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Abstract

Purpose Normalisation is an optional step of a life cycle as-
sessment, supporting the interpretation of the results of the
characterization in terms of relative environmental relevance
of the impacts. Normalisations factors (NFs) are calculated as
results of regional/global inventories of emission and re-
sources characterized through impact assessment methods.
Several methodological assumptions are needed for building
the inventory, as presented in Sala et al. (Int J Life Cycle
Assess 20:1568—1585, 2015). NFs for EU27 have been cal-
culated for 2010 compliant with ILCD recommendations de-
fining a methodological approach for sources selection and
the use of proxy indicators. Qualitative and quantitative un-
certainty evaluation is needed for assessing the robustness of
final figures. The present work aims at quantifying the influ-
ence of key methodological choices on the variability of the
normalisation factors.

Materials and methods Five sources of uncertainty have been
analyzed in this work: (F1) the selection of the sources of data;
(F2) the classification of data as life cycle inventory (LCI)
elementary flows; (F3) the classification of substances for
characterization; (F4) the specification of the emission com-
partments and (F5) the use of spatially differentiated
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characterization factors. The sensitivity of the normalization
factors to such uncertainties were assessed through a global
sensitivity method, for the impact categories acidification
(ACID), terrestrial eutrophication (ET), marine eutrophication
(EM), photochemical ozone formation (POF), respiratory
inorganics/particulate matter (RIPM) and water depletion
(WD).

Results and discussion The results demonstrate the need of
thorough uncertainty and sensitivity analysis for supporting
the use of NFs. Uncertainties are high for the impact categories
respiratory inorganics (RIPM) and water depletion (WD) and
improvement of these categories is a priority. For RIPM this is
explained by the high variability amongst the characterization
factors for PM, 5 and PM, together with the contextual lack of
information about the height of the emission source in the in-
ventory. For WD this is explained by variability of the region-
alized factors available within the ILCD. For ACID, ET and
EM the uncertainty is relatively low and generally completely
led by factors F1 and F2. However, regionalized characteriza-
tion factors were not tested for ACID and ET, therefore the
results might be underestimating the overall uncertainty. For
what concerns POF, the main source of uncertainty—amongst
those included in the analysis—is the selection of the data
source. Overall, improvements in the spatial resolution of the
inventory are needed in order to confine uncertainty. This
would allow the use of characterization factors specific for
emission source typology and geographical location.
Conclusions The uncertainty associated with the methodolog-
ical choices made for calculating normalization factors (Sala
et al. in Int J Life Cycle Assess 20:1568—1585, 2015) was
assessed. Generally, the value calculated by Sala et al. (Int J
Life Cycle Assess 20:1568—1585, 2015) compare well against
average and median values estimated in this analysis for
ACID, ET, EM and POF. Instead, the impact categories
RIPM and WD show different patterns. For RIPM, although
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the average value is very similar to the normalization factor
reported by Sala et al. (Int J Life Cycle Assess 20:1568-1585,
2015), the median value is far lower. For what concerns WD,
the median value is much higher. Future improvements of the
normalization factors should therefore prioritize the develop-
ment of more detailed inventories of emissions by including
higher substance resolution, height of emission as well as the
use of spatially differentiated characterization factors. To sup-
port the interpretation of normalized results, we recommend
that the normalization factors from Sala et al. (Int J Life Cycle
Assess 20:1568-1585, 2015) are applied together with two
additional sets of normalization factors i.e. the ‘median
values’ and the set of ‘average+standard deviation’ values,
so to better capture their uncertainty. Similarly, the interpreta-
tion of the results should build on the qualitative estimates of
robustness provided by Sala et al. (Int J Life Cycle Assess
20:1568-1585, 2015).

Keywords Normalization factors - ILCD - Life cycle impact
assessment - Domestic inventory - Sensitivity analysis -
System boundaries - Spatial differentiation

1 Introduction

Normalization is an optional step of a life cycle assessment
(LCA), supporting the interpretation of the results of the char-
acterization in terms of relative environmental relevance of the
impacts. In fact, normalization allows the LCA practitioner
expressing results after characterization using a common ref-
erence impact (Laurent at al. 2011), and it may be particularly
of help if results need to be communicated to decision makers
in business and policy contexts. Normalization factors (NF)
are calculated as results of regional/global inventories of emis-
sion and resources characterized through impact assessment
methods. Several modelling choices and assumptions are
needed for building the underlying inventory and this may
imply high uncertainties of the final figures.

Uncertainties evaluation and sensitivity analysis in life cy-
cle assessment, from inventory to impact assessment, are in-
creasingly discussed in literature (e.g. Hong et al. 2010;
Clavreul et al. 2012, 2013; Imbeault-Tétreault et al. 2013;
Wei et al. 2015). Moreover, review articles on uncertainty
have been published by various authors (Heijungs and
Huijbregts 2004; Heijungs and Lenzen 2014; Lloyd and
Ries 2007).

Inaccurate normalized data have been recognized as a pos-
sible source of uncertainty (Huijbregts et al. 1998; Ciroth et al.
2004). As discussed by Heijungs et al. (2007), both normali-
zation factors and process inventories generally suffer from
incompleteness due to a lack of emission data and/or charac-
terization factors. This leads to biases which, in turn, might
lead to over or underestimation of the normalized results for

some impact categories, with severe problems in using nor-
malized scores (Heijungs et al. 2007). Indeed, moving from
inventory to characterization, up to normalization and
weighting, may increase uncertainty as the number of sensi-
tivity coefficients which have to be taken into account in-
creases as well (Hejiungs 2010). Nevertheless, the uncer-
tainties possibly related to normalization factors are rarely
discussed and tested ((e.g. Hung and Ma 2009) which includ-
ed normalization in the uncertainty assessment) not even in
papers focusing on normalization only (e.g. Lautier et al.
2010). To date, a quantitative uncertainty and variability as-
sessment due to the normalization step has not yet been
performed.

