peers in the network. Therefore, some

pre-processing must be executed to generate both of these possible node-down

signatures and stored for reference when monitoring the corresponding network.

With the capability of detecting a node-down established, the next require-

ment would be to maintain a pattern history list for the network. An addition

would be made to this list (or queue) every time there is some session state change

within the network. In this way, all patterns leading up to a node failure would

be stored for later access as training data. However, this brings to light the fi-

nal requirement: a way to specify where excactly in the queue history to look

for appropriate training data. Thus, some particular lookback variable must be

defined such that when a node-down is detected, the pattern located within the

history queue at a distance of lookback will be saved as a pre-cursor predic-

tion pattern for the given node-failure. And lastly, this solution is appropriate

for a single node going offline, but there may be multiple correlated nodes that

go down as well, say in the case that two routers are on the same power grid

during a black-out. In this special case, a different distance specifier may be de-

sired, so a correlatedLookback variable should also exist and be independently

34

configurable from the standard lookback variable.

4.2 Software Implementation Details

The Java software written for this thesis is dubbed the BGP Neural Network

Framework (BGPNNF). Moreover, note that this software is not designed with

the intention of use as a polished tool for a network administrator. Rather, the

framework software implementation presented in this section has been designed

and written for experimental purposes to prove the hypothesis of this thesis,

namely: Neural networks can interface with iBGP computer networks to learn

and utilize the precursor connectivity patterns that emerge prior to a node failure.

To present the BGPNNF, this section will present the relevant configuration

options, the backend programmatic details, and some simple user interface details.

4.2.1 The User Interface

The BGPNNF user interface (UI) is designed solely to assist in the experi-

ments for this thesis and provide a visual representation of the neural network

inputs and outputs. Therefore, the UI is rather minimal and basic, as shown in

Figure 4.6. The interface was implemented using the org.jdesktop.application-

.Application and org.jdesktop.application.Action libraries and utilizes JGraph [3]

and JGraphT [59] for the graph visualizations. Lastly, line charts are generated

through the use of JFreeChart [49].

The major features of the interface are the row of buttons across the top of

the main window, along with two network views. The network views are the

most important feature of the user interface–the one on the left displays the

35

Figure 4.6: The BGPNNF User Interface.

current network connection states (which are the inputs to the internal neural

network) whereas the view on the right side are the predicted node states (the

output from the neural network(s)). An example of these views in action are

shown in Figure 4.7. As shown, the red connections in the Current Network

view show the links that are down or Idle and the corresponding Predicted Node

States view shows which node is predicted to have issues. In terms of coloring,

all inputs/outputs of the neural network are contained within the range [0.0, 1.0].

Thus, as for color displays ranging between green (good) and red (bad) for some

given state and defining 1 to represent disconnected (0 represents established),

the color displays are therefore simply Color(state, 1 - state, 0), where the

three parameters are red, green, and blue, respectively.

With regard to the row of buttons, each one has a specific function relevant to

experimentation. Each button will be described in terms of functionality, moving

from left to right.

Traversing sequentially through the buttons displayed on the UI, the first in

36

Figure 4.7: Example distinguishing the current view from predicted.
In this case, Router 4 has lost the majority of its connections and is
therefore predicted to go completely offline by the red coloring in the
prediction panel.

question is the netChooser button. This button allows the user to select which

Expert neural network will be affected by any of the other buttons shown. As

such, this button only appears if a backend Expert neural network implementa-

tion is being run.

The next button is the “Save Neural Net” button. This button, as its name

implies, serializes the current backend neural network to a file. Upon clicking this

button, a standard JFileChooser dialog is displayed to choose the location and

file name to save the neural network, as shown in Figure 4.8. This feature is of

particular value when, after training a neural network for experimental purposes,

it can be stored and returned to at another time. Thus, complementary to the

Save button comes the next “Load Neural Net” button. This button functions

much like the Save button in that, upon clicking, a JFileChooser dialog is opened,

which allows the user to navigate to the previously saved neural network and

37

Figure 4.8: Save Dialog User Interface.

restore it, as shown in Figure 4.9.

Figure 4.9: Load Dialog User Interface.

Continuing sequentially, the following button is the “New Neural Net” button.

This button removes the internal neural network and replaces it with a newly

specified neural network. When clicked, this button opens a dialog to specify

how many nodes are to be located in the hidden layer (the input and output

layers are fixed), as shown in Figure 4.10.

38

Figure 4.10: New Neural Net User Interface.

The next button on the user interface is titled “Training File”. When clicked,

this button opens a JFileChoose dialog that allows the user to navigate to the

directory and file that contains the training data desired for training the internal

neural network. The next button “Train” utilizes the training file to train the

internal neural network. When clicked, the Train button opens a dialog as shown

in Figure 4.11. As shown in the figure, the training parameters of Learning Rate,

Momentum, and number of Iterations must be specified prior to training. Also,

a lower-bound can be set for the resulting Root Mean Squared Error (RMSE) of

the neural network through the “Desired RMSE” setting which will halt training

if the RMSE of the network drops below the specified value. This feature helps

to ensure that the neural networks do not become over-trained. Moreover, an

additional check-box is available in this panel to optionally graph the RMSE

versus iterations of the training.

The remaining three buttons are present strictly for testing and debugging

purposes. The “Change Input” button stops and starts the internal SNMP polling

mechanism. The “Save Pattern” button allows the current state of the neural

network to be saved to the current training file. Lastly, the “TEST” button

simply runs an internal test method for debugging purposes.

One final feature of the BGPNNF is a separate panel that launches on startup

39

Figure 4.11: Train Button User Interface.

entitled the “Input Test Network Display”, as shown in Figure 4.12. This UI

allows a user to manipulate the individual session states between the displayed

routers. As shown, a radio button can be selected as either “down” or “up”,

corresponding to the session state to be set as either up (established connection)

or down (idle connection). Once the radio button has been set to the desired

value, the user then clicks one router (session origin) followed by clicking a second

router (session destination). The directed session between the two machines is

then set to the value of the positioned radio button. This feature will allow for

various combinations of testing to be performed separate from when the software

is directly connected with and polling the hardware routers.

4.2.2 Relevant Configuration Options

The configuration utility of the BGPNNF parses an XML file that speci-

fies the network topology, neural network type, number of nodes in the neural

network hidden layer, and the size and lookback options for the historyQueue

40

Figure 4.12: The input test network user interface.

of pattern changes in the network. The XML parser of the BPGNNF utilizes

javax.xml.parsers.Document-Builder, javax.xml.parsers.DocumentBuilderFactory,

along with org.w3c.dom.Document, org.w3c.dom.Element, org.w3c.dom.Node,

and org.w3c.dom.NodeList. In order to elaborate upon the configuration op-

tions specifiable within the configuration file, example XML code in conjunction

with visuals will be presented.

By far, the most important configuration option for the BGPNNF is specifying

the network topology of interest. In order to specify a topology, a list of nodes

(routers) must be defined in terms of name and interface IPs with corresponding

lists of adjacent IPs. The resulting design to meet these requirements is shown in

Code Block 4.1. In this case, the router name is simply Router 1 and contains two

different interfaces with IPs 208.94.60.1 and 208.94.60.15. Within each interface

tag are adjacent tags, which represent which peer IPs can be reached from each

interface. Thus, 208.94.60.1 has one adjacent peer, namely 208.94.60.2, whereas

interface 208.94.60.15 has two peers: 208.94.60.16 and 208.94.60.20. In order

41

to actually specify a complete network topology, however, many nodes must be

defined. One example is shown in Code Block 4.2, which specifies the simple

five-node fully-connected network as shown in Figure 4.13.

1 <node name="Router 1">
2 <interface IP="208.94.60.1">
3 <adjacent IP="208.94.60.2" />
4 </interface>
5 <interface IP="208.94.60.15">
6 <adjacent IP="208.94.60.16" />
7 <adjacent IP="208.94.60.20" />
8 </interface>
9 </node>

Code Block 4.1: Example Node XML Element and Contents

With the network topology specified, the next most important configuration

option is the type of neural network architecture to use and interface with the

defined network topology. For the purposes of this thesis, the type of neural

network must be specified as either a General neural network or an Expert neural

network within the XML neuralNet element. An example of a General neural

network configuration is shown in Code Block 4.3. As shown in the example, to

choose a General neural network the expert attribute of the neuralNet element

must be set to false. Moreover, since the neural network contains a hidden layer,

the number of nodes in that layer must be specified with the hiddenNodes element

Figure 4.13: A simple fully-connected five-node network, as specified
by Code Block 4.2.

42

and the number of nodes set to the num attribute. Lastly, the training data for

the neural network is stored within an external text file, so the external file is

specified within the trainingData element under the file attribute. In this

example, the training file is simply set to “trainingData.txt”.

On the other hand, an Expert neural network configuration is shown in Code

Block 4.4. In the Expert case, the expert attribute is now set to true, but

the biggest differentiating characteristic from the General neural network con-

1 <node name="Router 1">
2 <interface IP="208.94.60.1">
3 <adjacent IP="208.94.60.2" />
4 <adjacent IP="208.94.60.3" />
5 <adjacent IP="208.94.60.4" />
6 <adjacent IP="208.94.60.5" />
7 </interface>
8 </node>
9 <node name="Router 2">

10 <interface IP="208.94.60.2">
11 <adjacent IP="208.94.60.1" />
12 <adjacent IP="208.94.60.3" />
13 <adjacent IP="208.94.60.4" />
14 <adjacent IP="208.94.60.5" />
15 </interface>
16 </node>
17 <node name="Router 3">
18 <interface IP="208.94.60.3">
19 <adjacent IP="208.94.60.1" />
20 <adjacent IP="208.94.60.2" />
21 <adjacent IP="208.94.60.4" />
22 <adjacent IP="208.94.60.5" />
23 </interface>
24 </node>
25 <node name="Router 4">
26 <interface IP="208.94.60.4">
27 <adjacent IP="208.94.60.1" />
28 <adjacent IP="208.94.60.2" />
29 <adjacent IP="208.94.60.3" />
30 <adjacent IP="208.94.60.5" />
31 </interface>
32 </node>
33 <node name="Router 5">
34 <interface IP="208.94.60.5">
35 <adjacent IP="208.94.60.1" />
36 <adjacent IP="208.94.60.2" />
37 <adjacent IP="208.94.60.3" />
38 <adjacent IP="208.94.60.4" />
39 </interface>
40 </node>

Code Block 4.2: Example Router Configuration

43

figuration is the specification of training data files. In the General case, only

one training file was specified since there is only a single neural network. In

the case of the Experts, alternatively, since there is one expert per node in the

network, there must be one training file per node. The trainingData element

is utilized once again, but the router element is now utilized to specify which

training file correponds to which router, therefore assigning the file to the neural

network responsible for the given router. For example, in the case of the first

trainingData element, the neural network responsible for Router 1 would use

the expertData1.txt training file.

1 <neuralNet expert="false">
2 <hiddenNodes num="12" />
3 <trainingData file="trainingData.txt" />
4 </neuralNet>

Code Block 4.3: Example neuralNet Element for Configuring a General

Neural Network

1 <neuralNet expert="true">
2 <hiddenNodes num="20" />
3 <trainingData router="Router 1" file="expertData1.txt" />
4 <trainingData router="Router 2" file="expertData2.txt" />
5 <trainingData router="Router 3" file="expertData3.txt" />
6 <trainingData router="Router 4" file="expertData4.txt" />
7 <trainingData router="Router 5" file="expertData5.txt" />
8 </neuralNet>

Code Block 4.4: Example neuralNet Element for Configuring an Ex-

pert Neural Network

The last configuration options of interest are the settings associated with

the historyQueue. A sample configuration is shown in Code Block 4.5. The

three configurable settings are as follows: 1) the size of the queue (essentially

the length of the sliding-window of retained history), 2) the length of lookback

for a single node down, and 3) the length of correlatedLookback for multiple

44

nodes down. As shown in the example, the size of the queue is set using the

size attribute in the historyQueue element. The second configuration is the

lookback number, which, when a node-down is detected, specifies how far back

in the queue to look for the pre-cursor pattern to use as training data for the

neural network. Again, as shown in the example, this is specified by setting the

lookback attribute in the historyQueue element. Lastly, when multiple nodes

go down, a different lookback history may be desired, which can be specified by

setting the correlatedLookback attribute, which is set to 4 in the example.

1 <historyQueue size="10" lookback="2" correlatedLookback="4"/>

Code Block 4.5: Example Configuration of the historyQueue

4.2.3 Backend Programmatic Details

The primary points of interest for the backend implementation consist of initi-

ating the SNMP polling mechanism, creating the signature strings for detecting a

node-down, initializing the historyQueue, constructing the neural network from

the configuration file, and instantiating the CoreModel. The descriptions will

follow in line with the high-level flow diagram as shown in Figure 4.14.

Creating the SNMP Poller

The SNMP Poller modual utilizes the Java SNMP4j [28] library to sequen-

tially poll each router, as specified in the configuration file. So, the only required

information is a list of nodes to poll and this is accomplished through a list

of custom NodeInfo objects. The primary components of a NodeInfo object

are shown in Code Block 4.6. As shown in the code, the String name repre-

45

Figure 4.14: The BGPNNF Flow Diagram.

sents the name of the router. The String[] interfaceIPs represent the list

of interfaces, ie ethernet ports, by IP on the named router. Lastly, each of the

String IP addresses located within the interfaceIPs array serve as a key in the

HashMap<String,String[]> adjacent map, and the corresponding value is an-

other String array comprised of all the external IPs that this router is connected

to.

1 private String name;
2 private String[] interfaceIPs;
3 private HashMap<String, String[]> adjacent;

Code Block 4.6: NodeInfo Private Variables.

Once the NodeInfo list is built, then polling can commence when the “ChangeIn-

put” button on the UI is clicked. Polling is conducted as shown in Code Block

46

4.7.

1 private boolean poll; //boolean value for continuous polling
2 while(poll)
3 {
4 for (int i = 0; i < nodes.length; i++)
5 {
6 String[] interfaceIPs = nodes[i].getInterfaceIPs();
7 for (int j = 0; j < interfaceIPs.length; j++) {
8

9 String[] adjacentIPs = nodes[i].getInterfaces().get(interfaceIPs[j]);
10 for (int k = 0; k < adjacentIPs.length; k++) {
11

12 nodeState = pinger.snmpGet(interfaceIPs[j], bgpSNMP.READ_COMMUNITY,
13 bgpSNMP.OID_BGP_PEER_STATE + adjacentIPs[k]);
14

15 //update the CoreModel
16 //’6’ corresponds to Established
17 if (nodeState.equals("6")) {
18 model.update(interfaceIPs[j], adjacentIPs[k], 0);
19 }
20 //If not established, then the session is considered down
21 else {
22 model.update(interfaceIPs[j], adjacentIPs[k], 1);
23 }
24 }
25 }
26 }
27 }

Code Block 4.7: SNMP Poller Main Loop.

Creating the Node-Down Detection Signature Strings

Creating the node-down detection signature strings is the last pre-processing

that takes place prior to the start of SNMP polling. This requires only the

NodeInfo array and every possible EDND and SDND pattern is recorded into

the nodeDownPatternList private variable of the CoreModel, as shown in Code

Block 4.8. These signatures are then utilized during each update if the matrix

has changed. If there is a change, the nodeDownCheck() method is called, which

is shown in Code Block 4.9. Note that the goal of nodeDownCheck() is to de-

termine if the current matrix pattern is a subset of any of the strings in the

nodeDownPatternList. This ensures that a node will be detected as down in

47

spite of other noise in the network.

