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1  Introduction

Over millions of years, biological systems have evolved 
through the numerous trial-and-error procedures of natu-
ral selection to perfect design solutions that often surpass 
those developed by Man. The field of biomimetics has 
turned into an increasingly active area of research that 
studies and imitates naturally inspired systems in order 
to advance modern technology through the use of innova-
tive materials and geometrical optimisation.

An area where biomimetic principles are proving useful 
is in the design and optimisation of bifurcating fluid distri-
bution networks. Branching networks are numerous in natu-
ral systems and can be found in many processes which are 
often responsible for controlling fluids that present complex 
rheological behaviour. Examples include the vascular sys-
tem that drives blood and other vital substances throughout 
the body, the oxygen transfer system in the human lungs, or 
the water transport through the xylem in the bifurcating net-
works of plants and trees (McCulloh et al. 2003).

Microfluidics offers the possibility of mimicking the 
natural environment at the dimensional scale of many bio-
logical processes (Domachuk et  al. 2010). Hence, bifur-
cating microfluidic devices may find applications in many 
processes, such as blood plasma separation (Li et al. 2012; 
Tripathi et  al. 2013; Yang et  al. 2006), which exploits the 
plasma skimming concept in which red blood cells concen-
trate in the high flow rate region away from walls (Faivre 
et al. 2006).

Another example is the use of microfabricated branch-
ing networks to design applications that artificially assist 
the oxygen system in the human body (Potkay et al. 2011; 
Kniazeva et al. 2012).

The ability of microfluidics to provide adequate and 
controlled flow conditions may also benefit areas such 
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as stem cell research (Zhang and Austin 2012) and tis-
sue engineering. Microfluidics could assist studies related 
to the deformability of red blood cells (Pinho et al. 2013) 
and those investigating blood flow mechanisms, providing 
important information for diagnosing diseases and treat-
ing patients (Lima et al. 2008). As recently pointed out by 
DesRochers et al. (2014), microfabricated networks can be 
used as 3D cell culture microenvironments, in order to gen-
erate cell interactions that are unlikely to be replicated in 
2D techniques, providing suitable conditions to carry out 
studies related to kidney diseases. In addition, bifurcating 
structures offer the ability to carry out many experiments 
in parallel, a characteristic referred to as ‘scaling out’. An 
example of this is the exposure of shear-sensitive cells to 
different flow conditions being investigated simultaneously 
in a single experiment. Microfluidic bifurcating networks 
have also been used by various authors in biological and 
chemical applications to generate precise concentration 
gradients (Dertinger et al. 2001; Jeon et al. 2000; Hu et al. 
2011; Weibel and Whitesides 2006) due to their superior 
performance compared with conventional techniques, or 
as microstructure evaporators, for which better and more 
accurate designs are essential in order to achieve the best 
possible performance (Brandner 2013).

Most of the scientific fields of interest referred to pre-
viously require the handling of non-Newtonian fluids that 
exhibit shear-dependent viscosity (i.e. shear-thinning or 
shear-thickening behaviour). Hence, it is of great interest to 
develop intelligent designs that offer the ability to control 
the flow of these fluids in lab-on-a-chip networks by gen-
erating precise shear-stress distributions at the walls and 
specific flow resistances along the microfluidic networks to 
suit a particular application.

Here, we propose a biomimetic rule based on the opti-
mum relationship expressed by Murray (1926), for design-
ing manifolds that can produce desired flow characteristics 
for non-Newtonian, power-law fluids in microfluidic pla-
nar devices of rectangular cross section. We have validated 
the biomimetic rule using numerical simulations which 
focus on the estimation of the average shear stress at the 
walls of each generation and the flow resistance along the 
networks.

In Sect. 2, a theoretical analysis of the problem is pre-
sented leading to the basic set of equations that need to 
be solved for designing an appropriate manifold. Our pro-
posed biomimetic rule is validated numerically in Sect. 3, 
for various power-law fluids in different customised geom-
etries. We also discuss the limits of the design in terms of 
the Reynolds number. The main conclusions are summa-
rised in Sect. 4.

2 � Theoretical basis

2.1 � Circular cross‑sectional networks

In bifurcating networks, the optimum relationship between 
the diameter of the parent and daughter vessels of circu-
lar cross section was expressed by Murray (1926) using 
the principle of minimum work. This relationship is now 
known as Murray’s law and states that the cube of the 
diameter of the parent vessel (φ0) is equal to the sum of the 
cubes of the diameters of the daughter vessels (φ1,φ2):

Murray’s original relationship was derived for fully devel-
oped flow of Newtonian fluids in circular ducts to match the 
basic shape of most biological distribution systems, such as 
the vascular system, and can be considered as a particular 
case of constructal theory (Bejan 2005; Bejan and Lorente 
2006). Considering a symmetric bifurcating network where 
φ1 = φ2, it follows that

Murray’s law can be generalised (Emerson et  al. 2006; 
Barber and Emerson 2008) for designing microfluidic 
manifolds that have specific fluidic conditions, by modify-
ing the relationship (2) with the use of a branching param‑
eter, X:

It is obvious that for X = 1, Murray’s law is recovered, but 
a range of relationships between the parent and the consec-
utive generations can be achieved for X �= 1. If the value 
of the parameter X is held constant through the branching 
network, then it can be shown that the diameter of genera-
tion i is given by

where the index i = 0, 1, 2, . . .N  refers to the number of 
each generation in the network. It should be noticed that 
in the cases of X �= 1, the minimum work principle is no 
longer valid and Eq.  (4) allows us to customise mani-
folds for applications that require a particular gradient 
of shear stress or flow resistance along the branching 
network.