Sala et al. (2015) presented a methodology for an extended
inventory underpinning normalization factors for Europe in
2010 where key choices on sources and flow mapping as well
as methodological assumptions for building proxy indicators
have been detailed. From the results, few flows dominate the
results of many impact categories (e.g. NO,) and the qualita-
tive assessment of the robustness of some impact category is
low (e.g. water depletion). The present work aims at quanti-
fying the influence of different methodological choices on the
final normalization factors by conducting uncertainty and sen-
sitivity analysis on them.

The paper is organized as follows: after presenting an over-
view of the sources of uncertainties, the methodological sec-
tion illustrates the sensitivity analysis conducted on the inven-
tory used for the calculation of the normalization factors for
EU27 (e.g. the total of emissions and resource extractions in
the year 2010), whereas in the results and discussion section
the outcome and the implications on the characterized factors
(i.e. normalization factors) are presented.

2 Sources of uncertainties in the calculation
of normalization factors

Uncertainties in the calculation of the normalization factors in
LCA may be related to different sources; these are listed in
Table 1 alongside of the LCA steps.

The specific sources of uncertainty, i.e. factors of uncertain-
ty, which were analyzed in this study are reported in Table 1
and listed below by groups:

* F1: the selection for the sources of data amongst statistical
database for NO,, SO,, NH;, CO, PM, s/PM,, and water
withdrawals (from F1.1 to F1.6);

» F2: the classification of environmental statistics as ILCD
elementary flows for NO,, and SO, (F2.1 and F2.2);

e F3: the classification of PM, 5 and PM,;

* F4: the assumptions made on the typology and height of
emission sources for NO,, SO,, NH;, CO and PM, s/
PM,q (F4.1, F4.2, F4.3, F4.4, F4.5);
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Table 1  Possible sources of uncertainties in the normalization factors for each step of the LCA-based calculation and factors included in this analysis
Fact £ First order Sobol index for each of the uncertainty
Specific sources ac urs. ° Probability factors for each impact category, referred to the total
Sources of . . . uncertainty . o .
LCA step . investigated in ot Alternatives tested distribution of the variance observed
uncertainty this paper tested within alternatives
pap the paper ACID ET EM POF | RIPM | WD
Goal and scope L. Definition of t.he not included not included NA NA NA NA NA NA
system boundaries
F1.1 NOx 3%
F1.2 50« 1. Sala et al. 2015
i F1.3 NH 2. EMEP modeled
) selection . 3 3. EMEP Reported all data sources
2. Selection of the between 140 4. EEA 5. EDGAR v4.2 have been
sources of data (F1) available 3 assumed to be
datasets F1.5 PM equally probable
F1.6 water 1. Sala et al. 2015
withdrawals 2. Vandecasteele et al.
2014
Inventory 3. Estimation and data
gap-filling of missing not included not included
variables and values
1. NOx is mapped as
F2.1: NO/NO: | NO2 _ all mapping
4. Classification of group of 2. NOxis mapped as NO | jjternatives have
data as LCl elementary | substances: NOx been assumed to
flows (F2) and SOx 1. SOx is mapped as SO3 be equally
F2.2: 2. SOx is mapped as SO probable
. X 2
50/50:/50s 3. SOx is mapped as SO
Total due to Inventory
Factors of First order Sobol index for each of the uncertainty
Specific sources acto s'o Probability factors for each impact category, referred to the total
Sources of A . . uncertainty . A :
LCA step . investigated in e Alternatives tested distr of the variance observed
uncertainty this paper tested within alternatives
pap the paper ACID ET EM POF | RIPM | WD
N
5. Classification of classification  of F3 characterized, PM1o not been assumed to
substances (F3) PM2sand PM1o 2. PM1o is be equall
characterized, PM2s not qually
probable
F4.1: NOx
definition of the £4.2:50 ﬁ;‘:r:z:i:zs toair,
I height of X pecin all heights have
6. Specification of the - 2. Emissions to non-
o emission source i R X been assumed to
emission F4.3: NHs urban air or from high
for: NOx, SOx be equally
compartments (F4) stacks
NH;s, CO, | Fa.4: co . probable
s 3. Emissions to urban
PM2.5/PM1o; h
air close to ground
F4.5: PM
Characterization 1. OECD  average
scarcity values are used .
7. Spatial reseionalized o 2. Country-specific CFs z:zr:?tc::iiagf):he
differentiation of & . F5: Water | + gaps filled with OECD
A characterization . factors has been
characterization Depletion average values
factors  (water - assumed equally
factors (F5) only) 3. Country-specific CFs robable
v + gaps filled with P
proxies (see Table S9)
8. Uncertainty
associated with the not included not included

impact assessment
models

Total due to Characterization

Unspecific

9. Interaction among sources of uncertainty

ACID acidification, ET eutrophication terrestrial, EM eutrophication marine, POF photochemical ozone formation, RIPM respiratory inorganics/partic-
ulate matter, WD water depletion

» F5: the use of regionalized characterization factors (CFs)

for water depletion only.
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The uncertainty factors above refer to specific methodolog-

ical choices which are performed when calculating
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normalization factors, and were selected because of their ex-
pectedly high effect on the calculation of the normalization
factors performed by Sala et al. (2015). This is either because
of their effect on the elementary flows contributing the most to
the normalization factors developed by Sala et al. 2015 or
because of the low robustness of the underlying impact assess-
ment models (e.g. water depletion).

