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ABSTRACT 

Modern bumper systems are governed by laws and regulations imposed separately by various 

countries. Today, the regulations in China, North America, and Europe are becoming more 

similar, but there is not a widely accepted bumper reinforcement that meets the requirements 

of all markets around the globe.  

 

A universal bumper reinforcement beam incorporating Plug-n-Play techniques was developed 

to meet and exceed all testing requirements and performance standards of each country. These 

Plug-n-Play techniques consist of adding energy absorbing attachments to the front of a base 

bumper beam. Simple beam analysis and FEA were the primary analysis tools in the 

development of the bumper beam system. Plug & Play techniques were utilized to increase the 

performance of the universal bumper across all markets. 
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CHAPTER 1:  INTRODUCTION 

The Best-in-Class Bumper Reinforcement project provides the opportunity to design and test a 

bumper reinforcement beam that is marketable in a global setting. The beam was designed to 

fit an average D segment package space and meet low speed impact requirements found in 

Chinese, North American, and European markets. In addition, weight should be reduced while 

improving performance compared to current systems. To accomplish this, a base beam can be 

fitted with simple attachments (Plug-n-Play attachments), allowing for variable performance 

levels to meet varying requirements. The American Iron and Steel Institute (AISI) sponsored the 

project. Tom Johnson and Brian Malkowski of Shape Corp. were the project’s formal advisors, 

and Peter Schuster provided local technical support. 

 

Objectives 

The goal for this project is to design, prototype, and test a new front bumper reinforcement 

beam. The bumper beam shall meet the following requirements: 

 

• Meet global government low speed requirements in North American, European, and 

Chinese markets 

• Include Plug-n-Play reinforcements to allow the bumper to meet performance 

requirements in different markets 

• Perform competitively in global markets 

• Can be fabricated using known manufacturing equipment/processes 

 

The Quality Function Deployment (QFD) method was used to translate the above requirements 

into engineering specifications. This approach involves assigning a numerical weighting to the 

customer’s requirements. These requirements are compared against engineering specifications 

using a numerical system to indicate the strength of the relation between the requirement and 

the specification. Finally the relative importance of the engineering specifications can be 

determined. The QFD table used to determine the engineering specification for this project is 

attached in Appendix A. Based on this table, intrusion limit and maximum force applied to each 

rail were identified as the most important requirements. 

 

Table 1 contains the formal design specifications for this project. The table includes a 

description of each parameter, the parameter targets and tolerances, the risk of meeting each 

target, and the compliance (how the target will be met). The package space dimensions 

included in the table are displayed in Figure 1. 

 

The mass requirements will be difficult to achieve because there is a tradeoff between strength 

and weight of the bumper beam. The intrusion limit and max force requirements will be the 

most challenging. Deflection past the intrusion limit may result in damage to critical engine 

components. In order to minimize this, a stiffer beam can be designed. However a stiff beam 

may result in more force transmitted to the frame rails of the car. Again, a compromise is 

required between these two criteria.  
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Table 1. Best-in-Class Global Bumper project engineering requirements 

Spec. 

No. 
Parameter Description 

Requirement 

or Target 
Tolerance Risk

 [a] 
Compliance

 [b]
 

1 Chinese cross beam mass 4 kg Max H A,S,I 

2 North American cross beam mass 5 kg Max H A,S,I 

3 European cross beam mass 6 kg Max H A,S,I 

4 Package space width 1429.6 mm Max L A,S,I 

5 Package space height 119.9 mm Max L A,S,I 

6 Package space depth 144.3 mm Max L A,S,I 

7 Package space depth 106.8 mm Max L A,S,I 

8 Beam set-up from ground 420 mm Max L A,S,I 

9 Towing/recovery hook Include n/a L S,I 

10 Full frontal intrusion limit at centerline 55 mm Max H A,T 

11 Front offset intrusion limit at corner 10 mm Max M A,T 

12 Peak force per rail 80 kN Max H A,T 

13 Pedestrian max acceleration 150g Max H A,T 
[a] 

High (H), Medium (M), Low (L) 
[b] 

Analysis (A), Test (T), Similarity to existing Designs (S), Inspection (I) 

 

 

 
Figure 1. Package space dimensions. 
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CHAPTER 2:  BACKGROUND 

Laws and regulations imposed separately by various countries govern modern bumper systems. 

These regulations specify the conditions for testing and the criteria for passing those tests. For 

example, the US Department of Transportation [7] describes pendulum impacts at 2.5 mph 

between heights of 16” and 20”, while the China National Standard [1] describes 4 km/h 

pendulum impacts at a height of 445 mm. There are several similarities in the criteria for 

passing these tests. In general, the vehicle must be able to operate in a “normal” manner after 

the collision. This means that lighting and signaling devices have to be functional, all doors must 

be able to open and latch shut, there can be no fuel leaks, and the steering system must be 

functional. Today, the regulations in each country are becoming more similar, but there is not a 

widely accepted bumper reinforcement that meets the requirements of all markets around the 

globe. 

 

Pedestrian safety is a prominent consideration when designing bumper systems. Requirements 

for pedestrian safety add a level of complexity to the design process because bumpers must be 

flexible enough to reduce the chance of injury of the passengers but stiff enough to protect 

vehicle components. Energy absorbers help accomplish this goal by dissipating energy from the 

collision. Injection molded or expanded polypropylene (EPP) foam are the most common 

materials used. Injection molded energy absorbers load through shear walls, so the impact 

force acts through a shear wall of the reinforcement beam. The load is carried beyond the 

impact area through the continuous shear walls, increasing the energy absorption capacity. EPP 

foam behaves like a pressure load and confines energy absorption to material directly 

compressed by the impact [2]. Steel energy absorbers are used by some manufacturers as well. 

 

Extensive research has gone into finding the best materials and manufacturing methods for 

bumper reinforcement systems. Sindrey [3] found that the vast majority of bumper 

reinforcement systems today are made from steel. Steel beams have a low unit material cost, 

and have a greater strength to weight ratio than most aluminum beams.  

 

The three major manufacturing methods of bumpers are hot stamping, cold stamping and roll 

forming [6].  In hot forming, preheated metal is place between two metal dies. The dies can 

either be in open configuration where one die is pressed into the other, or in closed 

configuration where the two dies are initially face to face and a third die pressed the metal into 

place [3]. The main advantages of hot forming are that it gives near-net-shape, has consistent 

tolerances and has a smooth finish. 

 

Figure 2 is a bumper made using hot stamping method. The bumper has intricate features 

which is unique to this method. The main advantage the bumper had is styling [6]. 
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Figure 2. The Volkswagen Jetta (1993) has a hot stamped bumper beam [6]. 

 

Cold stamping shapes metal by displacing it at room temperature through a series of dies to the 

desired shape. The main advantage to cold stamping, which is a type of cold working, is that it 

requires no heat and increases the yield strength of the material. 

 

Figure 3 is a bumper made with the cold stamping method. The main advantage of this bumper 

is styling [6]. 

 

 
Figure 3. The Ford F150 Pick-up (1996) has a cold stamped bumper beam [6]. 

 

Roll forming continuously shapes a strip of steel using sets of roller dies called a flowering 

pattern. It lends itself to punching and sweeping before cutoff [4]. Compared to the other 

methods, it can shape higher strength steels. However, the process requires a constant cross-

section. 

 

Figure 4 depicts a bumper formed using roll forming. The major advantage is cost savings 

through higher throughput [6]. 
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Figure 4. The Ford Taurus/Mercury Sable (1995) has a roll formed bumper beam [6]. 

 

To date, hydroforming has not been used to produce bumper reinforcement beams, but there 

is potential for future use. 

 

Because bumper reinforcements play such a vital role in safety, validation through testing is a 

crucial part of the design process. Simple beam analysis gives a basis for beam deflection and 

simple stress analysis comparisons. Finite element models are common in the mid stages of 

design, but actual impact tests provide a high level of confidence in the product. There are two 

common impact test methods. The first consists of a universal test vehicle that can be outfitted 

with different bumpers and modified to simulate characteristics of several different vehicles. 

The vehicle impacts a stationary barrier at a controlled speed. The second involves a weighted 

pendulum which is elevated and swung into the bumper which is mounted to a stationary base. 

The latter method will be used in the testing phase of this project. 
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CHAPTER 3:  DESIGN DEVELOPMENT 

Conceptual Designs 

Through brainstorming, many bumper beam concepts were ideated. Concepts of the beam 

include various cross sectional shapes, overall beam shapes, and ideas for Plug-n-Play 

attachments. 

 

Ideas for bumper beams incorporated alternative methods of absorbing energy as opposed to 

the conventional foam energy absorbers and deformation of the beam itself. This is 

accomplished via springs, viscous dampers, crush elements, etc. Also, ideas for minimizing mass 

were conceptualized by decreasing the height of the beam at non-critical areas and replacing 

unnecessary solid plates with a wire mesh, honeycomb cores, or thin corrugated plates. 

Sketches of these concepts are shown in Figure 5. 

 

 
Figure 5. Alternative bumper designs 
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Concepts for cross sectional shapes ranged from open and closed thin-walled shapes to thick-

walled and solid shapes. These include shapes that resemble I-beams, B shapes, C channels, and 

boxes. A few sketches of cross sections are provided in Figure 6. 

 

 
Figure 6. Cross section examples 

 

Ideas for Plug-n-Play attachments included reinforcement plates, beams, and inserts that are 

added onto a beam; stackable beams; and interchangeable stiffeners and dampers. These 

attachments could assemble via snapping or bending components, screws, welds, adhesives, 

interference fits, rivets, etc. Sketches of Plug-n-Play concepts are provided in Figure 7. Another 

idea involved adding steps in the manufacturing process. For example, a set of optional 

machinery can be used to bend additional stiffeners into a thin walled beam. 

 

 
Figure 7. Plug-n-Play concepts 
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Analysis Tools 

The following analysis tools were developed and applied in various steps of the design process. 

These tools include: 

 

• Preliminary Analysis used to quickly and efficiently select the most promising designs 

from a broad base of ideas. 
 

• B-MAC 3000 used to quickly generate rough estimates for how various designs will 

perform. 
 

• 2-D Static FEA used to compare the performance of general cross section shapes. 
 

• 3-D Dynamic FEA used to approximate the actual performance of beams. 

 

Preliminary Analysis 

 

Decision matrices and spreadsheets were used at the beginning of many steps in the design 

process. These preliminary analyses helped to identify the best performing concepts from a 

large pool of brainstormed concepts. Examples of these preliminary analysis tools are found in 

the Appendix C. 

 

The following is an example of a preliminary analysis tool used to determine beam cross section 

shapes. The spreadsheet in Table 2 compares the stiffness and weight of various beam cross 

sections. Area is directly correlated with the weight of the beam and the quantity of material 

required in manufacturing it. The moment of inertia is directly correlated with the beam’s 

stiffness and maximum bending stress. The Bumper Universal Parameter (BUP) is the ratio of a 

beams moment of inertia, I, over the cross-sectional area, A, and the distance from the neutral 

axis to the outer surface, c. BUP was helpful in evaluating how efficiently material was used in a 

given cross-section. Spreadsheets such as this were useful in developing a basic understanding 

of how various shapes affected cross sectional properties. 

 

Table 2. Cross section comparison spreadsheet 
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B-MAC 3000 - Excel spreadsheet to analyze simplified beams 

 

The Bumper Multifaceted Analysis Calculator 3000 (B-MAC 3000) shown in Appendix D has 

been developed to analyze cross section and material properties using energy methods and 

simple beam theory. These methods simplify real world situations to depict trends between 

cross section and material combinations. This spreadsheet offers a more efficient approach 

than finite element analysis because it can quickly and easily analyze many different 

combinations. After using this tool to narrow down design options, FEA models can be 

developed for more detailed analysis. 