For a symmetric system, the volumetric flow rate halves 
at each bifurcation. Therefore, for generation i, the volu-
metric flow rate is given by

(1)φ3
0 = φ3

1 + φ3
2

(2)φ3
0 = 2φ3

1

(3)X =
φ3
0

2φ3
1

(4)φi =
φ0

(2X)i/3
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Using Eqs. (4) and (5), the mean flow velocity in each gen-
eration, ūi, can be shown to be

The wall shear stress for fully developed laminar flow in a 
circular pipe can be written (see White 2006) as follows:

Substituting Eqs. (4) and (6) into (7) shows that the shear 
stress in each segment will obey

where τ0 is the wall shear stress in the inlet vessel. Equa-
tion (8) clearly shows that if Murray’s law is obeyed (X = 1),  
then the magnitude of the wall shear stress remains the same 
at every point in the branching hierarchy. However, by chang-
ing the value of X, it is possible to introduce an element of 
control into the shear-stress distribution. Equation  (8) rep-
resents a general biomimetic rule that can be applied to any 
channel, irrespective of the cross-sectional geometry.

2.2 � Rectangular cross‑sectional networks

Microfluidic manifolds used in lab-on-a-chip applications 
are typically fabricated using techniques such as soft- or 
photo-lithography, and wet and dry etching, resulting in net-
works with non-circular cross sections of constant depth. 
Emerson et al. (2006) extended Murray’s law for Newtonian 
fluids to non-circular ducts of rectangular and trapezoidal 
cross section. The main difference is that for a circular pipe, 
the stress distribution at the walls is uniform, whereas for 
non-circular channels it varies along the wetted perimeter. 
Taking into account the mean wall shear stress, Emerson 
et al. (2006) proposed the following biomimetic relationship:

The average wall shear stress τ̄ is related to the Fanning 
friction factor, f  as (White 2006)

where f  is defined as the ratio of Poiseuille number, Po, 
and Reynolds number, Re, ρ is the density, µ the Newto-
nian fluid viscosity, ū the average velocity of the fluid, 
and Dh the hydraulic diameter of the channel defined as 

Dh = 4 × area/wetted perimeter.

The proposed biomimetic principle has the advantage of 
enabling the design of manifolds with specific shear-stress 

(5)Qi = 2−iQ0

(6)ūi = ū0

(

1

2
X2

)i/3

(7)τ =
8µū

φ

(8)τi = τ0X
i

(9)τ̄i = τ̄0X
i

(10)τ̄ =
1

2
ρū2f =

1

2
ρū2

Po

Re
=

µūPo

2Dh

distributions along the microfluidic network (i.e. X �= 1)  
and the ability to control the flow within the network. Here, 
we expand this relationship, originally proposed for Newto-
nian fluids, to consider also non-Newtonian power-law fluids.

2.2.1 � Extension to power‑law fluids

Flows of power-law fluids differ from Newtonian fluids 
in many ways, often because the viscosity can no longer 
be considered constant and independent of the shear rate. 
In this work, we consider power-law fluids which are 
described by the Ostwald-de Waele model, in which the 
viscosity, η, is a function of shear rate, γ̇:

where k is the consistency index that is related to the mag-
nitude of the viscosity and n is the power-law index. When 
n = 1, the Newtonian behaviour is recovered, predicting 
constant viscosity in steady shear. For n < 1, the fluid is 
described as shear-thinning, with the viscosity decreasing for 
increasing shear rate, while for n > 1 the fluid is described 
as shear-thickening with the fluid becoming more viscous as 
the deformation rate is increased.

By analogy with Newtonian fluids, the mean wall 
shear stress for a power-law fluid in a circular duct can be 
expressed as

where Po = 16 and Re∗ is the generalised Reynolds number 
for a power-law fluid, defined as (Metzner and Reed 1955)

As demonstrated by Kozicki et al. (1966), for a power-law 
fluid flow in an arbitrary cross-sectional duct, K is given by

where the variables a∗ and b∗ are parameters that depend on 
the aspect ratio of the geometry examined. For the case of 
a circular duct, a∗ = 1/4 and b∗ = 3/4, and thus, the cor-
rect value of Po = 16 is recovered for the Newtonian case 
(n = 1; Rohsenow et al. 1998). For rectangular channels of 
constant depth, these parameters can be evaluated by solv-
ing the following set of equations:

(11)η(γ̇ ) = kγ̇ n−1

(12)τ̄ =
1

2
ρū2f =

1

2
ρū2

16

Re∗

(13)Re∗ =
ρū2−nDh

n

8n−1K

(14)K = k

(

b∗ +
a∗

n

)n

(15)

a∗ =
1

2

(

1+ 1

α∗i

)2
×

1
[

1+ 4

∞
∑

j=0

(−1)j+1

(

2j+1

2
π

)3

1

cosh

(

2j+1

2
πα∗i

)

]
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and

where αi is the ratio of depth d over the width wi of each gen-
eration i. It should be noted that Eqs. (15) and (16) are only 
valid when the width of the channel is greater than or equal to 
the depth of the channel (i.e. αi ≤ 1). To obtain the values of 
a∗ and b∗ when αi > 1, the fraction should be inverted. Hence

Clearly, the geometrical parameters, a∗ and b∗, act as cor-
rection factors for the Poiseuille number, with Po depend-
ing on the geometry and thus on a∗ and b∗. In the specific 
case of Newtonian fluid flow (n = 1), these parameters pro-
duce the correct value of Po in a rectangular cross section 
provided that Po = fRe = 16(a∗ + b∗).

Considering a circular duct, Po is constant regardless of 
the diameter, and the wall shear-stress distribution is uniform. 
This is not the case for non-circular ducts, where the wall 
stresses vary along the perimeter, with Po depending on the 
channel’s aspect ratio. Consequently, the Poiseuille number 
needs to be evaluated for each different cross section con-
sidered. Using Eqs. (12) and (13), the fully developed mean 
shear stress along any branch of the network can be written as

Substituting Eq. (18) into (9) yields:

Considering a symmetric network where the flow halves at 
each bifurcation, then

where Ai refers to the cross-sectional area of generation i.
From the combination of Eqs.  (19) and (20) and after 

some mathematical re-arrangement, we propose the follow-
ing equation, derived from the biomimetic rule:

It can be seen that the biomimetic design rule is a function 
of the power-law index of the fluid but independent of its 
density.

(16)

a∗ + b∗ =
1

2

(

1+ 1

α∗i

)2
×

3
[

1− 192

π5

1

α∗i

∞
∑

j=1,3,5,...

1

j5
tanh

(

jπα∗i
2

)

]

(17)α∗
i =

{

d/wi if d ≤ wi

wi/d if d > wi

(18)τ̄i =
8nūni Ki

Dh
n
i

(19)
ūni Ki

Dh
n
i

=
ūn0K0

Dh
n
0

Xi

(20)ūni =

(

Qi

Ai

)n

=

(

2−iQ0

Ai

)n

(21)αn
i (1+ αi)

n

(

b∗i +
a∗i

n

)n

= αn
0
(1+ α0)

n

(

b∗
0
+

a∗
0

n

)n
(

2
i
)n

Xi

By solving the set of Eqs.  (15), (16) and (21), we can 
design bifurcating manifolds of rectangular cross-sectional 
areas for power-law and Newtonian fluids. The design will 
allow specific shear-stress distributions along each consec-
utive generation depending on the value of the branching 
parameter, X. When X = 1, Murray’s law is obeyed and the 
manifolds will produce identical average wall stresses in 
each segment of the network where the flow is fully devel-
oped. By varying X, we have the ability to design mani-
folds with different stress distributions along the network 
depending on the needs of each specific application.

2.2.2 � Flow resistance gradient

When designing microfluidic manifolds, the estimation of the 
total flow resistance and the pressure distribution are often of 
high importance. Based on Hartnett and Kostic (1989), Son 
(2007) reported the following relationship between flow rate 
and pressure drop for power-law fluid flow in a rectangular 
channel:

After some mathematical manipulations using Eqs. (18) and 
(22), the tangential stress at each segment can be related to 
the pressure drop, resulting in the fundamental relationship:

In biological systems, the length of an individual seg-
ment of a branching hierarchy is often proportional to its 
diameter, as discussed by West (1990). In order to extend 
Murray’s law to non-circular microchannels, Emerson et al. 
(2006) proposed that this biological principle can be gen-
eralised for non-circular cross sections by assuming that 
the length of each vessel is proportional to its hydraulic 
diameter. We have adopted the same assumption here for 
consistency with other research on transport networks (Liu 
et al. 2010; Shan et al. 2011). Using this assumption, and 
considering that the hydraulic resistance, R, of a channel is 
defined by the ratio of pressure drop, �P, to the flow rate, 
Q, the resistance of a single segment of generation i can be 
related to the resistance in the inlet channel (i = 0) and the 
branching parameter by

analogous to the Newtonian case reported by Emerson 
et al. (2006).