For each of the factors listed above there is at least an
alternative approach which can be adopted for calculating
the normalization factors, in addition to the one adopted by
Sala et al. (2015), being still coherent with the ILCD recom-
mended impact assessment models. The existence of such
alternatives generates what could be defined as a methodolog-
ical uncertainty.

The impact categories which are affected by the uncertainty
factors introduced above are the following: acidification
(ACID); eutrophication terrestrial (ET); eutrophication marine
(EM); photochemical ozone formation (POF); respiratory
inorganics/particulate matter (RIPM); and water depletion
(WD). Not all sources of uncertainty which affect the normal-
ization factors calculated by Sala etal. (2015) were assessed in
this study. We did not assess some of the general uncertainties
associated with normalization factors identified in Table 1: (i)
the definition of the system boundaries; (ii) the estimation of
elementary flows not included international statistics (see Sala
et al. 2014) and the techniques applied for filling data gaps;
and (iii) the underpinning impact assessment models and re-
lated characterization factors. In order to include the latter
point, separate uncertainty and sensitivity analysis should be
conducted by models’ developers on the underpinning models
of estimation, such as those used for toxicity-related impact
categories (multimedia models for characterization, emission
estimating model for heavy metals and pesticide, etc.) and
made available to users. However, this is not the case for the
majority of impact assessment models used, and therefore it is
beyond the aim of the present study. The sources of uncer-
tainties which are included in this analysis are further detailed
in the following sections. Details of calculations and under-
pinning data are reported as Electronic Supplementary
Material and references in the following text (e.g. Table S1,
Electronic Supplementary Material).

2.1 Sources of uncertainty in the inventory
2.1.1 Selection of the data sources (F1)

Sala et al. (2015) proposed a hierarchical approach to the
selection of data sources. The order of preference was the
following: (i) officially reported data provided by EU and
international bodies (e.g. Eurostat, FAO, OECD etc.), based
on agreed models, methods and standards, with documented
metadata and periodical quality checks. 2. Activity-based es-
timations, derived as ‘activity data times emission factor’; (ii)

activity data were from officially reported data, emission fac-
tors were based on scientific literature, grey literature (e.g.
sectorial reports) and available life cycle inventories (LCIs);
(iii) statistical proxies (time, flows) when the correlation is
statistically significant; (iv) speculative assumption(s), based
on cause-effect models, not statistically tested.

For what concerns NO,, NH3, SO, and CO the priority in
selecting the data sources has been set as follows: UNFCCC
(2013)> EMEP_modeled (EMEP/CEIP 2013b) >
EMEP _reported (EMEP/CEIP 2013a) > EDGARv4.2 (EC—
JRC & PBL 2011). This is coherent to decisions by a team of
experts from EC-JRC, Netherlands Environmental
Assessment Agency (PBL), United Nations Framework
Convention on Climate Change (UNFCCC), European
Monitoring and Evaluation Programme (EMEP), as reported
in EC-JRC (2011b) on the basis of ECE (2010). The data
sources for those substances are then: UNFCCC for CO and
NO, (reported as NO,) and the EMEP/CEIP database for
NH;, and SO, (reported as SO,) (EMEP/CEIP 2013b).

In Tables S1 and S2 (Electronic Supplementary Material)
are reported, the data retrieved from different sources for the
elementary flows NO,, NH;, SO,, CO, PM, 5 and PM;, and
their relative difference between what was selected by Sala et
al. (2015). In Table S3 (Electronic Supplementary Material)
the statistics on water withdrawal retrieved from different
sources (Sala et al. 2015 and Vandecasteele et al. 2014) are
provided. Within the uncertainty and sensitivity analysis car-
ried out in this paper, all of the data sources reported in
Tables S1, S2, S3 (Electronic Supplementary Material) were
given the same likelihood.

2.1.2 Classification of data as LCI elementary flows (F2)
—NO, and SO,

Both nitrogen and sulphur oxides are pollutants which con-
tribute to several impact categories of those recommended by
the ILCD; SO, contributes to acidification, photochemical
ozone formation and respiratory inorganics, and NOy contrib-
utes to terrestrial and marine eutrophication in addition to the
ones listed for SO,. Nevertheless, the ILCD list of recom-
mended characterization factors does not provide factors
which are specific for these two groups of substances.
Therefore, the attribution of a characterization factor to these
groups of substances is a methodological choice to which the
impact categories listed above are expected to be sensitive to.
This is due to the fact that NO, and SO, are major contributors
to the total EU27 figures (Sala et al. 2015) as well as to the fact
that currently available statistics do not differentiate between
NO, and NO, (or sulphur oxides) (only NO, totals expressed
as NO, equivalents in mass is available), in combination to the
fact that the characterization factors might differ sensibly
amongst different oxides within the same group (e.g. the CF
for NO can be twice as the one for NO,).
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Sala et al. (2015) mapped the group of substances SO, and
NO, into NO, and SO, for the calculation of the normalization
factors. It is important to assess how sensitive is the result to
the mapping of the groups of substances NO, and SOy into a
specific oxide. In order to assess the uncertainty associated to
this methodological choice, we assumed that the mapping of
the groups of substances into a specific elementary flow
would be equally possible. An additional source of uncertainty
which is not included in the current assessment, is represented
by the fact that for several impact categories the CFs are gen-
erally calculated and made available by models developers
only for NO, and SO,, and that the factors for NO, SO and
SO; were approximated by the EC-JRC (2011a) on the basis
of molecular weight and charge. Similarly, the breakdown of
these groups of substances into individual substances and the
disaggregation of reported emissions into e.g. NO and NO,
are beyond the purpose of this paper.

