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Abstract This study examined how the inactivation of bac-
teriophage MS2 in water was affected by ionic strength (IS)
and dissolved organic carbon (DOC) using static batch inac-
tivation experiments at 4 °C conducted over a period of
2 months. Experimental conditions were characteristic of an
operational managed aquifer recharge (MAR) scheme in
Uppsala, Sweden. Experimental data were fit with constant
and time-dependent inactivation models using two methods:
(1) traditional linear and nonlinear least-squares techniques;
and (2) a Monte-Carlo based parameter estimation technique
called generalized likelihood uncertainty estimation (GLUE).
The least-squares and GLUEmethodologies gave very similar
estimates of the model parameters and their uncertainty. This
demonstrates that GLUE can be used as a viable alternative to
traditional least-squares parameter estimation techniques for
fitting of virus inactivation models. Results showed a slight
increase in constant inactivation rates following an increase in
the DOC concentrations, suggesting that the presence of or-
ganic carbon enhanced the inactivation of MS2. The experi-
ment with a high IS and a low DOC was the only experiment
which showed that MS2 inactivation may have been time-

dependent. However, results from the GLUE methodology
indicated that models of constant inactivation were able to
describe all of the experiments. This suggested that inactiva-
tion time-series longer than 2 months were needed in order to
provide concrete conclusions regarding the time-dependency
of MS2 inactivation at 4 °C under these experimental
conditions.

Keywords Virus inactivation . Uncertainty . Groundwater
management . BacteriophageMS2 . Health

Introduction

Waterborne outbreaks of gastroenteritis from groundwater
sources continue to be a relatively common occurrence in
developed countries in spite of the diligence paid to treating
drinking-water (Brunkard et al. 2011; Craun et al. 2010;
Riera-Montes et al. 2011; Zacheus and Miettinen 2011) and
can result in large economic costs to local (Corso et al. 2003;
Halonen et al. 2012; Larsson et al. 2013) and national econo-
mies (Hoffmann et al. 2012). Viruses are of particular concern
to water mangers exploiting natural and managed groundwa-
ter resources as they can remain active for months in soil-
water systems (DeBorde et al. 1998; Hurst et al. 1980), are
capable of traveling large distances in groundwater (Keswick
and Gerba 1980; Pang et al. 2005), and can be resistant to
chlorine disinfection (Keswick et al. 1985).

Viruses are removed during soil passage through a combi-
nation of adsorption and inactivation mechanisms (Keswick
and Gerba 1980). While adsorption is the dominant mecha-
nism of virus removal in soil-water systems, inactivation of
viruses becomes important when timescales longer than a few
days are considered as is the case in field-scale studies
(Schijven and Hassanizadeh 2000). The most important
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environmental factor affecting virus inactivation is tempera-
ture with lower inactivation rates at cold temperatures (Hurst
et al. 1980; Yates and Yates 1987; Yates et al. 1985). The
presence of natural organic matter has also shown to affect
virus survival (Bixby and O’Brien 1979; Chattopadhyay
et al. 2002; Foppen et al. 2006; Moore et al. 1982). For water
managers exploiting natural or managed groundwater re-
sources it is essential that virus inactivation is understood at
low temperatures and in the presence of natural organic matter
as prolonged virus survival is conducive under these condi-
tions. This is especially true for water managers in boreal
regions as high concentrations of natural organic matter in
natural waters (Pastor et al. 2003) and cold temperatures are
characteristic of these regions.

Mathematical models which describe virus inactivation in
water are an important part of comprehensive models of the
fate-and-transport of viruses in flowing soil-water systems. For
these models virus inactivation rate parameters can be estimat-
ed by using batch inactivation studies. Virus inactivation is
generally assumed to follow a first-order process where the
inactivation rate of viruses is thought to be constant over time
(Schijven and Hassanizadeh 2000). This assumption has been
successfully applied to several studies modeling both virus in-
activation in batch inactivation experiments (Bae and Schwab
2008; Yates et al. 1985) and more comprehensive studies of
virus removal in flowing soil-water systems (Foppen and
Schijven 2006; Kvitsand et al. 2015; Schijven et al. 2016).
However, Hurst et al. (1992) argue that virus inactivation is a
time-dependent process and is not adequately represented by a
constant inactivation rate. Sim and Chrysikopoulos (1996) pro-
pose a pseudo-first-order representation of inactivation, where-
in inactivation is a time-dependent process. Anders and
Chrysikopoulos (2006) and Chrysikopoulos and Aravantinou
(2012) examined the performance of both model formulations
(constant and time-dependent inactivation) as a means to dis-
cern which model best described data from batch virus inacti-
vation experiments. In both studies, the model which produced
the lowest squared error was chosen to best represent the data;
models with a time-dependent inactivation rate were best suited
for the majority of the data.

Models in which constant virus inactivation is represented
as a first-order process are typically fit to experimental data
using linear regression or linear least-squares optimization tech-
niques whereas more sophisticated nonlinear regression and
least-squares optimization algorithms are required for fitting
models in which virus inactivation is modeled as time-
dependent and treated as a pseudo-first-order process.
Microbial data, such as viral concentrations, derived from mi-
crobial plate counts of colony forming units (PFUs) are consid-
ered as a loose approximation of the actual number of active
microbial units in a sample as these measurements are variable
by nature (Sutton 2011). Applications of the method within
food microbiology suggest that, at best, the magnitude of the

uncertainty surrounding viral concentrations derived from PFU
data are ±0.5 log10 PFU/ml assuming all steps were carried out
in an accurate and consistent manner (Corry et al. 2007).
Studies examining the removal of viruses during soil passage
can be used by water managers to aid in prediction of water
quality levels in effluent groundwater and/or for designing
managed aquifer recharge (MAR) schemes (Pang 2008); how-
ever, the uncertainty inherent to microbial data is rarely consid-
ered when fitting models to experimental inactivation data.

A common way to examine uncertainty for virus inactiva-
tion experiments is by examining the experimental error by
making a replicate measurement from a parallel and ideally
identical experiment. In this way, the experimental uncertainty
(or a range of likely virus concentrations) of a particular ob-
servation is usually estimated by the standard deviation as-
suming that replicate measurements should be distributed ran-
domly about a most-likely value (the mean of the replicates;
Box et al. 1978). This method, however, makes large prior
assumptions about the likelihood distribution of microbial da-
ta as many replicate measurements would be needed to per-
form any meaningful statistical analysis. Only a few studies
exist which attempt to characterize the probability distribution
of errors associated with microbial measurements. Suggested
error distributions include a Poisson distribution
(Tomasiewicz et al. 1980; Corry et al. 2007), a log-normal
distribution (Corry et al. 2007) or, in some instances, a nega-
tive binomial distribution (Jarvis 1989; Niemelä 1996).
Unfortunately, the time and resources needed for measuring
virus concentrations using biological methods restrict many
experimenters from examining data errors in a statistically
robust way. This seems to be the most likely reason that
experimentalists do not directly consider data uncertainty
when fitting mathematical models to microbial data and
instead use replicate measurements as a means to estimate
an average value for the microbial concentration; however,
this is not to say that experimenters neglect to consider
uncertainty in model predictions altogether. A recent study
by Schijven et al. (2016) examined the long-term inactivation
of bacteriophage PRD1 and was diligent in reporting the pre-
diction intervals around model fits assuming that the model
errors were normally distributed.