Using an electrical circuit analogy for parallel resist-
ances to express the hydraulic flow in the network, the total 
resistance between the inlet and the end of the segment at 
generation i can be written as

(22)
(

�P

2L

)(

wd

w+ d

)

=

[(

6Q

wd2

)(

1+
d

w

)(

2

3

)]n

k

(

b∗ +
a∗

n

)n

(23)τ̄i =
�PiDhi

4Li

(24)
Ri

R0

= (2X)i



741Microfluid Nanofluid (2015) 19:737–749	

1 3

Hence, for a network composed of N + 1 consecutive genera-
tions, the total flow resistance in the design can be written as

where RtotN refers to the total resistance between the inlet 
(at the start of generation i = 0) and the outlet (at the end of 
the channel in generation i = N). Expanding the series on 
the right-hand side of Eq. (26), the total network resistance 
may be expressed as

3 � Numerical simulations

3.1 � Numerical method and problem set‑up

The validation of the proposed biomimetic rule for design-
ing bifurcating microfluidic networks with rectangular cross-
sectional areas, described in the previous section, is achieved 
by performing computational fluid dynamics simulations.

The flow is considered to be laminar, incompressible 
and isothermal and is solved numerically using the continu-
ity and momentum equations together with the power-law 
stress-strain constitutive equation:

where p is the pressure, τ is the extra stress tensor, γ̇ is the 
shear rate tensor and γ̇ is the magnitude of the shear rate 
tensor.

The governing equations are solved using an in-house 
numerical code, based on a fully implicit finite volume 
method, using collocated meshes (Oliveira et  al. 1998). 
Rhie and Chow (1983) interpolation is employed for cou-
pling the pressure and velocity fields enabling the use of 
the SIMPLEC algorithm for collocated meshes to solve the 
continuity and momentum equations. The convective terms 
are discretised using the CUBISTA high-resolution scheme 
(Alves et  al. 2003), while the diffusive terms employ a 
central difference scheme. The time-dependent terms in 
the momentum equation are discretised using a first-order 
implicit Euler scheme.

(25)Rtoti = R0 +
R1

2
+ · · · +

Ri

2i

(26)RtotN = R0 +
R1

2
+ · · · +

Ri

2i
+ · · · +

RN

2N
= R0

N
∑

i=0

Xi

(27)RtotN =

{

R0

(

XN+1 − 1
)

/(X − 1), X �= 1

R0(N + 1), X = 1

(28)∇ · u = 0

(29)ρ

(

∂u

∂t
+ u · ∇u

)

= −∇p−∇ · τ

(30)τ = kγ̇ n−1
γ̇

A uniform velocity is applied at the inlet, and creeping 
flow conditions (Re → 0) are considered throughout, unless 
stated otherwise. No-slip boundary conditions are applied at 
the walls, while zero streamwise gradients are assumed at 
the outlets of the network. In order to reduce the computa-
tional demands, symmetry boundary conditions are consid-
ered along the central planes y = 0 and z = 0 (cf. Fig. 1).

In this paper, we consider networks having four con-
secutive generations of constant depth, as typically found in 
microfluidics applications, where all channels designed were 
assumed to have a depth of d =  125 μm. For most cases 
examined, the inlet channel (i = 0) rectangular cross sec-
tion was taken to be 250 μm × 125 μm, resulting in an inlet 
aspect ratio of α0 = d/w0 = 0.5, but other aspect ratios in the 
range 0.2 ≤ α0 ≤ 1.0 have also been considered. The length 
of each segment is set to be proportional to its hydraulic 
diameter (Li = 20Dhi). Finally, the meshes used to discretise 
the physical domain consist of approximately 2.2 to 2.4 mil-
lion grid cells depending on the flow geometry, with the min-
imum cell size given by 0.013 ≤ δx0

Dh0
=

δy0
Dh0

= δz0
Dh0

≤ 0.022 
according to the specific configuration.

Numerical computations are performed for several val-
ues of the branching parameter, X, for a consistency index 
of k = 10−3 N sn m−2 and a range of power-law indices, n, 
varying from shear-thinning to shear-thickening behaviour 
(n = [0.2, 2.0]). For all the cases considered, the validity 
of Eq. (9) and the ability to generate a desired distribution 
of average wall shear stress throughout the network are 
evaluated by averaging the shear stresses developed at the 
perimeter walls of the channel at each branch.

3.2 � Networks with uniform shear‑stress distribution 
(X = 1)

In this section, we report our results for X = 1, when the 
principle of minimum work is obeyed, and we solve the 
biomimetic design set [Eqs. (15), (16) and (21)] for Newto-
nian and power-law fluids.

Fig. 1   Microfluidic bifurcating network of constant depth with four 
generations (i = 0, 1, 2, 3) designed for a Newtonian fluid with aspect 
ratio α0 = 0.5 and X = 1. The dashed-dotted line illustrates the sym-
metry conditions about y = 0
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The geometrical characteristics for each consecutive 
generation computed for a Newtonian fluid (n = 1) are 
given in Table  1 for α0 = 0.5 and are in agreement with 
those presented by Barber and Emerson (2008). For this 
particular case (X = 1 and α0 = 0.5), comparing the geo-
metrical values for the Newtonian fluid (Table 1) with the 
parameters computed for various power-law fluids (ranging 
from highly shear-thinning to shear-thickening) presented 
in Table 2, it is clear that the differences between the pro-
posed geometries are small and the widths do not exhibit 
significant variations (maximum deviation of 1.7 % in w1).  
Based on this observation, we use the geometry obtained 
for a Newtonian fluid (n = 1) and examine the flow charac-
teristics of different fluids with power-law indices ranging 
from n = 0.2 (shear-thinning) to n = 2.0 (shear-thicken-
ing). This universality is very interesting for experimental 
studies, since the same microfluidic network can be used 
for a range of fluids.

