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This study researches the coding model adaptive for information processing of the bottom-up attention mechanism. We con-
structed a coding model satisfying the neurobiological constraints of the primary visual cortex. By quantitatively changing the 
coding constraints, we carried out experiments on images used in cognitive psychology and natural image sets to compare the 
effects on the saliency detection performance. The experimental results statistically demonstrated that the encoding of invariant 
features and representation of overcomplete bases is advantageous to the bottom-up attention mechanism.  
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One of the fundamental problems of bottom-up attention is 
how the primary visual cortex encodes low-level features 
and forms a saliency map. Since the influential work of Treis-
man and Gelade [1], different coding models have emerged. 
Some are motivated by an imitation of information pro-
cessing mechanisms in the primary visual cortex, to provide 
an efficient input to visual attention. For example, they sim-
ulate simple cells in V1 by Gabor filters, and implement 
multiscale processing by Gaussian pyramids [2–4]. Besides, 
the effects of overcomplete bases on encoding a bottom-up 
saliency map is of current interest [5,6]. While more and 
more neurobiological properties of the primary visual cortex 
have been accepted, the way they modulate the saliency 
detection remains unclear [7]. Models limited to simulation 
of simple cells cannot sufficiently satisfy neurobiological 
constraints [8]. How other mechanisms beyond simple cells 
affect bottom-up attention is worth deeply researching.  

Existing computational models, which simulate coding 
mechanisms in the primary visual cortex, represent saliency 
according to the feature combination theory of Treisman 
and Gelade [1]. The first computational framework based 

on a neurobiological understanding of selective attention 
was proposed by Koch and Ullman [9]. Under this frame-
work, the pre-attentive mechanism which extracts early 
visual features is often implemented by linear filtering using 
Gabor or other wavelets to simulate information processing 
in the primary visual cortex [3,10]. However, this simplified 
imitation may overlook the more complicated early vision 
mechanisms [2]. 

As we have known, the distribution of neurons in the 
primary visual cortex is hierarchical, showing specific to-
pology [11]. The ability of invariant representation increas-
es along a hierarchy [12]. Neurons in V1 expand the input 
from ganglion cells and adopt an overcomplete representa-
tion [6]. Therefore, as we construct coding models simulat-
ing the primary visual cortex we must consider these con-
straints to provide efficient input to bottom-up attention 
models.  

The main contribution of this paper is to build a coding 
model, which satisfies the neurobiological constraints of the 
primary visual cortex, to provide efficient input for bottom- 
up attention. In this paper, two questions were addressed. 
First, does invariant representation in the primary visual 
cortex affect bottom-up attention? Second, what is the effect 
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of overcomplete representation on saliency detection? To 
our knowledge, such coding constraints have not been used 
in attention models. We constructed an attention model 
based on a coding model including these constraints. By 
quantitatively changing the coding constraints, we carried 
out experiments on images used in cognitive psychology 
and natural image sets to compare the effects on the salien-
cy detection ability caused by different coding constraints. 

1  Background 

1.1  Computational models for bottom-up attention  

Bottom-up attention models extract multi-dimensional fea-
tures from an image and combine these features into a sali-
ency map where the most salient object will be perceived.   

In the feature extraction stage, computational models 
motivated by imitation of the primary visual cortex often 
use Gabor filters to extract orientation information at dif-
ferent scales. Properties of Gabor filters resemble simple 
cells’ receptive fields and can provide input to the bottom- 
up saliency map. Similar methods also use Gaussian pyra-
mids [13], Fourier transformation, or wavelets decomposi-
tion [10] to extract features similar to the responses of cells. 
One of representative models proposed by Itti et al. [3] 
adopted Gaussian pyramids to extract color, intensity, and 
orientation features at different levels. Grigorescu’s model 
[14] simulated complex cells and nonclassical receptive 
field inhibition to detect salient contours.  