It is important to consider how uncertainties in virus con-
centration data can affect the fitting of virus inactivation
models. This is especially true if experimental data is used to
test the adequacy of different mathematical model structures
describing virus inactivation, examine the effects of environ-
mental factors influencing virus inactivation, or to guide water
resource management. General likelihood uncertainty estima-
tion (GLUE) is an uncertainty analysis framework that makes
it possible to consider data uncertainty in model parameter
fitting in-lieu of any formal measures of data likelihood.
GLUE is a Monte-Carlo simulation based approach that al-
lows the experimenter to choose their own representation of
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the data likelihood and criteria for accepting a model as
adequate/behavioral in describing the data (Beven 2002a, b).
GLUE also allows the experimenter to consider several be-
havioral parameter sets and model structures simultaneously
allowing for ensemble-based predictions, thus aiding in the
assessment of predictive uncertainty. GLUE is a well-
established approach which has been successfully applied to
several different environmental models of varying complexity
(Beven and Binley 1992; Beven 1993; Binley and Beven
2003; Christiaens and Feyen 2001; Freer et al. 1996; Zhang
et al. 2006); however, there have yet to be any applications of
GLUE to studies of virus inactivation.

Although traditional statistical methods like linear regres-
sion or nonlinear least-squares algorithms also account for
data uncertainty these methods often rely on several key as-
sumptions. Some of these assumptions are that (1) the fitted
model is Btrue^, (2) model errors follow a known distribution,
(3) model errors are uncorrelated, and (4) there exists a global
optimum fit for the experimental data. If all of these assump-
tions are not justified this can result in a false confidence in the
choice of a Bcorrect^ model structure and in the estimates of
model parameter and predictive uncertainties. The GLUE
methodology attempts to overcome these shortfalls by
allowing the experimenter to make very few assumptions re-
garding data error distributions and foregoes the requirement
to consider the optimum model fit as being Btrue^. For these
reasons, GLUE can be seen as an alternative method for fitting
models of virus inactivation to experimental data because, at
this point in time, a formal statistical representation of the
uncertainty of microbial data is lacking.

The primary aim of this study is to examine how different
assumptions regarding measurement errors affect parameter
estimates in virus inactivation models by comparing linear
and non-linear least-squares model fitting approaches to the
GLUE methodology. Secondly, a full-factorial design experi-
ment was carried out to assess how virus inactivation at cold
temperatures (4 °C) is influenced by ionic strength (IS) and
dissolved organic carbon (DOC). To the authors’ knowledge,
this is the first study where uncertainty in microbial data has
been explicitly accounted for in the fitting of virus inactivation
models using the GLUE methodology. Results of this study
will be useful for water managers who rely on virus inactiva-
tion mechanisms in groundwater as a means for treating wa-
ters contaminated with virus. This study is also intended to
provide experimenters with an introduction to GLUE as an
alternative method for estimating parameter and prediction
uncertainties for models describing virus inactivation in water.

Materials and methods

A series of static batch inactivation experiments was conduct-
ed to test the effects of ionic strength IS and DOC on the

inactivation of bacteriophage MS2 at 4 °C. Water and sand
was gathered from a facility producing drinking water through
MAR in Uppsala, Sweden as a means to examine how chang-
es in water chemistry may affect virus inactivation during
winter months. Experimental data was fit with two mathemat-
ical models of virus inactivation: one which describes the rate
of virus inactivation as constant and another which describes
the rate of virus inactivation as time-dependent.

Study site

Water samples used for the batch virus inactivation experi-
ments were characteristic of water used at the Tunåsen MAR
scheme in Uppsala, Sweden. Uppsala’s drinking water is tak-
en from a confined esker aquifer filled with glacial sand and
gravel deposits. The aquifer itself is a part of the Uppsala
Esker formation, a 200-km-long glaciofluvial sedimentary de-
posit with an average width of 1.3 km (Morosini 1989).
Groundwater levels are maintained through the artificial infil-
tration of surface water into the aquifer at a number of loca-
tions using basin infiltration methods; for a detailed descrip-
tion of MAR through basin infiltration consult Bouwer
(2002). Surface water for infiltration at Tunåsen is taken from
the nearby Fyris River and pumped through a fast-sand filter
before being infiltrated. Groundwater is extracted from the
esker ∼2 km away from the Tunåsen infiltration basins after
being in the ground for about 90–110 days (Bergström 1986).
Water for this study was sampled during the winter of
2014/2015. All of the water for the experiments was taken
from the Tunåsen MAR scheme after passage through the
fast-sand filter but before being pumped into the infiltration
basins. The average winter (Nov.–Feb.) temperature of the
wate r used for in f i l t r a t ion i s 1 .5 °C (Sver iges
lantbruksuniversitet 2015).

Water

Water for the experiment was collected from the Tunåsen
flow-division chamber prior to infiltration into the sand ba-
sins. The water was filtered twice; first through 1.6 μm to
remove large particulates then through 0.45 μm to remove
particulate organic matter and stored in a dark room at 4 °C.
The filtered water was analyzed for its chemistry. Chemical
characteristics for the water were F−: 0.4 mg/L; Cl−: 1

4 mg/L; NO3
−: 5 mg/L; Na+: 10 mg/L; Ca+: 73 mg/L;

Mg2+: 6 mg/L; Fe2+: 0.2 mg/L; DOC: 17 mg/L; HCO3
−:

170 mg/L; color: 100 mg/L Pt; conductivity: 41 mS/m
@25 °C; pH: 8.0. Ionic-strength of the water was estimated
to be 7 mM using the concentrations of the aforementioned
measured ions with the exception of Fe2+. The pH of the water
equilibrated with the CO2 in the atmosphere and the HCO3− in
the water at pH 8.0 as a result of the handling of the water; the
pH of the water was not adjusted back to its original near
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neutral pH in order to reduce the effects of adsorption during
the batch experiments.