History Queue

The private OQueue historyQueue of the CoreModel is a fairly standard

queue that maintains a finite interval of history, as specified in the configuration

file. In addition to the normal enqueue(double[] matrix) and peak() methods

is the lookback(int distance) method, as shown in Code Block 4.10. This

method provides the capability of procuring a matrix pattern from a specified

distance in the queue’s retained history. Also, one distinguishing characteristic

of this particular queue is that no dequeue() method is ever called–it simply

keeps a finite ordered list of network pattern history. Thus, whenever a pattern

is enqueued that causes the queue to grow larger than the maximum size (as

specified in the configuration file), the oldest pattern is removed and the new

pattern is appended to the head of the queue.

Building the Neural Network

In order to build a neural network, first the network topology must be gathered

out of the configuration file and stored in a NodeInfo data structure. The software

used to build and train the neural networks in this thesis is the Java Object

Oriented Neural Engine (JOONE) [53].

Once a full NodeInfo list is generated, the configuration utility can conclude

the number of nodes within the network simply by the length of the NodeInfo

list and also infers the number of total connections within the network based

upon the total number of entries within the String[] of the adjacent vari-

able. These values are used to construct the neural network since the num-

48

1 public void createNodeDownList()
2 {
3 nodeDownPatternList = new ArrayList<double[]>();
4 ArrayList<Integer> linkList = new ArrayList<Integer>();
5

6 //Loop for SDND patterns
7 for (int i = 0; i < nodes.length; i++) {
8 String[] interfaceIPs = nodes[i].getInterfaceIPs();
9 for (int j = 0; j < interfaceIPs.length; j++) {

10 String[] adjacentIPs = nodes[i].getInterfaces().get(interfaceIPs[j]);
11 for (int k = 0; k < adjacentIPs.length; k++) {
12 linkList.add(ipMap.get(interfaceIPs[j] + adjacentIPs[k]));
13 }
14 }
15

16 //transform the list of links
17 double[] pattern = new double[matrix.length];
18 for (int a = 0; a < pattern.length; a++) {
19 pattern[a] = 0.0;
20 }
21 for (Integer idx : linkList) {
22 pattern[idx] = 1.0;
23 }
24 nodeDownPatternList.add(pattern);
25 linkList.clear();
26 }
27

28 //Loop for EDND patterns
29 for (int i = 0; i < nodes.length; i++) {
30 String[] interfaceIPs1 = nodes[i].getInterfaceIPs();
31 for (int j = 0; j < interfaceIPs1.length; j++) {
32 for (int l = 0; l < nodes.length; l++) {
33 String[] interfaceIPs2 = nodes[l].getInterfaceIPs();
34 for (int m = 0; m < interfaceIPs2.length; m++) {
35 String[] adjacentIPs = nodes[l].getInterfaces().get(interfaceIPs2[m]);
36 for (int k = 0; k < adjacentIPs.length; k++) {
37 if (adjacentIPs[k].equals(interfaceIPs1[j])) {
38 linkList.add(nameMap.get(interfaceIPs2[j] + adjacentIPs[k]));
39 }
40 }
41 }
42 }
43 }
44

45 //transform the list of links
46 double[] pattern = new double[matrix.length];
47 for (int a = 0; a < pattern.length; a++)
48 {
49 pattern[a] = 0.0;
50 }
51 for (Integer idx : linkList)
52 {
53 pattern[idx] = 1.0;
54 }
55 nodeDownPatternList.add(pattern);
56 linkList.clear();
57 }
58 }

Code Block 4.8: The createNodeDownList Method

49

1 private ArrayList<String> nodeDownCheck() {
2 // boolean returnVal = false;
3 ArrayList<String> names = new ArrayList<String>();
4

5 for (double[] d : nodeDownPatternList)
6 {
7 for (int i = 0 ; i < matrix.length; i++)
8 {
9 if (d[i] == 1.0 && matrix[i] != 1.0) //not detecting a node down

10 {
11 break;
12 }
13 if (i == (matrix.length - 1)) //node down detected
14 {
15 //add name to the list
16 names.add(patternToName.get(arrayToString(d)));
17 }
18 }
19 }
20 return names;
21 }

Code Block 4.9: The nodeDownCheck Method

1 public double[] lookback(int distance)
2 {
3 Node temp = head;
4 for (int i = 0; i < lookback; i++)
5 {
6 temp = temp.next;
7 }
8

9 return temp.element;
10 }

Code Block 4.10: The OQueue’s lookback Method

50

ber of total connections equates to the number of inputs to the neural net-

work and the number of nodes in the network topology is equal to the num-

ber of outputs in the neural network. These values are used as the parameters

for the initNet(int inputNum, int hiddenNum, int outputNum) method of

a CustomNeuralNetwork.java class, as shown in Code Block 4.11.

1 public void initNet(int inputNum, int hiddenNum, int outputNum) {
2 nnet = new NeuralNet(); // create a new Joone Neural Network
3 unTrained = true;
4 this.inputNum = inputNum;
5 this.outputNum = outputNum;
6

7 input = new LinearLayer();
8 SigmoidLayer hidden = new SigmoidLayer();
9 output = new SigmoidLayer();

10

11 input.setRows(inputNum);
12 hidden.setRows(hiddenNum);
13 output.setRows(outputNum);
14

15 /* From input layer to the hidden layer */
16 FullSynapse synapse_IH = new FullSynapse();
17

18 /* From the hidden layer to the output layer */
19 FullSynapse synapse_HO = new FullSynapse();
20

21 input.addOutputSynapse(synapse_IH);
22 hidden.addInputSynapse(synapse_IH);
23 hidden.addOutputSynapse(synapse_HO);
24 output.addInputSynapse(synapse_HO);
25

26 /* Add all of the layers */
27 nnet.addLayer(input, NeuralNet.INPUT_LAYER);
28 nnet.addLayer(hidden, NeuralNet.HIDDEN_LAYER);
29 nnet.addLayer(output, NeuralNet.OUTPUT_LAYER);
30 }

Code Block 4.11: The initNeuralNet Method

In order to train a neural network with JOONE, the input and output data

must be stored either in memory or within a simple text file. Due to the nu-

merous experiments conducted for this thesis, training data is stored in text files

for the purpose of simple retention between runs and experiments. To show the

required formats and describe how Joone utilizes the external training data, con-

sider the following simple XOR example, as shown in Figure 4.15. In order to

train this network with the desired XOR functionality as shown in Table 4.1,

51

Figure 4.15: A standard XOR Neural Network architecture, as shown
in [52].

the corresponding training data must be formatted as shown in Code Block 4.12.

As shown in the Code Block, the training data format are semicolon-delimited

double values where the inputs are listed sequentially and correspond to each

input to the neural network, followed by the desired outputs. Also, one training

pattern appears per line. Thus, when this neural network is constructed progra-

matically, it can then be trained via the back-propagation algorithm built within

Joone utilizing the training data file.

Input 1 Input 2 Desired Output

0 0 0

0 1 1

1 0 1

1 1 0

Table 4.1: XOR truth table

1 0.0;0.0;0.0
2 0.0;1.0;1.0
3 1.0;0.0;1.0
4 1.0;1.0;0.0

Code Block 4.12: The XOR Training Data

52

Initiating the Core Model

The CoreModel contains the neural network object and interfaces with the

SNMP poller modual, as shown in Figure 4.14. The primary components of

the CoreModel are the internal variables: CustomNeuralNet[] nnet, double[]

matrix, ArrayList<double[]> nodeDownPatternList, private OQueue

historyQueue and HashMap<String, Integer> ipMap. First off, the nnet array

is simply a list of the custom neural networks, as initialized in the configuration.

If the configuration is for a General neural network, then this array is only of

length 1. However, in an Expert implementation the length of the array is then

equal to the number of nodes in the specified BGP network topology. Next,

the matrix represents the adjacency matrix of the high-level design–the interface

from the BGP network to the neural network inputs. Thus, the length of this

matrix array is equal to the total number of connections in the specified BGP

network configuration and the value in each index represents a numeric equivalent

to the session state between two peers. In the case of the extremes, an Idle

(disconnected) state is represented by a 1 whereas an Established (connected)

state is represented by a 0. Both the historyQueue and nodeDownPatternList

have been described in prior subsections. The ipMap contains a mapping of all

the connections (from one interface IP of a router to the connecting interface IP

of another), and is instantiated as shown in Code Block 4.13.

The ipMap does come with one assumption for the hash function to work

appropriately, as follows: Let the set of all IP interfaces in a configuration file be

IPs and let ‘·’ represent concatenation, ∀ ip1, ip2 ∈ IPs where ip1 6= ip2, then

ip1·ip2 6= ip2·ip1. This assumption assures the uniqueness of each hash key and

is considered an acceptable assumption for the purposes of this thesis.

53

1 private HashMap<String, Integer> ipMap;
2

3 public void createIPMap(NodeInfo[] nodes)
4 {
5 nodes; // A populated array of NodeInfo objects
6 int indexNumber = 0; // Index in the model matrix array
7 for (int i = 0; i < nodes.length; i++)
8 {
9 String[] interfaceIPs = nodes[i].getInterfaceIPs();

10 for (int j = 0; j < interfaceIPs.length; j++)
11 {
12 String[] adjacentIPs = nodes[i].getInterfaces().get(interfaceIPs[j]);
13 for (int k = 0; k < adjacentIPs.length; k++)
14 {
15 // The IP from the router’s interface to the adjacent peer is mapped
16 // to the index of indexNumber in the CoreModel’s matrix array
17 ipMap.put(interfaceIPs[j] + adjacentIPs[k], indexNumber);
18 indexNumber++;
19 }
20 }
21 }
22 }

Code Block 4.13: Creating the IP Map for the CoreModel’s Internal

Matrix

With the CoreModel instantiated, it can now handle updates from the SNMP

Poller module as shown in Code Block 4.14. This function is really the heart of

the BGPNNF and will therefore be assessed with additional scrutiny. Traversing

sequentially through the code, line 8 updates the internal matrix on the current

state of the session between the two IP addresses from the parameters of the

method. Line 11 checks if this update has changed the network connectivity

and, if so, the new pattern is saved to the historyQueue on line 13. With a

state change within the network, lines 16-27 determine whether a General or

Expert neural network is being utilized and extracts the output pattern into the

netOutput array. Next, on line 30, the nodeDownCheck() method is called, which

returns a list of nodes that are considered down. Lines 33-41 decide whether

one or more nodes are down–if more than one node is down, then the recorded

pattern is taken from a distance of CORRELATED_LOOKBACK in the historyQueue,

otherwise a distance of LOOKBACK is used. The makeStringPattern(double[],

54

ArrayList<String>) method can be seen Code Block 4.15 , and simply takes

the double[] array and creates a formatted string to write to the current neural

network’s training file. Lastly, the UI is updated–line 44 updates the current

network UI whereas line 47 utilizes the netOutput values to update the predicted

network UI.

55

1 private networkView predictedNW; //Visual predicted network graph UI
2

3 public void update(String ipFrom, String ipTo, double val)
4 {
5 double[] netOutput; //output from the neural network(s)
6

7 //update the matrix
8 matrix[nameMap.get(ipFrom + ipTo)] = val;
9

10 //add the pattern to the queue history if there has been a state change
11 if (!equals(matrix, historyQueue.peak()))
12 {
13 historyQueue.enqueue(matrix.clone());
14

15 //check for experts here
16 if (nnet.length == 1) //not an expert..
17 {
18 netOutput = nnet[0].interrogate(matrix);
19 }
20 else //expert
21 {
22 netOutput = new double[nnet.length];
23 for (int i = 0; i < nnet.length; i++)
24 {
25 netOutput[i] = nnet[i].interrogate(getMatrixSig())[0];
26 }
27 }
28

29 //see if anything is down
30 names = nodeDownCheck();
31 if (!names.isEmpty())
32 {
33 //check for multiple nodes down
34 if (names.size() > 1)
35 {
36 makeStringPattern(historyQueue.lookback(CORRELATED_LOOKBACK), names);
37 }
38 else //single node down
39 {
40 makeStringPattern(historyQueue.lookback(LOOKBACK), names);
41 }
42 }
43 //change UI current network edge display
44 currentNW.setEdgeState(ipFrom, ipTo, (float)val);
45

46 //update the UI predicted nw display
47 predictedNW.setPredictions(netOutput);
48 }
49 }

Code Block 4.14: CoreModel Update Method.

56

1 public void makeStrPattern(double[] pattern, ArrayList<String> names)
2 {
3 String str = "";
4 int[] indices; //indices to which outputs of the neural network should be 1
5

6 indices = new int[names.size()];
7 //save indicies
8 for (int i=0; i < indices.length; i++)
9 {

10 indices[i] = outputNodes.get(names.get(i));
11 }
12

13 //create the pattern to write to file
14 for (double d: pattern)
15 {
16 str += d + ";";
17 }
18

19 if (nnet.length == 1) //general neural network
20 {
21 for (int i = 0; i < outputNodes.size(); i++)
22 {
23 if (!arrayContains(indices, i))
24 {
25 str += "0.0;";
26 }
27 else
28 {
29 str +="1.0;";
30 }
31 }
32 //end the string with a newline
33 str = str.substring(0,str.length() - 1) + "\n";
34

35 //The general neural network is always index 0
36 nnet[0].updateTrainingFile(str);
37 }
38 else
39 {
40 for (int i = 0; i < nnet.length; i++)
41 {
42 if (!arrayContains(indices, i))
43 {
44 nnet[i].updateTrainingFile((str + "0.0\n"));
45 }
46 else
47 {
48 nnet[i].updateTrainingFile((str + "1.0\n"));
49 }
50 }
51 }
52 }

Code Block 4.15: CoreModel makeStringPattern Method.

57

Chapter 5

Experiments

This chapter will detail the exact experiments conducted utilizing the BG-

PNNF.

5.1 Test Suite

The following set of tests will be performed for each network topology:

1. Node-down detection for each node in the network.

2. Numerous connections lost for a single node as a prediction of a node-down

state.

3. Predictive correlated nodes-down. For example, if two nodes are always

seen to go offline together, then detecting one going down should supply a

higher weight for predicting the second.

These test cases are representative in the problem domain of a router going

offline. From a network administrator’s perspective, the bare-minimum desired

58

functionality of a network monitoring tool would be to at least detect when a

node is down (test 1). However, even more beneficial would be a tool that can

infer or predict when a node is about to encounter problems by assessing current

conditions (test 2). Even further, if problems with one machine has been directly

correlated with another in the past, then a tool that would remember such cases

and alert on that repeated possibility would also be of high value (test 3).

Each of these cases will be conducted with first one General neural network

and followed with an Expert neural network implementation. Additionally, the

number of required patterns to train each neural network will be documented

along with the learning rate and momentum backpropagation coefficients, the

number of iterations of training, and the required training time. The hardware

used for training is documented in Appendix A.

5.2 Experimental Network 1

The first experiment was conducted on a small fully-connected BGP network,

as shown in Figure 5.1. This network was constructed in Cal Poly’s Cisco Net-

works lab and the BGPNNF was connected to it via a hub. Once the network was

constructed, BGP speakers were disconnected from the network, simulating either

an EDND or an SDND, depending upon the location of the BGP SNMP poller.