2.2 Sources of uncertainty in the characterization
2.2.1 Classification of substances (F3)—PM, s and PM;,

The model recommended by the ILCD (EC-JRC 2011a) for
assessing impacts associated to respiratory inorganic sub-
stances and particulate matter (Humbert 2009) characterizes
both PM, s and PM;,. However, the characterization factor
associated to PM, 5 is estimated by the model developer by
assuming that all impacts originating from the exposure to
PM; are due to PM, 5 (Humbert 2009). This implies that only
one of the two inventoried group of substances should then be
characterized, as PM; contains PM, s, being the latter a frac-
tion of the former. The selection of which of the two elemen-
tary flows between PM;, and PM, 5 to account and character-
ize further is therefore a clear source of methodological uncer-
tainty. In this assessment, we assumed that both options are
equally viable.

2.2.2 Specification of the emission compartments (F4)

The lack of detail regarding the specific emission compart-
ment into which pollutants are emitted represents another
source of uncertainty which could potentially affect the nor-
malization factors.

Some of the ILCD recommended impact assessment
models provide different CFs for substances emitted into air,
depending on to the height of the emission source. In fact,
emissions to air can be further specified into different flows:
‘emissions to lower stratosphere and upper troposphere’,
‘emissions to non-urban air or from high stacks’, ‘emissions
to urban air close to ground’ and ‘emissions to air, unspeci-
fied’. The detail regarding the height of emission sources is
generally not found in country-scale statistics; therefore, Sala
et al. (2015) applied generic CFs (i.e. ‘emissions to air,
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unspecified’) in order to characterize the inventory of EU27
total emissions. For the impact categories ACID, ET, EM, and
POF analyzed in this paper, such detail is irrelevant as it does
not lead to differences in the CFs for any of the pollutants
included in the analysis, whereas this aspect is expected to
be of relevance for RIPM (see Tables S4 to S8, Electronic
Supplementary Material). In fact, PM, 5 emitted to air has
different CFs ranging between 3.3, 1 and 0.35 kg PM, seq/
kg, respectively, for emissions close to ground in urban areas,
generic emissions and emissions to non-urban air or from high
stacks. With the purpose of the assessment of uncertainty of
the normalization factors, all the three options listed above
were considered to be equally viable, given the fact that the
distribution of emissions of particulate matter is unknown.

2.2.3 Spatial differentiation of characterization factors (F5)

Increasingly, life cycle impact assessment models provide
spatially resolved characterization factors. This implies that
the selection of generic factors vs spatially resolved ones
may lead to uncertainties associated to neglecting the spatial
variability. We tested these aspects for the impact category of
water depletion. According to the ILCD recommendations
(EC-JRC 2011a), water depletion can be quantified by either
applying a generic characterization factor or by applying spa-
tially resolved factors at country level. In fact, the method
recommended in the ILCD (Frischknecht et al. 2008) provides
spatially resolved CFs for 29 OECD countries. In Sala et al.
2015 the ‘OECD average scarcity’ factor was used for char-
acterizing impacts associated with water scarcity. This choice
was made in order to guarantee consistency with the other
impact assessment methods, for which only a limited set of
regionalized flows is available.

However, as reported in Table S3 (Electronic
Supplementary Material), the CFs for water stress present a
wide variability across the EU countries. Characterization fac-
tors are not available for a number of countries (see Table S3,
Electronic Supplementary Material) and for this reason two
alternative extrapolations were adopted: (i) attributing the
characterization factor ‘OECD average scarcity’ to the miss-
ing factors and (ii) attributing characterization factors by anal-
ogy of climatic conditions. Both choices have been estimated
in this analysis in order to assess the relevance thereof on the
final result.

3 Uncertainty and sensitivity analysis

Uncertainty and sensitivity analysis (SA) have been conduct-
ed testing different modelling choices applied for calculating
the normalization factors developed by Sala et al. 2015.

As defined by Campolongo et al. (2011 p. 978), “uncertain-
ty and sensitivity analyses study how the uncertainties in the
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model inputs (X1, X2, . . ., Xk) affect the model’s response Y,
Y=Y (X1, X2, . . ., Xk). Uncertainty analysis quantifies the
output variability while Sensitivity Analysis describes the rel-
ative importance of each input in determining this variability’.
As reported by Pannell (1997), SA can be useful for a range of
purposes, such as testing the robustness of the results of a
model or system, reducing uncertainty and enhancing com-
munication from modellers to decision makers. This is possi-
ble because SA helps in increasing the understanding of the
relationships between input and output variables in a system
or model and has been increasingly demonstrated in scientific
arenas and recognized by international institutions
(Campolongo et al. 2011). SA methods can be generally clas-
sified into local and global methods (Campolongo et al. 2011;
Wei et al. 2015). While local sensitivity measures, also called
one-at-a-time (OAT) methods, assess how uncertainty in one
factor affects the model output keeping the other factors fixed
to a nominal value (Campolongo et al. 2011), global sensitiv-
ity measures (GSM) assess the effects of uncertainty factors
while being changed simultaneously. The advantage of global
sensitivity analysis is that it is able to take into account inter-
actions amongst factors, whereas OAT methods cannot
(Campolongo et al. 2011; Wei et al. 2015). As reported by
Wei and co-workers (Wei et al. 2015), in LCA, most case
studies are done with OAT methods (Bala et al. 2010;
Heijungs et al. 1994), whereas global methods are rarely ap-
plied (see Padey et al. 2013; Wei et al. 2015).