Four distinct aqueous solutions were required for the ex-
periment representing every combination of a high and low
level of IS and DOC. Each solution was prepared in individual
1-L glass bottles. The IS of the water was adjusted through the
addition of NaCl. For the two solutions with a high IS 100 mg
of NaCl were added to 1 L of water and vigorously shaken for
30 s. The DOC concentration of the water was adjusted
through the addition of Nordic Reservoir natural organic mat-
ter (NOM; IHSS Cat. No. 1R108N (IHSS 2011). For the two
solutions with a high DOCwater preparation was done in five,
200-ml Erlenmeyer flasks. 10 mg of Nordic Reservoir NOM
was added to each flask, totaling 50mg in 1 L, and flasks were
agitated at 140 RPM for 20 h at room temperature. Solutions
were then filtered through a 0.45-μm filter to remove particu-
late organic matter and then poured into 1-L glass jars. For the
high IS, high DOC solution the water was prepared with the
Nordic Reservoir NOM prior to the addition of NaCl. The
original water was used as the low IS, low DOC solution.
The DOC of the water was measured with Sievers 900
Portable TOCAnalyzer (General Electric). The IS of the water
was estimated using the concentrations of the measured ions
for the raw water plus the additional NaCl. The characteristics
of each solution along with the average winter values for the
infiltrating water are presented in Table 1. Low levels of IS
and DOC are consistent with those during average winter
conditions of the water at the Tunåsen infiltration scheme
and high levels are just under the maximum observed values.
The addition of the Nordic Reservoir NOM resulted in a 2–3
μS/cm increase in the conductivity of the water, most likely as
a result of the ash content of the NOM; however, this was not
taken into account when estimating the ionic-strength of the
solutions containing Nordic Reservoir NOM as no informa-
tion was given in regards to the mineral composition of the
ash. Nevertheless, this was deemed insignificant in regards to
the estimation of the ionic strength of these solutions as the

increase in conductivity was only 3–7% in response to the
addition of the NOM.

Viruses and viral assay techniques

Bacteriophage MS2 was used for the batch inactivation stud-
ies as it is considered an adequate model of enteric viruses
(Gerba 2006; IAWPRC 1991) and because it tends to provide
water managers with a more conservative estimate of virus
removal than other bacteriophages (Pang 2008). MS2 has a
diameter of 25 nm and an isoelectric point (pI) of 3.9 (Overby
et al. 1966). Phage was obtained for this study from the
American Type Culture Collection (ATCC 15597B1) and
grown on bacterial lawns of Salmonella typhimurium WG49
(ATCC 700730). Phage stock solutions were prepared by first
inoculating 50 ml of beef extract nutrient broth (SVA Art. No.
B311040) with a single Bmale^ S. typhimurium colony and
incubating the solution at 37 °C until bacterial growth was at a
high rate of multiplicity. The solution was then infected with
500 μl of high-concentration MS2 solution and incubated for
24 h at 37 °C. Phage purification was achieved by then
centrifuging the solution at 2,000 g for 20 min and filtering
the supernatant through 0.45-μm filters. Virus stock solutions
were stored in 50-ml polypropylene tubes (Sarstedt Art. No.
62.547). Viral assays were completed using the double agar
overlay method (Adams 1959) using agar plates filled with
blood-agar-base No. 2 (SVA Art. No. B331020). Raw data for
the colony counts and the equations used to estimate MS2
concentrations based on the plate counts can be found in the
electronic supplementary material (ESM).

Experimental setup

A two-level, two-treatment full-factorial design was used to
test the effects of high and low levels of IS and DOC on MS2
inactivation. A total of four unique experiments (each with an
identical replicate experiment) were run in parallel in order to

Table 1 Chemical characteristics
of the water used for MAR at
Tunåsen and water used in the
batch experiments

Water description pH Conductivity
(mS/m 25 °C)

IS (mM) DOC (mg/L)

Maximum observeda 8.0 66 - 36b

Winter average (Nov.– Feb.)a 7.5 42 - 16b

low IS, low DOC (e-d-) 8.0 41 7.0 17

high IS, low DOC (e+d-) 7.9 62 8.6 17

low IS, high DOC (e-d+) 7.9 44 7.0 c 31

high IS, high DOC (e+d+) 7.9 64 8.7 c 31

a Data gathered just downstream of the pump intake to the Tunåsen infiltration basins (station Fyrisån Klastorp)
for the years 1993–2011 (Sveriges lantbruksuniversitet 2015)
b Reported as total organic carbon (TOC)
cDoes not account for the small change in IS due to the addition of the Nordic Reservoir natural organic matter
(NOM)
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test all possible combinations of high and low levels of the
treatments considered. Experiments were given names ac-
cording to their respective combinations of treatments and
levels. Experiments with high and low levels of IS were de-
noted with Be+^ and Be- ̄̂ respectively. Experiments with high
and low levels of DOC were denoted with Bd+^ and Bd-^
respectively—for example, an experiment with a low level
of IS and a high level of DOC was given the name Be-d+^.

Static batch inactivation experiments were conducted in
Pyrex 11.5-ml glass tubes with Teflon screw-caps as the batch
reactors. Glass tubes were washed with detergent, rinsed, au-
toclave sterilized, and then heat-sterilized at 180 °C for 2.5 h.
Teflon screw-caps were washed with detergent, rinsed, and
then autoclaved sterilized. Prior to the filling of the batch
reactors, the aqueous background solutions received 1 ml of
virus stock solution and were shaken vigorously for 10 s in
order to prepare the virus suspensions. Virus suspensions were
sampled for measurement of the initial concentration C0 im-
mediately before the filling of the batch reactors.

Tubes were filled such that the aqueous solution formed a
convex surface due to surface tension at the tube opening prior
to screwing on the Teflon screw cap in order to eliminate the
presence of air bubbles in the batch reactor, which resulted in
each tube receiving 13.4 ml of virus suspension. The capacity
of each 11.5-ml tube was estimated well below the level to
which it was filled, thus resulting in the discrepancy between
the experimental volume and the manufacturer’s specifica-
tions. For each experiment, 20 batch reactors were deployed
in a dark climate-controlled chamber at 4 °C in order to ex-
amine inactivation during winter months. Two reactors from
each experiment (measurement and replicate) were randomly
chosen at each of the ten measurement time-steps (4.4, 8.6,
11.5, 15.6, 18.5, 21.5, 25.4, 30.5, 33.5, and 63.4 days) filtered
through a 0.45-μmPESmembrane syringe filter (Sarstedt Art.
No. 83.1826), and then measured for MS2 concentration.
Glass tubes were discarded after each measurement.