In this way, patterns were detected for nodes going down and saved to the neural

network training file(s). The lookback and correlatedLookback variables were

set to 1 and 2 respectively.

Before assessing the General neural network and Expert neural network im-

plementations, Figure 5.2 shows exemplary patterns memorized by the neural

network(s) for both cases of EDND and SDND.

59

Figure 5.1: The first experimental network for this thesis.

(a) SDND Pattern for Router 5 (b) EDND Pattern for Router 1

Figure 5.2: Examples of the two types of patterns memorized for each
Router in the network.

60

In addition to learning standard patterns for each individual machine, one

additional pattern was memorized for a correlation when one machine going down

is a precursor for another machine to encounter issues. The particular pattern

memorized is shown in Figure 5.3. The reason this pattern has been memorized

is due to Router 4 going offline shortly after (thereby triggering the distance of

history to be recorded correlatedLookback).

Figure 5.3: Pattern memorized for correlated routers down. Router 3
has SDND and Router 4 has lost connection to Router 1.

5.2.1 General Neural Network Implementation

In the case of the General neural network, a total of twelve different precon-

ditional node-down patterns were collected for training data–an EDND and an

SDND for each node in the network, one all-green pattern (all sessions established

with all nodes up), and the correlated pattern. The neural network contains a

hidden layer of 20 nodes and was then trained for 1000 iterations with a momen-

tum coefficient of 0.2 with a resulting RMSE of 0.0369 or 3.69%, having taken

1.19 seconds. A graph of the RMSE as compared with the training iterations can

be seen in Figure 5.4.

With training data acquired and training finished, the test suite experiments

61

Figure 5.4: Training the General neural network for the first experi-
mental network, as shown in Figure 5.1.

62

can now be conducted. The EDND and SDND test cases for each individual node

are presented with an accompanying exemplary picture for clarity.

Ideally, when a router goes down the corresponding neural network output

for that particular router should be as close to 1 as possible. All other routers

experiencing no connection-loss issues (at least in addition to the connection lost

to the router down), should be as close to 0 as possible to signify no problems.

The first patterns to be assessed will be the SDND cases for each router–an

exemplary visual of an SDND can be seen in Figure 5.5. In terms of the SDND

cases shown in Table 5.1, the worst performing router case is with Router 5,

whose neural network output is at 0.931%–6.9% from ideal. The best performer,

on the other hand, is Router 3 whose neural network output is 0.994, only 0.6%

error. The range is thus 0.6% to 6.9% in this test case. With regard to the routers

that should not be affected, the hightest output was Router 4 with 0.0634 (6.34%

error). As in the case of the EDND, this is also acceptable since Router 3 and

Router 4 are the correlated case.

Router SDND Neural Network Output by Router

Router 1 Router 2 Router 3 Router 4 Router 5

Router 1 0.943 0.00382 0.00816 0.00371 0.0359

Router 2 0.0118 0.946 0.00143 0.00415 0.0789

Router 3 0.00564 0.00389 0.994 0.0634 0.00962

Router 4 0.0160 0.0131 0.0311 0.978 0.000609

Router 5 0.00348 0.00784 0.0181 0.00285 0.931

Table 5.1: Experiment 1 trained General neural network output for
router SDND.

The next patterns to be assessed will be the EDND cases for each router–an

63

Figure 5.5: An example of SDND for Router 5.

exemplary visual of an EDND can be seen in Figure 5.6. In terms of the EDND

cases shown in Table 5.2, the worst performing router case is with Router 1, whose

neural network output is at 0.942–5.8% from the ideal. The best performer, on

the other hand, is Router 4, whose neural network output is 0.987, only a 1.3%

error. Thus, a range from 1.3% to 5.8% error is present within this test case.

As for routers that should not be affected, the highest output was 0.249 (24.9%

error) for Router 3 during the case of Router 4 going down. This is acceptable,

however, since Router 3 and Router 4 are the correlated case.

The final patterns to be assessed are for routers going completely down–a

visual of one such case is shown in Figure 5.7. For the case of routers completely

down as shown in Table 5.3, the worst performing router case is Router 1 with

neural network output of 0.994, 0.6% error. The best performing is Router 3

with 0.999, only 0.1% error. In terms of the routers that should not be affected,

the highest output was for Router 3 at 0.173–17.3%. Mirroring both EDND and

64

Figure 5.6: An example of EDND for Router 1.

Router EDND Neural Network Output by Router

Router 1 Router 2 Router 3 Router 4 Router 5

Router 1 0.942 0.00406 0.00723 0.00892 0.0411

Router 2 0.0273 0.954 0.00270 0.0106 0.0118

Router 3 0.00684 0.0147 0.953 0.00842 0.0159

Router 4 0.00490 0.00795 0.249 0.987 0.000865

Router 5 0.00643 0.00580 0.0142 0.00164 0.969

Table 5.2: Experiment 1 trained General neural network output for
router EDND.

65

Figure 5.7: An example of Router 1 being completely down.

SDND, this is, once again, acceptable since it is the correlated case.

To show how the neural network smoothes out and dynamically determines

which node is having issues based upon previously learned patterns, consider the

sequence as shown in Figure 5.8 and Figure 5.9. And lastly, Figure 5.10 shows

the capability of the neural network to make the correlated prediction.

5.2.2 Expert Neural Network Implementation

The same training data has been utilized for the Expert neural networks.

Each of the experts were trained for 1000 iterations with 0.2 momentum and 0.2

learning rate. The graphs of RMSE vs. iteration are shown in Figure 5.11.

In terms of the SDND cases shown in Table 5.4, the worst performing router

case is with Router 4, whose neural network output is at 0.981%–1.9% from

ideal. The best performer, on the other hand, is a tie between Routers 1, 2, and

66

(a) First link down (b) Second link down

(c) Third link down

Sequence Neural Net Output by Router

Router 1 Router 2 Router 3 Router 4 Router 5

(a) 0.285 0.288 0.00382 0.00186 0.0334

(b) 0.768 0.0363 0.0374 0.00126 0.0164

(c) 0.964 0.00692 0.0106 0.0192 0.00450

(d) Neural Network Outputs

Figure 5.8: Experiment 1 example of EDND sequence and correspond-
ing General neural network output starting with (a), then (b), and then
(c).

67

(a) First link down (b) Second link down

(c) Third link down

Sequence Neural Net Output by Router

Router 1 Router 2 Router 3 Router 4 Router 5

(a) 0.0395 0.0109 0.00928 0.00576 0.489

(b) 0.0243 0.0921 0.00146 0.000635 0.876

(c) 0.00862 0.0219 0.0151 0.000322 0.925

(d) Neural Network Outputs

Figure 5.9: Experiment 1 example of SDND sequence and correspond-
ing General neural network output starting with (a), then (b), and
then (c).

68

(a) Router 3 SDND (b) Router 4 lost one link

(c) Router 4 lost two links

Sequence Neural Net Output by Router

Router 1 Router 2 Router 3 Router 4 Router 5

(a) 0.00564 0.00389 0.994 0.0634 0.00962

(b) 0.0347 0.000559 0.984 0.674 0.00317

(c) 0.00836 0.00253 0.970 0.960 0.000641

(d) Neural Network Outputs

Figure 5.10: Experiment 1 example of correlated sequence and corre-
sponding General neural network output starting with (a), then (b),
and then (c).

69

(a) Expert 1 (b) Expert 2

(c) Expert 3 (d) Expert 4

(e) Expert 5

Expert 1 Expert 2 Expert 3 Expert 4 Expert 5

RMSE 0.0131 0.0130 0.0135 0.0139 0.0128

Time (seconds) 0.897 0.757 0.756 0.785 0.778

(f) Ending RMSE Values

Figure 5.11: Experiment 1 RMSE vs. iterations for each Expert neural
network.

70

Router Completely Down Neural Network Output by Router

Router 1 Router 2 Router 3 Router 4 Router 5

Router 1 0.994 0.00259 0.00581 0.00477 0.0308

Router 2 0.0124 0.996 0.00108 0.00726 0.0218

Router 3 0.00580 0.00244 0.999 0.0209 0.00725

Router 4 0.00292 0.0117 0.173 0.998 0.000171

Router 5 0.00251 0.00337 0.0133 0.000495 0.997

Table 5.3: Experiment 1 trained General neural network output for
router completely down.

5 whose neural network output are 0.997, only 0.3% error from ideal. The range

is thus 0.3% to 1.9% in this test case. With regard to the routers that should

not be affected, the hightest output was Router 5 with 0.115 (11.5% error). This

particular error has no satisfactory explanation.

In the case of the EDND cases shown in Table 5.5, the worst performing

router case is with Router 3, whose neural network output is at 0.955–4.5% from

the ideal. The best performer, on the other hand, is Router 5, whose neural

network output is 0.966, a 3.4% error. Thus, a range from 3.4% to 4.5% error

is present within this test case. As for routers that should not be affected, the

highest output was 0.067 (24.9% error) for Router 3 during the case of Router

4 going down. This is acceptable, however, since Router 3 and Router 4 are the

correlated case.

Lastly, for the case of routers completely down as shown in Table 5.6, the

worst performing router case is Router 1 with neural network output of 0.996,

0.4% error. The best performing is Router 4 with 0.999, only 0.1% error. Thus,

the error range for this test is 0.1% to 0.4%. In terms of the routers that should

71

Router SDND Neural Network Output by Router

Router 1 Router 2 Router 3 Router 4 Router 5

Router 1 0.997 0.00230 0.00179 0.00295 0.0580

Router 2 0.00259 0.997 0.000539 0.00564 0.115

Router 3 0.0112 0.00636 0.992 0.0693 0.0917

Router 4 0.00940 0.0104 0.0129 0.981 0.00238

Router 5 0.000467 0.000458 0.00305 0.0190 0.997

Table 5.4: Experiment 1 trained Expert neural network output for
router SDND.

Router EDND Neural Network Output by Router

Router 1 Router 2 Router 3 Router 4 Router 5

Router 1 0.963 0.00631 0.00379 0.00632 0.0606

Router 2 0.00630 0.956 0.00367 0.00816 0.0685

Router 3 0.00394 0.00599 0.955 0.0477 0.00888

Router 4 0.00520 0.00405 0.0637 0.965 0.00535

Router 5 0.00656 0.00616 0.00555 0.00440 0.966

Table 5.5: Experiment 1 trained Expert neural network output for
router EDND.

72

Router Completely Down Neural Network Output by Router

Router 1 Router 2 Router 3 Router 4 Router 5

Router 1 0.996 0.00301 0.00159 0.00413 0.0339

Router 2 0.00397 0.998 0.000314 0.00576 0.0755

Router 3 0.00213 0.00253 0.998 0.00243 0.0186

Router 4 0.00217 0.00238 0.0192 0.999 0.000346

Router 5 0.000545 0.000790 0.00319 0.0193 0.997

Table 5.6: Experiment 1 trained Expert neural network output for
router completely down.

not be affected, the highest output was for Router 5 during the case of Router 2

being completely offline with neural network output of 0.0755 or 7.55%.

To show how the neural networks smooth out and dynamically predict and

determine which node is having issues based upon previously learned patterns,

consider the sequence as shown in Figure 5.12 and Figure 5.13. And lastly,

Figure 5.14 shows the capability of the neural networks to make the correlated

prediction.

5.3 Experimental Network 2

This experiment will assess a large fully-connected BGP network, representa-

tive of the two smaller ISPs shown in Table 3.1. A visual of the fully-connected

40-node network topology can be seen in Figure 5.15.

For this experiment, data was collected manually (offline from a physical

BGP network) to simulate a 40-node network. So, even though this is contrived

73

(a) First link down (b) Second link down

(c) Third link down

Sequence Neural Net Output by Router

Router 1 Router 2 Router 3 Router 4 Router 5

(a) 0.278 0.351 0.00889 0.00148 0.0177

(b) 0.812 0.0730 0.0842 0.000620 0.00833

(c) 0.967 0.00952 0.0136 0.0124 0.00358

(d) Neural Network Outputs

Figure 5.12: Experiment 1 example of EDND sequence and corre-
sponding Expert neural network output starting with (a), then (b),
and then (c).

74

(a) First link down (b) Second link down

(c) Third link down

Sequence Neural Net Output by Router

Router 1 Router 2 Router 3 Router 4 Router 5

(a) 0.0194 0.0159 0.00646 0.0100 0.417

(b) 0.0121 0.0128 0.00173 0.00547 0.902

(c) 0.00356 0.00440 0.0176 0.00354 0.967

(d) Neural Network Outputs

Figure 5.13: Experiment 1 example of SDND sequence and corre-
sponding Expert neural network output starting with (a), then (b),
and then (c).

75

(a) Router 3 SDND (b) Router 4 lost one link

(c) Router 4 lost two links

Sequence Neural Net Output by Router

Router 1 Router 2 Router 3 Router 4 Router 5

(a) 0.0112 0.00636 0.992 0.0693 0.0917

(b) 0.124 0.00100 0.986 0.677 0.0477

(c) 0.0187 0.00788 0.975 0.971 0.0205

(d) Neural Network Outputs

Figure 5.14: Experiment 1 example of correlated sequence and cor-
responding Expert neural network output starting with (a), then (b),
and then (c).

76

Figure 5.15: Fully connected 40-node BGP network for Experiment 2.

77

experimental data, care was taken to ensure that it is representative of patterns

seen in lab within the smaller networks and previous experiment. Moreover,

though this data may not be perfectly representative of that which would be

collected in-lab, the point of this experiment is to prove the scalability of the

neural network approach proposed in this thesis.

As in the first experiment, two patterns were saved per router–one represent-

ing an SDND and one of an EDND. Additionally, one correlated node-down pat-

tern was saved, namely router 21 being a predictor for router 22. The lookback

and correlatedLookback variables were set to 10 and 30 respectively.

5.3.1 General Neural Network

For the General neural network implementation, a total of 82 different pat-

terns were collected for training purposes–an EDND and an SDND for each node

in the network, one all-green pattern (all sessions established with all nodes up),

and the correlated pattern. The neural network contains a hidden layer of 1560

nodes and an output layer of forty output nodes. The first training attempt was

conducted for 1000 iterations with a training rate of 0.2 and momentum of 0.2,

but the resulting RMSE was well over 0.364 or 36.4%, having taken 17,363,629

milliseconds (4.82 hours). A graph of the RMSE as compared with the training

iterations can be seen in Figure 5.16. Clearly, this resulting error highlights the

fact that the neural network was incapable of learning all of the desired patterns

to an acceptable degree of accuracy.

Assessing the chaotic nature of the graph as shown in Figure 5.16, the learn-

ing rate and momentum coefficients seem to be set too high for such a massive

error surface. Training was then retried on a new neural network with the same

78

Figure 5.16: Failed training of the General neural network.

architecture for 1000 iterations but with a momentum coefficient and learning

rate both set to 0.1, which had a resulting RMSE of 0.0112 or 1.12%, having

taken 21,241,152 milliseconds (5.9 hours). A graph of the RMSE as compared

with the training iterations can be seen in Figure 5.17. As shown by the resulting

RMSE, this neural network was successful in learning the desired patterns and

the resulting accuracy of this neural network can now be assessed.