Other researchers proposed powerful attention models. 
Poggio’s group used the Bayes model and combined top- 
down features and spatial priors to generate a salience map 
[15,16]. Their results showed that using shape and spatial 
priors can improve saliency detection performance even in 
clutters and occlusions. Liu et al. [17] used a conditional 
random field to learn to detect a salient object. He combined 
multiple features including contrast, color and center-surround 
histogram. Our model differs from theirs in that we do not 
use any prior and do not learn any features from hand-  
labeled training set. Our model is a purely bottom-up atten-
tion model.    

1.2  Coding models simulating information processing 
mechanisms in primary visual cortex 

Traditional sparse coding models simulating V1 area esti-
mate bases similar to receptive fields of simple cells by 
learning statistical properties of natural images [19]. This 
cannot account for the whole picture of early vision. A new 
area of research has emerged which designs nonlinear meth-
ods to capture topological relationships. Hyvärinen et al.  
[20] proposed the independent subspace analysis (ISA) and 
the topographic independent component analysis (TICA) 
[11]. Both models can extract the phase invariant and shift 
invariant features similar to the responses of complex cells. 

Wang et al. [21] developed a more computationally efficient 
model based on pairwise cumulant based methods for inde-
pendent component analysis (PCICA). It captured the topo-
logical relationships by the pairwise cumulant and obtained 
invariant features. It converges faster than ISA and TICA 
and can be extended to overcomplete bases set. 

Overcomplete representation is another important prop-
erty in the primary visual cortex. Despite our recognition of 
its usefulness in early vision, we have not fully understood 
its role in forming a saliency map [6]. Several coding mod-
els considering overcomplete basis sets have been proposed, 
such as TICA and PCICA. PCICA is successfully used in 
object recognition. Recently, some saliency detection mod-
els using matrix decomposition learned overcomplete bases 
from color images [5]. Although it uses sparse coding and 
overcomplete bases, it is less biologically motivated and 
more mathematically implemented. 

2  Saliency detection model based on coding in 
primary visual cortex 

Given the neurobiological constraints on the information 
processing in the primary visual cortex, we constructed a 
coding model with overcomplete topological bases to ex-
tract features and form a saliency map. It comprises three 
steps: first, overcomplete topological bases are learned from 
training images. A test image is filtered by the basis set to 
produce initial features. Second, pooling the outputs of top-
ological bases in neighboring regions obtains invariant fea-
tures. Third, after suppression modeling the function of lat-
eral connections between neurons, the features are com-
bined to form a saliency map, and the focus-of-attention 
shifting sequence is determined accordingly. We describe 
the workflow in Figure 1. 

2.1  Primitive features extraction by overcomplete top-
ological bases 

The model learns a set of overcomplete topological basis 
vectors {i} from natural images by PCICA algorithm (for 
details refer to [21]), and computes their responses to an 
image patch I(x,y) according to the following formula,  

    1T, ,i i iSF x y I x y 





, (1) 

 
Figure 1  Workflow chart of our model. 
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where ( , )I x y


 denotes a preprocessed image patch with the 

center located at (x, y). A test image is divided into patches 
with the same dimension to a basis. For example, if the size 
of i is 16×16 pixels, the size of a patch is also 16×16 pixels. 
The preprocessing is that all the patches are whitened and 
their dimensions are decreased by principle component 
analysis. 

As each basis responds optimally to specific frequency, 
phase, and orientation, local primitive features similar to 
simple cell responses are encoded by eq. (1). A set of 392 
overcomplete bases learned from natural images are listed 
in Figure 2. In the preprocessing, all the 16×16 patches are 
whitened and their dimensions are decreased from 256 to 
196. As the number of bases is two times the dimension of a 
basis, it is designated as two times overcomplete bases. The 
bases learned from natural images show clear topography. 
Orientations, frequencies, and locations of all the filters 
smoothly vary, forming a globally and topographically ordered 
array. Properties of filters in neighborhoods are similar. 