 

To evaluate whether the bumper passes or fails requirements for a region, the total energy is 

calculated from the moving system. 80% of the total energy in an impact travels through the 

bumper system. The total energy transferred to the bumper system is then translated into a 

deflection. For the current combinations of cross-section and material choice, a maximum 

deflection is calculated. To remain elastic, the deflection due to energy must be less than the 

maximum deflection calculated from simple beam analysis. If the defection exceeds this value, 

the beam has plastically deformed. 

 

Much of the theory in the spreadsheet is useful only for elastic deformation. Plastic 

deformation was approximated using energy and a material’s stress-strain curve. This is 

especially useful for the IIHS test and the RCAR test in which plastic deformation typically 

occurs. The energy analysis for plastic deformation does assume that the geometry of the beam 

will not change, which is known to be false. However, the analysis offers a good comparison 

between different materials and a sense of how well a certain material and cross-section 

absorb energy through both the elastic and plastic regions. 

 

Three point bending is used to find the maximum deflection of the bumper beam. The max 

deflection is the greatest distance the center line of the beam can intrude without failing the 

Distortion-Energy criterion. 

 

Buckling is the last analysis tool used in the spread sheet. Because the overall beam is too 

complex for simple theory, the horizontal sections of the beam are assumed to carry most of 

the load during an impact and would be the first place buckling would occur. Each section acts 

like a column with a height equal to the depth of the section and a cross-section equal to the 

thickness of metal used and the length of the beam. Using Euler’s equation for column buckling, 

and factoring in how many horizontal surfaces there are in the beam, an approximate value for 

the critical stress can be found. If the critical stress exceeds the yield strength of the material, 

the Tangent modulus is substituted instead of the elastic modulus.   

 

Top cross section and Plug-n-Play designs will be analyzed with the BMAC-3000 to determine 

which material gives the best performance for each design. Using this method to rank the 

materials will result in a top choice to examine with complex finite element analysis. 
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2-D Static FEA 

 

In addition to comparing the elastic behaviors of cross section shapes on the basis of their area 

moment of inertia, the inelastic behaviors of cross section shapes were compared using a static 

finite element analysis (FEA). This allowed for the consideration of local plastic yielding of the 

beam that is commonly seen near the crush cans. 

 

In this analysis, a 2-D FE model (shown in Figure 8) was created of the beam’s cross section. 

Boundary conditions applied to the back side of the beam constrain the beam from translating. 

A rigid barrier located at the front of the beam crushes the cross section. 

 
 (a)  (b) 

Figure 8. (a) Cross section models are crushed by a rigid barrier and (b) force-displacement data are 

collected and plotted. 

    

As the barrier crushes the cross section, force and displacement data was collected and plotted 

as in Figure 8.  The area under the force-displacement curve represents the amount of energy 

absorbed by the cross section as it is crushed. This area is approximated using trapezoidal 

numerical integration. 

 

By using 2-D static FEA to calculate the energy absorbed by various cross sections, the best 

shape can be determined by maximizing the energy absorption. A cross section that absorbs 

more energy requires more force to crush and will be more likely to maintain its designed 

shape during an impact. 
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3-D Dynamic FEA 

 

In order to approximate the actual, real-life performance of the bumper beam, 3-D dynamic 

FEA was performed. This FE model considers the coupled effects of cross section geometry, 

beam shape, material type, crush cans, and inertial effects. 

 

As shown in Figure 9, the FE models contain three major parts: the beam, crush cans, and an 

impact barrier. The beam includes the reinforcement beam and energy absorber. The crush 

cans are modeled as non-linear springs using static force-displacement data obtained through 

testing. Different barriers can be used to model the GB17354-1998 pendulum, IIHS and RCAR 

full frontal and offset, and EuroNCAP pedestrian tests. 

 

      

 
Figure 9. 3-D dynamic FEA model to simulate a RCAR 40% offset test. 

 

From the FEA, much useful information about the performance of the beam can be obtained. 

These include: 
 

• Displacements at any location in the beam as a function of time. (The centerline and 

crush can displacements were especially useful.) 
 

• Forces on the barrier and at the frame rails as a function of time. 
 

• Stresses within the beam as a function of time. 
 

• Accelerations and velocity of the barrier as a function of time. 

 

See Appendix E for more detail on the FEA model. 
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Design Plan 

 
Figure 10. Design plan layout. 

 

The team’s design plan is displayed graphically in Figure 10. The map shows each component of 

the bumper system to be selected, the type of analysis that was used, and the specific method 

used in the analysis. The plan contains three major milestones: selecting a Plug-n-Play type, 

selecting a beam, and selecting an energy absorber. 

 

Selection of a Plug-n-Play type consists of a simple preliminary analysis and a 2-D static FEA. 

Because there were many Plug-n-Play ideas, a more complex analysis would have taken a long 

time. To make this step in the design plan more efficient, applying simple and quick analysis 

techniques was crucial. 

 

Selection of a beam and an energy absorber was performed simultaneously. Similar to the Plug-

n-Play type analysis, selection of the beam and energy absorber began with a simplified analysis 

in order to identify the best shape from a large pool of possibilities. Once a specific shape was 

chosen, a more complex 3-D dynamic FEA was used to determine the best performing cross 

section geometry and beam material. 

 

To finish the design plan, a 3-D dynamic FEA was performed on the entire bumper system to 

determine if the overall design met impact test requirements. 
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Selecting a Plug-n-Play Type 

The first step in the design process was to select a Plug-n-Play type. The best type of Plug-n-Play 

system is one that maximizes the performance of the beam while keeping the beam’s weight at 

a minimum. The final design includes a base bumper beam marketed toward China, a Plug-n-

Play attachment that is added to base beam to accommodate North American markets, and 

another Plug-n-Play attachment for European markets. The addition of Plug-n-Play options 

gives each market’s design a different cross section and a different mass. The mass of the 

Chinese beam was limited to 4 kg, the North American beam to 5 kg, and the European beam to 

6 kg. Plug-n-Play types considered include: 

 

• Stacking identical cross sections horizontally 
 

• Adding reinforcement bars to a plate 
 

• Changing the manufacturing process to add reinforcements to individual cross sections  
 

• Adding reinforcements to the front or inside of a cross section 

 

An analysis of moments of inertia, areas, and c values was performed on several different 

designs for each Plug-n-Play type. C is the greatest distance from the cross section’s neutral axis 

to the outside edge. The goal was to maximize moment of inertia while minimizing cross 

sectional area and c value, resulting in high strength with low weight. 

 

      
 (a) (b) 

Figure 11. (a) Horizontal stacking a common B-section and (b) manufacturer reinforcements. 

 

Due to large weight increases, the horizontal stacking method seen in Figure 11(a) was 

eliminated. Manufacturer reinforcements such as those in Figure 11(b) resulted in only very 

small improvements compared to the other Plug-n-Play types. A modification like this may be 

useful in the final design, but it is not sufficient as the primary method of reinforcement. This 

initial analysis narrowed down the Plug-n-Play types to three final options: 

 

• Flat plate with reinforcement bars 
 

• Simple cross section with internal reinforcements 
 

• Simple cross section with external reinforcements  
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Preliminary analysis of these Plug-n-Play types is presented in Table 6 of Appendix C. Data from 

this spreadsheet was plotted on bar charts in order to visually examine the change in 

performance resulting from each Plug-n-Play addition. 

 

 
Figure 12. Comparison of normalized moment of inertia for the base bumper, first Plug-n-Play addition, 

and second Plug-n-Play addition of the reinforced flat plate design. 

 

Figure 12 shows the change in the normalized moment of inertia for one Plug-n-Play design. By 

factoring in the area, the weight of the beam and the moment of inertia are considered. As this 

design shows, the second shape provided a 4.5% increase over the base beam, while the third 

provided a 0.9% increase over the second. 

 

 
Figure 13. Normalized moments of inertia for several Plug-n-Play designs. 
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As in Figure 12, data for normalized moment of inertia is presented in Figure 13, however this 

time six different Plug-n-Play designs are included. The first column of each design represents 

the base beam, the second is includes the first Plug-n-Play addition, and the third includes the 

second Plug-n-Play addition. Design 1 is a flat plate with reinforcement bars. Designs 2 and 6 

added external reinforcements, while designs 3 and 4 added internal reinforcements to the 

cross section. Manufacturing modifications are compared in Design 5. 

 

Simple cross section analysis showed that Design 3 had the best moment of inertia to weight 

ratio, but this is a simplified analysis which only compares the elastic behavior of each Plug-n-

Play type. In order to further analyze and compare each type, 2-D Static FEA was used to 

compare the energy absorption capabilities of each design. 

 

 

 
Figure 14. Plug-n-Play force-deflection curves for an external reinforcement design. 

 

 

Using 2-D Static FEA, force-displacement graphs such as the one in Figure 14 were generated to 
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Because the areas under the curves represent the amount of energy absorbed while crushing, 

the effect of adding each Plug-n-Play attachment can be compared. While this is not the 
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Appendix F. The results of the Plug-n-Play analyses were compared using the decision matrix in 

Figure 15. 

 

 

 
Figure 15. Decision matrix for Plug-n-Play types. 
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The criteria for the decision matrix were broken down into five main sections: 

 

• Weight 
 

• Energy absorption 
 

• Plug-n-Play effectiveness (increase in energy absorption due to each attachment) 
 

• Moment of inertia 
 

• Manufacturability 

 

These categories are described by criteria listed in the left-hand column. The top of the matrix 

contains the six different designs under consideration. The weighting factor for each criterion is 

a measure of its importance. Energy absorption was given a lower weight factor because cross 

section buckling is not the primary energy absorbing mechanism. Rather, the majority of the 

energy absorption occurs during deflection of the overall beam. 

 

Using the criteria in the left column, each design was ranked on a 0-100% scale, which is 

presented in the upper left of each square. Multiplying this score by the weight factor gives the 

numerical score seen in the bottom right of each square. The sum of the individual scores yields 

the overall score at the bottom of the table. The design with the highest overall score best 

meets the criteria. 

 

A reinforced plate of Figure 16 is the best performing Plug-n-Play design based on the analysis. 

It was ranked in the top three for every criterion and was the top performer in several 

categories. This is a flexible design which allows for many different reinforcement shapes and 

cross sections. 

 

 
Figure 16. Best Plug-n-Play design: Flat plate with reinforcements 

 

 



 
 

Selecting a Cross Section 

During low-speed tests, a bumper beam’s cross section plays an important role in absorbing 

impact energy. While a majority of the energy is absorbed elastically as the beam bends, there 

are local plastic deformations and buckling of the c

geometry absorbs a large amount of energy and resists matchbooking

 

Many different cross section geometries 

shown in Figure 17. The Plug-
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The best cross section for the bumper beam 

in four sequential analyses. First, general 

preliminary analysis and 2-D Static FEA 

should be analyzed further. Second, 

changing various dimensional parameters of the cross section and identifying the dimensions 

that gave the beam the best performance. 

effects of various grades of steel on 

conducted to verify if the chosen beam dimensions and material resulted in the best 

performance. If the performance was found to be unsatisfactory, this section of the design 

process was iterated. 

 

The following sections discuss in detail each of the four steps summarized above.