In the case of the SDND cases shown in Table 5.7, the worst performing

router case is with Router 30, whose neural network output is at 0.974–2.6%

from the ideal. The best performer, on the other hand, is Router 21, whose

neural network output is 0.996, only a 0.4% error. Thus, a range from 0.4%

to 2.6% error is present within this test case for the routers of interest. As for

routers that should not be affected, the highest output was 0.190 (19.0% error),

79

Figure 5.17: Succcessful training of the General neural network used
for Experiment 2.

80

Router SDND Neural Network Output by Router

Router of Interest Next highest Lowest

Router 1 0.989 0.00317 0.000181

Router 2 0.977 0.00701 0.000232

Router 3 0.984 0.00478 0.000123

Router 4 0.990 0.00502 0.0000265

Router 5 0.977 0.00539 0.0000933

Router 6 0.987 0.00662 0.0000785

Router 7 0.982 0.00562 0.0000713

Router 8 0.987 0.00386 0.0000116

Router 9 0.990 0.00646 0.000145

Router 10 0.979 0.00599 0.0000233

Router 11 0.989 0.0104 0.0000268

Router 12 0.983 0.00828 0.0000453

Router 13 0.973 0.0105 0.0000905

Router 14 0.988 0.00395 0.0000216

Router 15 0.988 0.00470 0.0000994

Router 16 0.986 0.00553 0.000101

Router 17 0.990 0.00633 0.0000446

Router 18 0.978 0.00776 0.0000229

Router 19 0.983 0.00430 0.0000607

Router 20 0.988 0.00557 0.000154

Router SDND Neural Network Output by Router

Router of Interest Next highest Lowest

Router 21 0.996 0.190 0.0000117

Router 22 0.984 0.00474 0.000339

Router 23 0.977 0.00595 0.0000464

Router 24 0.987 0.00429 0.000177

Router 25 0.987 0.00651 0.000113

Router 26 0.987 0.00945 0.000147

Router 27 0.975 0.00586 0.000130

Router 28 0.976 0.00605 0.000100

Router 29 0.984 0.00482 0.000137

Router 30 0.974 0.00713 0.0000926

Router 31 0.988 0.00540 0.0000869

Router 32 0.985 0.00596 0.0000381

Router 33 0.983 0.00523 0.000142

Router 34 0.987 0.00468 0.000107

Router 35 0.985 0.00322 0.0000716

Router 36 0.986 0.00773 0.000200

Router 37 0.983 0.00586 0.000186

Router 38 0.984 0.00488 0.0000649

Router 39 0.976 0.00580 0.000100

Router 40 0.989 0.00426 0.0000696

Table 5.7: Experiment 2 trained General neural network output for
router SDND.

81

which, incidentally, was the output for Router 22 during the case of Router 21

going down. This is acceptable, however, since Router 21 and Router 22 are the

correlated case. The next highest, however, was 0.00945–only 0.945% from the

ideal value.

In terms of the EDND cases shown in Table 5.8, the worst performing router

case is with Router 32, whose neural network output is at 0.959–4.1% from the

ideal. The best performer, on the other hand, is Router 21, whose neural network

output is 0.992, only a 0.8% error. Thus, a range from 0.8% to 4.1% error is

present within this test case for the routers of interest. As for routers that should

not be affected, the highest output was 0.00884, only a 0.884% error.

Router EDND Neural Network Output by Router

Router of Interest Next highest Lowest

Router 1 0.981 0.00360 0.000300

Router 2 0.989 0.00396 0.000381

Router 3 0.979 0.00602 0.000151

Router 4 0.985 0.00498 0.0000746

Router 5 0.984 0.00380 0.0000304

Router 6 0.989 0.00884 0.000268

Router 7 0.983 0.00523 0.000231

Router 8 0.985 0.00500 0.0000235

Router 9 0.983 0.00605 0.000139

Router 10 0.985 0.00634 0.0000963

Router 11 0.979 0.00374 0.0000870

Router 12 0.974 0.00550 0.000441

Router 13 0.976 0.00451 0.000286

Router 14 0.989 0.00412 0.0000551

Router 15 0.968 0.00476 0.000269

Router 16 0.975 0.00446 0.000190

Router 17 0.984 0.00631 0.000188

Router 18 0.986 0.00624 0.0000868

Router 19 0.977 0.00453 0.000185

Router 20 0.967 0.00649 0.000209

Router EDND Neural Network Output by Router

Router of Interest Next highest Lowest

Router 21 0.992 0.00345 0.0000531

Router 22 0.990 0.00557 0.000485

Router 23 0.975 0.00361 0.0000910

Router 24 0.990 0.00602 0.000227

Router 25 0.987 0.00569 0.000191

Router 26 0.979 0.00599 0.000243

Router 27 0.986 0.00484 0.000169

Router 28 0.989 0.00383 0.000357

Router 29 0.987 0.00619 0.000215

Router 30 0.982 0.00407 0.000113

Router 31 0.984 0.00557 0.000104

Router 32 0.959 0.00447 0.0000601

Router 33 0.984 0.00485 0.000274

Router 34 0.989 0.00535 0.000167

Router 35 0.988 0.00596 0.000105

Router 36 0.978 0.00523 0.000162

Router 37 0.976 0.00363 0.000292

Router 38 0.973 0.00472 0.000273

Router 39 0.973 0.00504 0.000477

Router 40 0.986 0.00590 0.000114

Table 5.8: Experiment 2 trained General neural network output for
router EDND.

82

Lastly, for the case of routers completely down as shown in Table 5.9, every

single router of interest has a neural network output of 0.999–only 0.1% deviation

from the ideal value. In terms of the routers that should not be affected, the

highest output was for Router 22 during the case of Router 22 being completely

offline with neural network output of 0.106 or 10.6%. Of course, this is acceptable

because Routers 21 and 22 are the correlated case. The next highest error was

during Router 26 which had a neural network output of 0.0186, 1.86% away from

the ideal.

Router Completely Down Neural Network Output by Router

Router of Interest Next highest Lowest

Router 1 0.999 0.00486 0.0000672

Router 2 0.999 0.0146 0.000219

Router 3 0.999 0.00458 0.0000146

Router 4 0.999 0.0122 0.00000231

Router 5 0.999 0.00606 0.0000203

Router 6 0.999 0.0106 0.0000312

Router 7 0.999 0.00852 0.0000181

Router 8 0.999 0.00741 0.000000374

Router 9 0.999 0.00918 0.0000779

Router 10 0.999 0.00946 0.00000345

Router 11 0.999 0.00771 0.00000271

Router 12 0.999 0.0125 0.0000171

Router 13 0.999 0.00479 0.0000704

Router 14 0.999 0.00697 0.00000166

Router 15 0.999 0.00726 0.0000170

Router 16 0.999 0.00392 0.0000167

Router 17 0.999 0.0125 0.0000256

Router 18 0.999 0.00756 0.00000202

Router 19 0.999 0.00497 0.00000804

Router 20 0.999 0.00668 0.0000441

Router Completely Down Neural Network Output by Router

Router of Interest Next highest Lowest

Router 21 0.999 0.106 0.000000553

Router 22 0.999 0.00605 0.000160

Router 23 0.999 0.0108 0.0000185

Router 24 0.999 0.00545 0.000111

Router 25 0.999 0.00720 0.0000225

Router 26 0.999 0.0186 0.0000658

Router 27 0.999 0.00556 0.0000558

Router 28 0.999 0.00570 0.0000309

Router 29 0.999 0.00835 0.000110

Router 30 0.999 0.00995 0.00000901

Router 31 0.999 0.0110 0.0000105

Router 32 0.999 0.00854 0.00000213

Router 33 0.999 0.00718 0.0000593

Router 34 0.999 0.00741 0.0000177

Router 35 0.999 0.00468 0.00000762

Router 36 0.999 0.00919 0.0000225

Router 37 0.999 0.00847 0.000114

Router 38 0.999 0.00741 0.0000141

Router 39 0.999 0.00846 0.0000492

Router 40 0.999 0.00705 0.0000297

Table 5.9: Experiment 2 trained General neural network output for
router completely down.

To show how the neural networks smooth out and dynamically predict and

determine which node is having issues based upon previously learned patterns for

this experiment, consider the sequence as shown in Table 5.10 and Table 5.11.

And lastly, Table 5.12 shows the capability of the neural networks to make the

83

Links Down (Cumulative) Neural Network Output by Router

Router 1 Next highest Lowest

Routers 2, 3, 4, 5 0.00880 0.00297 0.000966

Routers 6, 7, 8, 9 0.0336 0.00479 0.000614

Router 10, 11, 12, 13 0.130 0.00397 0.000487

Router 14, 15, 16, 17 0.436 0.00365 0.000401

Router 18, 19, 20, 21 0.765 0.00441 0.000336

Router 22, 23, 24, 25 0.922 0.00432 0.000280

Router 26, 27, 28, 29 0.977 0.00358 0.000248

Table 5.10: Experiment 2 example sequential SDND for Router 1 using
General neural network.

correlated prediction.

5.3.2 Expert Neural Network

The same training data from training the General neural network has been

utilized for the Expert neural networks. Each of the experts were set to train

for 1000 iterations with 0.1 momentum and 0.1 learning rate. However, each

individual Expert learned tremendously faster than the single General neural

network and, more interestingly, the RMSE value fell below the Desired RMSE

of 0.009 under 100 iterations. A table comprised of all forty individual Expert

training times and resulting RMSE values is shown in Table 5.13. Moreover,

instead of showing all forty graphs, a couple exemplary graphs of training is

shown in Figure 5.18.

In the case of the SDND cases shown in Table 5.14, the worst performing

84

Links Down (Cumulative) Neural Network Output by Router

Router 2 Next highest Lowest

Routers 3, 4, 5, 6 0.00991 0.00402 0.000876

Routers 7, 8, 9, 10 0.0407 0.00350 0.000768

Router 11, 12, 13, 14 0.176 0.00460 0.000635

Router 15, 16, 17, 18 0.453 0.00494 0.000735

Router 19, 20, 21, 22 0.727 0.00526 0.000613

Router 23, 24, 25, 26 0.883 0.00377 0.000564

Router 27, 28, 29, 30 0.973 0.00307 0.000457

Table 5.11: Experiment 2 example Sequential EDND for Router 2
using General neural network.

Links Down (Cumulative) Neural Network Output by Router

Router 21 Router 22 Next highest Lowest

Router 21 SDND 0.996 0.190 0.00321 0.0000117

Router 22 loses Routers 1, 2 0.996 0.427 0.00346 0.0000115

Router 22 loses Routers 3, 4 0.996 0.705 0.00410 0.0000105

Router 22 loses Routers 5, 6 0.996 0.869 0.00375 0.00000869

Router 22 loses Routers 7, 8 0.996 0.957 0.00356 0.00000772

Router 22 loses Routers 9, 10 0.996 0.986 0.00375 0.00000778

Table 5.12: Experiment 2 correlated example for Routers 21 and 22
using General neural network.

85

Expert RMSE Time (minutes)

Expert 1 0.00887 17.03

Expert 2 0.00878 16.48

Expert 3 0.00885 18.58

Expert 4 0.00886 23.7

Expert 5 0.00888 17.09

Expert 6 0.00884 19.86

Expert 7 0.00880 21.31

Expert 8 0.00886 18.76

Expert 9 0.00888 15.80

Expert 10 0.00877 21.69

Expert 11 0.00886 16.45

Expert 12 0.00884 13.15

Expert 13 0.00885 15.95

Expert 14 0.00888 23.12

Expert 15 0.00877 14.23

Expert 16 0.00885 17.76

Expert 17 0.00878 16.36

Expert 18 0.00877 17.63

Expert 19 0.00883 21.83

Expert 20 0.00884 20.60

Expert RMSE Time (minutes)

Expert 21 0.00823 8.14

Expert 22 0.00892 22.41

Expert 23 0.00886 19.20

Expert 24 0.00887 17.52

Expert 25 0.00884 20.68

Expert 26 0.00878 20.55

Expert 27 0.00883 23.84

Expert 28 0.00878 18.46

Expert 29 0.00883 12.33

Expert 30 0.00878 15.98

Expert 31 0.00882 26.30

Expert 32 0.00881 20.90

Expert 33 0.00884 24.59

Expert 34 0.00884 15.44

Expert 35 0.00884 15.77

Expert 36 0.00883 24.63

Expert 37 0.00886 15.03

Expert 38 0.00885 18.34

Expert 39 0.00884 18.50

Expert 40 0.0088 15.90

Table 5.13: Experiment 2 Expert training information.

86

(a) Expert 18 Training

(b) Expert 23 Training

Figure 5.18: Exemplary Graphs of Expert neural network training.

87

Router SDND Neural Network Output by Router

Router of Interest Next highest Lowest

Router 1 0.935 0.0265 0.00144

Router 2 0.936 0.0329 0.000138

Router 3 0.906 0.0251 0.000840

Router 4 0.948 0.0321 0.000167

Router 5 0.911 0.0253 0.000305

Router 6 0.902 0.0256 0.000591

Router 7 0.951 0.0240 0.000270

Router 8 0.932 0.0268 0.000491

Router 9 0.926 0.0237 0.000393

Router 10 0.964 0.0193 0.000139

Router 11 0.931 0.0301 0.000412

Router 12 0.954 0.0312 0.000134

Router 13 0.974 0.0213 0.000115

Router 14 0.905 0.0204 0.000486

Router 15 0.933 0.0359 0.000376

Router 16 0.957 0.0232 0.000332

Router 17 0.960 0.0639 0.000165

Router 18 0.944 0.0186 0.000342

Router 19 0.964 0.0200 0.000497

Router 20 0.926 0.0234 0.000281

Router SDND Neural Network Output by Router

Router of Interest Next highest Lowest

Router 21 0.997 0.270 0.000306

Router 22 0.943 0.0284 0.00002

Router 23 0.934 0.0191 0.000582

Router 24 0.919 0.0712 0.000352

Router 25 0.920 0.0198 0.000362

Router 26 0.951 0.0297 0.000368

Router 27 0.921 0.0256 0.000443

Router 28 0.963 0.0412 0.000338

Router 29 0.967 0.0254 0.000238

Router 30 0.965 0.0233 0.000547

Router 31 0.965 0.0224 0.000377

Router 32 0.960 0.0201 0.000650

Router 33 0.922 0.0252 0.000600

Router 34 0.964 0.0194 0.000431

Router 35 0.963 0.0182 0.000174

Router 36 0.936 0.0237 0.000575

Router 37 0.966 0.0158 0.000568

Router 38 0.928 0.0491 0.000568

Router 39 0.948 0.0419 0.000658

Router 40 0.940 0.0396 0.000410

Table 5.14: Experiment 2 Expert neural network output for router
SDND.

router case is with Router 3, whose neural network output is at 0.906–9.4% from

the ideal. The best performer, on the other hand, is Router 13, whose neural

network output is 0.997, a 0.3% error. Thus, a range from 0.3% to 9.4% error is

present within this test case for the routers of interest. As for routers that should

not be affected, the highest output was 0.270 (27.0% error), which, mirroring the

General neural network results, is the output for Router 22 during the case of

Router 21 going down. This is acceptable, however, since Router 21 and Router

22 are the correlated case. The next highest, however, was 0.0639–6.39% from

the ideal value.