2.2  Invariant features representation 

Invariant features are obtained by organizing the responses 
of topological bases in the same neighborhood with the 
pooling operations. For the two times overcomplete bases as 
mentioned in section 2.1, we set the size of neighborhood to 
be 5×5 (an example is denoted by a box in Figure 2), and 
two adjacent neighborhoods overlap by two bases in both 
rows and columns. In this way, invariant feature descriptors 
j are obtained and each of them consists of 25 bases. Bases 
in the same descriptor correlate strongly, while bases in 
different descriptors usually correlate weakly.  

The pooling cannot avoid some bases with strong differ-
ences being grouped into the same neighborhood, so a fur-
ther refinement is needed. In every descriptor, each basis i 
is compared with the basis located at the center c by con-
sidering nonlinear correlations 

        1 2
2 2cov , var var

i c i c i cSF SF SF SF 


  (2) 

where cov(,) and var( ) denote covariance function and  

 

Figure 2  Overcomplete bases obtained by PCICA. A clear topography 
emerges from this map. An example showing the filters in neighborhood 
slowly change their properties as marked within a square. 

variance functions, respectively. SFi was computed by using 
the eq. (1). In a descriptor, the bases correlating weakly to 
the center basis, indicated by 

i


c
 under some threshold, are 

removed. After this processing, the filters in the same de-
scriptor have similar properties. Figure 3 shows nine exam-
ples of invariant feature descriptors obtained by pooling and 
then refining with a correlation threshold of 0.1. 

After the invariant feature descriptors are determined, the 
responses SFi(x,y) of all filters i belonging to the same de-
scriptor j are pooled, 

    2, , ,  
i

j i i jCF x y SF x y


    i j  , (3)   

where CFj(x, y) is the output of an invariant feature de-
scriptor. As the orientations and frequencies of filters be-
longing to the same descriptor vary smoothly, we can obtain 
invariance by this pooling operation. It is biologically plau-
sible that a bank of receptive fields at nearby locations on 
one level are organized to provide input to a receptive field 
on a higher level [22]. By pooling, the size of a receptive 
field on a high level is enlarged compared with the one on a 
low level, and its robustness to changes is increased as well. 
Simple cells and complex cells in the V1 area are an exam-
ple. Receptive fields of simple cells overlap with each other, 
and those with similar properties pool to form receptive 
fields of complex cells. 

2.3  Saliency maps formation 

After an image is encoded by invariant feature descriptors, 
the parts which differ the most in a feature map are selected 
as candidates for salient objects. This is known as a pre- 
attentive process and it produces competitive results called 
conspicuous maps. Motivated by neurobiology, we obtained 
a conspicuous map by modeling suppression between neu-
rons with a difference-of-Gaussian (DoG) operator, and 
then obtained the final saliency map by combining the con-
spicuous maps. Electrophysiological experiments show that 
neurons in the primary visual cortex of the macaque mon-
key modulate nearby neuronal responses by surround sup-
pression. In an orientation feature channel, approximately 
2/3 neurons produce the strongest suppression on neurons 
whose sensitive orientations are orthogonal to themselves, 
and produce little suppression on neurons whose sensitive 
orientations are parallel to themselves [23]. This suppres-
sion is strong within a certain range, and decays as the dis-
tance becomes smaller or larger [24]. It is called nonclassic 
receptive field suppression since the distance is beyond the 
range of classic receptive fields. The suppression satisfying 
the above conditions can be modeled by a DoG function 

      2 2 2 2 2 2
er inh2 2

2 2
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, (4) 

where ex and inh indicate excitation and inhibition bandwidth.  
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Figure 3  Some examples of invariant feature descriptors obtained by 
pooling and then refining. Each row lists a descriptor j in which orienta-
tions and frequencies are similar but phases are different. 

This kind of suppression acts on the output of invariant fea-
ture descriptors, forming a conspicuous map 

  
0

( , ) ( , ) ( , )DoGCFs x y x y x yCF


  
j j j , (5) 

where  is a coefficient adjusting the strength of suppres-
sion,   denotes convolution, 0| |  remains unchanged if 

inputting is positive, and outputs zero if inputting a negative 
or zero. 