In Fig. 2a, we present a comparison between theory and 
computational predictions for the normalised average wall 

shear-stress distribution along the bifurcating network. For 
the Newtonian case, good agreement between theoreti-
cal (Eq. 9) and numerical predictions is found, as reported 
by Emerson et  al. (2006) and Barber and Emerson (2008). 
The relative error between the CFD calculations for n = 1 
and theory is less than 0.4  %. Furthermore, it can be seen 
that although the geometry was designed for Newtonian flu-
ids, it also works well for the power-law fluids. Clearly, the 
response for both shear-thinning and shear-thickening fluids 
is similar to the Newtonian fluid, yielding a uniform average 
wall shear stress (τ̄i ≃ τ̄0) along the network segments. More 
specifically, for the shear-thickening fluid with n = 2.0,  
a maximum deviation of 1.35 % from the Newtonian behav-
iour is reported, while for the shear-thinning fluid with 
n = 0.2, the maximum deviation is less than 1 %. Figure 2b 
shows the total flow resistance (computed using Eq. 25) at 
each consecutive generation. The total flow resistance can be 
seen to vary linearly for all fluids, thereby corroborating the 
good agreement between theory and numerical results for 
both the power-law and Newtonian fluids.

Table 1   Geometrical 
parameters and dimensions of 
a planar bifurcating network 
with inlet aspect ratio α0 = 0.5 
obtained for a Newtonian fluid 
(n = 1)

i wi (µm) di (µm) αi Dhi (µm) a∗ b∗

n = 1.0

 0 250.0 125.0 0.500 166.7 0.2439 0.7278

 1 143.3 125.0 0.872 133.6 0.2134 0.6794

 2 91.8 125.0 1.361 105.9 0.2186 0.6884

 3 62.5 125.0 2.000 83.3 0.2439 0.7278

Table 2   Geometrical 
parameters and dimensions of 
planar bifurcating networks 
with inlet aspect ratio α0 = 0.5 
obtained for power-law fluids 
with n = 0.2, 0.6, 1.6 and 2.0

i wi (µm) di (µm) αi Dhi (µm) a∗ b∗

n = 0.2

 0 250.0 125.0 0.500 166.7 0.2439 0.7278

 1 140.9 125.0 0.887 132.5 0.2131 0.6788

 2 90.8 125.0 1.377 105.2 0.2191 0.6892

 3 62.5 125.0 2.000 83.3 0.2439 0.7278

n = 0.6

 0 250.0 125.0 0.500 166.7 0.2439 0.7278

 1 142.6 125.0 0.876 133.2 0.2133 0.6792

 2 91.5 125.0 1.366 105.7 0.2187 0.6886

 3 62.5 125.0 2.000 83.3 0.2439 0.7278

n = 1.6

 0 250.0 125.0 0.500 166.7 0.2439 0.7278

 1 143.8 125.0 0.869 133.8 0.2134 0.6795

 2 92.1 125.0 1.358 106.0 0.2185 0.6882

 3 62.5 125.0 2.000 83.3 0.2439 0.7278

n = 2.0

 0 250.0 125.0 0.500 166.7 0.2439 0.7278

 1 144.0 125.0 0.868 133.8 0.2135 0.6795

 2 92.1 125.0 1.357 106.1 0.2185 0.6882

 3 62.5 125.0 2.000 83.3 0.2439 0.7278
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Other values of inlet aspect ratio (α0) have also been tested 
(α0 = 0.2, 0.3 and 1.0), in order to investigate the applicabil-
ity of the channel’s universality for X = 1. The Newtonian-
designed geometry for each case was used in the simula-
tions, similar to the case of α0 = 0.5. For a square inlet cross 
section (α0 = 1.0), the Newtonian geometry is once again 
suitable for all fluids tested (n = 0.6, 1 and 1.6), but for the 
smaller aspect ratios of α0 = 0.2 and α0 = 0.3, the power-
law fluid response deviates from the Newtonian behaviour, 
indicating that customised geometries tailored to the specific 
power-law fluid under consideration should be used. These 
results are not shown here for conciseness, but additional 
data regarding the dimensions of the customised geometries 
for X = 1 and α0 = 0.2, 0.3 and 1.0 are given in Online 
Resource 1.

3.3 � Networks with nonuniform shear‑stress 
distribution (X �= 1) 

When the value of the branching parameter differs from 
unity (X �= 1), the geometries generated by solving the 

biomimetic set of equations will produce manifolds with 
well-defined shear-stress gradients. The ability to generate 
nonuniform, but known, shear-stress gradients is one of the 
advantages of the proposed biomimetic design. It should 
be noted though that for X �= 1, the principle of minimum 
work is no longer satisfied. Here, the cases of X = 1.25 
and X = 0.75 are considered, corresponding to a positive 
or negative gradient of the shear-stress distribution along 
the network. We investigate the response of a Newtonian, a 
shear-thinning (with n = 0.6) and a shear-thickening (with 
n = 1.6) fluid.