Virus inactivation models

The governing equation used in this study to describe virus
inactivation in batch systems is shown in Eq. (1):

dC tð Þ
dt

¼ −λ tð ÞC tð Þ ð1Þ

where t (day) is the time step under consideration, C(t) (PFU/
ml) is the concentration of virus at time t, and λ(t) (per day) is
the inactivation rate at time t. Under the assumption that viral
inactivation is constant then λ(t) = λ then the solution to
Eq. (1) can be written as shown in Eq. (2):

ln
C tð Þ
C0

� �
¼ −λt ð2Þ

where C0 (PFU/ml) is the initial virus concentration. Time-
dependent virus inactivation assumes that different sub-
populations of the same virus will be inactivated at different
rates. One of the reasons for this may be due to virus aggre-
gation (Grant 1995). Virus aggregates may inactivate at a dif-
ferent rate than individual viruses in suspension due to viruses
on the surface layer of the aggregate acting as a protective
barrier for the viruses towards the center of the aggregate
(Sharp 1965). Modeling of the time-dependent inactivation
is done using a pseudo-first-order rate expression proposed
by Sim and Chrysikopoulos (1996) described in Eq. (3):

λ tð Þ ¼ λ0exp −αtð Þ ð3Þ
where λ0 (per day) is the initial inactivation rate and α (per
day) is the resistivity coefficient. Under this assumption, the
solution to Eq. (1) can be written as shown in Eq. (4):

ln
C tð Þ
C0

� �
¼ λ0

α
exp −αtð Þ−1½ � ð4Þ

The resistivity coefficient α (α > 0) governs the time-
dependency of inactivation and can be thought of as a measure
of how sensitive different sub-populations of virus are to in-
activation (Sim and Chrysikopoulos 1996); a larger value of α
indicates the presence a more resistant subpopulation of virus
resulting in higher concentrations for longer periods of time.
The rate at which the most sensitive subpopulation of virus
inactivates is represented by the initial inactivation rate λ0.

Linear and nonlinear least-squares parameter estimation

Both models were initially fit to each experimental dataset
using linear least-squares algorithms for fitting of Eq. (2)
and a non-linear least-squares approach for the fitting of
Eq. (4). Model fits were completed using MATLAB (The
MathWorks Inc. 2014). The functions Blsqlin^ and
Blsqnonlin^ were used for the linear and non-linear least-
squares optimization respectively. The root-mean-square error
(RMSE) was used as a goodness of fit measure for the model
fitting and is shown in Eq. (5):

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n−1

Xn

i¼1

Y i−Fi

� �2

vuut ð5Þ

where n is the total number of i time-steps, Y i (PFU/ml) is the
average concentration of the replicate measurements at time-
step i, and Fi (PFU/ml) is the model prediction at time-step i.
Estimates of λ, λ0, and α are made for each experiment indi-
vidually and the model producing the lowest RMSE is con-
sidered to best describe the data.

Models are fit using data up to 33.5 days and the examined
in regards to their ability to predict the concentration at
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63 days. This provides an opportunity to comment on the
extent to which models fit to approximately 1 month of inac-
tivation data are capable of prediction at time-scales larger
than that used for model fitting.

GLUE model fitting

Uncertainty of MS2 concentration data

The uncertainty bounds at each time step were estimated by
assessing the uncertainty of each individual measurement and
the difference between the replicate measurements. The mea-
surement uncertainty was estimated according to the Blaw of
propagation uncertainty^ which states that the uncertainty of a
quantity can be expressed as a function of all of the components
used to derive that final quantity (Taylor and Kuyatt 1994).
Niemelä (2003) suggests that four components contribute sig-
nificantly to the overall uncertainty of the final measurement of
virus when using the double-agar-layer assay method: the liq-
uid volume used for the plate inoculation, the random scatter of
particles in the inoculation volume, the counting of colonies on
the inoculated plate, and the extent to which a sample was
diluted (dilution factor) before it is plated. Uncertainty estima-
tions for the viral concentration measurements in this study
were performed following the guidelines put forward in
Niemelä (2003). All components of uncertainty, except the
uncertainty of counting colonies on the plates, were accounted
for when calculating the total uncertainty. The procedure
followed for counting PFUs required that each counted colony
was marked so an assessment of uncertainty in the counting
was not possible; however, the uncertainty of the colony counts
may be accounted for in other uncertainty components related
to the colony count (Niemelä 2003). For this study it was as-
sumed that the uncertainty pertaining to the random scatter of
the particles in the inoculation volume accounted for the uncer-
tainty of the colony counts as both components are based on the
number of colonies counted on the inoculated plate.

The lower (LL) and upper (UL) limits of the total uncer-
tainty for the concentration estimate at each time-step i were
estimated by considering the measurement uncertainty for
both replicates. By accounting for uncertainty in this manner
both the experimental and measurement uncertainty were
accounted for at each data-point. Values for UL and LL were
found following the procedure outlined in Niemelä (2003). A
detailed explanation of the equations used to calculate the
uncertainty bounds is presented in the ESM.

Parameter sampling for GLUE

Parameter fitting and model evaluation was done using aMonte-
Carlo approach called GLUE, wherein forward simulations of
the inactivation models are produced using randomly generated
parameter combinations termed Bparameter sets^. The

performance of each model was examined based on the
squared-errors between the predicted concentration and the un-
certainty bounds for themeasured data. The Bbehavioral^models
were chosen according to a pre-determined level of acceptance
based on the squared-errors of the simulations using a modified
form of the RMSE explained in the following. Forward simula-
tions of the constant inactivation model were done by solving
Eq. (2) for C(t) and sampling random combinations of the initial
concentration C0 and inactivation rate λ. Forward simulations of
the time-dependent inactivation model were done by solving
Eq. (4) for C(t) and sampling random combinations of the initial
concentration C0, the initial inactivation rate λ0, and the resistiv-
ity coefficient α. All parameter sets were generated by randomly
sampling individual parameters between a predetermined upper
and lower limit. The sampling limits for C0 were set equal to
1.0 × 104 and 4.0 × 1013. The sampling ranges for λ, λ0, and α
were set to values assumed to overestimate the realistic range of
each parameter in order to ensure an adequate sampling of the
model space for the forward simulations. This was done by as-
suming that the models to be considered as behavioral would not
be able to: (1) predictMS2 concentrations that were less than one
percent of C0 after the first time-step; and (2) predict concentra-
tions at the final time step that were greater than 99% of C0. The
sampling range for α was set to 3.0 × 10–4–1.03 /day and the
sampling range for bothλ andλ0 was set to 3.0 × 10

−4–14.5 /day.
A total of 105 forward simulations were carried out for the con-
stant inactivation rate model using 105 unique parameter sets of
C0 andλ. The samewas done for the time-dependent inactivation
rate model using unique parameter sets of C0, λ0, and α. The
assumptions and equations used to calculate the parameter ranges
are further discussed in the ESM.

Performance of forward simulations

The RMSE for the forward simulations within the GLUE
framework (RMSE′) accounts for the uncertainty of the mea-
sured data by calculating the error of the model based on the
range of likely values rather than a point estimate using a
modified form of Eq. (5) presented in Harmel and Smith
(2007). The RMSE′ was calculated using Eq. (6):

RMSE0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n−1

Xn

i¼1

Eið Þ2
vuut ð6Þ

where Ei (PFU/ml) is the error between the function evalua-
tion and the nearest uncertainty bound as defined by Eq. (7):

Ei ¼
0 if LLi≤ Fi≤ULi

LLi−Fi if Fi < LLi

Fi−ULi if Fi > ULi

8<
: ð7Þ

where Fi (PFU/ml) was the function evaluation at time-step i.
Under this assumption the true-value of the measured
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concentration at time-step i was equally likely to exist any-
where between the estimated upper and lower uncertainty
limits. A graphical representation of the calculation of Ei is
shown in Fig. S1 in the ESM.