Finally, conspicuous maps are integrated into a saliency 
map by certain combination strategy. Considering the large 
number of conspicuous maps, direct summation or summa-
tion after normalization is not robust to noises and leads to a 
lot of local maxima. We adopted a combination strategy of 
iteration [25]. After iterating each conspicuous map by a 
DoG operator, we combined the conspicuous maps by 
summing them into a saliency map, which had sparse 
maxima. 

3  Experiments 

To research different coding model performances on sali-
ency detection, we compared the results on two kinds of 
dataset: testing images widely used in cognitive psycholog-
ical experiments on visual attention, and natural images. 
The experimental environment is MATLAB, running under 
Intel Core i5 2.66 GHz CPU. 

3.1  Effects of invariant features on saliency detection 

We used the gray images dataset (ww.cis.hut.fi/projects/ica/ 
data/images ) which is the standard dataset used in ICA and 
sparse coding models. We obtained 50000, 16×16 pixel 
patches from the training dataset and preprocessed them 
with whitening and dimension reduction. To compare the 
performances of saliency detection models with and without 
invariant features coding, we did the following: 

(1) We obtained the overcomplete topological bases by 
PCICA, as shown in Figure 2, to extract primitive features, 
including localized, oriented, and bandpass edges.  

(2) The primitive features, when in step (1), were pooled 
and refined to form invariant features descriptors. For the 
model without invariant features coding, this pooling was 
not needed, since the saliency map was obtained by directly 

performing DoG suppression on feature maps from the first 
step and from a subsequent combination.  

(3) For the model with invariant features coding, the sa-
liency map was obtained by performing DoG suppression 
on invariant features when in step (2), and a subsequent 
combination.  

The first experiment is similar to the “visual search” 
tasks designed by Treisman and Gelade [1]. According to 
their results, stimuli that differ from homogeneous sur-
rounding stimuli in orientations easily pop out. The tasks 
will be more difficult if distractors become less similar [6]. 
We designed dissimilar distractors whose orientations varied 
within the ranges from [5°,5°] to [45°,45°], to test per-
formances of saliency detection. Sensitivities of the atten-
tion models on dissimilarities in distractors are shown in 
Figure 4. 

We generated synthetic images as follows. Object posi-
tions and orientations were randomly determined. Distrac-
tors orientations were orthogonal to those of objects and 
were disturbed by orientation noises (in [,] with uni-
form probability). The bigger , the more dissimilar are 
the distractors. Correct detection rates of attention models 
with and without invariant features coding drops with in-
creased dissimilarities among distractors. This is consistent 
with the conclusion in psychological experiments. However, 
the model with invariant features coding is more robust to 
dissimilarities among distractors. When  reaches 35°, it 
can still correctly detect objects with a rate of 0.75. This 
indicates that invariant features coding provides attention 
models relatively robust to disturbances. 

We further tested the models’ performances in detection 
of global salient structures. In contrast to visual search tasks, 
where salient objects are local points, the global saliency is 
defined by Gestalt psychologists in “figure-background seg-
regation” tasks [18]. When local primitives form a structure 
satisfying certain perceptual organization rules such as 
proximity or good continuity, they will be perceived as a 
figure from the background. The S curve, an illusory con-
tour and a noisy version were taken as testing images. Re-
sults are shown in Figure 5. 

As indicated in Figure 5, objects as solid curves are per-
ceived clearly. When objects are illusory contours, the at-
tention model with invariant features coding can detect con-
tinuous contours. As parameters vary within the range men-
tioned below the figure, detection results are always con-
tinuous contours, while the attention model without invari-
ant features coding detects discrete end points. When the 
object is a noisy s curve, differences in saliency detection 
results between the two attention models are greater. In the 
model with invariant coding, segments forming the s curve 
can be detected and most segments forming background can 
be suppressed. For the model without invariant coding, 
segments in the background are more salient than those in 
the s curve.  