The characteristics of the geometries generated for a 
Newtonian fluid flow with X = 1.25 and X = 0.75 are 
given in Table  3. Comparing these new configurations 
with that for X = 1 (Table 1), it is clear that the geometries 
exhibit large differences in the widths of each generation, 
which consequently affect the length of each generation 
and thus the total length of the microfluidic network, as 
illustrated in Fig. 3. The designed channels used in all three 
cases have the same proportionality between the lengths 
and the hydraulic diameters of each segment (Li = 20Dhi).

(a) (b)

Fig. 2   Normalised wall shear stress (a) and flow resistance (b) for various fluids along the four generations of the bifurcating network designed 
for a Newtonian fluid for α0 = 0.5 and X = 1 (Table 1)

Table 3   Geometrical 
parameters and dimensions of 
planar bifurcating networks 
with initial aspect ratio α0 = 0.5 
and branching parameters 
X = 1.25 and X = 0.75, 
designed for a Newtonian fluid

i wi (µm) di (µm) αi Dhi (µm) a∗ b∗

X = 1.25

 0 250.0 125.0 0.500 166.7 0.2439 0.7278

 1 123.0 125.0 1.016 124.0 0.2121 0.6771

 2 71.4 125.0 1.751 90.9 0.2332 0.7120

 3 44.2 125.0 2.828 65.3 0.2796 0.7736

X = 0.75

 0 250.0 125.0 0.500 166.7 0.2439 0.7278

 1 177.7 125.0 0.704 146.8 0.2205 0.6917

 2 132.0 125.0 0.947 128.4 0.2123 0.6775

 3 101.7 125.0 1.230 112.1 0.2150 0.6823
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Using a similar approach to that reported in Sect. 3.2 for 
X = 1, first we analyse the flow of power-law fluids using 
the geometry obtained for a Newtonian fluid. Figure  4a 
shows the normalised average wall shear stress in each con-
secutive generation of a network designed for a Newtonian 
fluid with X = 1.25. For the case of n = 1, the CFD results 
are in very good agreement with the results presented by 
Emerson et al. (2006) and Barber and Emerson (2008) and 
with theory (Eq.  9), resulting in a maximum deviation of 
less than 0.5  %. When X = 1.25, the average wall shear 
stress increases at each consecutive generation, resulting in 
a positive gradient along the network as imposed by set-
ting the branching parameter to a value greater than unity 
(X > 1) in the biomimetic rule. However, unlike the equiv-
alent case for X = 1, the use of the Newtonian geometry 
produces very different shear-stress distributions along 
the network for each power-law fluid tested (Fig. 4a). It is 
clear that for a branching parameter X = 1.25, the power-
law fluids will not display the desired behaviour when 
flowing in the Newtonian-designed geometry. This is also 
highlighted from the deviations in the resistances shown in 
Fig. 4b.

In view of the previous findings, individual geometries 
for each power-law fluid have been designed based on our 

biomimetic rule; the dimensions of each network are pre-
sented in Table 4.

Comparing the geometrical characteristics for n = 0.6 
and n = 1.6 with those for the Newtonian fluid (Table  3; 
X = 1.25), there are clear differences in the widths of each 
generation. Hence, unlike the X = 1 case, where the aver-
age velocity ratios (ūi/ū0) along the bifurcating networks 
are similar for both the Newtonian and power-law fluids 
(Fig.  5a), for X = 1.25, the average velocities required to 
give the desired wall shear-stress gradient for each fluid are 
clearly very different (Fig. 5b).

When the shear-thinning fluid (n = 0.6) is flowing in 
the Newtonian geometry for X = 1.25, it is consistently 
exposed to lower average velocities in each consecutive 
generation when compared to its customised geometry. 
On the other hand, the shear-thickening fluid is exposed to 
higher-average velocities when the Newtonian geometry is 
used, leading to high shear-stress ratios as the fluid thickens 
(as shown in Fig. 4a). Consequently, the total resistance in 
the same microfluidic network is different for the various 
fluids (Fig.  4b). Additionally, for X = 1.25, the velocity 
variation at the first bifurcation (Fig.  5b) exhibits a non-
monotonic behaviour for the shear-thinning (n = 0.6) and 
Newtonian (n = 1) cases.

(a) (b)

Fig. 4   Normalised wall shear stress (a) and flow resistance (b) along the network with a0 = 0.5, designed for a Newtonian fluid with X = 1.25 
and X = 0.75

Fig. 3   Comparison of the bifurcating networks of rectangular cross section and inlet aspect ratio α0 = 0.5 created for Newtonian fluids with 
Li = 20Dhi, using different branching parameters, X
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We now consider the case of the geometry designed 
for a Newtonian fluid with X = 0.75. The computational 
results for n = 1 are shown in Fig. 4a and are also in good 
agreement with theory with a deviation of less than 0.6 %. 
For the power-law fluids, we observed a similar, but oppo-
site behaviour to that exhibited for X = 1.25. Examining 

the customised geometrical parameters for each power-law 
index for X = 0.75 shown in Table  5, it is clear that the 
flow in the Newtonian geometry will produce higher shear-
stress gradients than desired for shear-thinning fluids, while 
in contrast, lower shear stress will develop for the shear-
thickening fluids at the walls of the microfluidic manifold. 
In a similar fashion to the X = 1.25 case, the total resist-
ance for X = 0.75 along the microfluidic network is signifi-
cantly different for the various fluids (Fig. 4b).