88

As for the EDND cases shown in Table 5.15, the worst performing router

case is with Router 12, whose neural network output is 0.868–13.3% from the

ideal. The best performer, on the other hand, is Router 9, whose neural network

output is 0.959, a 4.1% error. Thus, a range from 4.1% to 13.3% error is present

within this test case for the routers of interest. As for routers that should not

be affected, the highest output was 0.0515 (5.15% error), which occurs during

Router 22 going offline.

Router EDND Neural Network Output by Router

Router of Interest Next highest Lowest

Router 1 0.879 0.0205 0.000566

Router 2 0.876 0.0248 0.000411

Router 3 0.930 0.0249 0.000789

Router 4 0.906 0.0252 0.000282

Router 5 0.869 0.0199 0.00202

Router 6 0.902 0.0309 0.00115

Router 7 0.924 0.0277 0.00187

Router 8 0.916 0.0214 0.00129

Router 9 0.959 0.0176 0.000790

Router 10 0.906 0.0293 0.000401

Router 11 0.928 0.0261 0.000452

Router 12 0.868 0.0169 0.000556

Router 13 0.953 0.0255 0.000199

Router 14 0.942 0.0317 0.000517

Router 15 0.902 0.0235 0.00141

Router 16 0.915 0.0217 0.00102

Router 17 0.906 0.0272 0.000706

Router 18 0.931 0.0311 0.000811

Router 19 0.890 0.0170 0.00155

Router 20 0.898 0.0494 0.000743

Router SDND Neural Network Output by Router

Router of Interest Next highest Lowest

Router 21 0.920 0.0384 0.00202

Router 22 0.953 0.0515 0.000470

Router 23 0.916 0.0255 0.00161

Router 24 0.930 0.0299 0.00108

Router 25 0.951 0.0182 0.000548

Router 26 0.929 0.0225 0.00204

Router 27 0.898 0.0428 0.00100

Router 28 0.937 0.0337 0.000901

Router 29 0.954 0.0354 0.000354

Router 30 0.930 0.0233 0.00110

Router 31 0.957 0.0186 0.00100

Router 32 0.929 0.0298 0.00130

Router 33 0.955 0.0138 0.00129

Router 34 0.953 0.0274 0.000896

Router 35 0.925 0.0186 0.000509

Router 36 0.901 0.0290 0.00152

Router 37 0.949 0.0286 0.00117

Router 38 0.917 0.0171 0.000664

Router 39 0.937 0.0134 0.000757

Router 40 0.917 0.0366 0.00112

Table 5.15: Experiment 2 Expert neural network output for router
EDND.

As for the router completely down cases shown in Table 5.16, all routers have

the exact same neural network output of 0.999–mirroring the General neural

network. As for routers that should not be affected, the highest output was 0.181

89

Router Completely Down Neural Network Output by Router

Router of Interest Next highest Lowest

Router 1 0.999 0.0427 0.000576

Router 2 0.999 0.0204 0.0000123

Router 3 0.999 0.0268 0.0000477

Router 4 0.999 0.0499 0.0000146

Router 5 0.999 0.0366 0.000120

Router 6 0.999 0.0541 0.000321

Router 7 0.999 0.0307 0.000135

Router 8 0.999 0.0636 0.000305

Router 9 0.999 0.0409 0.000164

Router 10 0.999 0.0189 0.0000140

Router 11 0.999 0.0595 0.0000454

Router 12 0.999 0.0253 0.0000214

Router 13 0.999 0.0306 0.00000625

Router 14 0.999 0.0257 0.0000448

Router 15 0.999 0.0454 0.000145

Router 16 0.999 0.0425 0.0000655

Router 17 0.999 0.0798 0.0000276

Router 18 0.999 0.0223 0.0000557

Router 19 0.999 0.0342 0.000184

Router 20 0.999 0.0558 0.0000739

Router Completely Down Neural Network Output by Router

Router of Interest Next highest Lowest

Router 21 0.999 0.181 0.000124

Router 22 0.999 0.0695 0.00000253

Router 23 0.999 0.0420 0.000293

Router 24 0.999 0.0566 0.000186

Router 25 0.999 0.0270 0.0000409

Router 26 0.999 0.0353 0.000111

Router 27 0.999 0.0350 0.000117

Router 28 0.999 0.0218 0.000103

Router 29 0.999 0.0344 0.0000184

Router 30 0.999 0.0313 0.000141

Router 31 0.999 0.0323 0.0000640

Router 32 0.999 0.0316 0.000175

Router 33 0.999 0.0442 0.000138

Router 34 0.999 0.0542 0.000192

Router 35 0.999 0.0205 0.0000186

Router 36 0.999 0.0323 0.000270

Router 37 0.999 0.0321 0.000101

Router 38 0.999 0.0486 0.000306

Router 39 0.999 0.0477 0.0000978

Router 40 0.999 0.0412 0.000224

Table 5.16: Experiment 2 Expert neural network output for router
completely down.

(18.1% error), which occurs during Router 21 going offline. This output is once

again from Router 22 and is therefore acceptable since this is the correlated case.

The next highest, however, is 0.0798–7.98% error–during Router 17 going offline.

To show how the neural networks smooth out and dynamically predict and

determine which node is having issues based upon previously learned patterns for

this experiment, consider the sequence as shown in Table 5.17 and Table 5.18.

And lastly, Table 5.19 shows the capability of the neural networks to make the

correlated prediction.

90

Links Down (Cumulative) Neural Network Output by Router

Router 1 Next highest Lowest

Routers 2, 3, 4, 5 0.0246 0.0183 0.00397

Routers 6, 7, 8, 9 0.0719 0.0150 0.00381

Router 10, 11, 12, 13 0.212 0.0170 0.00304

Router 14, 15, 16, 17 0.389 0.0191 0.00297

Router 18, 19, 20, 21 0.713 0.0155 0.00240

Router 22, 23, 24, 25 0.870 0.0144 0.00135

Router 26, 27, 28, 29 0.923 0.0166 0.00122

Table 5.17: Experiment 2 example sequential SDND for Router 1 using
Expert neural networks.

Links Down (Cumulative) Neural Network Output by Router

Router 2 Next highest Lowest

Routers 3, 4, 5, 6 0.0196 0.0126 0.00406

Routers 7, 8, 9, 10 0.0388 0.0142 0.00324

Router 11, 12, 13, 14 0.0979 0.0200 0.00279

Router 15, 16, 17, 18 0.208 0.0209 0.00219

Router 19, 20, 21, 22 0.411 0.0177 0.00189

Router 23, 24, 25, 26 0.669 0.0218 0.000944

Router 27, 28, 29, 30 0.878 0.0205 0.000620

Table 5.18: Experiment 2 example sequential EDND for Router 2 using
Expert neural networks.

91

Links Down (Cumulative) Neural Network Output by Router

Router 21 Router 22 Next highest Lowest

Router 21 SDND 0.997 0.270 0.0183 0.00832

Router 22 loses Routers 1, 2 0.966 0.408 0.0175 0.000285

Router 22 loses Routers 3, 4 0.996 0.587 0.0189 0.000235

Router 22 loses Routers 5, 6 0.993 0.826 0.0224 0.000155

Router 22 loses Routers 7, 8 0.993 0.904 0.0174 0.000143

Router 22 loses Routers 9, 10 0.992 0.955 0.0185 0.000160

Table 5.19: Experiment 2 example sequential EDND for Routers 21
and 22.

5.4 Experimental Network 3

This experiment will assess a smaller route reflection BGP network. For this

network, the topology was designed after an exemplary example from Juniper’s

website [38]. A visual of both the Juniper’s topology as well as the comparable

visual generated by the BGPNNF is shown in Figure 5.19. In the case of this

network, the correlated case will be when Saiem goes offline, then Boxboro will

go offline as well. Also, due to the fact that many routers in this topology

only have one link of connection to the rest of the network, the lookback and

correlatedLookback variables were both set to 1. Any other setting would allow

for the case of an all-green pattern to be recorded as a pre-cursor pattern to router

failures–for example, in the case of Boxboro, Natick, and Boston since only one

link need go down for them to be considered down.

92

(a) Network as shown in [38]

(b) BGPNNF visual

Figure 5.19: Route reflection network topology used in experiment 3.

93

5.4.1 General Neural Network

For the General neural network implementation, a total of 22 different pat-

terns were collected for training purposes–an EDND and an SDND for each node

in the network, one all-green pattern (all sessions established with all nodes up),

and the correlated pattern. The neural network contains a hidden layer of 26

nodes and was then trained for 1000 iterations with a momentum coefficient of

0.2 and learning rate 0.2 with a resulting RMSE of a whopping 0.122 or 12.2%,

having taken 3,343 milliseconds. A graph of the RMSE as compared with the

training iterations can be seen in Figure 5.20.

The reason for this high RMSE turns out to be a conflict of learning patterns

in the neural network’s training data. Specifically, when Saiem goes offline the

corresponding pattern is memorized appropriately. However, when Boxboro goes

offline immediately afterward and since Boxboro only requires a single link going

down for it to be considered offline, the correlatedLookback variable that is

equal to 1 triggers the same pattern to be memorized that had previously been

memorized for Saiem. Thus, the training data now contains the same pattern

twice, but with two different desired outputs: one desired output is to see Saiem

offline whereas the other desired output is to see both Saiem and Boxboro offline.

There are two potential solutions to this problem. One solution would be

to parse through the training data prior to training and remove any redundant

training patterns–retaining only the pattern with the most expressive output.

The second solution is to simply set the correlatedLookback variable to 0 as

well. Since conflicting patterns are an intrinsic problem for machine learning, the

former solution is utilized prior to training.

Now, with the training file cleansed of conflicting patterns the neural network

94

Figure 5.20: The General neural network RMSE training graph with
conflicting training data present.

was trained once again. Training was performed again for 1000 iterations with a

momentum coefficient of 0.2 and learning rate of 0.2 and a resulting RMSE of a

much more appropriate 0.0396 or 3.96% in 3,656 milliseconds. The corresponding

chart of training can be seen in Figure 5.21.

In the SDND cases as shown in Table 5.20, the best performers are Action

and Plymouth, both with a corresponding neural network output of 0.970 or

3.0% from ideal. The worst routers are Natick and Boston both of which have

a neural network output of 0.954 or 4.6% from ideal. Thus, the range of error

for the case of SDND is between 3.0% and 4.6%. As for the routers that should

not be affected, the highest output was 0.987–a whopping 98.7% error–which is

the neural network output for Boxboro when Saiem goes offline. However, this

is the correlated case and is therefore appropriate. The next highest is from

95

Figure 5.21: The General neural network RMSE training graph with
conflicting training data removed.

Router SDND Neural Network Output by Router

Action Westford Plymouth Harvard Saiem Boxboro Lowell Concord Natick Boston

Action 0.970 0.0173 0.0125 0.0114 0.0104 0.000939 0.000396 0.0000601 0.0149 0.0108

Westford 0.0153 0.967 0.0170 0.0149 0.0000723 0.000736 0.0127 0.000649 0.00845 0.00920

Plymouth 0.0117 0.0175 0.970 0.0124 0.000284 0.000805 0.0108 0.00130 0.00813 0.00623

Harvard 0.0102 0.0135 0.00941 0.968 0.0126 0.000488 0.00154 0.000851 0.00351 0.00657

Saiem 0.0101 0.000727 0.00256 0.0174 0.963 0.987 0.0186 0.0000110 0.00529 0.00275

Boxboro 0.00539 0.00323 0.00252 0.00290 0.0329 0.949 0.00184 0.0000840 0.0233 0.0258

Lowell 0.000625 0.0113 0.00979 0.00300 0.0231 0.000655 0.959 0.0244 0.00178 0.000159

Concord 0.000736 0.00479 0.00809 0.00637 0.0000749 0.000226 0.0253 0.955 0.0313 0.0329

Natick 0.0130 0.00714 0.00752 0.00523 0.00105 0.0135 0.00255 0.0320 0.954 0.000407

Boston 0.00545 0.0118 0.00994 0.00798 0.000150 0.0184 0.000971 0.0309 0.000474 0.954

Table 5.20: Experiment 3 trained General neural network output for
router SDND.

96

Boston, whose neural network output is 0.0329–3.29% from ideal–during the case

of Concord going offline.

As for the EDND cases as shown in Table 5.21, the best performers are again

Action and Plymouth, both with a corresponding neural network output of 0.969

or 3.1% from ideal. The worst routers are Concord and Boston, both of which

have a neural network output of 0.953 or 4.7% from ideal. Thus the range of

error for the case of SDND is between 3.1% and 4.7%. As for the routers that

should not be affected, the highest output was 0.0343–a 3.43% error–which is

the neural network output for Boxboro when Saiem goes offline. However, this

again is the correlated case and is therefore appropriate. The next highest is from

Lowell whose neural network output is 0.0332–3.32% from ideal–during the case

of Saiem going offline.

Router EDND Neural Network Output by Router

Action Westford Plymouth Harvard Saiem Boxboro Lowell Concord Natick Boston

Action 0.969 0.0164 0.0139 0.0111 0.0136 0.00392 0.000371 0.0000374 0.0141 0.0146

Westford 0.0146 0.966 0.0163 0.0145 0.000117 0.00138 0.0119 0.000463 0.00842 0.0122

Plymouth 0.0123 0.0144 0.969 0.0129 0.000264 0.00209 0.0113 0.000936 0.00694 0.00794

Harvard 0.0100 0.0133 0.00919 0.968 0.0154 0.00433 0.00110 0.000535 0.00479 0.0104

Saiem 0.0210 0.000556 0.000611 0.0246 0.954 0.0343 0.0332 0.0000347 0.00363 0.000336

Boxboro 0.00586 0.00474 0.00474 0.00343 0.0291 0.961 0.00326 0.0000913 0.0230 0.0235

Lowell 0.000355 0.0111 0.0137 0.00327 0.0246 0.00338 0.962 0.0203 0.00175 0.000290

Concord 0.000810 0.00339 0.00824 0.00578 0.000116 0.000477 0.0262 0.953 0.0317 0.0327

Natick 0.0116 0.00847 0.00696 0.00518 0.00117 0.0152 0.00286 0.0291 0.954 0.000358

Boston 0.00520 0.0139 0.0102 0.00770 0.000118 0.0201 0.000873 0.0285 0.000535 0.953

Table 5.21: Experiment 3 trained General neural network output for
router EDND.

As for the router completely down cases shown in Table 5.22, all routers have

the exact same neural network output of 0.998, except for Plymouth which has

an output of 0.999. Thus, the range of error is only 0.01 - 0.02%. As for routers

that should not be affected, the highest output was 0.826 (82.6% error) from

97

Router Completely Down Neural Network Output by Router

Action Westford Plymouth Harvard Saiem Boxboro Lowell Concord Natick Boston

Action 0.998 0.0243 0.0105 0.0150 0.0248 0.000480 0.000197 0.0000251 0.0127 0.0147

Westford 0.0155 0.998 0.0154 0.0232 0.0000306 0.000186 0.0232 0.000379 0.00644 0.00536

Plymouth 0.00890 0.0189 0.999 0.0138 0.0000826 0.000180 0.0228 0.00279 0.00452 0.00535

Harvard 0.0102 0.0181 0.00733 0.998 0.0197 0.000527 0.00113 0.00102 0.00127 0.0118

Saiem 0.0151 0.000503 0.000346 0.0664 0.998 0.826 0.0596 0.00000789 0.00271 0.000435

Boxboro 0.00324 0.00182 0.00155 0.00325 0.159 0.998 0.00165 0.0000356 0.0202 0.0239

Lowell 0.000124 0.00683 0.00998 0.00345 0.0812 0.000557 0.998 0.0538 0.000659 0.0000245

Concord 0.000224 0.000908 0.00588 0.00647 0.0000624 0.0000814 0.0302 0.998 0.0282 0.0416

Natick 0.0130 0.00523 0.00565 0.00351 0.00130 0.00880 0.00256 0.199 0.998 0.0000267

Boston 0.00318 0.00813 0.0110 0.00858 0.0000328 0.0196 0.000254 0.108 0.0000949 0.998

Table 5.22: Experiment 3 trained General neural network output for
router completely down.