The RMSE′ for each forward simulation was calculated in
the same model space as that used for linear and nonlinear
least-squares optimization by dividing the results by the
point-estimate of C0 for that particular experiment. The
criteria for model acceptance were unique to each experiment
and were set equal to the lowest RMSE achieved between the
linear and nonlinear least-squares optimization techniques. All
parameter sets producing an RMSE′ value lower than the
threshold RMSE were considered behavioral thus giving a
range of the parameters λ, λ0, and α capable of describing
the data to a degree as good or better than those obtained
through linear and nonlinear least-squares optimization. By
choosing the acceptance criteria in this way, it was easier to
compare parameter estimates from the GLUEmethodology to
those from the linear and nonlinear least-squares optimization
model fitting techniques. The parameters producing the lowest
RMSE′ were termed λ′, λ0′, and α′.

GLUE prediction uncertainty

In this study, the prediction uncertainty for GLUE is estimated
using the maximum and minimum MS2 concentrations pre-
dicted by the ensemble of behavioral models at each time-step.
The GLUE methodology, as applied in this study, lacks a
formal statistical definition of the model errors and the MS2
concentration data is considered to be equally likely between
the upper UL and lower LL uncertainty bounds unique to each
data-point. Therefore, model predictions between the upper
and lower prediction ‘quantiles’ (as they are commonly called
in the GLUE methodology) are considered to all be equally
likely to some degree.

Results

Batch inactivation data

The lowest concentration of MS2 after 34 and 63 days was
observed in experiments e+d+ and e-d+ respectively (Table 2;
Fig. 1). Experiment e+d- had the highest concentration of
MS2 after 34 and 63 days.

Linear and nonlinear least-squares parameter estimation

For all experiments except e+d- the model of constant inacti-
vation performed better than the model of time-dependent
inactivation, according the RMSE, when using the first
33.5 days of data for fitting models using linear least-squares
parameter estimation (Table 3). Models which produced the

lowest RMSE were considered to best represent the data and
are plotted in Fig. 1. For the experiments e+d+, e-d+, and e-d-,
models of constant inactivation best explained the data. For
these experiments the first-order inactivation rate λ was esti-
mated to be higher in solutions with a high DOC. The magni-
tudes of the 95% confidence intervals for estimates of λ were
similar for all experiments. For experiment e+d-, the model of
time-dependent inactivation performed best (Table 3); howev-
er, the lower bound of the 95% confidence interval surround-
ing the resistivity coefficient α was negative, which is not
considered to be possible under the assumptions used in the
formulation of Eq. (4). For all experiments, the optimum
models performed well in predicting the MS2 concentration
at 63 days (Fig. 1).

Data uncertainty

Results of the data uncertainty are presented in Table 2 and
plotted in Fig. 1 and Fig. 3. The average order-of-magnitude
difference between UL and LL for all experiments was 0.24
log10 PFU/ml (Table 2). The uncertainty ranges for MS2 con-
centrations were similar for all experiments except for experi-
ment e-d+which had a noticeably lower average uncertainty
(Table 2). The lowest absolute data uncertainty for all experi-
ments occurred for the measurement at the last measurement
(63.4 days). The uncertainty bounds at each time step for each
experiment accounts for both the uncertainty in themeasurement
of the replicate data and the difference between the replicate
measurements. Values for the individual contributions to the total
uncertainty for each measurement can be found in the ESM.

GLUE parameter estimation

Results of the GLUE parameter estimation pertaining to the
best performing model structure (constant verses time-
dependent inactivation) for each set of experimental data
agree with those found using the linear and non-linear least-
squares methods (Table 4); however, behavioral parameter
sets for both the constant and time-dependent inactivation
models were found for all experiments (Table 4; Fig. 2). For
all experiments, the RMSE′ value found using GLUE was
lower than the RMSE corresponding to the optimum models
found using the linear and non-linear least-squares methods.
This was a result of calculating squared errors using the upper
UL and lower limit LL of the data at each time step in the
RMSE′ value rather than using a point-estimate as was done
for the RMSE. For experiments e+d+, e-d+, and e-d- the esti-
mates of the constant inactivation rate λ from the linear least-
squares approach were essentially equal to the values of λ′
attained from GLUE (<5% difference). A similar result was
seen for experiment e+d- when comparing estimates of the
initial inactivation rate λ0 and the resistivity coefficientα from
the non-linear least squares approach to the values of λ0′ and
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α′ attained from GLUE. The 95% confidence intervals for λ,
λ0, and α estimated from the linear and non-linear least-
squares methodologies are also similar to the behavioral
ranges of each respective parameter attained from GLUE
(Tables 3–4). For the resistivity coefficient α, all behavioral
values were well below the upper limit of the sampling range

but behavioral values were found at the lower limit of the
sampling range for all experiments (Table 4; Fig. 2). This
suggests that behavioral values of α are likely to exist below
this value; however, the lower limit of the sampling range for
αwas set to 3.0 × 10-4 which, in this study, is considered to be
essentially equal to zero.

Table 2 Batch inactivation time-series data for all experiments and the average data uncertainty for each experiment PFU

e+d+ e-d+ e+d- e-d-

Time (days)
Y (PFU/ml)

LL / UL
(PFU/ml) Y (PFU/ml)

LL / UL
(PFU/ml) Y

(PFU/ml)

LL / UL
(PFU/ml) Y

(PFU/ml)

LL / UL
(PFU/ml)