In summary, when the network is designed for a Newto-
nian fluid for X �= 1 and α0 = 0.5, the power-law fluid behav-
iour diverges from the Newtonian response and the geometries 
designed for Newtonian fluids are not appropriate for applica-
tions that require the handling of power-law fluids. Custom-
ised geometries should then be generated for each power-law 
fluid. Numerical simulations have been performed to examine 
the fluidic conditions in the customised geometries (Tables 4 
and 5). Figure 6a shows that when the customised geometries 
are designed using Eq.  (21), both shear-thinning and shear-
thickening fluids obey the biomimetic principle, by yielding 
the predicted tangential shear-stress distributions. At the same 
time, the differences in the widths are reflected on the lengths 
of each generation and the flow resistances along the net-
works shown in Fig. 6b demonstrate that the biomimetic rule 
is in good agreement with theory. For each fluid considered, 
a maximum deviation of 2 % for the case of X = 1.25 and 
1 % for the case of X = 0.75 has been observed; these errors 
correspond to the case of the shear-thickening fluid in the last 
(outlet) generation of the networks.

A comparison between the normalised wall shear-stress 
distribution along the microfluidic networks in the Newtonian-
designed and the customised geometries for the shear-thinning 
(n = 0.6) and shear-thickening (n = 1.6) fluids is shown in 
the contour plots of Figs. 7 and 8, respectively, for the case of 
X = 1.25. In both cases, the microfluidic networks have the 
same inlet aspect ratio of α0 = 0.5 and thus the same normal-
ised wall shear-stress distribution in the inlet channel (i = 0), 
but only the customised geometries generate the desired gradi-
ents of the shear stresses in the subsequent generations.

Table 4   Geometrical 
parameters and dimensions of 
planar networks with initial 
aspect ratio α0 = 0.5 and 
branching parameter X = 1.25,  
for power-law fluids with 
n = 0.6 and n = 1.6

i wi (µm) di (µm) αi Dhi (µm) a∗ b∗

n = 0.6

 0 250.0 125.0 0.500 166.7 0.2439 0.7278

 1 111.2 125.0 1.124 117.7 0.2130 0.6788

 2 60.9 125.0 2.054 81.9 0.2463 0.7312

 3 35.6 125.0 3.511 55.4 0.3055 0.8021

n = 1.6

 0 250.0 125.0 0.500 166.7 0.2439 0.7278

 1 130.6 125.0 0.957 127.7 0.2122 0.6773

 2 78.4 125.0 1.594 96.4 0.2268 0.7020

 3 50.2 125.0 2.492 71.6 0.2655 0.7566

(a)

(b)

Fig. 5   Normalised average velocities along the bifurcating networks 
customised for each fluid obtained for α0 = 0.5, and X = 1 (a) and 
X = 1.25 (b)
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3.4 � Effect of increasing Reynolds number

The theoretical analysis described in Sect. 2 and the biomi-
metic design we are proposing assume that the flow is fully 
developed and laminar, hence the assumption of creeping 

flow in our numerical simulations. Although low Reynolds 
numbers are easily achieved at the microscale, imposing a 
truly creeping flow experimentally is not possible. Thus, it 
is important for practical applications to know the limit of 
validity of our design rule when increasing the Reynolds 

(a) (b)

Fig. 6   Normalised wall shear stress (a) and flow resistance (b) along the customised bifurcating networks (α0 = 0.5), designed using the biomi-
metic principle [Eq. (21)]. Four customised geometries were considered corresponding to n = 0.6 and n = 1.6 with X = 1.25 and X = 0.75

Fig. 7   Contour plots of the 
normalised wall shear stress 
along the bifurcating networks 
(α0 = 0.5), for a power-law 
fluid flow with n = 0.6 in the 
Newtonian-designed geometry 
(Table 3) (a) and in the custom-
ised geometry (Table 4) (b) for 
X = 1.25

Table 5   Geometrical 
parameters and dimensions of 
planar networks with initial 
aspect ratio α0 = 0.5 and 
branching parameter X = 0.75,  
for power-law fluids with 
n = 0.6 and n = 1.6

i wi (µm) di (µm) αi Dhi (µm) a∗ b∗

n = 0.6

 0 250.0 125.0 0.500 166.7 0.2439 0.7278

 1 207.1 125.0 0.604 155.9 0.2293 0.7059

 2 173.9 125.0 0.719 145.5 0.2195 0.6900

 3 148.1 125.0 0.844 135.6 0.2141 0.6806

n = 1.6

 0 250.0 125.0 0.500 166.7 0.2439 0.7278

 1 164.1 125.0 0.762 141.9 0.2172 0.6859

 2 114.8 125.0 1.088 119.7 0.2126 0.6780

 3 84.2 125.0 1.485 100.6 0.2227 0.6953
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number. Figure  9 shows a comparison of the normalised 
total network resistance for increasing Reynolds num-
ber obtained for Newtonian, shear-thinning (n = 0.6) and 
shear-thickening (n = 1.6) fluids in the bifurcating network 
designed for a Newtonian fluid (Table 1).