Selecting a Cross Section Shape 

 

 

Figure 17. Various geometries for the bar attachments of the Reinforced Plate design
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A simplified approach was used to identify which of the Plug-n-Play shapes in Figure 17 perform 

well and should be analyzed further. This analysis was similar to that of the Plug-n-Play. The 

cross sections were compared by their normalized moments of inertia and the amount of 

energy they absorbed when crushed in a 2-D FEA model. 

 

SolidWorks models of the Reinforced Plate and various shapes of Plug-n-Play attachments were 

built to determine their moments of inertia and cross section area. Figure 18 compares the 

attachment shapes by their moments of inertia which have been normalized with their cross 

section area. Through this analysis, the rectangular shaped Plug-n-Play attachments were found 

to be more rigid in elastic bending than the elliptical and circular attachments. 

 

 
Figure 18. Plug-n-Play attachment shapes are compared by their normalized moments of inertia. 

 

 
Figure 19. Plug-n-Play attachment shapes are compared by their energy absorption. 
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To analyze the plastic behavior of each shape, a 2-D Static FEA was conducted to determine 

their energy absorption capabilities. Figure 19 compares the Plug-n-Play attachment shapes by 

the amount of energy they absorbed. 

 

Having determined each Plug-n-Play attachment’s normalized moment of inertia and energy 

absorption, the decision matrix in Figure 20 was used to identify the best cross section shape. 

The decision matrix considers the area of the cross section (weight of the beam), the energy 

absorption where localized yielding occurs, the area moment of inertia, and ease of 

manufacturability. Most of the weight was placed on moment of inertia because it is the 

dominant factor in deciding the beam’s performance since most of the deformation occurs in 

the material’s elastic region. The decision matrix shows that the best performing cross section 

is one which contains tapered Plug-n-Play attachments. 

 

 
Figure 20. Decision matrix to determine the optimal Plug-n-Play shape 
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Matchbooking Study 

 

Before selecting cross section dimensions, a matchbooking study was conducted in order to 

help determine how various dimensional parameters affect the stability of the beam’s cross 

section. Matchbooking occurs when the horizontal walls of the cross section buckle during 

impact. After buckling, the beam’s cross section flattens. Since the cross section has changed 

significantly, it can no longer resist the bending loads that it was designed for. Because the 

plastic deformation involved in matchbooking is very complex, 2-D FEA was performed to 

compare the stability of different section geometries. Stability was quantified by the amount of 

energy a cross section can absorb as it collapses. 

 

The buckling of cross section shapes was analyzed via a modified version of the 2-D Static FEA 

model presented in the Analysis Tools section. The modification was made to the rigid barrier. 

Instead of being vertical, the rigid barrier was angled by 5 degrees forcing the cross section of 

the beam to crush at an angle. An example of the FE model is shown in Figure 21  along with a 

deformed cross section after matchbooking. As with previous 2-D Static FEA model, this analysis 

allows for the cross section’s energy absorption to be determined. A cross section’s resistance 

to matchbooking is quantified by the amount of energy it absorbs. 

 

                    
 (a) (b) 

Figure 21. (a) Example FEA model for the base of the Reinforced Plate design and (b) the deformed cross 

section after matchbooking. 

 

This analysis was determined how changing geometric parameters of the cross section affected 

the buckling energy absorption. These parameters are shown in Figure 22. Multiple FEA studies 

were performed on cross sections while modifying only a single parameter at a time. This 

method allowed for the isolation of the effects on buckling of each parameter. The force-

displacement plot in Figure 23 compares the effects of varying the angle α of the walls of the 

cross section. The plots show that a larger angle α absorbs more energy and therefore is less 
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prone to matchbooking. Similar plots were made for other parameters and are included in 

Appendix G. 

 

 
Figure 22. Geometric parameters considered in the matchbooking study. 

 

 
Figure 23. Force-displacement plots at various α values 

 

Table 3 lists conclusions based on the matchbooking parameter study about cross section 

stability. Using this table as a guide, dimensions for the cross section were selected and tested 

with 3-D Dynamic FEA. 
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Table 3. Conclusions drawn from the match booking parameter study. 

Conclusion Description 

Width w should be minimized 
Cross sections with shorter horizontal walls are 

less prone to collapsing. 

Height h has no affect 
The height of vertical walls on the right side of the 

cross section do not influence buckling. 

Tapering increases performance 
Cross sections with angled instead of horizontal 

walls are more stable. 

Angle α should be maximized 
Walls at steeper angles require more energy to 

matchbook. 

 

Selecting a Beam Material 

 

As cross section geometries were tested, the effects of various materials on beam performance 

were also studied through 3-D Dynamic FEA.   As described in Figure 24 materials fall into three 

major categories: strong, tough, and ductile.  

 

 
Figure 24. Material Trends relating to stress-strain curves 

 

The higher the yield strength, the more energy the material can absorb elastically but the less 

energy the material can dissipate overall. Through 3-D FEA, it was found that the beam 

remained elastic through much of the impact. Because of this, ultra high strength steels were 

found to be most effective at limiting intrusion. Lower strength steels, such as tough and ductile 

steels, prove more useful in the case of the pedestrian impacts where a large amount of energy 

must be dissipated. Since the bumper beam needed to meet challenging intrusion targets, it 

was decided that the beam should provide the necessary stiffness required to minimized 

deflection and the energy absorber should provide the necessary softness to meet pedestrian 

requirements. 
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Appendix H compares all the materials listed in the AISI passenger car and pickup truck design 

manual by their strain energy. Strain energy is not true energy and therefore cannot be used to 

evaluate which material will work under a given impact, but between materials, the strain 

energy differences clearly show which materials emphasize strength and which emphasize 

ductility. 

 

Beam Impact Analysis 

 

After choosing the geometry and material of the cross section, a beam impact analysis was 

done using 3-D Dynamic FEA. This analysis determined whether or not the beam with the 

selected parameters would meet intrusion and frame rail force requirements specified in Table 

1 on page 9. Through many iterations of the beam design phase, a two tapered beam was 

found to offer the best performance. Designs with three tapers were excessively heavy and 

stiff. 

 

The RCAR 40% Offset test proved to be the most challenging to meet. Because of this, the 

dimensions of the beam were greatly influenced by this test. After many iterations with 3-D 

RCAR FEA model, three characteristics were discovered that allowed beams to pass the test: 
 

1) Beams must be rigid in bending. They must have a large moment of inertia in 

order to minimize intrusion.  
 

2) Beams must be crushable. Their cross sections must be able to crush and 

absorb energy in order to reduce frame rail forces.  
 

3) Beams should have thin widths. A thinner width greatly reduces the weight 

of the beam and also takes up less of the car’s package space. When the 

beam fills up less of the package space, there is extra room for more 

intrusion of the beam. 
 

These three characteristics are interrelated and work against each other. For example, in order 

to have a large moment of inertia, a cross section must be wide or have thick walls. Since the 

width should be minimized, a large moment of inertia can be attained with thicker walls. 

However, a cross section with thicker walls is not as easy to crush as one with thin walls. 

Because the three characteristics cannot all be fulfilled, the final designs are the result of the 

best balance. 

 

From 3-D Dynamic FEA, the Flat Plate Reinforcement Plug-n-Play type from Figure 16 was found 

to be ineffective. Adding additional reinforcements did not absorb enough of the impact energy 

required of the IIHS and RCAR tests. More energy could be absorbed by adding attachments to 

the front of the beam instead. Since steel energy absorbers (discussed in the following section) 

proved useful in absorbing energy, and two tapers satisfied test requirements, a simple B-shape 

cross section was chosen as the base beam. The Plug-n-Play attachments took the form of 

various steel energy absorbers. This new Plug-n-Play design resembles the B-shape with 
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External Reinforcement that was found to be the second best Plug-n-Play type as shown in the 

decision matrix in Figure 15. 

 

Because the steel energy absorber plays a critical role in the performance of the overall bumper 

system, it is difficult to design the beam’s cross section without considering it. Instead of 

determining the dimensions of the cross section through a subsystem analysis, they must be 

determined through a system-wide analysis. This was done in the System Impact Analysis step 

of the design process. 

 

 

Energy Absorber 

Introduction 

 

The European New Car Assessment Program (EuroNCAP) requires that a test leg must 

experience accelerations of less than 150 g’s upon impact at 25 mph. In a normal collision with 

no energy absorption mechanism, the leg experiences much greater acceleration than above, 

due to a high stiffness of the beam. The solution to this problem is to attach an energy absorber 

to the front of the bumper beam which is specifically designed to reduce the acceleration of a 

pedestrian leg during impact.  

 

Two candidates were initially investigated for use as an energy absorber: Expanded 

Polypropylene (EPP) foam and steel. 

 

EPP foam typically has a low yield strength and can deform over a long distance (Figure 25). 

These properties are excellent at reducing the force an object feels on impact and effectively 

reduces the stiffness of the overall bumper system. As foam density increases, the yield 

strength becomes larger. Foam deflects at approximately a constant force until 80% of its 

original length, and then it exponentially approaches infinity. In addition to having easily 

modifiable mechanical properties, EPP foam has a much lower density than steel which makes 

for a light weight addition to a bumper.  
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Figure 25. Uniaxial compression tests for different densities of EPP.  

 

 

Steal energy absorbers (SEA) are another method used to reduce the impact acceleration. The 

goal of SEAs is the same as EPP, but is accomplished through design of the cross section instead 

of density. Unlike foam, a steal energy absorber is also useful during an impact to reinforce the 

bumper beam by adding to its bending stiffness. This allows for a lighter base beam than would 

be required with a foam EA.  

 

Preliminary Analysis 

 

Preliminary analysis using the 2-D Static FEA model showed that an SEA made out of 140T Steel 

with the shape seen in Figure 26 could be competitive with EPP foam. A small yield stress and a 

large defection at a constant force are characteristic traits of foam that need to be matched or 

exceeded. SEA Susie (Figure 26) closely matched the force-displacement curve of EPP foam.  
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 (a) (b) 

 

Figure 26. Preliminary Steel Energy Absorber design “Susie” plastically deforms similarly to 

how EPP foam deflects under a given load. 

 

 
Figure 27. Static 3-D FEA test comparison which demonstrates the influence a SEA has on a 

bumper beam. 
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Figure 27 depicts the force deflection curves resulting from a static 3-D FEA three point bending 

test. The graph demonstrates the influence a steel energy absorber has on a bumper beam. The 

force on a simple bumper beam rises quickly at the start then tapers off as deflection increases. 

In contrast, a bumper beam that has an SEA gradually rises to its peak force. The initial spring 

stiffness of the base beam is 8.56 kN/mm, while the bumper beam with the SEA has a value of 

1.38 kN/mm.  

 

For the pedestrian impact test, a lower stiffness results in energy dissipation over a longer time 

span. This decreases the acceleration the pedestrian test leg experiences during an impact. 

Another benefit of a SEA is that after the SEA has been crushed, the remaining material 

reinforces the bumper beam, which provides more elastic energy absorption before any plastic 

yielding of the bumper beam takes place. 

 

SEA Impact Analysis 

 

Because initial tests showed promise for the use of steel as the energy absorbing material, 

detailed analysis was performed to determine the best material and geometry for a steel 

energy absorber. 

 

 

 
Figure 28. 3D dynamic impact of various SEAs prototype provided acceleration data of the leg. 

 

0

100

200

300

400

500

600

0 0.005 0.01 0.015 0.02

A
cc

e
le

ra
ti

o
n

 (
G

's
)

Time (s)

0

40

80

120

160

200

0 0.003 0.006 0.009 0.012 0.015

A
cc

e
le

ra
ti

o
n

 (
G

's
)

Time (s)



          
 

36 

REVHEADS
AUTO CONSULTING

Complex geometry coupled with the effect of material properties required many iterations of 

the SEA to arrive at a final design. Experimentation depicted in Figure 28 determined the 

intricacies of the SEA geometry: curvature of the SEA, where or where not to include sharp 

corners, overall height, overall width, wall thickness, etc. 