0 7.2 × 108 4.9 × 108

9.5 × 108
1.2 × 109 8.6 × 108

1.4 × 109
1.9 × 109 1.6 × 109

2.3 × 109
2.2 × 108 9.1 × 107

3.4 × 108

4.5 1.1 × 108 7.8 × 107

1.5 × 108
4.8 × 107 4.4 × 107

5.3 × 107
9.1 × 107 6.8 × 107

1.1 × 108
4.8 × 107 4.4 × 107

5.3 × 107

8.6 7.2 × 107 3.1 × 107

1.2 × 108
4.9 × 107 4.2 × 107

5.5 × 107
4.4 × 107 3.8 × 107

5.0 × 107
5.0 × 107 3.3 × 107

6.8 × 107

11.5 1.6 × 108 1.5 × 108

1.8 × 108
9.2 × 107 7.6 × 107

1.1 × 108
1.0 × 108 8.7 × 107

1.1 × 108
3.5 × 107 2.7 × 107

4.3 × 107

15.6 8.6 × 106 7.4 × 106

9.9 × 106
1.5 × 107 9.8 × 106

2.0 × 107
1.2 × 107 1.0 × 107

1.5 × 107
1.8 × 107 1.6 × 107

1.9 × 107

18.5 3.9 × 107 3.4 × 107

4.8 × 107
1.1 × 107 8.0 × 106

1.4 × 107
1.2 × 107 1.1 × 107

1.4 × 107
2.8 × 107 1.6 × 107

4.0 × 107

21.5 1.2 × 107 7.2 × 106

1.6 × 107
1.4 × 107 1.2 × 107

1.6 × 107
1.4 × 107 1.0 × 107

1.8 × 107
1.3 × 107 1.1 × 107

1.4 × 107

25.4 2.5 × 106 1.8 × 106

3.2 × 106
2.1 × 106 1.4 × 106

2.8 × 106
1.1 × 106 7.2 × 105

1.4 × 106
1.2 × 106 7.2 × 105

1.6 × 106

30.5 1.1 × 106 9.2 × 105

1.3 × 106
7.4 × 105 6.3 × 105

8.6 × 105
2.3 × 106 1.3 × 106

3.4 × 106
1.1 × 106 8.7 × 105

1.4 × 106

33.5 2.0 × 105a 1.4 × 105b

2.5 × 105b
4.2 × 105a 3.4 × 105b

4.9 × 105b
5.7 × 105 1.8 × 105

9.9 × 105
4.0 × 105 d 3.3 × 105b

4.8 × 105b

63.4 2.0 × 103 1.3 × 103

2.8 × 103
5.0 × 102 3.2 × 102

7.0 × 102
1.8 × 104 7.0 × 103

3.1 × 104
2.5 × 103 2.1 × 103

2.9 × 103

Ū ′c - 0.25 - 0.19 - 0.26 - 0.24

a Y based on one measurement (replicate measurement failed)
b UL and LL calculated based on one measurement using Eq. (S10) in ESM

cU 0 ¼ 1
n ∑

n

i¼1
log10 ULið Þ−log10 LLið Þ½ �; average order-of-magnitude difference between UL and LL

Fig. 1 Batch experiment time-series data (white circles), data uncertainty
bounds (red bars), and optimum models from linear and nonlinear least-
squares model fitting (dashed line) using data up to time-step

t = 33.5 days (vertical dotted line); uncertainty bounds that do not
appear are smaller than the plotted point
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GLUE prediction uncertainty

Prediction quantiles were calculated using all of the behavior-
al parameter sets from each individual model structure
(Fig. 3). The prediction quantiles for both model structures
(constant and time-dependent inactivation) were capable of
capturing the MS2 concentrations after both 34 and 63 days
for all experiments except for experiment e+d+ (Fig. 3).
Prediction quantiles for the time-dependent model were capa-
ble of capturing every data-point for experiment e+d-; however,
this was the only instance where the prediction quantiles were
capable of capturing all of the data for either model structure.

Discussion

Effects of treatment on virus inactivation

The optimal and best performing values of the constant inacti-
vation rates λ and λ′, estimated using linear least squares

parameter estimation and GLUE respectively, suggest that
MS2 inactivation was slightly enhanced in the presence of high
levels of DOC (Tables 3–4). Chattopadhyay et al. (2002) also
found that the constant inactivation rates of bacteriophages T2
and φX174 increased after the addition of natural humic ma-
terials; however, an examination of the uncertainty surrounding
the estimates of λ and λ′ in the present study (95% CI and the
range columns in Tables 3–4 respectively) reveals that the dif-
ferences between the values of λ and λ′ across solutions with a
low and a high level of DOC are less significant. A review by
Hurst (1988) found that the total organic carbon content of a
solution had a statistically significant effect on virus survival at
concentrations between 1 and 17 mg/L. In the present study,
DOC concentrations changed between 17 and 31 mg/L
(Table 2), meaning that DOC concentrations may have already
been too high to produce any significant effects on MS2 inac-
tivation between the high and low levels of DOC used in the
experiments. This suggests that the natural variation in the
DOC for the infiltration water used at the Tunåsen MAR
scheme will not significantly affect virus inactivation at 4 °C.

Table 4 GLUE estimation of parameters producing the lowest RMSE′ and the behavioral ranges of the parameters

Constant inactivation; Eq. (2) Time-dependent inactivation; Eq. (4)

Exp. name Best RMSE′ λ′ Range C0′
a Range Best RMSE′ λ0′ Range α′ Range C0′

a Range
(per day) (PFU/ml) (per day) (per day) (PFU/ml)

e+d+ 0.57 0.21 0.16
0.24

6.1 × 108 2.0 × 108

1.5 × 109
0.57 0.24 0.18

0.37
0.003 ∼0b

0.02
9.2 × 108 2.2 × 108

2.8 × 109

e-d+ 0.53 0.21 0.18
0.25

4.8 × 108 2.1 × 108

1.1 × 109
0.55 0.22 0.19

0.28
0.002 ∼0b

0.01
5.9 × 108 2.8 × 108

1.2 × 109

e+d- 0.63 0.18 0.14
0.21

4.2 × 108 1.8 × 108

9.1 × 108
0.49 0.30 0.15

0.53
0.02 ∼0b

0.05
1.0 × 109 1.7 × 108

4.9 × 109

e-d- 0.40 0.18 0.14
0.21

2.3 × 108 8.4 × 107

6.5 × 108
0.41 0.18 0.15

0.24
0.001 ∼0b

0.01
2.3 × 108 1.1 × 108

7.5 × 108

a Behavioral values of C0 corresponding to the intercept of the behavioral model
b Behavioral values of α were found at the lower sampling limit

Table 3 Optimum parameters found using linear and nonlinear least-squares, their corresponding 95% confidence intervals (CI), and the RMSE of the
optimum model; RMSE threshold for GLUE parameter estimation is highlighted in italic

Constant inactivation; Eq. (2) Time-dependent inactivation; Eq. (4)

Exp. name RMSE λ 95% CI C0
a 95% CI RMSE λ0 95% CI α 95% CI C0

a 95% CI
(per day) (PFU/ml) (per day) (per day) (PFU/ml)

e+d+ 0.80 0.20 0.17
0.24

3.8 × 108 4.9 × 107

2.9 × 109
0.84 0.22 0.11

0.33
0.003 −0.01

0.02
5.5 × 108 2.4 × 107

1.3 × 1010

e-d+ 0.71 0.22 0.19
0.24

2.0 × 108 3.3 × 107

1.2 × 109
0.73 0.20 0.11

0.28
−0.003 −0.02

0.01
1.3 × 108 8.9 × 106

1.8 × 109

e+d- 0.97 0.17 0.13
0.21

3.3 × 107 2.8 × 106

3.8 × 108
0.82 0.28 0.14

0.42
0.02 −0.002

0.04
2.8 × 108 1.1 × 107

7.1 × 109

e-d- 0.64 0.18 0.15
0.21

2.9 × 108 5.9 × 107

1.5 × 109
0.65 0.16 0.08

0.23
−0.004 −0.02

0.01
1.8 × 108 1.7 × 107

1.9 × 109

a Values of C0 corresponding to the estimation of the intercept of the optimum model
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Optimum values of the constant inactivation rate λ, es-
timated using linear least-squares parameter estimation,
showed a slight decrease as the solution IS increased from
7.0 to 8.6 mM (Table 3). However, an examination of the
uncertainties surrounding the estimates of λ (95% CI col-
umn in Table 3) suggests that the change is likely insignif-
icant. This is also seen when examining the best
performing values of the constant inactivation rate λ′ esti-
mated using GLUE as the change in IS between the low
and high levels results in no change in the constant inacti-
vation rate.