For Reynolds numbers up to a value of Re∗0 = 30, the 
CFD results are in good agreement with theory for all fluids 
with a maximum relative error of approximately 2 %. For 
Re∗0 ≥ 100, the CFD results clearly overpredict the theo-
retical resistance, with a relative error of 13 % for the New-
tonian and 8 % for the power-law fluids when Re∗0 = 100. 
It should be noted that in these cases, the flow is unable to 
reach a fully developed state in the branches of each genera-
tion, with secondary flows reported at the first bifurcation. It 
is also important to note that we are considering geometries 
with 90◦ bends, and thus by smoothing this configuration, it 
is likely that higher Re can be achieved while maintaining 
the desired performance. Furthermore, the value of L/Dh 

was set to 20, and by increasing this value, we also expect 
that the limits of the validity in terms of Re∗0 will increase. 
However, increasing the length in practical applications is 
not always viable as the increase in pressure might endanger 
the integrity of lab-on-a-chip devices.

4 � Conclusions

We have proposed a biomimetic design rule for construct-
ing bifurcating microfluidic networks with rectangular 
cross-sectional areas based on the biological principle first 
expressed by Murray. Murray’s law was originally derived 
for Newtonian fluids in circular ducts under laminar and 
fully developed flow conditions. In the present paper, this 
work has been extended for use with power-law fluids in 
non-circular networks typical of microfluidic applications. 
Designing manifolds using the new biomimetic rule offers 
the ability to generate customised flow characteristics for 
both power-law and Newtonian fluids. For a given appli-
cation, the proposed design rule is able to provide control 
over the flow field and, in particular, over the wall shear-
stress distribution along the network, by carefully selecting 
a branching parameter which governs the change in chan-
nel dimensions at each bifurcation.

When the value of the branching parameter is equal 
to unity (X = 1) and the inlet aspect ratio is α0 = 0.5 or 
α0 = 1.0, the geometries for power-law fluids generated 
using our biomimetic design have negligible differences rel-
ative to those designed for a Newtonian fluid. In this case, 
the principle of minimum work underlying Murray’s law is 
obeyed and the Newtonian and the power-law fluids exhibit 
similar responses even when the Newtonian geometry is 
used. This universality in terms of geometry is useful espe-
cially for experimental purposes, since the same device can 
be used effectively for different fluids. However, when for 
example α0 = 0.2 or 0.3, the network’s universality is no 
longer valid and customised geometries should be used for 

Fig. 8   Contour plots of the 
normalised wall shear stress 
along the bifurcating networks 
(α0 = 0.5), for a power-law 
fluid flow with n = 1.6 in the 
Newtonian-designed geometry 
(Table 3) (a) and in the custom-
ised geometry (Table 4) (b) for 
X = 1.25

Fig. 9   Normalised network total resistance as a function of the inlet 
Reynolds number (Re∗

0
) defined in Eq. (13) for Newtonian, shear-thin-

ning (n = 0.6) and shear-thickening (n = 1.6) fluids using the Newto-
nian-designed geometry for α0 = 0.5 and X = 1 (Table 1)
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each particular power-law index. In addition, we should note 
that although the ratios of the average wall shear stresses are 
the same for Newtonian and power-law fluids, the magni-
tude of the wall shear stresses depends on the particular fluid 
flow conditions.

When gradients of wall shear stresses along the bifurcat-
ing network are required (i.e. X �= 1), different geometries 
must be used for each power-law fluid in order to achieve 
the desired flow characteristics. In this case, the biomimetic 
rule allows us to create customised geometries to provide 
the desired flow field.

The proposed designs are valid when fully developed 
flow is reached in each generation of the network, and 
therefore, creeping flow conditions have been consid-
ered throughout this paper, which is a good approxima-
tion for most microfluidic flows. However, the limits of 
the design were tested in terms of Reynolds numbers to 
guide experiments, where obtaining truly creeping flow 
is not possible. Our numerical calculations show that for 
Re∗0 � 30 care should be taken as the results start to devi-
ate from the predictions. In particular, the choice of using 
channels with 90◦ bends imposes a limitation in terms 
of the Reynolds number that can be used. This could be 
improved by using smoother corners or with the use of 
Y-junction-shaped bifurcations where friction losses 
would be reduced.

We believe that our proposed biomimetic approach for 
designing microfluidic networks will benefit research areas 
that require devices capable of controlling the shear-stress 
field. Examples such as stem cell research, where there is 
a need for tuning the microenvironment around stem cells 
in various ways, and applications requiring separation (e.g. 
blood plasma extraction, which is highly influenced by the 
properties of the flow field) may benefit from using cus-
tomised bifurcating geometries.
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