 

Material selection had a significant impact on the performance of the SEA. Higher strength 

steels resulted in a stiffer EA and higher accelerations on the leg. Conversely, low strength 

steels were too soft and allowed the leg to deflect so far that it impacted the bumper beam. 

 

Through iteration, a design was selected which maintains leg acceleration under 150 g’s. This 

design and its corresponding acceleration curve is displayed in Figure 29. 

 

  
Figure 29. FEA acceleration results of a successful SEA design. 

 

 

Advanced Impact Analysis 

After designing a SEA that met pedestrian requirements and deciding on a general B-shape 

beam cross section, a system-wide 3-D Dynamic FEA model was used to determine the specific 

dimensions of the beam’s cross section. Much iteration with various geometric parameters 

were run in the 3-D Dynamic FEA. Tables of results are provided in Appendix I. The tables list 

the beam’s dimensions (overall beam height and width, the taper height and angle, and the 

material thickness) along with intrusion and frame rail force results for each iteration. After 

over one hundred iterations, the best performing beams for the Chinese, North American, and 

European markets were selected based on whether or not they satisfied their corresponding 

region’s performance requirements and on their masses. These designs are presented in 

Chapter 4. 
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CHAPTER 4:  FINAL DESIGN 

The final designs for the Chinese, North American, and European bumper reinforcement beams 

are shown in Figure 30. They are assembled using at most two of the following three parts: a B-

shape base beam and two D-shaped steel energy absorbers, each of a different thickness. 

 

Bumpers marketed toward China only consist of the B-shape base beam. These bumpers are 

not fitted with any type of energy absorber. For the North American markets, a 0.7 mm thick 

steel energy absorber is attached to the front of the base beam to provide extra stiffness and 

energy absorption capabilities. Bumpers marketed toward Europe consist of the base beam 

fitted with a 1.1 mm thick steel energy absorber. The thicker energy absorber adds even more 

stiffness to the beam and also absorbs enough energy to meet Euro NCAP pedestrian 

requirements. 

 

 
 (a) (b) (c) 

Figure 30. Final beam reinforcement designs for (a) Chinese, (b) North American, and (c) European 

markets. 

 

 

Packaging space 

The average D-segment packaging space contains an available region that a bumper beam can 

be placed in.  Figure 31 shows the available space with applicable dimensions. 



 
 

Figure 31. Average D

 

The designed B-section bumper beam has a higher sweep than the packaging space, yet is still 

able to fit within it. In fact, the higher sweep leaves portions at the front of the package space 

unfilled allowing for greater creativity and possibility when styling the fascia of the car. 

32 depicts how the beam fits within the space.

 

Figure 32. Cal Poly bumper beam fit to packaging space

 

 

Base Beam – B-shape

Figure 

 

The base beam is roll formed from M220. Details on the mechanical properties of M220 are 

attached in Appendix H. All inside radii are four times the thickness to prevent 

material during the roll forming process

are 4.4mm. Complete part drawings depicting size, sweep,

are attached in Appendix J. 
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mm

143.9 
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Average D-segment packaging space with dimensions 

section bumper beam has a higher sweep than the packaging space, yet is still 

In fact, the higher sweep leaves portions at the front of the package space 

unfilled allowing for greater creativity and possibility when styling the fascia of the car. 

depicts how the beam fits within the space.   

. Cal Poly bumper beam fit to packaging space 

Figure 33. Base Beam for bumper system 

roll formed from M220. Details on the mechanical properties of M220 are 

attached in Appendix H. All inside radii are four times the thickness to prevent 

material during the roll forming process. For example, the RCAR SEA is 1.1mm 

part drawings depicting size, sweep, and holes for attaching crush cans

1424.5 

mm 

  1029.6 

106.8 
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section bumper beam has a higher sweep than the packaging space, yet is still 

In fact, the higher sweep leaves portions at the front of the package space 

unfilled allowing for greater creativity and possibility when styling the fascia of the car. Figure 

 

 

roll formed from M220. Details on the mechanical properties of M220 are 

attached in Appendix H. All inside radii are four times the thickness to prevent failure of 

 thick so the radii 

and holes for attaching crush cans 

  R 2426.9 mm 



 
 

Steel Energy Absorber (SEA)

Figure 34

 

The Steel Energy Absorber is stamped from EG

EG-HF 60 are attached in Appendix H. 

the details shown in Figure 35. Six equally spaced tabs line the top and bottom measuring 

30mm x 20mm. Slots in the tabs

recommended by Shape Corp. Also cuts

bumper and SEA to the crush cans. The 

with slot welds. Detail drawings 

 

Figure 35

 

M8 Plain steel nuts are used to 

nut is used between the beam and the crush cans to 

a beam with larger sweep than the crush cans are designed for

placed between the nut and the back side of the

dimensioned drawing with a Bill of 
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Steel Energy Absorber (SEA) 

34. Steel energy absorber for bumper system 

stamped from EG-HF 60. Details on the mechanical properties of 

HF 60 are attached in Appendix H. Sheets of steel are cut prior to stamping in order to make 

. Six equally spaced tabs line the top and bottom measuring 

in the tabs, as shown in Figure 35, measure 20mm x 5mm as 

recommended by Shape Corp. Also cuts on the SEA are made to provide room to 

bumper and SEA to the crush cans. The extended tabs of the SEA are welded to the base beam 

 are attached in Appendix J. 

 
35. Enlarged view of the SEA tabs and cuts 

used to fasten the beam to the crush cans. For the prototype, a

between the beam and the crush cans to accommodate gap introduced when using 

than the crush cans are designed for. M8 Stainless steel washers 

and the back side of the base beam. An assembly view 

Bill of Materials is attached in Appendix J. 
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HF 60. Details on the mechanical properties of 

Sheets of steel are cut prior to stamping in order to make 

. Six equally spaced tabs line the top and bottom measuring 

, measure 20mm x 5mm as 

are made to provide room to bolt the 

welded to the base beam 

 

For the prototype, an extra 

commodate gap introduced when using 

. M8 Stainless steel washers are 

base beam. An assembly view in Figure 36. A 



 
 

Figure 36

 

For the prototype design, the crush can show

redesigned specifically for this beam by increasing the angle 

Figure 
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36. Assembly layout for Bumper Beam system 

crush can shown in Figure 37 is used. These crush cans 

designed specifically for this beam by increasing the angle of the face so that the

 
Figure 37. Crush Can provide by SHAPE CORP. 
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rush cans should be 

of the face so that they are flush. 
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Analysis Results 

Table 4. Test summary for final bumper designs. 

 
 

FEA results of the final designs are summarized in Table 4. Crash test goals were: 
 

• Rear bumper intrusion could not exceed 55 mm beyond the back of the package space 

• Rail force could not exceed 80 kN in either rail 

The China beam passed the GB17354-1998 test by the largest margin of 57.3 mm. The US 

bumper passed IIHS full frontal test, but failed the IIHS offset test. The European beam passed 

the RCAR full frontal test. For the RCAR 40% offset test, the beam passed with the second 

narrowest margin 1.2 mm. 

 

In the offset test, the barrier impacts the right 15% of the car. Given the current configuration, 

the barrier has no direct contact with the crush can. To improve performance on this test, the 

bumper system configuration must be changed. 

 

Maintaining the rail force below 80kN dictated beam design for the RCAR 40% offset test. In 

this test, some energy was absorbed by the SEA and the collapse of the beam’s cross section, 

but the primary energy absorber was the crush can. As seen in Table 4, the crush can deflected 

85.1 mm in this test, which is very near the limit of the crush can’s ability to collapse. Force 

increases dramatically beyond this point as seen in Figure 51 of the Appendix E.  

 

For the EuroNCAP pedestrian test, the test leg had a maximum acceleration of 122.6 g’s which 

is 18.3 % below the required acceleration. The rotation of the knee and shear force were not 

considered. 

 

For FEA validation, see Appendix E. 

 

  

Test 

Speed

Intrusion

(m/s) (mm)

GB17354-1998 0.745 88.9 31.6 0.5 1.2 11.7 11.0 Passed by 57.3mm Pass Base beam only

IIHS Full Frontal 2.485 88.9 88.1 1.4 3.8 31.3 30.6 Passed by 0.8mm Pass With D6080-0.7 SEA

IIHS 15% Offset 1.242 10.0 46.1 0.2 1.7 4.2 31.6 Failed by 36.1mm Pass With D6080-0.7 SEA

RCAR Full Frontal 2.485 88.9 77.4 1.5 4.1 33.1 29.6 Passed by 11.5mm Pass With D6080-1.1 SEA

RCAR 40% Offset 3.727 88.9 87.7 0.8 85.1 17.9 65.0 Passed by 1.2mm Pass With D6080-1.1 SEA

Test Results

Crush 

Can

Force

Pass/Fa

EA

Left Crush

Can Disp

(mm)

Right Crush

Can Disp

(mm)

Left Rail 

Force

(kN)

Right Rail 

Force

(kN)

Intrusion

Pass/Fail

Max

Intrusion

(mm)

Test
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CHAPTER 5:  PRODUCT REALIZATION 

The base beam and the SEA attachments were designed to be mass produced. The base beam 

is to be rolled formed and the SEA is to be stamped. While these manufacturing methods offer 

low unit cost of production, they require a large investment in capital. Because the actual 

bumper design cannot be easily fabricated, only simplified versions of the bumper will be 

prototyped for testing. 

 

The base beam has a shape similar to existing beams for the Nissan Altima and was not 

prototyped because test data for similar beams are available. However, the SEA has a unique 

shape and a simplified version of it was prototyped for testing. 

 

The SEA was simplified by eliminating the sweep (making it flat) and only fabricating 609mm 

long section for testing. It was made of AISI 1008 sheet steel measuring 0.84 mm thick instead 

of the final design’s 1.1mm HF-60. A sheet metal break was used to create the cross section, 

with several short, straight sections approximating the curved edge. Using this fabrication 

method, the complete prototype could not be made from a single sheet of steel. Instead, as 

shown in Figure 38, the SEA was first bent on the sheet metal break, then cut in half to create 

two identical pieces, and finally TIG welded together. The location of the weld down the center 

of the front face of the beam was selected because the pedestrian FEA model showed little 

deformation of the front face.  

 

 
Figure 38. The SEA for testing was fabricated from two pieces of sheet metal. Two side were bent on a 

sheet metal brake and TIG welded together.  

 

When the bumper is actually mass produced, the cold working of the steel as it is formed 

should be taken into consideration. The bumper may need to be annealed after fabrication. 

Also, the steel may require heated during fabrication so that it does not crack. This could be 

done by hot roll forming the base beam and hot stamping the SEA. 

 

 

CHAPTER 6:  DESIGN VERIFICATION 

The complexity of the bumper design limits the degree to which it can be replicated as a 

prototype. Therefore, verification of the final design was performed through a series of FEA 
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model validations. Real world tests were modeled and simulated using the FEA model. The 

results of the simulation were compared data collected during testing. A pendulum impact 

tester replicated the IIHS full frontal test, and drop tests with a legform represented a scaled 

down version of the pedestrian impact test.  

 

Pendulum Impact Test 

A Cal Poly senior project and a master thesis have developed a pendulum impact test apparatus 

designed to simulate a car crashing into a bumper system. The testing apparatus can apply a 

maximum force of 3000 lb at a speed of 5 mph. A diagram of the test rig is shown in Figure 39. 