In order to assess the effect of the methodological choices
described in Table 1 on the normalization factors, the SA has
been performed by means of the Sobol global sensitivity in-
dices (Sobol 1993, 2001). According to Saltelli et al. (2010
p-159), variance-based methods such as the Sobol indices, ‘are
the computer experiment equivalents of the experimental de-
sign’s analysis of the variance of an experimental outcome
(Archer et al. 1997). Unlike experimental design, where the
effects of factors are estimated over levels, variance based
methods look at the entire factors distribution, using custom-
arily Monte Carlo methods’.

The analysis of uncertainty and sensitivity through vari-
ance based method implies the following steps:

1. Definition of the set of uncertainty factors which are in
input to the model, including their probability
distribution;

2. Generation of a sample set of combinations of uncertainty
factors, accordingly to a specific design (e.g. random,
quasi-random, etc.);

3. Evaluation of the model’s outputs for the generated sample;

4. Calculation of Sobol’s sensitivity indices consistently
with the sample design via Monte Carlo-based estimators.

The following sections details how the steps above were
developed within the current analysis.

3.1 Step 1: Definition of the uncertainty factors and their
probability distribution

All the possible alternatives configurations for the sources
included in Table 1 were assumed to have equal probability,
simulating a situation of ‘complete ignorance’ relative to the
plausibility of probability distribution of the input factors (e.g.
although it is unlikely that all the emissions of PM, 5 reported
in statistical datasets are occurring in urban areas, this has
been assumed to be equally probable to the other
alternatives listed in Table 1). Therefore, the probability dis-
tribution for each of'the factors is a discrete distribution, with a
number of points equal to the number of alternatives for that
factor (see Table 1 and Electronic Supplementary Material).

3.2 Step 2: Generation of a sample set of combinations
(input)

The sample set of combinations has been generated within the
software environment SimLab v2.2 (Tarantola 2005),
selecting the Sobol’s sampling method (Sobol 1993, 2001).
The Sobol’s sampling method was selected as it maximizes
the computational efficiency of the exploration of the space of
input factors. A sample of 32,768 combinations was generat-
ed; it was assumed to be of a sufficient size considering the
number of factors included in the analysis (i.e. 15). The sam-
ple set is reported in Table S10 (Electronic Supplementary
Material). Each of the factors can assume a value between 1
and the number of its alternative states. For instance, factor
F11 can assume values from 1 to 5, as NOy can assume 5
alternative values according to the data source selected. This
information is thus translated in the next step, ‘evaluation of
the model’s outputs’, so that the configuration of factor F11 is
translated into the corresponding value for emissions of NO,
(see Table S1, Electronic Supplementary Material) e.g. if
F1.1=1 therefore the value of NO, which is reported by the
first data source listed in Table S1 (Electronic Supplementary
Material) (i.e. Sala et al. 2015), whereas if F1=5 the fifth data
source (i.e. EDGARvV4.2) is selected. The same procedure
applies to all factors.

3.3 Step 3: Evaluation of the model’s outputs

The model’s outputs (i.e. the normalization factors for each of
the considered impact categories) were evaluated for each of
the 32,768 samples generated in the previous step. This is
done by converting the value of the factors into the corre-
sponding quantities (both inventory values and characteriza-
tion factors) which can be used for the calculation of the nor-
malization factors. The calculation of the normalization factor
consists of the sum of the inventory flows multiplied by the
respective characterization factors. This operation is per-
formed for each of the combinations of factors generated in
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the previous step (see Table S11, Electronic Supplementary
Material).

3.4 Step 4: Calculation of the Sobol’s sensitivity indices

The calculation of the Sobol’s sensitivity indices was per-
formed within the software SimLabv2.2. The software allows
importing the outputs of the model’s calculation and supports
the estimation of the Sobol’s sensitivity indices. In this paper,
the first order and total order sensitivity indices were calculat-
ed (see Saltelli et al. 2010; Wei et al. 2015). The first order
index (S;) for factor i-th provides the estimation of the vari-
ance explained by the i-th without considering its interactions
with other factors, whereas the total order index (St;) for factor
i-th provide the estimation of the variance explained by factor
i-th and its interaction with other factors.

4 Results and discussion
4.1 Analysis of the model’s outputs

A set of statistics (arithmetic average—AVG, median—MED,
minima and maxima—MIN and MAX, absolute and relative
standard deviation—STD and RSTD, mean absolute devia-
tion from the median—MAD and its relative value—
RMAD) was calculated on the probability distributions of
the normalization factor of each impact category. The results
were compared to the normalization factors calculated by Sala
et al. (2015) (see Table 2). The model’s output obtained after
step 3 was plotted as box plot (Tukey 1977) in the Matlab
Mathworks® environment, so to compare their spread over a
central value (Fig. 1). In order to compare different impact
categories together in Fig. 1, each of the model’s outputs
was divided by the average value of the normalization factor
of'the respective impact category. Therefore, the value 1 in the
y-axes of Fig. 1 represents the arithmetic average for each of
the impact categories reported in the chart. Additionally, the
median, average and the values Sala et al. (2015) were
plotted in Fig. 1 as red lines, blue crosses and green aster-
isks, respectively. In Fig. 1, the central mark is the median,
the edges of the box are the 25th and 75th percentiles and
the whiskers extend to the most extreme data points not
considered outliers. Points are drawn as outliers in the
box plot and marked as red crosses if they are larger than
q3+w(q3—ql) or smaller than ql-w(q3—ql), where ql and
q3 are the 25th and 75th percentiles, respectively, and w is
set by default as 1.5.

4.2 Analysis of the sensitivity indices

The sensitivity indices of first and total order were calculated
for the uncertainty factors included in the analysis, for each of
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the impact categories. The detailed results are reported in
Table S12 (Electronic Supplementary Material). The value
of the interaction of the i-th factor with the others has been
calculated by subtracting the value of the total Sobol index for
factor i-th by the value of the Sobol index of first order for the
same factor.