Boxboro and occurs during Saiem going offline, which is acceptable. The next

highest, however, is 0.0812–8.12% error–from Saiem during Lowell going offline.

And finally, to show how the neural networks smooth out and dynamically

predict and determine which node is having issues based upon previously learned

patterns for this experiment, consider the sequence as shown in Figure 5.22 and

Figure 5.23. And lastly, Figure 5.24 shows the capability of the neural networks

to make the correlated prediction.

5.4.2 Expert Neural Network

For the Expert neural network implementation, each of the ten neural net-

works were trained for 1000 iterations with a 0.2 momentum coefficient and 0.2

learning rate. The final RMSE values, total training time, and a couple exemplary

graphs can be seen in Figure 5.25.

For the SDND cases shown in Table 5.23, the worst performing router is 0.952,

whose neural network output is at 0.952–4.8% from the ideal. The best perform-

98

(a) First link down (b) Second link down

(c) Third link down (d) Fourth link down

Sequence Neural Network Output by Router

Action Westford Plymouth Harvard Saiem Boxboro Lowell Concord Natick Boston

(a) 0.103 0.268 0.00358 0.00273 0.000706 0.00863 0.00417 0.000379 0.0256 0.0180

(b) 0.427 0.0951 0.0502 0.00138 0.000472 0.00343 0.00276 0.000245 0.0281 0.0118

(c) 0.838 0.0473 0.0254 0.0126 0.00116 0.00134 0.000783 0.000133 0.0208 0.0117

(d) 0.969 0.0164 0.0139 0.0111 0.0136 0.00392 0.000371 0.0000374 0.0141 0.0146

(e) Neural Network Outputs

Figure 5.22: Example of EDND sequence and corresponding General
neural network output starting with (a), then (b), then (c), and then
(d).

99

(a) First link down (b) Second link down

(c) Third link down (d) Fourth link down

Sequence Neural Network Output by Router

Action Westford Plymouth Harvard Saiem Boxboro Lowell Concord Natick Boston

(a) 0.00932 0.00477 0.00492 0.102 0.0266 0.00707 0.00294 0.000746 0.0217 0.00608

(b) 0.0665 0.00246 0.00232 0.481 0.0405 0.00305 0.000915 0.000459 0.0143 0.00697

(c) 0.0271 0.0287 0.00119 0.861 0.0157 0.00119 0.000849 0.000524 0.00783 0.00810

(d) 0.0102 0.0135 0.00941 0.968 0.0126 0.000488 0.00154 0.000851 0.00351 0.00657

(e) Neural Network Outputs

Figure 5.23: Example of SDND sequence and corresponding General
neural network output starting with (a), then (b), then (c), and then
(d).

100

(a) First link down (b) Second link down

(c) Third link down (d) Fourth link down

Sequence Neural Network Output by Router

Action Westford Plymouth Harvard Saiem Boxboro Lowell Concord Natick Boston

(a) 0.131 0.00442 0.00607 0.00539 0.0324 0.158 0.00214 0.000157 0.0211 0.0247

(b) 0.0786 0.00131 0.00269 0.0637 0.373 0.352 0.00142 0.0000644 0.0188 0.00945

(c) 0.0216 0.00120 0.00280 0.0302 0.904 0.478 0.0518 0.0000345 0.00605 0.00154

(d) 0.0101 0.000727 0.00256 0.0174 0.963 0.987 0.0186 0.0000110 0.00529 0.00275

(e) Neural Network Outputs

Figure 5.24: Example of correlated sequence and corresponding Gen-
eral neural network output starting with (a), then (b), then (c), and
then (d).

101

(a) Expert Westford

(b) Expert Saiem

Action Westford Plymouth Harvard Saiem Boxboro Lowell Concord Natick Boston

RMSE 0.00898 0.00920 0.00912 0.00899 0.00996 0.0120 0.0108 0.0122 0.0142 0.0145

Time (milliseconds) 2,441 2,110 2,508 1,573 1,800 1,758 1,739 1,724 1,800 1,810

(c) Ending RMSE Values

Figure 5.25: Experiment 3 RMSE vs. iterations for each Expert neural
network.

102

Router SDND Neural Network Output by Router

Action Westford Plymouth Harvard Saiem Boxboro Lowell Concord Natick Boston

Action 0.970 0.0118 0.0106 0.0100 0.00886 0.000737 0.00223 0.000409 0.00214 0.00203

Westford 0.0111 0.969 0.0144 0.0133 0.000650 0.00216 0.00674 0.000482 0.00379 0.00362

Plymouth 0.0138 0.0138 0.969 0.0133 0.00133 0.00321 0.00588 0.000578 0.00413 0.00367

Harvard 0.00842 0.0108 0.00949 0.970 0.00941 0.000670 0.00122 0.000212 0.00314 0.00221

Saiem 0.0134 0.00159 0.00147 0.0126 0.967 0.994 0.0174 0.000176 0.00149 0.00131

Boxboro 0.00461 0.00886 0.00812 0.00422 0.0228 0.956 0.00534 0.000942 0.0112 0.0125

Lowell 0.00441 0.00452 0.00699 0.00348 0.0156 0.00150 0.964 0.0176 0.00116 0.000966

Concord 0.00365 0.00379 0.00329 0.00348 0.000947 0.000653 0.0201 0.959 0.0260 0.0253

Natick 0.00717 0.0107 0.00757 0.00693 0.00214 0.0118 0.00394 0.0253 0.952 0.00194

Boston 0.00913 0.00678 0.00862 0.00761 0.00239 0.0113 0.00344 0.0258 0.00112 0.952

Table 5.23: Experiment 3 trained Expert neural network output for
router SDND.

ers, on the other hand, are routers Action and Harvard which both have a neural

network output 0.970, a 3.0% error. Thus, a range from 3.0% to 4.8% error is

present within this test case for the routers of interest. As for routers that should

not be affected, the highest output was 0.994–a whopping 99.4% error–mirroring

the General neural network results since this is, once again, the correlated case

and is therefore acceptable. The next highest, however, was 0.0260–2.60% from

the ideal value–which was the neural network output for Natick during the case

of Concord going down.

As for the EDND cases as shown in Table 5.24, the best performers are again

Action, Plymouth, and Harvard, all three with a corresponding neural network

output of 0.970 or 3.0% from ideal. The worst router is Natick which has a neural

network output of 0.951 or 4.9% from ideal. Thus the range of error for the case of

SDND is between 3.0% and 4.9%. As for the routers that should not be affected,

the highest output was 0.0258–a 2.58% error–which is the neural network output

for Natick during Concord going offline.

103

Router EDND Neural Network Output by Router

Action Westford Plymouth Harvard Saiem Boxboro Lowell Concord Natick Boston

Action 0.970 0.0122 0.0114 0.0101 0.00927 0.00642 0.00163 0.000373 0.00189 0.00177

Westford 0.0129 0.969 0.0159 0.0132 0.000826 0.00579 0.00502 0.000352 0.00386 0.00460

Plymouth 0.0124 0.0137 0.970 0.0134 0.000801 0.00516 0.00515 0.000513 0.00475 0.00382

Harvard 0.00865 0.0108 0.0117 0.970 0.00908 0.00663 0.00208 0.000384 0.00301 0.00183

Saiem 0.0124 0.00148 0.000936 0.0114 0.967 0.0202 0.0180 0.000172 0.00188 0.00138

Boxboro 0.00484 0.00778 0.00836 0.00502 0.0244 0.965 0.00586 0.000817 0.0121 0.0112

Lowell 0.00509 0.00696 0.00624 0.00324 0.0162 0.00985 0.964 0.0170 0.000806 0.00112

Concord 0.00350 0.00284 0.00379 0.00376 0.000702 0.00139 0.0203 0.958 0.0258 0.0253

Natick 0.00702 0.0104 0.00825 0.00835 0.00265 0.0107 0.00342 0.0249 0.951 0.00198

Boston 0.00837 0.00719 0.00796 0.00583 0.00292 0.0109 0.00393 0.0257 0.00123 0.952

Table 5.24: Experiment 3 trained Expert neural network output for
router EDND.

Router Completely Down Neural Network Output by Router

Action Westford Plymouth Harvard Saiem Boxboro Lowell Concord Natick Boston

Action 0.998 0.0104 0.00870 0.0101 0.0224 0.000197 0.000230 0.000159 0.000178 0.000115

Westford 0.0133 0.998 0.0162 0.0178 0.000174 0.000409 0.00168 0.000166 0.000511 0.000421

Plymouth 0.0155 0.0137 0.999 0.0182 0.000350 0.000537 0.00134 0.000287 0.000660 0.000341

Harvard 0.00679 0.00854 0.00795 0.998 0.0242 0.000182 0.000168 0.0000933 0.000351 0.000127

Saiem 0.0151 0.000262 0.000152 0.0146 0.999 0.989 0.0134 0.0000409 0.000126 0.0000636

Boxboro 0.00209 0.00500 0.00490 0.00220 0.142 0.999 0.00143 0.000707 0.00390 0.00282

Lowell 0.00215 0.00233 0.00322 0.00123 0.0684 0.000449 0.999 0.230 0.0000538 0.0000399

Concord 0.00129 0.000890 0.00102 0.00139 0.000226 0.0000560 0.0172 0.999 0.0188 0.0126

Natick 0.00460 0.00802 0.00449 0.00589 0.00163 0.00315 0.000625 0.390 0.999 0.000112

Boston 0.00699 0.00357 0.00492 0.00453 0.00203 0.00315 0.000633 0.402 0.0000699 0.999

Table 5.25: Experiment 3 trained Expert neural network output for
router completely down.

As for the router completely down cases shown in Table 5.25, all routers have

the exact same neural network output of 0.999, except for Action, Westford, and

Harvard which have an output of 0.998. Thus, the range of error is only 0.01

- 0.02%. As for routers that should not be affected, the highest output was

0.989 (98.9% error) from Boxboro and occurs during Saiem going offline, which

is acceptable. The next highest, however, is 0.402–40.2% error–from Concord

104

(a) First link down (b) Second link down

(c) Third link down (d) Fourth link down

Sequence Neural Network Output by Router

Action Westford Plymouth Harvard Saiem Boxboro Lowell Concord Natick Boston

(a) 0.0813 0.259 0.00294 0.00470 0.00190 0.0155 0.0159 0.000859 0.0156 0.0209

(b) 0.404 0.0715 0.0595 0.00205 0.00131 0.00587 0.0124 0.000576 0.00737 0.00820

(c) 0.864 0.0239 0.0189 0.0163 0.000732 0.00258 0.00649 0.000390 0.00380 0.00390

(d) 0.970 0.0122 0.0114 0.0101 0.00927 0.00642 0.00163 0.000373 0.00189 0.00177

(e) Neural Network Outputs

Figure 5.26: Example of EDND sequence and corresponding Expert
neural network output starting with (a), then (b), then (c), and then
(d).

when Boston goes offline. This large error highlights some inherent sensitivity of

Expert neural networks when interfaced with sparse topologies.

And finally, to show how the neural networks smooth out and dynamically

predict and determine which node is having issues based upon previously learned

patterns for this experiment, consider the sequence as shown in Figure 5.26 and

Figure 5.27. And lastly, Figure 5.28 shows the capability of the neural networks

to make the correlated prediction.

105

(a) First link down (b) Second link down

(c) Third link down (d) Fourth link down

Sequence Neural Network Output by Router

Action Westford Plymouth Harvard Saiem Boxboro Lowell Concord Natick Boston

(a) 0.00515 0.00688 0.00500 0.107 0.0698 0.00437 0.00530 0.000782 0.0175 0.0207

(b) 0.0601 0.00245 0.00168 0.487 0.0351 0.00191 0.00282 0.000540 0.00873 0.00968

(c) 0.0219 0.0399 0.000527 0.871 0.0171 0.00109 0.00178 0.000306 0.00470 0.00421

(d) 0.00842 0.0108 0.00949 0.970 0.00941 0.000670 0.00122 0.000212 0.00314 0.00221

(e) Neural Network Outputs

Figure 5.27: Example of SDND sequence and corresponding Expert
neural network output starting with (a), then (b), then (c), and then
(d).

106

(a) First link down (b) Second link down

(c) Third link down (d) Fourth link down

Sequence Neural Network Output by Router

Action Westford Plymouth Harvard Saiem Boxboro Lowell Concord Natick Boston

(a) 0.102 0.00711 0.00849 0.00612 0.0534 0.111 0.00545 0.00104 0.0163 0.0217

(b) 0.0443 0.00360 0.00350 0.0533 0.491 0.287 0.00156 0.000748 0.00864 0.00870

(c) 0.0304 0.00268 0.00230 0.0246 0.885 0.349 0.0693 0.000227 0.00395 0.00561

(d) 0.0134 0.00159 0.00147 0.0126 0.967 0.994 0.0174 0.000176 0.00149 0.00131

(e) Neural Network Outputs

Figure 5.28: Example of correlated sequence and corresponding Expert
neural network output starting with (a), then (b), then (c), and then
(d).

107

Chapter 6

Results and Conclusions

Overall, for each experiment performed, both the General and Expert neural

networks were capable of memorizing and utilizing the pre-cursor connectivity

patterns within an iBGP network prior to a node failure. Moreover, the accuracy

of the General neural network architecture surpassed expectations and resulted

in comparable performance to the Experts in every experiment.

During experiment 1, for equal training parameters and iterations, the Expert

neural networks out-performed the General within a few percent of accuracy for

each testing case. Moreover, an individual Expert trained more quickly than

the General–requiring approximately 67% of the time needed for training the

General. However, since the Expert neural network strategy requires one neural

network per router, the cumulative total results in about 300% more time than

training the single General unless multiple Experts are trained simultaneously on

a multi-core machine. The real tradeoff for slightly better accuracy comes at the

cost of more memory–again resulting in the fact that the Expert strategy requires

(N - 1) more neural networks than the General, where N is equal to the number

of routers in a given network topology. This additional memory requirement is

108

fairly negligible with very small neural networks such as in experiment 1, but can

become a serious issue with much larger neural networks.

Experiment 2 offers a different perspective from experiment 1. Here, a very

well-trained General neural network out-performed the Expert neural networks in

every test case in terms of accuracy. Admittedly, this is due to the Expert neural

networks hitting the “Desired RMSE” value early on during training, and more

training would have increased their accuracy. This highlights a key point: even

though every single Expert neural network had a much lower RMSE value (all

were below 0.009) than the single General (0.0112), the General still had greater

overall accuracy. This is a result of the fact that the Experts have many patterns

memorized that require their output of 0 and only a few patterns that require an

output of 1. In the case of the General, on the other hand, nearly every pattern

memorized required at least one of the output nodes to yield a 1. This difference

explains the discrepancy between the RMSE and comparative performance of the

two approaches.