The existing bumper fixture can be used to mount the bumper beam prototype and is designed 

to replicate the IIHS and RCAR Full Frontal impacts. Load cells and position transducers provide 

accurate force and deflection data of the bumper system. An emitting diode IR receiver 

measures the impact speed of the pendulum carriage. 

 

                                                                                                                 

 
Figure 39. Pendulum Impact Test Setup 

 

Team Mjollnir, the group in charge of refurbishing the pendulum tester, provided data from 

several different tests performed on the same bumper design. For comparison, our ABAQUS 

FEA model was used to simulate the same impact.  

 

Average data from 10 bumper impact tests were compared to FEA results below. In order to 

closely match test conditions, the average speed of the test was used as the speed input for the 

FEA model. Results show that the FEA model over predicts both the intrusion and crush can 

force. An average intrusion of 39.0 mm was measured, while simulations predicted 60.3 mm 

(54.6% above test measurements). The average measured force was 75.9 kN, with a prediction 

of 78.8 kN (3.8% above test measurements).  
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Table 5. Summary of comparison between testing and FEA data 

  

Intrusion 

(mm) 

Force 

(kN) 

Speed 

(km/h) 

Test Data 39.0 75.9 8.0 

FEA Results 60.3 78.8 8.0 

 

This comparison indicates that FEA predictions are on the conservative side, with the real world 

bumper performing better than expected. Therefore, the final design for this project should 

also show performance improvements over FEA predictions. 

 

 
Figure 40. FEA was conservative in deflection predictions 

 

Impacts were also compared graphically for one of the tests. The force-deflection curves in 

Figure 40 show a similar elastic modulus for both tests. The spring back rate was also almost 

identical. The FEA model appears to have predicted more plastic deformation, resulting in an 

increased deflection, and an increased permanent deflection by about 10 mm. 
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Figure 41. Compared to testing, simulated results depicted a nearly identical peak force 

 

Rail force increased much quicker in the FEA prediction than the actual test, which fits with the 

general assumption that an FEA model will be stiffer than the real part. 

 

 
Figure 42. Deflection-Time comparison 

 

A deflection comparison shows the FEA model to be rather conservative. As seen in Figure 42, 

the model predicted about 60 mm, while the test measured about 45 mm. This result indicates 

that the final design may deflect less than predicted, resulting in increased performance. 
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Pedestrian Impact Test 

The Steel Energy Absorber was designed to be stamped but the cost of prototype 

manufacturing would have been excessive. Therefore, only small simplified sections of the SEA 

were fabricated and tested. The test consisted of dropping a model legform from a 20 feet tall 

balcony onto a section of the SEA on the ground. The leg was made of a 3 inch diameter steel 

pipe wrapped in foam pipe insulation. An accelerometer mounted vertically on the legform 

captured acceleration data. These data were then compared to FEA acceleration data from a 

simulated drop test. An overview of the testing set-up is shown in Figure 43. 

 

 
Figure 43. A legform was dropped from a 20 ft tall balcony onto a test section of SEA on the ground 

below. 

 

Test Set-Up 

The SEA prototype was bolted to a 4’ x 4’ wooden test platform shown in Figure 44 and placed 

at the base of the balcony. A high speed camera was placed approximately 10 feet from the test 

platform and at a level height with the SEA to record footage of the deformation and the axial 

angle at which the legform impacted the SEA. The high speed camera recorded the impact at 

20,000 frames per second at a screen resolution of 250x250 pixels. Another camera captured 

any rotation from the horizontal plane which could also affect acceleration data. Both angles 

were used in transforming raw acceleration data to report true vertical acceleration. 
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Figure 44. A test section of SEA was bolted onto a plywood test platform and placed beneath a balcony 

for the legform to be dropped on it.  

 

The test legform shown in Figure 45 wrapped with 0.5 inch thick foam pipe insulation to 

simulate human tissue and protect the accelerometers. The total test leg weighed 12 pounds. 

Figure 45’s exploded view shows the accelerometer mount, which consisted of a square bracket 

welded to the surface of the steel pipe and threaded for secure mounting.  

 

 
Figure 45. Legform used for drop testing 

   

A data acquisition system was placed on the balcony and connected to the accelerometers via 

BNC cables to measure the legform’s acceleration upon impact. To protect the BNC cables and 

accelerometers from damage, rope was tied between the pipe and balcony railing to prevent 

erratic rebounding after impact. Accelerometers on the top of the legform were covered with 

an extra layer of protective foam. The BNC wires were wrapped around a rope to prevent them 

from falling freely.  
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The leg was held parallel to the ground and released after a countdown. Upon countdown, the 

DAQ began recording data points at 2560Hz. Upon impact, the high speed camera was 

triggered and captured a total of 4 seconds of footage.  

 

Results 

The acceleration data obtained during testing is plotted against the data from the FEA model in 

Figure 46.  

 
Figure 46. Pedestrian Leg Drop Test Comparison 

 

The acceleration measured in the actual test was significantly lower than the acceleration 

predicted by the FEA model. This could be due to a few factors. The pedestrian leg was 

modeled as a rigid body, thus it could not absorb any of the impact energy through its own 

deflection. The legform used in testing was covered in foam to imitate human tissue, which 

could have absorbed some of the impact energy. Also, the plywood absorbs some of the energy 

and much of the energy is stored elastically in the leg and did not dissipate into the beam. In 

addition, high speed footage shows the legform deflecting on impact, and vibrating 

immediately after (Figure 46 clearly shows this vibration). These energy absorbing 

characteristics of the legform may account for the discrepancy between measured and 

predicted acceleration. Regardless, because the model proved to be conservative, the final 

design is expected to exhibit a lower max acceleration than predicted by FEA.  

 

Figure 47 shows a deformation comparison between the prototype SEA and FEA model. It is 

clear from this visual comparison that the prototype bumper deformed as expected, and the 

deflection distances were very similar for both. 
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Figure 47. Comparison of deformation of the SEA from the actual leg drop test and the FEA model. 

 

Recommendations 

During testing, the leg after impact rebounded and rotated aggressively in the air. The micro 

dot cables connected to the accelerometers broke at the connection points by the twisting and 

turning of the leg after impact. In addition, a halogen light broke upon contact with the nylon 

support rope immediately following a drop test. 

 

For future tests, rope should be used to anchor both ends of the legform to resist rotation. The 

method used in testing only utilized one support line, and proved insufficient at controlling the 

rebound of the legform. Also, the steel energy absorber should be bolted to an elevated 

platform as opposed to resting on the ground. During impact, the legform would rotate and hit 

the ground, reducing the amount of energy transferred to the SEA. Elevating the SEA would 

reduce unintended collisions with the ground. 

 

To prevent damage to the halogen lights, they should only be turned on right before the drop 

test, and turned off immediately after.  Leaving the lights on between drops increased the 

temperature and made them more susceptible to vibration damage. If more powerful lights 

were used, they could be placed further from the impact zone.  This way, if the bumper were to 

rebound out of control, it would be less likely to hit the light fixtures.  

 

 

 

 

CHAPTER 7:  CONCLUSIONS 

It is feasible for a steel bumper system consisting of Plug-n-Play attachments with a Steel 

Energy Absorber to perform competitively across markets on a global scale. The current 

bumper design passes China, IIHS Full Frontal, RCAR Damageability, RCAR low speed impact, 

and EuroNCAP pedestrian tests. It is recommended that the packaging space be lengthened in 

order to meet IIHS Offset Testing. As vehicle and pedestrian crash test standards become more 

stringent, new and innovative ways of absorbing impact energy must be incorporated in future 

bumper designs. One method that should be further explored is the incorporation of a steel 

energy absorber (SEA) in place of the traditional foam energy absorber. The SEA not only adds 

structural rigidity to the bumper beam, but also absorbs impact energy by plastically deforming 

which allows the system to meet pedestrian crash test requirements. Pedestrian testing 

demonstrated that the acceleration requirement for the EuroNCAP test is safely met by the 

current SEA design. 
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Verification of the FEA model also proved successful. This validation was accomplished by 

comparing results of real world tests and simulation results. Comparisons show that the FEA 

model predictions were either very close or conservative when compared to actual results. The 

FEA over predicts deflection by 54% and crush can force by 3.8%. This final comparison 

demonstrates with a high level of confidence that the steel bumper system created with the 

FEA model will perform better than predicted. 
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APPENDIX A:  QFD TABLE 
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APPENDIX B:  GANTT CHART 
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APPENDIX C:  PRELIMINARY ANALYSIS 

BEST-IN-CLASS GLOBAL BUMPER PROJECT 

Concept Decision Matrix

Rating (%) Description

100 Complete satisfaction; objective satisfied in every respect

90 Extensive satisfaction; objective satisfied in all important aspects

75 Considerable satisfaction; objective satisfied in the majority of aspects

50 Moderate satisfaction; a middle point between complet and no satisfaction

25 Minor satifaction; objective satisfied in some but less than half of the aspects

10 Minimal satisfaction; obective satisfied to a very small extent

0 No satisfaction; object not satisfied in any respect
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BEST-IN-CLASS GLOBAL BUMPER PROJECT 

Material Decision Matrix

Rating (%) Description

100 Complete satisfaction; objective satisfied in every respect

90 Extensive satisfaction; objective satisfied in all important aspects

75 Considerable satisfaction; objective satisfied in the majority of aspects

50 Moderate satisfaction; a middle point between complet and no satisfaction

25 Minor satifaction; objective satisfied in some but less than half of the aspects

10 Minimal satisfaction; obective satisfied to a very small extent

0 No satisfaction; object not satisfied in any respect
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Table 6. Comparison between different Plug-n-Play methods. Each method was evaluated by its cross-

sectional properties. 

 
  

Shape Picture
Ix

(mm4)

Iy

(mm4)

Iz

(mm4)

c 

(mm)

Area

(mm2)

Weight 

(kg)

BUP - Ix/(Ac)

(mm)

Ix/A

(mm2)

Iy/A

(mm2)

Iz/A

(mm2)

Incr. Ix

(%)

Incr. A

(%)

Incr. BUP

(%)

1 7.12E+04 6.08E+05 6.79E+05 29.45 353 4.01 6.86 202 1725 1927 0.00 0.00 0.00

2 9.47E+04 6.10E+05 7.05E+05 27.43 449 5.11 7.69 211 1360 1571 33.00 27.23 12.23

3 1.16E+05 6.73E+05 7.88E+05 26.12 545 6.20 8.14 213 1235 1448 62.66 54.47 18.73

4 3.07E+04 4.29E+05 4.60E+05 14.30 318 3.62 6.75 97 1349 1447 0.00 0.00 0.00

5 1.04E+05 5.58E+05 6.62E+05 21.90 440 5.01 10.79 236 1268 1505 238.76 38.36 59.87

6 1.30E+05 5.69E+05 6.98E+05 24.47 512 5.83 10.38 254 1111 1363 323.45 61.01 53.70

7 1.29E+05 4.22E+05 5.50E+05 29.56 378 4.30 11.53 341 1116 1457 0.00 0.00 0.00

8 1.68E+05 5.60E+05 7.28E+05 26.30 518 5.89 12.36 325 1082 1407 30.66 37.01 7.18

9 1.81E+05 4.70E+05 6.52E+05 27.60 583 6.63 11.28 311 807 1118 40.91 54.27 -2.18

13 6.19E+04 4.09E+05 4.71E+05 19.54 309 3.52 10.25 200 1324 1524 0.00 0.00 0.00

14 7.75E+04 4.26E+05 5.04E+05 18.88 417 4.75 9.83 186 1022 1207 25.22 35.07 -4.06

15 8.81E+04 6.96E+05 7.84E+05 18.73 510 5.81 9.23 173 1364 1536 42.46 65.07 -9.97

16 7.32E+04 3.91E+05 4.64E+05 18.24 346 3.94 11.60 212 1130 1341 0.00 0.00 0.00

17 7.84E+04 4.42E+05 5.21E+05 18.74 411 4.68 10.18 191 1075 1268 7.10 18.79 -12.24

18 8.33E+04 5.08E+05 5.91E+05 19.11 477 5.43 9.14 175 1065 1239 13.80 37.86 -21.21

19 5.32E+04 4.67E+05 5.20E+05 16.85 359 4.08 8.80 148 1303 1451 0.00 0.00 0.00

20 6.85E+04 5.69E+05 6.38E+05 19.99 466 5.30 7.36 147 1223 1370 28.88 29.83 -16.32

21 8.01E+04 6.71E+05 7.52E+05 22.14 573 6.52 6.32 140 1172 1312 50.58 59.65 -28.22
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Table 7. Conceptual Spreadsheet comparing cross section properties. 