When objects are illusory contours like the middle image  
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Figure 4  Saliency detection by two models in visual search where stimuli differ in orientations. (a) Statistics of correct detection rate vs. varying range of 
distractors’ orientation | |. Results of attention models with and without invariant features coding are denoted by red and blue lines, respectively. | | is 
from 0° to 45° at 5° intervals; (b) from up to bottom: examples of testing images whose | | are 15°, 30°, and 45°, respectively. The objects marked by red 
circles; (c) saliency maps of attention model with invariant features coding on testing images in (b); (d) corresponding saliency maps of attention model 
without invariant features coding.  

 

Figure 5  Saliency detection in figure-ground segregation as assessed by 
two models. (a) Source images; (b) saliency maps of attention model with 
invariant features coding; (c) saliency maps of attention model without 
invariant features coding. Results are relatively insensitive to parameters. 
ex is 2%–5% of the image size (the bigger between image width and 
height). inh is 4 to 10 times ex,  [3,4]. 

in Figure 5, our model has end-inhibition groups thanks to 
the invariant representation, so that saliency detection result 
shown as discrete end points can be strengthened and con-
nected into a continuous contour. Some of the complex cells 
in V1 are sensitive to the end of a line or edge. This property 
of responding strongly to either an edge, a bar or a slit which 

ends within the receptive fields is called end-inhibition [27] 
(Figure 6(a)). Such end-inhibition receptive fields can be 
found from invariant feature descriptors learned in our 
model. The sixth line in Figure 3 is an end-inhibition group, 
from which we select several typical pairs and list them in 
Figure 6(b).  

Without invariant representation, responses to end points 
are occasional and scattered, so it is difficult to form a con-
tinuous structure. With invariant representation by pooling 
receptive fields of similar selectivity, responses to end points 
are concentrated in a group. The whole group’s consistent 
and synchronous responses enhance saliency of the target so 
that discrete end points are connected into a salient contin-
uous contour as shown in Figure 5(b).  

When the object is a noisy s curve like the right image in 
Figure 5, invariant representation enhances the saliency of the 
s contour. A number of neurophysiological studies [28–30] 
have shown that invariant representation facilitates contour 
completion. It is observed that when an oriented stimulus 
appears within the receptive field of a neuron, and a second 
collinear or cocircular stimulus appears within the receptive 
field of another neuron which has similar orientation selectivity 
to the first neuron, the two neurons will increase the response 
rate of each other. As a result, they have an amplification  

 

Figure 6  End-inhibition receptive fields. (a) An ideal example of end- 
inhibition receptive field used in neurophysiological experiments; (b) four 
pairs of end-inhibition receptive fields in an invariant feature descriptor 
learned by our model. 
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effect on the contour consisting of collinear or cocircular 
elements.Just as the image in Figure 5, the s contour con-
sisting of aligned cocircular segments is amplified by the 
increasing responses from a group of neurons in an invari-
ant descriptor, so the s contour pops out of clutter.  

To compare saliency detection performances between the 
two models under different signal-to-noise ratios (SNR), we 
designed figure-ground segregation experiments under con-
trollable SNR. As shown in Figure 7, two images consisted 
of 30 co-circular segments as objects and 100 or 150 ran-
dom segments as background. With the decrease of the SNR, 
difficulties in discriminating objects from background in-
crease, which can be observed in saliency maps. When the 
SNR reaches 1:5, the object is still detectable by the atten-
tion model with invariant coding, but the model without 
invariant coding fails.  

We changed the number of segments in objects and 
background to obtain testing images with different SNRs. 
Under certain SNR, we generated 20 images with the same 
object but different background, and statistical results of 
figure-ground segregation on these synthetic images are 
shown in Table 1. A correct detection is obtained when 
among the first 10 most salient locations, those falling on 
the objects are not less than 60%. It can be computed by a 
Bernoulli binomial probability distribution that the random 
probability is not higher than 0.0569.  