Estimates of the constant inactivation rate attained using
both the linear least-squares and GLUE methods of parameter
estimation (λ and λ′) ranged from 0.13 to 0.24 /day (Tables 3–
4). A similar study by Chrysikopoulos and Aravantinou
(2012) which investigated the inactivation of bacteriophage
MS2 in solution using static batch experiments at 4 °C esti-
mated a constant inactivation rate ranging from 0.013 to 0.39
/day over 15 individual experiments with an average constant
inactivation rate of 0.062 /day. Results from the present study
fell well within this range; however, the experiments done by
Chrysikopoulos and Aravantinou (2012) used phosphate buff-
ered saline solution and examined inactivation of MS2 using
initial virus concentrations which ranged from ∼103 to ∼108

PFU/ml; therefore, their estimates of the constant inactivation
rate are not directly comparable to those found in the present
study. Schijven et al. (2000) examined the removal of MS2 by
deep well injection. Their estimates of the constant inactiva-
tion rate of MS2 in the injection water ranged from 0.039 to
0.081 /day at 12 °C. Estimates of the constant inactivation rate
in the present study were two to six times higher than those
found by Schijven et al. (2000). The IS and total organic
carbon (TOC) content of the infiltration water was not directly
reported by Schijven et al. (2000); however, results from
chemical analyses of the groundwater completed during the
declogging of the injection wells suggest that TOC concentra-
tions of the water did not exceed 4.3 mg/L. In the present
study, DOC ranged from 17 to 31 mg/L. The difference in
constant inactivation rates for MS2 in the present study and
those reported by Schijven et al. (2000) may have been due to
the large differences in the organic carbon content of the so-
lutions used in the inactivation experiments.

Data from the experiment in the high IS, low DOC solution
(e+d-) were the only set of data best represented by the model
of time-dependent inactivation Eq. (4) when models were fit
to the first month of data (Tables 3–4; Fig. 1). All other ex-
periments were best represented by models of constant inac-
tivation Eq. (2). This suggests that a model describing con-
stant inactivation may be appropriate in most cases for de-
scribing MS2 inactivation at 4 °C at the Tunåsen MAR

Fig. 2 Scatter-plots of sampled parameters versus the RMSE′ of the
Monte-Carlo simulations for all experiments showing the non-behavioral
runs (grey dots), behavioral runs (black dots), the threshold RMSE used to
determine behavioral models (horizontal dashed line), and the optimal
parameter estimates from the linear and nonlinear least-squares
optimization step (black ×)

Fig. 3 Average experimental data (white circles), data uncertainty
bounds (red bars), and prediction quantiles for models of constant
(dashed lines) and time-dependent inactivation (dot-dashed lines);

models were fit using data up to time-step t = 33.5 days (vertical dotted
line); uncertainty bounds that do not appear are smaller than the plotted
point
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scheme. Schijven et al. (2016) investigated the inactivation of
bacteriophage PRD1 as affected by pH and the addition of
NaCl and CaCl2. Their results found that PRD1 inactivation
tended to become more non-linear as IS increased due to the
addition of NaCl at pH 8 and that the data were best fit with
models that assumed there were two subpopulations of PRD1
which inactivated at different rates. In the present study, the
non-linearity of the MS2 inactivation was captured by assum-
ing that inactivation was time-dependent proportional to the
resistivity coefficient α. The coefficient α is meant to repre-
sent the presence of a subpopulation of virus more resistant to
inactivation. These results suggest that the addition of NaCl
may result in the formation of a subpopulation of virus that is
more resistant to inactivation; however, as noted by Schijven
et al. (2016), there is not theory available at this point in time
which can explain this effect.

Comparison of least-squares and GLUE parameter
estimation

The optimum values and 95% confidence intervals of λ, λ0 and
α estimated using least-squares parameter estimation were near-
ly identical to the best performing values and behavioral ranges
of λ′, λ0′, and α′ estimated using GLUE (Tables 3–4). GLUE,
however, was able to estimate the uncertainty surrounding the
parameters without assuming that the model errors were normal-
ly distributed. Within GLUE, the criteria for model acceptance
were unique to each experiment and were set equal to the lowest
RMSE achieved between the linear and nonlinear least-squares
optimization techniques (Table 3). Model performance was then
assessed using the RMSE′ value which calculated the model
error using the distance between the upper UL and lower bounds
LL for each data point rather than using a point estimate of the
data. All parameter sets producing an RMSE′ value lower than
the threshold RMSE were considered behavioral. This resulted
in a range of the parameters λ, λ0, and α capable of describing
the data to a degree as good or better than those obtained through
linear and nonlinear least-squares optimization. By doing this,
the uncertainty of the concentration datawas treated such that the
true-value of the MS2 concentration at any given time step was
assumed to be equally likely between UL and LL. The uncer-
tainty of the parameter estimates is estimated simply by exam-
ining the range of behavioral parameters. The traditional ap-
proach to least-squares parameter optimization estimates param-
eter uncertainty (95% confidence intervals) by assuming that the
distribution of the model errors is normally distributed and
makes similar assumptions about the errors surrounding the data.
This assumption may not be justifiable as, at this point in time,
no studies have been able to produce any reliable conclusions
regarding the distribution of errors surroundingmeasurements of
virus concentrations achieved using the double agar overlay
method. In the current study, GLUE was capable of estimating

the uncertainty surrounding model parameters without having to
make large assumptions about the model and data errors.

Comparison of constant and time-dependent inactivation
model structure

For the least-squares optimization approach, it was clear that a
model of constant inactivation was best suited for all but ex-
periment e+d- when using the RMSE to judge model perfor-
mance. However, the discussion regarding which model struc-
ture is appropriate for describing the inactivation data from
experiment e+d- became more nuanced when examining the
results fromGLUE. Results fromGLUE indicated that several
behavioral parameter sets existed for both model structures
across all experiments, which implied that a model of constant
inactivation was adequate for all of the experiments in this
study, including e+d-, once data uncertainty was considered
in the model parameter estimation. A decision regarding
which model structure is most appropriate to capture a given
set of data needs to take additional steps as, within GLUE, all
behavioral parameter sets are considered likely to some de-
gree. Within GLUE, this can be done by (1) adjusting the
acceptance criteria of what should be deemed a behavioral
model such that only one model structure produces behavioral
parameter sets; and/or (2) examining the capabilities of the
ensemble of behavioral parameter sets to predict future events.