 
 

Shape Picture
Ix

(mm4)

Iy

(mm4)

Iz

(mm4)

c 

(mm)

Area

(mm2)

BUP - Ix/(Ac)

(mm)

Ix/A

(mm2)

Iy/A

(mm2)

Iz/A

(mm2)

Incr. Ix

(%)

Incr. Iy

(%)

Incr. Iz

(%)

Incr. A

(%)

Ix/A^2

(-)

Iy/A^2

(-)

1 6.49E+05 1.17E+06 1.82E+06 36.50 704 25.26 922 1662 2585 0.00 0.00 0.00 0.00 1.31 2.36

2 2.82E+05 9.87E+05 1.27E+06 51.18 498 11.06 566 1982 2550 -56.55 -15.64 -30.22 -29.26 1.14 3.98

3 4.10E+05 6.49E+05 1.06E+06 36.50 704 15.96 582 922 1506 -36.83 -44.53 -41.76 0.00 0.83 1.31

4 4.32E+05 1.28E+06 1.71E+06 46.04 827 11.35 522 1548 2068 -33.44 9.40 -6.04 17.47 0.63 1.87

5 7.04E+05 1.17E+06 1.87E+06 36.50 842 22.91 836 1390 2221 8.47 0.00 2.75 19.60 0.99 1.65

6 7.59E+05 1.35E+06 2.11E+06 36.50 980 21.22 774 1378 2153 16.95 15.38 15.93 39.20 0.79 1.41

7 6.21E+05 1.33E+06 1.95E+06 40.44 882 17.41 704 1508 2211 -4.31 13.68 7.14 25.28 0.80 1.71

8 6.64E+05 1.17E+06 1.84E+06 37.66 744 23.70 892 1573 2473 2.31 0.00 1.10 5.68 1.20 2.11

9 6.77E+05 1.21E+06 1.89E+06 38.69 784 22.32 864 1543 2411 4.31 3.42 3.85 11.36 1.10 1.97

10 4.21E+05 1.40E+06 1.82E+06 36.50 712 16.20 591 1966 2556 -35.13 19.66 0.00 1.14 0.83 2.76

11 4.36E+05 1.12E+06 1.56E+06 36.50 576 20.74 757 1944 2708 -32.82 -4.27 -14.29 -18.18 1.31 3.38

12 7.63E+05 1.17E+06 1.93E+06 36.50 984 21.24 775 1189 1961 17.57 0.00 6.04 39.77 0.79 1.21

13 7.07E+05 1.30E+06 2.00E+06 39.67 1026 17.36 688 1264 1953 8.88 10.91 10.12 45.80 0.67 1.23

14 2.81E+05 2.81E+05 5.63E+05 36.50 446 17.28 631 631 1261 -56.65 -75.96 -69.09 -36.63 1.41 1.41

15 3.82E+05 6.90E+05 1.07E+06 36.50 447 23.41 855 1543 2397 -41.13 -41.05 -41.11 -36.49 1.91 3.45

16 5.16E+05 9.67E+05 1.48E+06 41.15 636 19.73 812 1522 2334 -20.47 -17.31 -18.48 -9.70 1.28 2.39

17 4.67E+05 8.52E+05 1.32E+06 42.98 614 17.71 761 1388 2149 -27.99 -27.19 -27.51 -12.80 1.24 2.26
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APPENDIX D:  B-MAC 3000 

Figure 48. The spreadsheet is broken down into four distinct sections. The far left side is the inputs 

where many cross-sections (section 1) and High strength steels (section 2) can be selected from a 

drop down list. Below each material or cross-section, the properties change with respect to the 

selected cross-section and are used for analysis. Sections 4, 5, and 6 are divided into Chinese, US 

(IIHS), and European tests, each representing the three regions that the bumper will be tested in.  
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APPENDIX E: FEA  MODEL DESCRIPTION 

 

All FEA was done using Abaqus/CAE Version 6.7-1 software. 

 

Static FEA models were developed to analyze cross sections buckling and failure modes. While 

this information was helpful in the analysis, there was still a strong desire to have the capability 

to analyze the coupled effects of cross section geometry, beam shape, material type, crush 

cans, and inertial effects. While static analysis was being performed, a dynamic model was 

simultaneously being developed to accomplish this goal. The final model allows the user to 

output data at any of the nodes, and can analyze all reaction forces, displacements, and 

accelerations of interest. 

 

 

The Barriers 

Four rigid barriers were created to mimic each of the required crash tests. All were limited to 

motion along 1 axis and were not allowed rotation about any axis. 

 

 

    
Figure 48. From left to right: GB17354-1998 Pendulum Barrier, IIHS and RCAR Full Frontal 

Barrier, RCAR Offset Barrier, Pedestrian Legform. 

 

 

The Beam 

To create the beam, a cross section was sketched and swept along an arc to the desired size. 

The EA was sketched and extruded along with the beam, but assigned different section 

properties. 
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Figure 49. Extruded cross section sketch. 

 

 
Figure 50. Assembly of the base beam with D6080-1.1 SEA and RCAR 40% Offset barrier. 

 

 

Crush cans 

Nonlinear springs were added to the model to represent the crush cans that will be attached to 

the bumper during an impact. These are displayed as dashed blue lines in Figure 50. The rear 

node of the crush can was fixed, and the front was free to move with the beam. Force-

deflection data for these crush cans was provided by Shape for a static test and used to 

approximate the crush can response during an impact. This data can be seen in Figure 51. 
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Figure 51. Crush can static force-deflection data. 

 

 

 
Figure 52. Left crush can constrained to move with the 

back of the bumper beam. 

 

For the frontal impact tests, crush cans were constrained to a node region down the center of 

the crush can area. This essentially created a pin along the purple line seen in Figure 52, and the 

beam was free to rotate about this axis. By fixing the crush cans to the beam in this way, results 

were conservative because there was no moment resisting rotation. For the offset tests, much 

of the force is absorbed by the crush cans, and the beam tends to rotate about the crush cans 

more than the frontal tests. Using pin allowed the beam to freely rotate, which was very 

unrealistic for this scenario. Therefore, instead of using pin constraints, the crush cans were 

tied to the area to which the crush can attach. 
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Mesh 

Analysis was generally performed with 1 cm linear shell elements. Some models were 

developed which included construction fillets, and required much finer meshes to imitate the 

sharp radius of the fillet. Runs with elements as small as 2 mm were attempted, but the 

computers were unable to perform an analysis which lasted longer than 24 hours. 

  

 
Figure 53. Typical meshed beam. 

 

Figure 53 shows a typical mesh for one of the bumper beams with EA attached. Due to 

concerns about the effect fillets might have on the performance of the SEA, an analysis was 

performed with a fine localized mesh around the SEA’s fillets. This analysis proved that the 

fillets did not significantly affect EA performance. A similar technique was attempted on a 

filleted model of the entire beam, but proved unsuccessful.  

 

Results 

  
Figure 54. Full bumper (left) and section view (right) of stress contours during impact. 
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Contour plots were generated to view stress concentrations, deflections, or any other 

parameter of interest. Tabular data was also outputted and analyzed to quantify the 

performance of the beam. An example of one of the spreadsheets for IIHS Full Frontal test has 

been broken up to fit on one page and is displayed in Figure 55, Figure 56, and Figure 57.  

Figure 55 shows the primary dimensions of the bumper being tested, the depth of sweep, 

weight, and total weight if an EA is included. Weights were calculated without filleted edges or 

welds, so actual weight will be slightly different from the displayed values.  

 

Figure 56 contains test data from the finite element simulation. The max intrusion is calculated 

by adding the 55 mm limit to the width of the package space, and then subtracting the width of 

the EA/beam combination. Crush can displacement is the measured displacement of the front 

node of the crush can. Crush can force is measured at the back node of the spring and 

represents the force transmitted into the frame rails of the vehicle. Finally, pass/fail columns 

quickly display the outcome of the test. 

 

Information about the FEA model and test are recorded in Figure 57 as a reference, but also to 

ensure repeatability of test conditions. Before discovering how to create a non-linear, plasticly 

deforming spring, several different crush can models were tested. This column now varies 

between Pin and Area to describe whether the beam and crush can were free to rotate or fixed 

across the crush can area. Barrier model also indicates the test performed. The base beam 

material is followed by notes to conclude the data recorded for each run. Notes contains the 

type of EA, if any, and any other information about the run, such as errors or anomalies in the 

test. 

 

 

 
Figure 55. Beam geometry. 
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Figure 56. Test requirements and results. 

 

 
Figure 57. FEA model description. 

 

 

Assumptions List 

The dynamic FEA model opened up an unexpected analysis capability. While this tool proved 

invaluable in the design of the bumper beam and EA, there are many simplifications which need 

to addressed. 

 

• Pin vs area crush can models 

o Pins allow the beam to freely rotate, so the model overpredicts the deflection. 

On the other hand, the area model complete restricts rotational motion of the 

crush can area, resulting in an underprediction of the deflection. In order to 

accurately replicate the response of the crush cans, a full 3D model of the crush 

cans is needed. 

• Crush cans are axial springs only 

o Does not take into account translational force imposed on the beam or moments 

provided at the connection between the can and bumper beam 

• The non-linear spring used to approximate the crush cans is built from static test data. 

No verification has been performed to prove that this is representative of the actual 

performance. 

• One side of the beam is free to translate outward 
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o This is to imitate the tendency of the frame to bow outwards because the crush 

can force is not a one-dimensional load. A real beam’s outward translation is 

somewhat restricted by the frame  

• A completely filleted model was not able to run using the available computers 

o Verification that a filleted model will perform as well as an unfilleted model has 

not been performed 

• The change in performance due to welded edges is unknown 

• Due to the difficulty in modeling complex geometry, non-essential material has not been 

removed. Removing material could create a lighter beam. 

• Elements are larger than the industry standard of about 4 mm. Analysis was performed 

with 1 cm elements 

• 80% of the kinetic energy of the collision is assumed to enter the beam. While this has 

been proven a good approximation, the actual energy into the beam may be higher. 

• The “car” is constrained from rotation. Some of the energy of the collision may go into 

rotational energy of the vehicle. 

• The barriers are all rigid bodies and are not outfitted with energy absorbers. This results 

in higher forces into the bumper. 