From Table 1, we can see that the correct detection rate 
first increases and then decreases as the number of back-
ground segments increases. When the number of background 
segments is small, their saliency may surpass that of objects, 
for the background segments are so sparse that they contrast 

strongly with surroundings. When the number of background 
segments is large, their probabilities of forming collinear or 
continual structures increase, leading to many local maxima 
in saliency maps and thus disturbing the detection of objects. 
In our experiments, the correct detection rate reaches max-
imum at SNR of 30:100 and 40:100. 

To further analyze the contribution of invariant repre-
sentation to saliency detection, we quantitate the relation-
ship between reconstruction errors (L2 norm) and coding 
length (L0 norm) and plot it in Figure 8. The reconstruction 
error means residual error when we reconstruct a source 
image using the learned overcomplete topological basis set 
and neurons’ responses. 

2|| ||  I a , 

where  is the reconstruction error, I is an image patch,  is 
the learned overcomplete topological basis set which di-
rectly inputs to invariant representation. a is neurons’ re-
sponses as computed in eq. (1). The lower  is, the better the 
basis set encodes input images. The coding length (L0 norm) 
is the number of active neurons, i.e. the number of nonzero 
responses, normalized by the total number of neurons. As 
indicated by the sparse coding strategy in primary visual 
cortex, most neurons keep inactive to a stimulus while only 
a small fraction of neurons are activated.  

As shown in Figure 8, the basis set learned by our model 
(which can represent invariant features) achieves higher 
coding efficiency than SparseNet [19] (which does not rep-
resent invariant features) and TICA [11] (a competitive 
model which can represent invariant features). More specif-
ically, at the same coding length, our model can encode an  

 

Figure 7  Saliency detection performances of the two models on figure-ground segregation under different SNRs. (a) Thirty co-circular segments in back-
ground consisting of 100 segments whose positions and orientations are random; (b) thirty co-circular segments in 150 background segments. Left: source 
images; mid: saliency maps of the attention model with invariant coding; right: without invariant coding. In a saliency map, the more salient part is indicated 
by the brighter and whiter region. 
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Table 1  Correct detection rates of figure-ground segregation by the at-
tention model with invariant coding (model 1) and without invariant coding 
(model 2) under different SNRs 

Object number: 
background number 

Model 1 Model 2 Random 

40:80 0.35 0.35 0.0569 

40:100 0.90 0.85 0.0297 

40:150 0.65 0.45 0.0071 

40:180 0.20 0.20 0.0034 

30:80 0.40 0.35 0.0242 

30:100 0.80 0.70 0.0111 

30:150 0.55 0.30 0.0022 

30:180 0.25 0.20 0.0009 

 

 

Figure 8  Coding efficiency of SparseNet, TICA and our model. 

image with lower reconstruction error than the model with-
out invariant representation and other similar models. That 
means our model can reserve more accurate and abundant 
information of inputs at the same cost, and consequently can 
provide better inputs for saliency detection of bottom-up 
attention. On the other hand, when the reconstruction error 
keeps constant, our model can encode information with 
shorter coding length. That means our model has higher 
coding efficiency, which is consistent with the role of bot-
tom-up attention–to solve the information processing bot-
tleneck. Therefore, the coding model with invariant repre-
sentation is more advantageous to provide efficient input to 
saliency detection.  

3.2  Effects of overcomplete representation on saliency 
detection 

To investigate the effects of overcomplete representation on 
saliency detection, we trained different numbers of filters 
(bases) and produced invariant feature descriptors by pool-
ing the filters, and then constructed bottom-up attention 
models based on these descriptors. The numbers of filters 

are set to be 100, 196, 392, and 576, respectively, and cor-
respondingly 16, 25, 50, and 64 invariant feature descriptors 
by pooling the filters are selected. We compare their sali-
ency detection performances on natural images. The testing 
dataset is collected by Bruce et al. [31], which includes 120 
color images and eye movements from 20 observers when 
they view these images. The human eye tracking data can 
be used as a physiological basis to compare with the salien-
cy maps obtained from attention models. Several examples 
are given in Figure 9. 