Continuing with experiment 2, even though accuracy is comparable between

the two neural network architectures, there are much greater utilization trade-

offs. Overall, the scalability of the approach proposed in this thesis is definitely

strained when interfaced with the large 40-node fully-connected iBGP network.

This can be seen through the resulting required training time for the General

neural network (5.9 hours), and even for the Experts (finishing on an average of

approximately 20 minutes–a considerable amount of time when required for 40 in-

dividual networks). Of greater worry, however, is the memory requirements. The

General neural network implementation can run with a 512MB maximum allo-

cation of Java heap space. However, the Expert neural network strategy requires

3,000MB of memory. Moreover, a single serialized and saved Expert neural net-

109

work requires over 43MB of memory and the General requires over 44MB. These

facts highlight the limitations of this approach for larger networks (containing

greater than 1560 sessions of interest).

Experiment 3 mirrors many of the findings from experiment 1, but also proves

the capability of this approach for sparse network topologies. Both detection and

correlated prediction work very well for the comparatively sparse route-reflection

network, but the prediction capability is greatly reduced, if not entirely impossi-

ble, for some nodes. Essentially the prediction mechanism of this approach fails

for any router with only a single connection to the surrounding network when no

correlated failure is in effect. Put simply, even though this approach works for a

sparse network topology, the more links available directly influences the predic-

tion ability of router failure. Along the lines of scalability, the network topology

in experiment 3 only contained 26 unique sessions and experiment 2 proved that

this approach can work with up to 1560 sessions, which implies that this ap-

proach can work with much larger networks–not fully-connected but preferably

not extremely sparse either. Lastly, for additional details regarding the required

training time of the two proposed neural network architectures in terms of a

specific desired RMSE value, see Appendix A.

All in all, the hypothesis of this thesis–namely that neural networks can be

utilized to memorize the preconditioned patterns that emerge prior to a node

failure–has been proven through the experiments performed.

110

Chapter 7

Future Work

This section will discuss the various potential future works that can extend the

findings of this thesis. Future work is appropriate for extending some of the BG-

PNNF framework itself, considering various other machine learning techniques,

and considering networks other than iBGP.

7.1 Extending the BGPNNF

One unexplored neural network architectural strategy worthy of consideration

would be a hybrid mixture of the disjoint Expert and General neural network

strategies presented and implemented in this thesis. In such a scenario, a hybrid

neural network implementation could use a combination of Expert and General

neural networks for different subsets of a given network topology. For example,

referring back to the network used in experiment 3 (Figure 5.19), a single neural

network could be responsible for Boxboro, Natick, and Boston (all routers with

only a single connection to the rest of the network), whereas Expert neural net-

works could be responsible for the remainder of nodes in the topology. Such an

111

approach would allow for additional flexibility in utilizing the expressiveness of

nodes with greater connections versus nodes with very few connections, especially

in terms of memory requirements for the neural networks.

Another interesting aspect worthy of additional research would be to find

optimal momentum coefficients, learning rates, and desired RMSE values for

this problem domain. Since the goal of this thesis is to prove the capability of

neural networks to memorize network connectivity patterns and utilize them for

detection and prediction purposes, no serious attempts were made in finding the

best values for these variables–the numbers utilized in this work simply worked,

but may not be universally optimal.

7.2 Other Machine Learning Techniques

This thesis focused entirely upon traditional feedforward backpropagation

neural networks at the machine learning mechanism. However, a vast number of

alternative machine learning techniques could also be employed and assessed for

applicability in this problem domain. Just to name a few popular techniques,

Logistic Regression [36], Classification and Regression Trees [13], Bayesian Addi-

tive Regression Trees [20], Support Vector Machines[15], and Random Forests [12]

could be utilized as an alternative to neural networks. Also, one recent promising

machine learning theory that is an implementation on a specific theory on how

the neocortex functions is Hierarchical Temporal Memory, as introduced by Jeff

Hawkins [35]. Furthermore, one great option would be to conduct a comparative

survey of machine learning techniques for this domain, similar to the comparative

analysis of machine learning techniques used for phishing detection as conducted

in [1].

112

7.3 Other Networks

The approach presented in this thesis is designed to be generic to the extent

that it is not necessarily tied to iBGP networks. Essentially any peer-to-peer

network whose connection sessions can be represented in a finite state machine

that describes the current connection status can be interfaced with this approach.

With this fact in mind, this approach can be extended far beyond other computer

network protocols to encapsulate entirely different types of networks.

To illuminate a few potential applications, a first would be various forms of

wireless networks. Sparse power efficient topology for wireless networks as dis-

cussed in [47] has potentially fitting network topologies as shown in Figure 7.1.

Moreover, potentially any of the topologies discussed in a survey of wireless mesh

network [2] could be explored. The approach proposed in this thesis is not re-

stricted to only router connectivity–so long as a client’s connection state is avail-

able, client-server or wireless mesh clients could also be considered nodes in a

network topology such as shown in Figure 7.2a. Furthermore, wireless mesh

networks that reside within transportation systems Figure 7.2b, communities

Figure 7.3a, metropolitan areas, Figure 7.3b, enterprises Figure 7.4a, and in au-

tomated buildings Figure 7.4b are domains for which this approach is applicable.

The methods presented in this thesis could be applied to any of these domains

for the purposes of node failure detection and prediction.

A fairly different network domain would be usage within power grids. There

are various types of power networks as well such as on-chip power grid networks

[46] with topologies as shown in Figure 7.5 where nodes could be considered as the

individual resistors and the input to the neural network could be current, voltage,

or power. Though more of a stretch from traditional computer networks, there

113

Figure 7.1: Two exemplary network topologies as shown in [47].

(a) Wireless Mesh Networks for Building Automation

(b) Wireless Mesh Networks for transportation Networks

Figure 7.2: More exemplary network topologies as shown in [2].

114

(a) Wireless Mesh Networks for communities

(b) Wireless Mesh Networks for metropolitan cities

Figure 7.3: Additional exemplary network topologies as shown in [2].

115

(a) Wireless Mesh Networks for enterprise networking

(b) Wireless Mesh Networks for Building Au-

tomation

Figure 7.4: Still more exemplary network topologies as shown in [2].

116

Figure 7.5: Exemplary on-chip power grid network model as shown in
[46].

is still high potential for the approach proposed in this thesis to be applied in

the power grid domain with some success. One exemplary topology is shown in

Figure 7.6, which is currently being used by IEEE as a standard testing network

for research purposes. In this case, the individual substations would be the nodes

and the voltage or power running through the transmission lines could be used

as the input to the neural network.

117

Figure 7.6: Three-phase, breaker-oriented IEEE 24-substation reliabil-
ity test system [74].

118

Appendix A

Neural Network Comparisons

This appendix presents some findings that are separate from the core thesis,

but contains interesting neural network research nonetheless. Here, additional

details on the neural network training will be assessed for each of the three exper-

imental BGP network topologies introduced in Chapter 5. Specifically, for each

topology both neural network architectures are trained with the same parame-

ters as used within Chapter 5, however the RMSE lower-bound to halt training

is set to 0.05 (5%). This therefore presents more insight into the training time

tradeoffs between the Expert and General neural network architectures. More-

over, all training in this thesis was conducted on a custom built desktop running

Linux Ubuntu 8.10 (Intrepid Ibex). The computer hardware was comprised of

an Asus Rampage Extreme motherboard equipped with an Intel Core 2 Quad

Q9550 quad-core 2.83 GHz processor with a 12MB L2 cache, 4GB of 1333 MHz

FSB Corsair PC3-10666 memory, and a 500GB Seagate SATA hard drive with a

32MB cache.

119

A.1 Neural Networks for Five Router Full Mesh

The General neural network trained for 529 iterations with both the learning

rate and momentum coefficient set to 0.2. Training took 594 milliseconds and the

neural network reached an RMSE of 0.0499 or 4.99%. A graph of the General

neural network training is shown in Figure A.1a.

The Expert neural network trained for 177 iterations with both the learning

rate and momentum coefficient set to 0.2. Training took 576 milliseconds and the

neural network reached an RMSE of 0.0496 or 4.96%. A graph of the General

neural network training is shown in Figure A.1b.

A.2 Neural Networks for Forty Router Full Mesh

The General neural network trained for 91 iterations with both the learning

rate and momentum coefficient set to 0.1. Training took 1,623,178 milliseconds

(27.05 minutes) and the neural network reached an RMSE of 0.0483 or 4.83%. A

graph of the General neural network training is shown in Figure A.2a.

The Expert neural network trained for 17 iterations with both the learning

rate and momentum coefficient set to 0.1. Training took 359,437 milliseconds

(5.99 minutes) and the neural network reached an RMSE of 0.0289 or 2.89%. A

graph of the General neural network training is shown in Figure A.2b.

120

(a) General neural network training

(b) Expert 3 neural network training

Figure A.1: Neural network training comparisons for the five router
full mesh.

121

(a) General neural network training

(b) Expert Saiem neural network training

Figure A.2: Neural network training comparisons for the forty router
full mesh.

122

A.3 Neural Networks for Ten Router Sparsely

Connected

The General neural network trained for 758 iterations with both the learning

rate and momentum coefficient set to 0.2. Training took 2,825 milliseconds and

the neural network reached an RMSE of 0.0499 or 4.99%. A graph of the General

neural network training is shown in Figure A.3a.

The Expert neural network trained for 174 iterations with both the learning

rate and momentum coefficient set to 0.2. Training took 761 milliseconds and the

neural network reached an RMSE of 0.0494 or 4.94%. A graph of the General

neural network training is shown in Figure A.3b.

123

(a) General neural network training

(b) Expert 22 neural network training

Figure A.3: Neural network training comparisons for the sparse net-
work topology.

124

Bibliography

[1] S. Abu-Nimeh, D. Nappa, X. Wang, and S. Nair. A comparison of machine

learning techniques for phishing detection. In eCrime ’07: Proceedings of the

anti-phishing working groups 2nd annual eCrime researchers summit, pages

60–69, New York, NY, USA, 2007. ACM.

[2] I. F. Akyildiz, X. Wang, and W. Wang. Wireless mesh networks: a survey.

Comput. Netw. ISDN Syst., 47(4):445–487, 2005.

[3] G. Alder and D. Benson. Jgraph - the leading java graph drawing component,

June 2009. http://www.jgraph.com/jgraph.html.

[4] Artificial neural networks, 2009. http://www.stowa-nn.ihe.nl/pictures/

transfer.jpg.

[5] P. Baldi and G. Pollastri. The principled design of large-scale recursive

neural network architectures–dag-rnns and the protein structure prediction

problem. J. Mach. Learn. Res., 4:575–602, 2003.

[6] T. Bates, R. Chandra, and E. Chen. BGP route reflection - an alternative

to full mesh IBGP. RFC 2796 (Proposed Standard), Apr. 2000. Obsoleted

by RFC 4456.

125

http://www.jgraph.com/jgraph.html
http://www.stowa-nn.ihe.nl/pictures/transfer.jpg
http://www.stowa-nn.ihe.nl/pictures/transfer.jpg

[7] T. Bates, E. Chen, and R. Chandra. BGP route reflection: an alternative

to full mesh internal BGP (IBGP). RFC 4456 (Draft Standard), Apr. 2006.

[8] G. D. Battista, L. Cittadini, B. Palazzi, M. Patrignani, M. Pizzonia,

T. Refice, M. Rimondini, F. Martorelli, A. Marzioni, S. Vissicchio, and

L. Colitti. iBGPlay, visualizing interdomain routing, 2009. http://www.

ibgplay.org/.

[9] J. L. Berral, N. Poggi, J. Alonso, R. Gavaldà, J. Torres, and M. Parashar.

Adaptive distributed mechanism against flooding network attacks based on

machine learning. In AISec ’08: Proceedings of the 1st ACM workshop on

Workshop on AISec, pages 43–50, New York, NY, USA, 2008. ACM.

[10] H. G. Bohr. Neural Network Prediction of Protein Structures. Springer

Verlag, 2004.

[11] S. R. Boopathy, T. Sasikumar, and E. S. Vasudev. Back propagation neural

network prediction of failure strength of composite tensile specimens. Inter-

national Journal of Materials and Structural Integrity 2008, 2(3):288–240,

2008.

[12] L. Breiman. Random forests. Machine Learning, 45(1):5–32, October 2001.

[13] L. Breiman, J. Friedman, R. Olshen, and C. Stone. Classification and Re-

gression Trees. Wadsworth and Brooks, Monterey, CA, 1984.

[14] G. Brown, J. Wyatt, R. Harris, and X. Yao. Diversity creation methods: A

survey and categorisation, 2004.

[15] C. J. C. Burges. A tutorial on support vector machines for pattern recogni-

tion. Data Min. Knowl. Discov., 2(2):121–167, 1998.

126

http://www.ibgplay.org/
http://www.ibgplay.org/

[16] K. Butler, T. Farley, P. McDaniel, and J. Rexford. A survey of BGP security

. Technical report, AT&T, 2005.

[17] J. Chen and N. Chaudhari. Cascaded bidirectional recurrent neural net-

works for protein secondary structure prediction. IEEE/ACM Trans. Com-

put. Biol. Bioinformatics, 4(4):572–582, 2007.

[18] J. Chen and N. S. Chaudhari. Bidirectional segmented-memory recurrent

neural network for protein secondary structure prediction. Soft Comput.,

10(4):315–324, 2006.

[19] J.-L. Chen. A cascading neural-net for traffic management of computer

networks. In CSC ’93: Proceedings of the 1993 ACM conference on Computer

science, pages 272–277, New York, NY, USA, 1993. ACM.

[20] H. A. Chipman, E. I. George, and R. E. McCulloch. Bart: Bayesian additive

regression trees. Journal of the Royal Statistical Society, 2006.

[21] E. K. P. Chong and S. H. Zak. An Introduction to Optimization (Wiley-

Interscience Series in Discrete Mathematics and Optimization). Wiley-

Interscience, 3rd edition, February 2008.

[22] Cisco. Internetworking technology handbook: border gateway proto-

col (BGP), 2009. http://www.cisco.com/en/US/docs/internetworking/

technology/handbook/bgp.html.

[23] L. Colitti, G. D. Battista, I. D. Marinis, F. Mariani, M. Pizzonia, and M. Pa-

trignani. Bgplay @ route views, 2008. http://bgplay.routeviews.org/

bgplay/.

[24] L. Cottrell. Network monitoring tools, August 2009. http://www.slac.

stanford.edu/xorg/nmtf/nmtf-tools.html#bgp.

127

http://www.cisco.com/en/US/docs/internetworking/technology/handbook/bgp.html
http://www.cisco.com/en/US/docs/internetworking/technology/handbook/bgp.html
http://bgplay.routeviews.org/bgplay/
http://bgplay.routeviews.org/bgplay/
http://www.slac.stanford.edu/xorg/nmtf/nmtf-tools.html#bgp
http://www.slac.stanford.edu/xorg/nmtf/nmtf-tools.html#bgp

[25] A. Datta, V. Talukdar, A. Konar, and L. C. Jain. A neural network

based approach for protein structural class prediction. J. Intell. Fuzzy Syst.,

20(1,2):61–71, 2009.