• Pedestrian test 

o Only analyzes acceleration 

o Shear forces and rotation of the leg are not accounted for 

o The legform is a rigid cylinder 

o The diameter of the leg is assumed 

FEA Model Validation 

To verify the accuracy of the FEA model, results were compared to Shape Corp.’s advanced 

dynamic 3-D FEA. Identical bumper beams were used in both models. 
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Figure 58. FEA comparison and validation 

 

As seen in Figure 58, the force-deflection curve has a similar shape but the Cal Poly model over 

predicts force and deflection. Therefore, all results from Cal Poly FEA are conservative.
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APPENDIX F: PLUG-N-PLAY 2-D FEA  RESULTS 

 

 
Figure 59. Plug-n-Play force-deflection curves for a flat plate with reinforcement bars design. 
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Figure 60. Plug-n-Play force-deflection curves for an external reinforcement design. 
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Figure 61. Plug-n-Play force-deflection curves for an internal reinforcement design. 
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Figure 62. Plug-n-Play force-deflection curves for a B-shape with reinforcing flat plates design. 
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APPENDIX G:  MATCHBOOKING STUDY 

 
Figure 63. Effect of cross section width variation on energy absorption. 
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Conclusion: Cross sections with thinner

widths are less prone to collapsing.
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Figure 64. Reinforcement height effects on energy absorption. 
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Conclusion: Cross section height does not have a large affect on 

collapsability. However, taller cross sections have a larger moment 

of inertia and are more desireable for elastic bending.
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Figure 65. Effect of cross section taper orientation on energy absorption
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Conclusion: Tapered cross sections are less prone to 

collapsing. Tapering to the back (front taller than back) is 

slightly better than tapering to the front (back taller than 

front) because walls crush into each other.
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APPENDIX H:  MATERIAL COMPARISON 

 

Table 8. List of AISI recommended materials 

 
 

Typical Yield 

Strength 

(Mpa)

Typical 

Tensile 

Strength 

(Mpa)

Minimum 

 Elongation 

(%)

DR210 (CR) Dent resistant 220 360 40

1008/1010 (HR) Low-carbon 269 386 35

35XLF (CR) Microalloy 285 400 35

1008/1010 (CR) Low-carbon 296 331 35

40XLF (CR) Microalloy 315 425 33

10B21(M) Carbon-Boron 320 480 18

15B21(M) Carbon-Boron 330 500 27

15B24 (CR) Carbon-Boron 330 500 27

35XLF (HR) Microalloy 331 407 35

590T (CR) Dual Phase 371 634 24

50XLF (CR) Microalloy 376 475 28

50XLF (HDG-CR) Microalloy 379 453 30

50XLF (HR) Microalloy 403 480 31

55XLF (HDG-CR) Microalloy 415 492 28

55XLF (CR) Microalloy 418 501 27

55XLF(HR) Microalloy 439 505 29

60XLF (HDG-CR) Microalloy 452 531 26

60XLF (CR) Microalloy 459 527 26

60XLF (HR) Microalloy 475 531 27

780T (CR) Dual Phase 518 834 18

70XLF (HR) Microalloy 527 600 26

70XLF (CR) Microalloy 530 614 20

80XLF (HR) Microalloy 587 673 22

80XLF (CR) Microalloy 592 690 19

140T (CR) Dual Phase 634 1034 13

80XLF (HDG-CR) Microalloy 641 662 15

120XF (CR) Recovery Annealed 869 883 12

120XF (HDG - CR) Recovery Annealed 876 889 11

M130HT (EG-CR) Martensitic 923 1055 5.4

135XF (CR) Recovery Annealed 969 985 7

140XF (CR) Recovery Annealed 1010 1028 5.6

M160HT (EG-CR) Martensitic 1020 1179 5.1

M190HT (EG-CR) Martensitic 1214 1420 5.1

M220HT (EG-CR) Martensitic 1420 1627 4.7

AISI Material List
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Figure 66. Strain Energy calculated from the approximated stress-strain curve of each metal, assuming 50% efficiency for the elastic 

deformation and 70% efficiency for plastic deformation 
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Mittal Steel USA Properties 

 

Properties for all materials considered in the design were provided by Mittal Steel USA. Abaqus 

input required true stress and plastic strain as material property inputs, and provided formulas 

to perform conversions from engineering stress and strain. 

 

 

 
)1ln(

nom

T
εε +=  Eq. 1 

 
)1(

nomnom

T
εσσ +=  Eq. 2 

 E

T

TPl σ
εε −=

 
Eq. 3 

 

Equations 1 and 2 are used to convert Mittal Steel‘s engineering stress and strain (
nom

σ and 

nom
ε ) to true stress and strain (

T
σ and

T
ε ). Equation 3 uses these values to calculate plastic 

strain (
Pl

ε ). Stress and strain values used in Abaqus for HF 60 and M220 are included below. 

 

 

 
 

  

True Stress 

(N/m2) 
Plastic Strain 

446892000 0.00E+00 

481440000 6.70E-04 

467360000 1.36E-02 

472880000 2.53E-02 

499550000 2.71E-02 

556500000 4.61E-02 

604800000 7.40E-02 

649600000 1.10E-01 

678500000 1.36E-01 

696200000 1.62E-01 

701800000 1.87E-01 

688800000 2.04E-01 

663400000 2.12E-01 

610050000 2.16E-01 

536425000 2.19E-01 
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Figure 67. Stress-strain data for HF 60 high strength steel. 
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True Stress 

(N/m2) 
Plastic Strain 

1207800000 0.00E+00 

1294637500 1.22E-03 

1372240000 2.33E-03 

1450785000 3.93E-03 

1505047500 6.14E-03 

1565872000 9.10E-03 

1603284000 1.32E-02 

1642850000 2.16E-02 

1649708500 2.58E-02 

1631230000 3.04E-02 
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1569000000 3.74E-02 
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Figure 68. Stress-strain data for M220 Ultra High Strength Steel 
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GB17354-1998
Speed: 0.745 (80% KE with 3 75kg passengers)

Notes: Full frontal test

Crush cans modeled as springs

D6080-1.1 SEA = 2.8 kg

EA Thickness 60 mm

Plate Tapers

1 110 50 19 6 6.843 0.7 0.7 140.7 244.6 2.8 5.6 88.9 52.6 0.2 2.6 5.2 4.9 Passed by 36.3mm Pass Springs/Pin Curved M190 Spacer B, flat plate, & D6080-1.1 SEA

2 110 0 0 0 null 0.8 0 null 88 1.0 3.8 null 30.2 0.4 0.5 8 7.9 Pass Pass Springs/Areas Curved M190 D6090-1.1 SEA

3 110 0 0 0 null 0.8 0 null 88 1.0 3.8 null 50.6 0.3 0.7 5.5 5.2 Pass Pass Springs/Pin Curved M190 D6090-1.1 SEA

4 120 50 35 6 6.843 0.7 0.7 140.7 274 3.2 6.0 88.9 31.4 0.5 1.1 11.4 10.6 Passed by 57.5mm Pass Springs/Pin Curved M220 No SEA

Crush Can

Model

Barrier

Model
Material Notes

Left Crush

Can Disp

(mm)

Right Crush

Can Disp

(mm)

Left Crush

Can Force

(kN)

Right Crush

Can Force

(kN)

Intrusion

Pass/Fail

Crush Can

Force

Pass/Fail

Intrusion

(mm)

Plate 2 Tapers

Model

#

Beam Geometry Test Requirements and Results Model Description

Overall

Height

(mm)

Taper

Width

(mm)

Taper

Height

(mm)

Taper

Distance

(mm)

Taper

Angle

(deg)

Thickness (mm) Sweep

(mm)

Area

(mm
2
)

Weight

(kg)

Max

Intrusion

(mm)

IIHS Full Frontal
Speed: 2.485 m/s(80% KE)

Notes: Full frontal test

Crush cans modeled as springs D6080-1.1 SEA = 2.8 kg

EA Thickness

60 mm

Total 

Weight 

Plate Tapers

1 110 50 19 6 6.843 1 2 140.7 588.87 6.83 9.63 88.9 90.0 - - - - Failed by 1.1mm Fail Pins Curved M220 No EA

2 110 50 19 6 6.843 2.1 0.7 140.7 398.6 4.62 7.42 88.9 134.0 2.2 48.1 5 34.5 Failed by 45.1mm Pass Pins Curved M190 With inner B section (110,25,25,3)

3 120 50 35 6 6.843 0.7 0.7 140.7 274 3.18 5.98 88.9 133.8 1.9 2.8 40.2 42.4 Failed by 44.9mm Pass Spring/Pin Curved M190 D6080-1.1 Split EA

4 120 50 35 6 6.843 0.7 0.7 140.7 274 3.18 5.98 88.9 109.3 1.9 2.5 20.4 19.7 Failed by 20.4mm Pass Spring/Pin Curved M190 D6080-1.1 Split EA larger

5 120 50 35 6 6.843 1.4 0.7 140.7 358 4.15 6.95 88.9 168 2.7 2.7 56.3 57.3 Failed by 79.1mm Pass Spring/Pin Curved M220 No EA; Plate across back

6 120 50 35 6 6.843 ~1.4 0.7 140.7 ###### ###### ###### 88.9 180.0 2.5 2.3 54 50.6 Failed by 91.1mm Pass Spring/Pin Curved M220 No EA; Back plate from crush can to crush can

7 120 50 35 6 6.843 0.7 0.7 140.7 274 3.18 5.98 88.9 84.8 1.7 4.1 36.7 29.5 Passed by 4.1mm Pass Spring/Pin Curved M220 D6080-0.6 SEA; MISSING CONTACT INTERACTION

8 120 50 40 6 6.843 0.7 0.7 140.7 281 3.26 6.06 88.9 null null Spring/Pin Curved M220

9 120 50 40 6 6.843 0.7 1.3 140.7 449.87 5.22 8.02 88.9 87.3 1.5 3.5 31.6 30 Passed by 1.6mm Pass Spring/Pin Curved M220 D6080-0.7

10 120 50 35 6 6.843 0.7 0.7 140.7 274 3.18 5.98 88.9 231.0 1.9 5.2 41.2 40.7 Failed by 142.1mm Pass Spring/Pin Curved M220 No EA

11 120 50 35 6 6.843 140.7 0 0.00 88.9 152.6 4.0 4.3 65 64.9 Failed by 63.7mm Pass 10840226

12 120 50 35 6 6.843 1.4 0.7 140.7 358 4.15 6.95 88.9 134.5 1.8 1.7 38.8 37.4 Failed by 45.6mm Pass No EA; Plate across back

13 120 50 35 6 6.843 0.7 0.7 140.7 274 3.18 5.98 88.9 170.3 2.5 2.6 55.2 55.7 Failed by 81.4mm Pass Spring/Pin Curved M220 110404010 0.7

14 120 50 35 6 6.843 0.7 0.7 140.7 274 3.18 5.98 88.9 95.8 1.5 5.5 30.8 35.7 Failed by 6.9mm Pass Spring/Pin Curved M220 40 reinforcing beam

15 120 50 35 6 6.843 0.7 0.7 140.7 274 3.18 5.98 88.9 88.1 1.4 3.8 31.3 30.6 Passed by 0.8mm Pass Spring/Pin Curved M220 D6080-0.7 SEA (~1.8kg)

16 null null 0 0.00 null null null

17 null null 0 0.00 null null null

18 null null 0 0.00 null null null

19 null null 0 0.00 null null null

20 null null 0 0.00 null null null

21 null null 0 0.00 null null null

22 null null 0 0.00 null null null

23 null null 0 0.00 null null null

24 null null 0 0.00 null null null

25 null null 0 0.00 null null null

26 null null 0 0.00 null null null

27 null 0.00 null null null

Crush Can

Model

Barrier

Model
Material Notes

Left Crush

Can Disp

(mm)