Model prediction

Models of constant and time-dependent inactivation were fit
to the first 33.5 days of MS2 inactivation data. An additional
measurement was taken after 2 months in order to assess the
predictive capacity of the models. The optimal models fit
using the linear and non-linear least-squares methodologies
were all capable of predicting the concentration of MS2 after
2 months (Fig. 1). Experiment e+d- was the only experiment
for which a model of time-dependent inactivation was chosen
to best represent the data based on the RMSE. Within GLUE,
behavioral parameter sets existed for both the constant and
time-dependent inactivation model structures for all experi-
ments. The upper and lower limits for which the ensembles
of behavioral models were capable of predicting the concen-
tration of MS2 at each time step are shown in Fig. 3. These
limits are commonly called prediction quantiles within the
GLUE methodology. The prediction quantiles showed that
the behavioral ensembles of both constant and time-
dependent models were capable of capturing theMS2 concen-
tration after 2 months (Fig. 3). This suggests that, once uncer-
tainty in the MS2 data is considered, models of constant inac-
tivation estimated using 1 month of inactivation data may be
sufficient for predicting future virus concentrations in the
Tunåsen infiltration water at 4 °C. The ensemble of constant
inactivation models is not capable of capturing all of the MS2

Hydrogeol J (2017) 25:1063–1076 1073



concentration data for experiment e+d- while the ensemble
time-dependent models is capable of capturing all data points
(Fig. 3). This further suggests that inactivation may be a time-
dependent process in this instance; however, the uncertainty
surrounding the initial inactivation rate λ0 and resistivity co-
efficient α for experiment e+d- is relatively large (Fig. 2).
Many of the behavioral values of α exist at near the lower
sampling limit of 3.0 × 10–4 /day which, in this case, is as-
sumed to be essentially zero (Table 4; Fig. 2). Inactivation is
essentially independent of time according to Eq. (4) when α is
this small. One month of MS2 inactivation data was not suf-
ficient for trying to determine if inactivation was or was not a
time-dependent process for experiment e+d- and a longer time
series should be used which would be able to further demon-
strate any non-linearity in the data.

Interdependency of λ0 and α

The resistivity coefficient α governs the time-dependency of
inactivation and can be thought of as a measure of how sen-
sitive different sub-populations of virus are to inactivation
(Sim and Chrysikopoulos 1996). The rate at which the most
sensitive subpopulation of virus inactivates is represented by
the initial inactivation rate λ0. The sampling range for λ0
(3.0 × 10−4 –14.5 /day) is adequate in describing the entirety
of behavioral models for the model of time-dependent inacti-
vation; however, this is a direct result of the interdependency
of the two parameters λ0 and α in Eq. (4). The exponential
decay portion in Eq. (4) approaches –1 as both α and t in-
creases and solutions to the equation can be approximated by
–λ0/α. An analysis of the behavioral parameter sets of λ0 and
α for behavioral models fit to experimental data from exper-
iment e+d- reveals a strong linear dependence between the
two parameters (Fig. 4). This demonstrates that the range of
behavioral values of λ0 may become entirely dependent on the

range of behavioral values of α as inactivation curves become
more non-linear. For experimental data that appear to reach a
relative steady-state in viral concentration, Eq. (4) will ap-
proach –λ0/α at earlier time-steps and the range of behavioral
values of λ0 and α will become quite large as model fits will
be increasingly dependent on the value of their ratio only. For
experiment e+d-, the beginnings of this behavior is clearly
reflected in the ranges of behavioral λ0 and α values as they
are much larger than those for the other experiments (Fig. 2).
In order to overcome this problem, virus inactivation experi-
ments which demonstrate a highly non-linear behavior early
on should be carried out for a period of time which is long
enough to demonstrate that virus concentrations are continu-
ally decreasing and do not, in fact, reach a steady-state con-
centration. This relationship between λ0 and α also highlights
the need to conduct more dense experimental measurements at
earlier time-steps in order to provide better estimates of the
initial inactivation rate λ0 for inactivation data which exhibits
highly non-linear behavior.

Conclusions

This study examined how the inactivation of bacteriophage
MS2 inwater was affected by ionic strength (IS) and dissolved
organic carbon (DOC) using static batch inactivation experi-
ments at 4 °C conducted over a period of 2 months.
Experiments were conducted using a two-treatment, two-
level full-factorial design where the high and low levels of
the treatments (DOC and IS) were characteristic of the varia-
tion observed at the Tunåsen managed aquifer recharge
(MAR) scheme in Uppsala, Sweden. Experimental data was
fit with constant and time-dependent inactivation models
using traditional linear and nonlinear least-squares techniques
and generalized likelihood uncertainty estimation (GLUE).
Modeling results from both the linear least-squares and
GLUE methodologies indicated a slight increase in the con-
stant inactivation rate λ when DOC concentrations were in-
creased from 17 to 31 mg/L; however the increase in the
constant inactivation rate λ was less significant when consid-
ering the uncertainty of the parameter estimates. Results from
the linear least-squares methodology indicated a slight de-
crease in λ when IS increased from 7.0 to 8.6 mM; however,
GLUE showed that IS had no effect on λ. Results from the
least-squares model fitting indicated that the experiment with
a high level of IS and a low level of DOC (experiment e+d-)
was the only experiment that was best represented by a model
of time-dependent inactivation when models were fit to
33.5 days of inactivation data. The traditional linear and
non-linear least-squares methodologies and the GLUE meth-
odology performed similarly in regards to their estimations of
the model parameters and the uncertainty surrounding the pa-
rameter estimates. However, GLUE was able to arrive at theseFig. 4 Scatter-plot of behavioral pairs of λ0 and α for experiment e+d-
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conclusions without making large assumptions about the dis-
tribution of the model and data errors, which indicates that
GLUE could be used as a viable alternative to the traditional
least-squares methodologies for parameter estimation in virus
inactivation models. Inactivation models fit to 33.5 days of
data using the least-squares methodology were all capable of
predicting MS2 concentrations after 2 months. The least-
squares methodology suggested that experiment e+d- was best
described using a model of time-dependent inactivation.
Models of constant inactivation were best suited for the re-
maining three experiments; however, results from GLUE in-
dicated that a model of constant inactivation was sufficient for
all experiments once data uncertainty was considered directly
in model fitting. Time-series longer than 2 months would be
needed in order to provide any concrete conclusions regarding
the time-dependence of MS2 inactivation at 4 °C under the
conditions present at the Tunåsen infiltration scheme.
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