[26] L. de Sá Silva, A. C. F. dos Santos, T. D. Mancilha, J. D. S. da Silva,

and A. Montes. Detecting attack signatures in the real network traffic with

ANNIDA. Expert Syst. Appl., 34(4):2326–2333, 2008.

[27] D. K. Electronics, D. H. Kemsley, T. R. Martinez, and D. M. Campbell.

A survey of neural network research and fielded applications. International

Journal of Neural Networks, 2:123–133, 1992.

[28] F. Fock and J. Katz. The SNMP API for java, July 2009. http://www.

snmp4j.org/.

[29] T. E. Foundation. Epilepsy and the brain: Functions and makeup, 2009.

http://www.epilepsyfoundation.org/about/science/functions.cfm.

[30] S. Fu and C.-Z. Xu. Exploring event correlation for failure prediction in coali-

tions of clusters. In SC ’07: Proceedings of the 2007 ACM/IEEE conference

on Supercomputing, pages 1–12, New York, NY, USA, 2007. ACM.

[31] J. Gaunt. Neural networks, 2009. http://www.jgaunt.com/masters/

neuralnets.html.

[32] B. Group. The neuron model, 2009. http://www.basegroup.ru/images/

neural/math/fig1.en.gif.

[33] Y. Gu, A. McCallum, and D. Towsley. Detecting anomalies in network

traffic using maximum entropy estimation. In IMC ’05: Proceedings of the

5th ACM SIGCOMM conference on Internet Measurement, pages 32–32,

Berkeley, CA, USA, 2005. USENIX Association.

128

http://www.snmp4j.org/
http://www.snmp4j.org/
http://www.epilepsyfoundation.org/about/science/functions.cfm
http://www.jgaunt.com/masters/neuralnets.html
http://www.jgaunt.com/masters/neuralnets.html
http://www.basegroup.ru/images/neural/math/fig1.en.gif
http://www.basegroup.ru/images/neural/math/fig1.en.gif

[34] J. Guo, Y. Lin, and Z. Sun. A novel method for protein subcellular local-

ization based on boosting and probabilistic neural network. In APBC ’04:

Proceedings of the second conference on Asia-Pacific bioinformatics, pages

21–27, Darlinghurst, Australia, Australia, 2004. Australian Computer Soci-

ety, Inc.

[35] J. Hawkins and S. Blakeslee. On Intelligence. Holt Paperbacks, August 2005.

[36] D. W. Hosmer and S. Lemeshow. Applied Logistic Regression (Wiley Series

in Probability and Statistics). Wiley-Interscience Publication, September

2000.

[37] S. M. A. Incorporated. InCharge: Network Protocol Manager for BGP Users

Guide. System Management ARTS Incorporated, 2004.

[38] Juniper. Managing a large-scale AS, 2009. http://www.juniper.net/

techpubs/software/erx/erx41x/swconfig-routing-vol2/html/BGP_

route_reflection.gif.

[39] I. Juniper Networks. Autonomous systems, 2009. http://www.juniper.

net/techpubs/software/junos/junos60/swconfig60-routing/html/

bgp-overview3.html#1013982.

[40] I. Juniper Networks. BGP overview, 2009. http://www.juniper.

net/techpubs/software/junos/junos60/swconfig60-routing/html/

bgp-overview.html.

[41] D. B. Karunakar and G. Datta. Prediction of defects in castings using back

propagation neural networks. International Journal of Modelling, Identifi-

cation and Control 2008, 3(2):140–147, 2008.

129

http://www.juniper.net/techpubs/software/erx/erx41x/swconfig-routing-vol2/html/BGP_route_reflection.gif
http://www.juniper.net/techpubs/software/erx/erx41x/swconfig-routing-vol2/html/BGP_route_reflection.gif
http://www.juniper.net/techpubs/software/erx/erx41x/swconfig-routing-vol2/html/BGP_route_reflection.gif
http://www.juniper.net/techpubs/software/junos/junos60/swconfig60-routing/html/bgp-overview3.html#1013982
http://www.juniper.net/techpubs/software/junos/junos60/swconfig60-routing/html/bgp-overview3.html#1013982
http://www.juniper.net/techpubs/software/junos/junos60/swconfig60-routing/html/bgp-overview3.html#1013982
http://www.juniper.net/techpubs/software/junos/junos60/swconfig60-routing/html/bgp-overview.html
http://www.juniper.net/techpubs/software/junos/junos60/swconfig60-routing/html/bgp-overview.html
http://www.juniper.net/techpubs/software/junos/junos60/swconfig60-routing/html/bgp-overview.html

[42] D. Kemsley, T. Martinez, and D. Campbell. A Survey of Neural Network Re-

search and Fielded Applications. International Journal of Neural Networks,

2(2/3/4):123–133, 1992.

[43] R. D. King. Drug design, protein secondary structure prediction and func-

tional genomics. SIGBIO Newsl., 18(3):5–5, 1998.

[44] M. Lad, J. H. Park, J. Zhu, D. Massey, and L. Zhang. Linkrank visualization,

2009. http://linkrank.cs.ucla.edu/.

[45] T.-L. Lee. Back-propagation neural network for the prediction of the short-

term storm surge in Taichung Harbor, Taiwan. Eng. Appl. Artif. Intell.,

21(1):63–72, 2008.

[46] D. Li, S. X.-D. Tan, G. Chen, and X. Zeng. Statistical analysis of on-chip

power grid networks by variational extended truncated balanced realization

method. In ASP-DAC ’09: Proceedings of the 2009 Asia and South Pacific

Design Automation Conference, pages 272–277, Piscataway, NJ, USA, 2009.

IEEE Press.

[47] X.-Y. Li, P.-J. Wan, Y. Wang, and O. Frieder. Sparse power efficient topology

for wireless networks. Hawaii International Conference on System Sciences,

9:296b, 2002.

[48] M. Liljenstam, J. Liu, and D. M. Nicol. Simulation of large scale networks

ii: development of an internet backbone topology for large-scale network

simulations. In S. E. Chick, P. J. Sanchez, D. M. Ferrin, and D. J. Morrice,

editors, Winter Simulation Conference, pages 694–702. ACM, 2003.

[49] O. R. Limited. Jfreechart, October 2009. http://www.jfree.org/

jfreechart/.

130

http://linkrank.cs.ucla.edu/
http://www.jfree.org/jfreechart/
http://www.jfree.org/jfreechart/

[50] K.-L. Lin, C. Y. Lin, C.-D. Huang, H.-M. Chang, C. Y. Yang, C.-T. Lin,

C. Y. Tang, and D. F. Hsu. Improving prediction accuracy for protein

structure classification by neural network using feature combination. In

AIC’05: Proceedings of the 5th WSEAS International Conference on Ap-

plied Informatics and Communications, pages 313–318, Stevens Point, Wis-

consin, USA, 2005. World Scientific and Engineering Academy and Society

(WSEAS).

[51] V. Maiorov. Approximation by neural networks and learning theory. J.

Complex., 22(1):102–117, 2006.

[52] P. Marrone. The Complete Guide: All You Need to Know About Joone.

January 2007. http://www.jooneworld.com.

[53] P. Marrone and Xharze. Java Object Oriented Neural Engine, June 2009.

http://sourceforge.net/projects/joone/.

[54] D. McCullagh. How Pakistan knocked YouTube offline (and how to make

sure it never happens again), February 2008. http://news.cnet.com/

8301-10784_3-9878655-7.html.

[55] J. W. Mickens and B. D. Noble. Predicting node availability in peer-to-peer

networks. SIGMETRICS Perform. Eval. Rev., 33(1):378–379, 2005.

[56] M. Minsky. Logical versus analogical or symbolic versus connectionist or

neat versus scruffy. AI Mag., 12(2):34–51, 1991.

[57] M. Minsky and S. Papert. Perceptrons. Boston, MA: MIT Press, 1969.

[58] D. G. Myers. Exploring Psychology. Worth Publishers, 6 edition, April 2004.

131

http://www.jooneworld.com
http://sourceforge.net/projects/joone/
http://news.cnet.com/8301-10784_3-9878655-7.html
http://news.cnet.com/8301-10784_3-9878655-7.html

[59] B. Naveh and J. V. Sichi. Jgrapht, June 2009. http://jgrapht.

sourceforge.net/.

[60] T. N. I. on Drug Abuse (NIDA). Psychoactive drugs and the brain, 2009.

http://www.drugabuse.gov/JSP/MOD3/images/NEURON2.gif.

[61] N. Patwari, A. O. Hero, III, and A. Pacholski. Manifold learning visualization

of network traffic data. In MineNet ’05: Proceedings of the 2005 ACM

SIGCOMM workshop on Mining network data, pages 191–196, New York,

NY, USA, 2005. ACM.

[62] S. Rajendraboopathy, T. Sasikumar, K. M. Usha, and E. S. Vasudev. Artifi-

cial neural network a tool for predicting failure strength of composite tensile

coupons using acoustic emission technique. The International Journal of

Advanced Manufacturing Technology, 44(3-4):399–404, September 2009.

[63] Y. Rekhter and T. Li. A border gateway protocol 4 (BGP-4). RFC 1771

(Draft Standard), Mar. 1995. Obsoleted by RFC 4271.

[64] R. Rojas. Neural Networks: A Systematic Introduction. Springer, July 1996.

[65] F. Rosenblatt. Principles of Neurodynamics. Spartan Books, 1962.

[66] H. A. Rowley, S. Baluja, and T. Kanade. Neural network-based face de-

tection. IEEE Transactions on Pattern Analysis and Machine Intelligence,

20(1):23–38, 1998.

[67] A. Saple and L. Yilmaz. Agent-based simulation study of behavioral antici-

pation: anticipatory fault management in computer networks. In ACM-SE

44: Proceedings of the 44th annual Southeast regional conference, pages 383–

388, New York, NY, USA, 2006. ACM.

132

http://jgrapht.sourceforge.net/
http://jgrapht.sourceforge.net/
http://www.drugabuse.gov/JSP/MOD3/images/NEURON2.gif

[68] H. T. Siegelmann and E. D. Sontag. Turing computability with neural nets.

Applied Mathematics Letters, 4:77–80, 1991.

[69] L. d. S. Silva, A. C. F. d. Santos, A. Montes, and J. D. d. S. Simoes. Ham-

ming net and LVQ neural networks for classification of computer Nntwork

attacks: a comparative analysis. In SBRN ’06: Proceedings of the Ninth

Brazilian Symposium on Neural Networks, page 13, Washington, DC, USA,

2006. IEEE Computer Society.

[70] A. Sperduti. A tutorial on neurocomputing of structures. MIT Press, Cam-

bridge, MA, USA, 2000.

[71] M. Stoecklin. Anomaly detection by finding feature distribution outliers.

In CoNEXT ’06: Proceedings of the 2006 ACM CoNEXT conference, pages

1–2, New York, NY, USA, 2006. ACM.

[72] C. Systems. Simple network management protocol (SNMP), july 2009.

http://www.cisco.com/en/US/docs/internetworking/technology/

handbook/SNMP.html.

[73] J. G. Taylor. Handbook of Neural Computation. IOP Publishing Ltd and

Oxfor University Press, 1997.

[74] G. Tech. Three-phase, breaker-oriented IEEE 24-substation reliability test

system, 2009. http://pscal.ece.gatech.edu/testsys/index.html.

[75] A. Toonk. Welcome to bgpmon.net, a bgp monitoring and analyzer tool,

2008. http://bgpmon.net/.

[76] L. G. Valiant. Functionality in neural nets. In COLT ’88: Proceedings of the

first annual workshop on Computational learning theory, pages 28–39, San

Francisco, CA, USA, 1988. Morgan Kaufmann Publishers Inc.

133

http://www.cisco.com/en/US/docs/internetworking/technology/handbook/SNMP.html
http://www.cisco.com/en/US/docs/internetworking/technology/handbook/SNMP.html
http://pscal.ece.gatech.edu/testsys/index.html
http://bgpmon.net/

[77] B. S. Vijayaraman and B. Osyk. A survey of neural network publications.

In Proceedings of the International Academy for Information Management

Annual Conference, 1997.

[78] Y. Wang, D. Gu, J. Xu, and J. Li. Back propagation neural network for

short-term electricity load forecasting with weather features. Computational

Intelligence and Natural Computing, International Conference on, 1:58–61,

2009.

[79] P. Werbos. Beyond Regression. PhD thesis, Harvard University, 1974.

[80] H. White. Connectionist nonparametric regression: multilayer feedforward

networks can learn arbitrary mappings. Neural Netw., 3(5):535–549, 1990.

[81] H. White. Artificial Neural Networks: Approximation and Learning Theory.

Blackwell Publishers, Inc., Cambridge, MA, USA, 1992.

[82] H. White, A. S. Cr, and I. Introducnon. Nonparametric estimation of con-

ditional quantiles using neural networks. In Proceedings of the Symposium

on the Interface, pages 190–199, 1992.

[83] Wikimedia. Artificial neural networks, 2009. http://upload.wikimedia.

org/wikipedia/commons/thumb/6/60/ArtificialNeuronModel_

english.png/600px-ArtificialNeuronModel_english.png.

[84] R. Xu, D. W. II, and R. Frank. Inference of genetic regulatory networks

with recurrent neural network models using particle swarm optimization.

IEEE/ACM Trans. Comput. Biol. Bioinformatics, 4(4):681–692, 2007.

[85] K. Yamanishi and Y. Maruyama. Dynamic syslog mining for network failure

monitoring. In KDD ’05: Proceedings of the eleventh ACM SIGKDD inter-

134

http://upload.wikimedia.org/wikipedia/commons/thumb/6/60/ArtificialNeuronModel_english.png/600px-ArtificialNeuronModel_english.png
http://upload.wikimedia.org/wikipedia/commons/thumb/6/60/ArtificialNeuronModel_english.png/600px-ArtificialNeuronModel_english.png
http://upload.wikimedia.org/wikipedia/commons/thumb/6/60/ArtificialNeuronModel_english.png/600px-ArtificialNeuronModel_english.png

national conference on Knowledge discovery in data mining, pages 499–508,

New York, NY, USA, 2005. ACM.

135

	Contents
	List of Tables
	List of Figures
	List of Code Blocks
	Introduction
	Overview of Problem Statement
	Outline

	Related Work and Background
	Neural Networks
	A Brief History
	Neural Networks As Predictive Tools

	The Border Gateway Protocol
	BGP Monitoring Tools
	Network Monitoring Tools Utilizing Machine Learning

	Domain Details
	BGP and SNMP
	Neural Network Architecture
	Biological Inspiration
	The Backpropagation Learning Algorithm
	Architectural Design Decisions

	Design and Implementation
	High-Level Concept Design
	Utilizing Neural Networks
	Training Data Collection Methodology

	Software Implementation Details
	The User Interface
	Relevant Configuration Options
	Backend Programmatic Details

	Experiments
	Test Suite
	Experimental Network 1
	General Neural Network Implementation
	Expert Neural Network Implementation

	Experimental Network 2
	General Neural Network
	Expert Neural Network

	Experimental Network 3
	General Neural Network
	Expert Neural Network

	Results and Conclusions
	Future Work
	Extending the BGPNNF
	Other Machine Learning Techniques
	Other Networks

	Appendices
	Neural Network Comparisons
	Neural Networks for Five Router Full Mesh
	Neural Networks for Forty Router Full Mesh
	Neural Networks for Ten Router Sparsely Connected

	Bibliography