We computed the receiver operator curve area (ROC area), 
a common measure in signal detection [32], to compare the 
performances of different models with observations from 
humans, and list the ROC scores in Table 2. The larger 
score means better consistency with human observers. Con-
sidering that the filters and invariant feature descriptors are 
learned from gray images and no color information is en-
coded, the attention models based on these can detect sali-
ency mainly caused by intensities and orientations. There-
fore, we transformed the color testing images into gray im-
ages and removed the images whose saliency was only 
caused by color contrasts. The remaining 82 images were 
used for testing.  

As shown, the saliency detection accuracy improves as 
the number of bases increases. This shows that the more 
overcomplete basis set describes features of images (namely 
frequencies, orientations, and positions) more adequately, 
and provides inputs more advantageous to bottom-up atten-
tion. When the number of bases is too small, such as 100 
bases pooled into 16 invariant feature descriptors, they 
cannot describe an image adequately, resulting in greater 
divergence from human detection. When the number of 
bases reaches 392 or 576, the change of ROC scores is tiny. 
This indicates that 392 bases (two times overcomplete basis 
set) are near saturation.  

On an in-depth analysis of distributions of overcomplete 
bases, we find that they exhibit global topography. From the 
four times overcomplete bases set, we select some examples 
of bases in a neighborhood and show them in Figure 10. 
Each small square corresponds to one basis, and each group 
belongs to a neighborhood. The four groups represent dif-
ferent features of receptive fields, namely phases, frequen-
cies, orientations, and positions. We can see features vary 
smoothly in local neighborhoods. On the whole, the array 
shows clear topological structures. Pooling such a group of 
receptive fields will produce invariance to corresponding 
feature. Besides, overcomplete bases cover the parameter 
space (phase, frequency, orientation, and position space) 
more adequately than complete bases. 

Some specific non-CRFs (nonclassical receptive fields) 
also appear in overcomplete bases. Figure 11 lists some 
examples of end-inhibition, side-inhibition and curvature- 
selective receptive fields. Different from classical receptive 
fields which are coding for edges, non-CRFs are coding for 
corners, T-shaped stimuli or other 2D shapes. It is reported   
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Figure 9  Saliency maps of attention models with different numbers of bases. (a) Source images; (b) human eye tracking; (c) saliency maps obtained by the 
attention model with 100 bases; (d) with 196 bases; (e) with 392 bases; (f) with 576 bases. 

Table 2  ROC scores of attention models with different numbers of bases 

Bases number 100 196 392 576 

ROC 0.5722 0.6427 0.6830 0.6864 

 

 
Figure 10  Examples of (a) positions, (b) phases, (c) orientations and (d) 
frequencies of bases in neighborhoods selected from four times overcom-
plete bases. Features of the bases in a neighborhood vary smoothly.  

 

Figure 11  Non-CRFs in overcomplete bases. (a) Left: an ideal example 
of end-inhibition receptive fields pair used in neurophysiological experi-
ments; right: an end-inhibition receptive fields pair learned by our model; 
(b) left: an ideal example of side-inhibition receptive fields pair; right: a 
side-inhibition receptive field pair learned by our model; (c) left: an ideal 
example of curvature-selective receptive field; right: two curvature-selec-      
tive receptive fields learned by our model. 

that end-inhibition and side-inhibition receptive fields ac-
count for 24% orientation-selective cells [33]. In complete 
bases sets, these non-CRFs sometimes emerge scatteredly, 
but mostly they do not emerge at all. In overcomplete bases 
sets learned by our model, the non-CRFs gather in neigh-
borhood and achieve invariance after being pooled. 