As the Sobol’s indices express the share of variance ex-
plained by each of the factor, the resulting values numbers
can be read also as relative percentage of variance explained.
When models are non-linear, the total order indices of the
factors sum up to values higher than 1 and the difference
between the variance explained by first order sensitivity indi-
ces and the total order indices quantify the interaction. In
Table 1 are reported the shares of variance explained by the
different factors, including the overall interaction. The
SimLab v2.2 software has some limitations to the accuracy
of the estimation of the Sobol’s indices, which, according to
the authors of this paper can reach up to the value 0.05; there-
fore such errors should be taken into account when making
comparisons.

4.3 Analysis by impact category
4.3.1 Acidification (ACID)

The uncertainty associated with the normalization factor for
the impact category ACID can be considered medium to low
as the maximum and minimum values observed for the distri-
bution are roughly +30 and —20 % of the arithmetic average,
respectively (see Table 2). Moreover, the arithmetic average
and the median are very close one to each other and the size of
the box is small i.e. the 25th and the 75th percentiles of the
distribution are not too distant from the average and median
values (see Fig. 1 and Table 2). The measures of dispersion
relative standard deviation (RSTD) and relative mean differ-
ence from the median (RMAD) are relatively low, being 10
and 8 %, respectively (see Table 2). The normalization factor
calculated by Sala et al. (2015) reported in Table 2 is roughly
12 % lower than the arithmetic average and the median (see
Table 2). As reported on Fig. 2 and Table 1, uncertainty factors
F1—"*selection of the sources of data’ and F2—*classification
of data as LCI elementary flows’ explain, respectively, 52 and
48 % of the variance associated with the normalization factor
of'the impact category acidification. In particular, the selection
of the elementary flow to which to map the group of sub-
stances NOx i.e. NO or NO, (factor F 2.1), explains the
highest share of variability (43 %), whereas the selection of
the data source on NH; (F1.3) accounts for 35 % of the var-
iance (see Fig. 3). Sala et al. (2015) defined a hierarchy for
selecting data sources according to some rules, leading to the
selection of the most robust and, therefore, most likely dataset
values. Instead, in this analysis all data sources are assumed to
be equally probable and this has the effect of inflating the
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Table2 Normalization factors (NFs) from Sala et al. 2015, measures of
central tendency (arithmetic average and median), measures of dispersion
(maximum and minimum, standard deviation, mean distance from the

median, relative standard deviation and relative mean distance from the
median), ratios between arithmetic average and NFs from Sala et al.
(2015) and between median and NFs from Sala et al. (2015)

Parameter ACID ET EM POF RIPM WD
[mol H eq] [molNeq] [kgNeq] [kgNMVOCeq] [kgPM,seq] [m® water eq.]

NFs as from Sala et al. (2015) 2.36E+10 8.76E+10 8.44E+09 1.58E+10 1.93E+09 4.06E+10
Central tendency measures

Arithmetic average 2.66E+10 1.03E+11 9.46E+09 1.57E+10 1.93E+09 1.55E+11

Median 2.69E+ 10 1.08E+ 11 8.85E+09  1.57E+10 1.29E+09 2.07E+ 11
Dispersion measures

Maximum 351E+10 1.32E+11 1.09E+10  1.67E+10 6.08E+09 2.19E+11

Minimum 2.22E+10 8.70E+10 8.39E+09 1.45E+10 7.00E+08 3.84E+10

Standard deviation 2.78E+09 1.30E+10 9.79E+08  5.64E+08 1.49E+09 8.14E+10

Mean distance from the median 2.22E+09 1.06E+10 9.63E+08 3.69E+08 9.18E+08 5.94E+10

Relative standard deviation 10 % 13 % 10 % 4% 77 % 52 %

Mean distance from the median divided 8 % 10 % 11 % 2% 71 % 29 %

by the median

Ratios between the parameter and

NF from Sala et al. (2015)

Arithmetic average of model’s outputs 1.13 1.18 1.12 0.99 1.00 3.82

NFs as median of model’s output 1.14 1.23 1.05 0.99 0.67 5.09
Factor recommended for comparison

Arithmetic average of model’s output+1 — 2.94E+ 10 1.16E+ 11 1.04E+10  1.62E+10 3.43E+09 2.37E+ 11

standard deviation

In italics are the set of normalization factors which are recommended for use in the LCA interpretation as alternatives to the values calculated by Sala

et al. (2015)

uncertainty related to the normalization factor for acidifica-
tion, as it is most likely that the real value of emissions is
closer to the inventory value used by Sala et al. (2015).
Instead, no information is available regarding the level of
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Fig. 1 Box plot of the normalization factors calculated for impact
categories: ACID acidification, ET eutrophication terrestrial, EM
eutrophication marine, POF photochemical ozone formation, RIPM
respiratory inorganics, WD water depletion. The following statistics are
shown in the chart: arithmetic average value (blue cross), median value
(red line) and confidence boundaries (black lines). The green asterisks are
the normalization factors calculated in Sala et al. (2015)

detail about the speciation between NO and NO,, therefore,
this can be considered a source of uncertainty not currently
assessed in the calculation performed by Sala and co-workers.
Because of the reasons explained above, the normalization
factor calculated by Sala et al. (2015) for the impact category
acidification can be considered as relatively robust.

The use of regionalized characterization factors for this
impact category was not investigated; therefore, the uncertain-
ty affecting normalization factors for acidification is likely to
be underestimated. Further refinements of this analysis should
look at this aspect as well.