Right Crush

Can Disp

(mm)

Left Crush

Can Force

(kN)

Right Crush

Can Force

(kN)

Intrusion

Pass/Fail

Crush Can

Force

Pass/Fail

Intrusion

(mm)

Plate 2 Tapers (Double Stacked)

Model

#

Beam Geometry Test Requirements and Results Model Description

Overall

Height

(mm)

Taper

Width

(mm)

Taper

Height

(mm)

Taper

Distance

(mm)

Taper

Angle

(deg)

Thickness (mm) Sweep

(mm)

Area

(mm
2
)

Weight

(kg)

Max

Intrusion

(mm)

APPENDIX I: FEA DATA SHEETS 
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IIHS Offset
Speed: 1.242 (80% KE)

Notes: 15% offset test

Crush cans modeled as springs D6080-1.1 SEA = 2.8 kg

EA Thickness

60 mm

Total 

Weight 

Plate Tapers

1 110 50 19 6 6.843 0.8 0.8 140.7 279.55 3.24 6.04 10.0 63.7 0.3 2.2 7.7 32.5 Failed by 53.7mm Pass Spring/Pins Curved M190 No EA

2 120 50 35 6 6.843 0.7 0.7 140.7 274 3.18 5.98 10.0 41.7 0.3 2.1 6 27.4 Failed by 31.7mm Pass Spring/Pins Curved M190 Chopped D6080-1.1 SEA

3 120 50 35 6 6.843 0.7 0.7 140.7 274 3.18 5.98 10.0 30.0 0.1 1.8 2.3 38.2 Failed by 20mm Pass Spring/Area Curved M190 Chopped D6080-1.1 SEA

4 120 50 35 6 6.843 0.7 0.7 140.7 274 3.18 5.98 10.0 null null Spring/Pins Curved M220 D6080-0.7 SEA

Crush Can

Model

Barrier

Model
Material Notes

Left Crush

Can Disp

(mm)

Right Crush

Can Disp

(mm)

Left Crush

Can Force

(kN)

Right Crush

Can Force

(kN)

Intrusion

Pass/Fail

Crush Can

Force

Pass/Fail

Corner

Intrusion

(mm)

Plate 2 Tapers (Double Stacked)

Model

#

Beam Geometry Test Requirements and Results Model Description

Overall

Height

(mm)

Taper

Width

(mm)

Taper

Height

(mm)

Taper

Distance

(mm)

Taper

Angle

(deg)

Thickness (mm) Sweep

(mm)

Area

(mm
2
)

Weight

(kg)

Max

Intrusion

(mm)

RCAR Full Frontal
Speed: 2.485 m/s (80% KE)

Notes: Full frontal test

Crush cans modeled as springs D6080-1.1 SEA = 2.8 kg

EA Thickness

60 mm

Total 

Weight 

Plate Tapers

1 110 50 19 6 6.843 0.7 0.7 140.7 244.6 2.84 5.64 88.9 84.2 1.5 4.6 32.4 30.7 Passed by 4.7mm Pass

2 120 50 35 6 6.843 0.7 0.7 140.7 274 3.18 5.98 88.9 77.4 1.5 4.1 33.1 29.6 Passed by 11.5mm Pass Spring/Pin RCAR offset M220 With D6080-1.1 SEA

3 120 50 35 6 6.843 0.7 0.7 140.7 274 3.18 5.98 88.9 null null Spring/Pin RCAR offset M220 No EA

Crush Can

Model

Barrier

Model
Material Notes

Left Crush

Can Disp

(mm)

Right Crush

Can Disp

(mm)

Left Crush

Can Force

(kN)

Right Crush

Can Force

(kN)

Intrusion

Pass/Fail

Crush Can

Force

Pass/Fail

Intrusion

(mm)

Model

#

Beam Geometry Test Requirements and Results Model Description

Overall

Height

(mm)

Taper

Width

(mm)

Taper

Height

(mm)

Taper

Distance

(mm)

Taper

Angle

(deg)

Thickness (mm) Sweep

(mm)

Area

(mm
2
)

Weight

(kg)

Max

Intrusion

(mm)
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RCAR Offset
Speed: 3.727 (80% KE)

Notes: 40 % offset test

Crush cans modeled as springs D6080-1.1 SEA = 2.8 kg

EA Thickness

60 mm

Plate Tapers

1 110 50 19 6 6.843 0.7 0.7 140.7 244.6 2.84 5.64 88.9 104.9 0.6 99.3 12.1 64.4 Failed by 16mm Pass Spring/1Pin RCAR offset M190 With D6080-1.1 SEA

2 110 50 19 6 6.843 0.7 0.7 140.7 244.6 2.84 5.64 88.9 94.3 0.7 85.8 15.3 64.6 Failed by 5.4mm Pass Spring/Areas RCAR offset M190 With D6080-1.1 SEA

3 110 50 19 6 6.843 0.7 0.7 140.7 244.6 2.84 5.64 88.9 102.9 0.6 99.3 13.6 65 Failed by 14mm Pass Spring/1Pin RCAR offset M220 With D6080-1.1 SEA

4 110 50 19 6 6.843 0.7 0.7 140.7 244.6 2.84 5.64 88.9 92.5 0.8 86.5 16.6 65 Failed by 3.6mm Pass Spring/Areas RCAR offset M220 With D6080-1.1 SEA

5 110 45 19 6 7.595 0.7 0.7 145.7 230.72 2.68 5.48 93.9 109.1 0.5 104.0 12 65 Failed by 15.2mm Pass Spring/1Pin RCAR offset M190 With D6080-1.1 SEA

6 110 45 19 6 7.595 0.7 0.7 145.7 230.72 2.68 5.48 93.9 96.1 0.7 90.2 14.2 65 Failed by 2.2mm Pass Spring/Areas RCAR offset M190 With D6080-1.1 SEA

7 110 45 19 6 7.595 0.7 0.7 145.7 230.72 2.68 5.48 93.9 106.7 0.6 103.1 12.9 65 Failed by 12.8mm Pass Spring/1Pin RCAR offset M220 With D6080-1.1 SEA

8 110 45 19 6 7.595 0.7 0.7 145.7 230.72 2.68 5.48 93.9 94.7 0.8 90.5 15.9 65 Failed by 0.8mm Pass Spring/Areas RCAR offset M220 With D6080-1.1 SEA

9 110 50 30 6 6.843 0.8 0.8 140.7 297.15 3.45 6.25 88.9 82.8 0.9 96.8 18.4 87.5 Passed by 6.1mm Fail Spring/Areas RCAR offset M220 With D6080-1.1 SEA

10 110 60 19 6 5.711 0.7 0.7 130.7 272.44 3.16 5.96 78.9 89.8 1.0 87.4 20 65 Failed by 10.9mm Pass Spring/Areas RCAR offset M220 With D6080-1.1 SEA

11 110 60 19 6 5.711 0.8 0.8 130.7 311.36 3.61 6.41 78.9 80.5 1.0 97.0 21.6 93.1 Failed by 1.6mm Fail Spring/Areas RCAR offset M220 With D6080-1.1 SEA

12 110 50 30 6 6.843 0.8 0.8 140.7 297.15 3.45 6.25 88.9 84.4 0.8 96.3 18.1 84.9 Passed by 4.5mm Fail Spring/Areas RCAR offset M190 With D6080-1.1 SEA

13 110 50 25 6 6.843 0.8 0.8 140.7 289.15 3.35 6.15 88.9 83.8 1.0 96.2 19.7 86.1 Passed by 5.1mm Fail Spring/Areas RCAR offset M190 With D6080-1.1 SEA

14 120 50 35 6 6.843 0.7 0.7 140.7 274 3.18 5.98 88.9 87.7 0.8 85.1 17.9 65 Passed by 1.2mm Pass Spring/Areas RCAR offset M220 With D6080-1.1 SEA

15 120 50 30 6 6.843 0.7 0.7 140.7 267 3.10 5.90 88.9 89.4 0.9 85.7 18.6 65 Failed by 0.5mm Pass Spring/Areas RCAR offset M220 With D6080-1.1 SEA

16 110 50 40 6 6.843 0.7 0.7 140.7 274 3.18 5.98 88.9 85.6 0.9 84.4 18.8 65 Passed by 3.3mm Pass Spring/Areas RCAR offset M220 With D6080-1.1 SEA

17 120 50 40 6 6.843 0.7 0.7 140.7 281 3.26 6.06 88.9 85.5 0.8 84.0 18.1 65 Passed by 3.4mm Pass Spring/Areas RCAR offset M220 With D6080-1.1 SEA

18 120 50 35 4 4.574 0.7 0.7 140.7 273.45 3.17 5.97 88.9 86.9 0.9 83.8 18.5 65 Passed by 2mm Pass Spring/Areas RCAR offset M220 With D6080-1.1 SEA

19 120 50 35 8 9.090 0.7 0.7 140.7 274.78 3.19 5.99 88.9 88.1 0.8 86.2 17.5 64.7 Passed by 0.8mm Pass Spring/Areas RCAR offset M220 With D6080-1.1 SEA

Notes

Right Crush

Can Force

(kN)

Crush Can

Force

Pass/Fail

Crush Can

Model

Barrier

Model
Material

Max

Intrusion

(mm)

Intrusion

(mm)

Left Crush

Can Disp

(mm)

Right Crush

Can Disp

(mm)

Left Crush

Can Force

(kN)

Plate 2 Tapers (Double Stacked)

Model

#

Beam Geometry Test Requirements and Results Model Description

Overall

Height

(mm)

Taper

Width

(mm)

Taper

Height

(mm)

Taper

Distance

(mm)

Taper

Angle

(deg)

Intrusion

Pass/Fail

Thickness (mm) Sweep

(mm)

Area

(mm
2
)

Weight

(kg)

Total 

Weight 

(kg)
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APPENDIX J: DETAILED DRAWINGS 
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APPENDIX K: PEDESTRIAN TEST PLAN 

 

TEST PLAN 
EuroNCAP Pedestrian Leg Drop 

 

 

MATERIALS: 
 

1. Model leg with accelerometer 

2. Bumper test specimen 

3. Test fixture 

4. Data acquisition system with laptop 

5. 25-ft BNC cable 

6. Tape measure 

7. Scale 

8. High speed camera and laptop 

9. Portable hard drive 

 

 

TEST PROCEDURE: 
 

SET UP  &  INITIAL MEASUREMENTS 
 

1. Measure and record the mass of the model leg. 

2. Attach leg to drop platform with rope. 

3. Attach accelerometer and BNC cable to leg and wind cable around rope. 

4. Tape cable around rope making sure there is enough slack to prevent damage to cable. 

5. Set up test fixture and bumper specimen in drop zone. 

6. Rope off drop zone with caution tape. 

7. Set up high speed camera and data acquisition equipment at a safe distance away from the drop 

zone. 

8. Perform practice leg drop to ensure correct operation and settings of high speed camera and data 

acquisition. 

9. Position leg above drop zone. 

10. Measure and record leg drop height. 

 

DROP TEST 
 

11. Set high speed camera to record data. 

12. Ensure drop zone is clear. 

13. Begin drop countdown and start data acquisition system. 

14. Drop leg onto bumper specimen. 

15. Trigger high speed camera. 

 

DATA STORAGE   &  CLEAN UP  
 

16. Save high speed camera footage and acceleration data to a portable hard drive. 

17. Disconnect high speed camera and data acquisition equipment. 

18. Clean up all equipment. 
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