4  Discussion 

In this section, we return to the two questions proposed at 
the beginning. First, does invariant representation in the 
primary visual cortex affect bottom-up attention? Second, 
what is the effect of overcomplete representation on salien-
cy detection? 

4.1  Invariant representation versus bottom-up attention 

From multiple experiments, we can draw a preliminary 
conclusion-invariant representation improves saliency de-
tection of bottom-up attention. It improves robustness to 
distractors, realizes illusory contour detection (named as 
contour completion in cognitive science) and helps to detect 
salient structures in spite of noises and clutters.  

Chikkerur et al. [16] have analyzed the relation between 
object recognition and attention. It is pointed out that atten-
tion improves recognition by isolating the object of interest 
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from crowding and clutter. While our experimental results 
show invariant representation achieved in early cortical area 
(V1) improves the bottom-up attention effect—saliency de-
tection.  

(1) From the biological perspective, information stream 
from V1 transfers through V2 and V4, where the object- 
based attention works [34], to IT, where objects are recog-
nized. Invariance in V1 helps attention to be relatively in-
sensitive to transformations and preclude some noises and 
distracters before it sends information to upper brain area. A 
few theories [35,36] have suggested that such invariance in 
early area (V1) may underlie stability of subsequent mecha-
nism and the whole visual perception.  

(2) From the cognitive psychological view, if a group of 
visual primitives appear nonaccidentally (such as forming a 
robust structure, keep stable under small disturbance), the 
group is easy to pop out, attract focus of attention and wait-
ing for further processing [28]. Invariant representation 
strengthens robustness of a structure, so it benefits to sali-
ency detection.  

(3) From the perspective of coding efficiency, our model 
can encode an image with lower reconstruction error, or at 
the same reconstruction error our model can encode infor-
mation with shorter coding length. The reason behind this is 
that when we get invariant representation by pooling a 
group of topological bases in neighborhood, intra-group high- 
order dependencies are reserved while inter-group depend-
encies are removed. As a result, low reconstruction error 
and high coding efficiency guarantees high quality input for 
saliency detection.   

4.2  Overcomplete representation versus saliency detection 

The effect of overcomplete representation on saliency de-
tection can be analyzed from two levels. On the system level, 
overcomplete bases encode a rich repertoire of natural im-
age features: simple features (like localized, oriented, band-
pass bars), conjunctive features, and other 2D shape features. 
Compared with complete bases, they represent an image 
more adequately and comprehensively, so they can improve 
saliency detection accuracy. On the single cell level, the 
global topography in phases, frequencies and orientations 
reveal advantages of overcomplete bases. The global map of 
phases  takes on a random distribution. Pooling a group of 
cells with similar orientation and frequency selectivity but 
different (random) phase selectivity, we can get a transla-
tion invariant response. The classic energy model in V1 just 
get translation invariance in this way [14]. The global map 
of orientations shows strong correlation among bases in 
neighborhood. Orientation selectivity of adjacent cells keeps 
similar or smooth changing. This provides rotation invari-
ance for the cell which receives input by pooling such a 
neighborhood. The global map of frequencies shows simi-
larity in neighborhood, what’s more, the map covers all the 
possible frequencies in natural images, so overcomplete 

bases can describe features from coarse scale to fine scale. 
Pooling adjacent bases can get relative invariance to scale. 
These invariant representations make our model robust to 
noises, therefore benefit to saliency detection.   

5  Summary 

To research which factors in coding models affect saliency 
detection, we construct a coding model satisfying neurobi-
ological constraints to provide input to the bottom-up atten-
tion model. By quantitatively changing the coding con-
straints, we conducted experiments on images used in cog-
nitive psychology and natural image sets to compare the 
effects on the saliency detection performance caused by the 
different coding constraints. The results of our experiments 
show that invariant coding and overcomplete representation 
are beneficial to saliency detection in bottom-up attention.  

In summary, our results suggest that hierarchical invari-
ant coding and overcomplete representation might be a gen-
eral principle in visual attention and possibly in other per-
ceptual systems. 
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