4.3.2 Eutrophication—terrestrial (ET)

The normalization factor for the impact category terrestrial
eutrophication calculated in this paper is characterized by a
relatively low dispersion around a central value. This can be
observed in Fig. 1 as the size of the box is relatively small, and
therefore, the majority of the values is not extremely dis-
persed. This is confirmed by the measures of dispersion
RSTD and RMAD are relatively low for this distribution,
being equal to 13 % of the average and 10 % of the median,
respectively. The majority of the uncertainty observed for this
impact category (66 %) is explained by the classification of
data on NOx as elementary flows (NO or NO,), while the
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Fig. 2 Share of the variance 100% -

explained by each uncertainty 90% -

factor (F1: F5) and by the 80% -

interactions amongst them 70% -
60% -

50% -
40% -

30%

20% -

10% -

0% -
NF

ACID

remaining 32 and 2 % are due the choice of the data source for
NH; and NOX, respectively. The normalization factor calcu-
lated by Sala et al. (2015) for this impact category is around
18 % lower than the arithmetic average (see Table 2), meaning
that Sala and co-workers might have underestimated actual
impact on terrestrial ecosystems due to eutrophication.
However, this holds true only if all data sources are assumed
to be equally likelihood to the real value. Instead, Sala et al.
(2015) documented that a proper hierarchy of data sources can
be established and therefore, the main uncertainty factor
which remains to be addressed in Sala et al. (2015) is the
translation of NOx emissions into NO and NO,. Although
the difference in absolute terms is not very high, still a better
refined inventory for NOx emissions would allow for better
estimation of the NF.

The use of regionalized characterization factors for this
impact category was not investigated; therefore the uncertain-
ty affecting normalization factors for terrestrial eutrophication
is likely to be underestimated. Further refinements of this
analysis should look at this aspect as well.

100% -

NF

ET EM ‘ POF | RIPM

M Interaction
M F5 Regionalization
M F4 Height of the emission
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4.3.3 Eutrophication—marine (EM)

Similarly to what discussed for ACID and ET, the normaliza-
tion factor for marine eutrophication is sensitive to factor F2.1.
In fact, the majority of the uncertainty observed for this impact
category (97 %) is explained by the classification of data on
NOx as elementary flows (NO or NO,), while the remaining
3 % by the choice of the data source for NOx emissions to air.
The dispersion of the distribution of normalization factor
values is relatively low, as RSTD and RMAD score, respec-
tively, 10 and 11 %. The normalization factor calculated for
this impact category by Sala and co-workers is very similar the
arithmetic average and the median value of the distribution,
differing by 12 and 5 % (see Table 2) from the former and the
latter, respectively.

4.3.4 Photochemical ozone formation (POF)

According to Fig. 1, POF presents the lowest uncertainty as-
sociated to its average normalization factor (RSTD=4 %,

Fig. 3 Share of the variance
explained by each of the specific

uncertainty factors and by the 90%

interaction amongst them
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RMAD=2 %, see Table 2). However, not all of the relevant
uncertainty sources were analyzed for the normalization factor
of POF, as the only uncertainty factors input data on CO, NOy
and SO, which led to some variability of the outputs (67, 32
and 2 %, respectively—see Table 1), whereas it is well known
and documented in Sala et al. (2015) that non-methane vola-
tile organic compounds significantly contribute to this impact
category as well. No uncertainty is associated with the map-
ping of group of substances (factors F2.1 and F2.2) when
using the ILCD characterization factors as the CFs for NOy
and SO, are the same within the two groups of substances for
this impact category for the ILCD recommended impact as-
sessment model. However, this might vary significantly ac-
cording to other models, such as in the case of Jenkin and
Hayman (1999) and Derwent et al. (1998), for which NO
and NO, have an antagonistic role.

4.3.5 Respiratory inorganics/particulate matter (RIPM)

As it is possible to note from Fig. 1 and Table 2, RIPM is the
impact category showing the highest uncertainty. In fact, the
values of normalization factors span from a maximum 3.15
times higher than the arithmetic average, to a minimum equal
to 0.36 times the arithmetic average. The median value is 67 %
of the arithmetic average and the measures of dispersion are
very high, 77 % for RSTD and 71 % for RMAD.
Nevertheless, the normalization factor calculated by Sala et
al. (2015) for this impact category is very close to the arith-
metic average calculate in this analysis (see Table 2). The
variability which characterizes the normalization factor of this
impact category is almost entirely explained by the classifica-
tion of PM, 5 or PM; (F3) (23 %), in combination with the
height of the emission source for PM (F4.5) (36 %), as well as
their interaction (40 %), whereas only 1 % of the overall un-
certainty is explained by the selection of the data source (see
Tables 1 and S12). Other sources of uncertainty are estimated
as negligible for this impact category. As described in the
respective section, PM, s was selected by Sala et al. (2015)
for calculating the normalization factors, as this choice is con-
sistent with the assumptions underlying the impact assessment
model (Humbert 2009). Additionally, such approach was rec-
ommended by the method developer himself (Humbert 2014).
But no information on the height at which the emissions of the
pollutants contributing to RIPM could be accessed and the
characterization factor ‘emission to air, unspecified” was used
by Sala and co-workers. Therefore, better inventories spec-
ifying emission sources and location should be then devel-
oped in order to improve the precision and the robustness
of normalization factor for respiratory inorganics. This is
of paramount importance given the significant correlation
between residential exposure and health impacts
(Raaschou-Nielsen et al. 2013).

4.3.6 Water depletion (WD)

Water depletion shows high variability of results, with a max-
imum 1.4 times higher than the arithmetic average and the
minimum equal to 0.25 times the average, and RSTD and
RMAD being equal to 52 and 29 %, respectively (Table 2).
The use of the generic factors ‘OECD average scarcity’ for
characterizing water withdrawals calculating normalization
factors as done by Sala et al. (2015) results in a normalization
factor 5.4 times lower than the one obtained by applying re-
gionally differentiated characterization factors (Table 2). The
normalization factor calculated by Sala et al. (2015) for water
depletion is proven to be very sensitive to the choice of re-
gional characterization factors instead of average ones, as al-
most 100 % of the observed uncertainty is due to this choice
(see Table 1). Therefore, better normalization factors could be
calculated by making use of regionalized CFs, no matter
whether the underlying statistics on water withdrawals nor-
malization inventory is based on the data collected by Sala
et al. (2014, 2015) or by Vandecasteele et al. (2014).

4.3.7 Additional sources of uncertainty not covered
in the analysis

Some of the uncertainty factors listed in Table 1 were not
tested within this work, e.g. uncertainty associated with the
impact assessment models, although they might play a signif-
icant role. For instance:

(1) Estimation of missing characterization factors: if the
values for the specific molecules composing e.g. NOy
or SOy are not provided by models’ developers, the fac-
tors for NO, NO,, SO, and SO, SO;, should be approx-
imated as done in EC-JRC (2011a), simply through mo-
lecular weight and charge. Indeed this might entail some
errors. To judge whether this approximation is good
enough is outside the scope of this paper, anyhow this
aspect should be taken into account, together with the
limitations regarding the robustness of the impact
categories.

(i) Consistency between models and inventories’ system
boundaries. The models underlying the characterization
factors might have system boundaries which are not nec-
essarily consistent with the data statistics collected for
the inventory.

(i) Use of marginal or average characterization factors.
ILCD recommended LCIA methods might refer to mar-
ginal characterization factors or average ones
(Huijbregts et al. 2011). In case marginal factors are
used for characterizing the inventory values, this might
lead to cross-scale inconsistencies and to the wrong
quantification of the normalization factors (see e.g. for
water Pfister and Bayer 2014; Benini et al. 2015).
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It is important to consider that the ranges of uncertainties
which are reported above are specific for the combination of
the inventory values (e.g. the total of emissions and extrac-
tions in the year 2010 for EU27) and the ILCD recommended
impact assessment methods which lead to the ILCD normali-
zation factors. If other models were tested they would have
probably lead to different results. For instance, the effect of
NO and NO, is modelled to be the same according to the
model recommended for the impact category photochemical
ozone formation within the ILCD (Van Zelm et al. 2008),
having the same characterization factor. Instead, their effect
is antagonistic according to e.g. Jenkin and Hayman (1999)
and Derwent et al. (1998). Therefore, the conclusions derived
in this work should be correctly interpreted and not extrapo-
lated to different contexts than the one of the ILCD recom-
mended impact categories.

Beyond the quantitative uncertainty sources estimated in
this paper, a set of quality issues (e.g. robustness and com-
pleteness of the inventory and underlying estimation tech-
niques) can potentially undermine the robustness of the results
and questioning its applicability in decision making. Hence,
qualifying the robustness of the output is essential for the use
and communication of the results, especially in the science-
policy interface (Maxim and van der Sluijs 2011). In fact, as
suggested by Functowicz and Ravetz (1990), both estimations
of uncertainty (qualitative and quantitative) should be jointly
considered when using a model output. In fact, quantitative
assessment of uncertainty and sensitivity cannot substitute
‘sensitivity auditing’ (Saltelli and Funtowicz 2014) as the for-
mer refer to probabilistic assessments which account only for
factors’ uncertainties for those factors already included within
amodel, whereas the latter points towards systematic biases of
the analysis, such as the lack of the inclusion of some relevant
flows or mechanisms, or the limited robustness and quality of
impact assessment models. Therefore, Sala et al. (2015) ap-
plied a qualitative assessment of the normalization factors to
this purpose. This allows making explicit and systematically
reflecting upon various dimensions of uncertainty (van der
Sluijs et al. 2005).

5 Conclusions

Various methodological uncertainties may affect estimated
normalization factors. The results of this paper show that for
some impact categories methodological uncertainties are high,
although they can be reduced by further refinements at the
level of the inventory data and at the level of impact assess-
ment models. The uncertainty associated with the impact cat-
egories RIPM and WD, is the highest and certainly represents
a priority for future improvement of the ILCD-compliant nor-
malization factors. The other impact categories, ACID, ET
and EM, are characterized by relatively low uncertainty. The
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only exception is POF, which is characterized by very low
uncertainty values, most probably because of the fact that only
a part of the uncertainty factors which characterize its calcu-
lation is taken into account.

A number of improvements in the inventory would be
needed in order to reduce methodological uncertainty.
Improving the resolution of the inventory by adding informa-
tion on the emission sources (i.e. breakdown into specific
substances, specific height and geographical location of the
emission or withdrawal) would allow for using more specific
factors for calculating ILCD-recommended normalization fac-
tors therefore improving their robustness. From an operational
perspective, it is recommendable that the uncertainty figures
calculated in this paper are taken into account by practitioners
using the normalization factors calculated by Sala et al.
(2015), especially when interpreting the results of their LCA
studies. Therefore, as a complement to the normalization fac-
tors provided by Sala et al. (2015) we recommend to test, for
all impact categories assessed in this paper, at least the median
value and the arithmetic average+1 standard deviation (see
Table 2, in bold). As a conclusive remark, we warmly recom-
mend the joint use of quantitative uncertainty estimates when
applying the normalization factors calculated by Sala et al.
(2015) and qualitative assessments of the robustness of the
factors estimated by Sala et al. (2015) along the lines of the
sensitivity auditing proposed by Saltelli and Funtowicz
(2014).
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