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Introduction 
A multispectral optical sensor collects data 

at select wavebands or channels. An example 

is the Sea-viewing Wide-Field-of-view Sen

sor (SeaWiFS) ocean color satellite, which 

measures eight wavebands between 402 and 

885 nm (20-40 nm bandwidth with peaks 

centered around 412, 443, 490, 510, 555, 670, 

765, and 865 nm). Optical oceanographers 

have been using multispectral sensors since 

the 1980s with great success1. 

A hyperspectral sensor gives continuous 

spectral coverage over a broad wavelength 

range [at least over visible wavelengths, 

and preferably from near ultraviolet (UV) 

to near infrared (IR)] with better than 10 

nm resolution. The utility of hyperspectral 

measurements has long been recognized in 

fields as diverse as geology and astronomy, 

and hyperspectral instruments have been 

used in oceanographic research for about 30 

years. However, most of these instruments 

have been laboratory bench-top spectro

photometers and radiometers that measure 

absorption and radiance or irradiance at <10 

nm continuous spectral resolution from the 

UV to IR wavelengths. These instruments 

were relatively slow with sample scan rates 

on the order of minutes to maximize signal 

to noise. Just a decade ago, computational 

limitations also made processing and stor

age of large amounts of hyperspectral data 

difficult. However, within the last fi ve years, 

high sample rate (less than seconds) in situ 

and remote sensing hyperspectral sensors 

have been developed and utilized for various 

coastal and open-ocean studies. Advances in 

computer technology in the last decade have 

enabled more rapid processing of hyperspec

tral data and greatly improved the storing 

and archiving capability of these large, and 

often difficult-to-manage data sets. 

Hyperspectral technology has expanded 

from hand-held radiometers to submerged 

sensors for measurements of inherent op

tical properties (IOPs), optical properties 

that depend on only the aquatic medium 

itself (e.g., absorption and scattering; Mo

bley, 1994) and apparent optical properties 

(AOPs), which depend on the IOPs and the 

geometry of the light field. Recently, hy

perspectral airborne detectors have been 

enhanced for high spectral and spatial reso

lution measurements of ocean radiance and 

reflectance. Although multispectral sensors 

have a higher signal to noise ratio for the 

same quality of optical components (be

cause they integrate over a larger bandwidth 

and thus collect more photons each band), 

the sensitivity and data quality of hyper-

spectral sensors are rapidly increasing and 

costs are coming down. Thus the shift from 

multispectral to hyperspectral systems will 

continue. The availability of hyperspectral 

sensors opens a new door for optical ocean

ography and related fields that make use of 

optical remote sensing of the oceans. Here, 

we discuss a few of the scientifi c advantages 

to using high spectral resolution sensors and 

describe valuable hyperspectral applications 

in the marine environment. 

1See special issues: “Hydrologic Optics” in Limnology and Oceanography, 34(8), 1989; “Ocean Color From Space: A Coastal 

Zone Color Scanner Retrospective” in Journal of Geophysical Research, 99(C4), 7291-7270, 1994; and “Ocean Optics” in 

Journal of Geophysical Research, 100(C7), 13,133-13,372, 1995). 
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Spectral Techniques 
Traditionally, multispectral remote sensors 

have been utilized for characterizing open-

ocean waters. Some results have shown that 

a few, wide, carefully selected bands may 

be all that is needed to monitor these water 

bodies whose optical signatures are domi

nated by chlorophyll a and co-varying opti

cally significant constituents. However, when 

these open ocean algorithms (O’Reilly et al., 

1998) are applied to coastal areas, the results 

are less useful, if not altogether inapplicable 

(Hu et al., 2000; Lee and Carder, 2002). The 

coastal ocean is an optically complex envi

ronment. For example: (1) phytoplankton 
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populations are generally more abundant 

and less diverse, (2) terrestrial infl uences 

[high concentrations of colored dissolved 

organic matter (CDOM) and particles] 

cannot be ignored, (3) the influence of the 

ocean bottom (bottom reflectance and sedi

ment resuspension) is important, and (4) 

high temporal and spatial variability collude 

to create an optically diverse environment. 

Not only do these influences complicate the 

characterization of the water and bottom 

types, but also make the atmospheric correc

tion of these scenes difficult. Traditional blue 

water atmospheric corrections (e.g., “black 

pixel” assumptions; Siegel et al., 2000) are 

no longer valid. These correction methods 

assume that any remote sensing signal at the 

IR wavelengths is due to the atmosphere, 

but this assumption does not hold in high 

sediment or optically shallow coastal waters. 

Thus, the successful removal of the atmo

spheric interference in the water-leaving 

radiance signal within the coastal environ

ment requires a priori knowledge of a host 

of atmospheric constituents (e.g., water col

umn vapor, aerosol type and density, ozone 

concentration). Without a priori knowledge, 

these constituents must be derived from the 

spectral data stream itself, decreasing the 

degrees of freedom with which to resolve 

the water leaving radiance signal. Addition

ally, the increased development along the 

world’s coastal boundaries adds a degree of 

complexity in the determination of concen

tration and interactions between the ma

rine and terrestrial aerosols, such that the 

atmospheric parameterization may change 

dramatically within a single scene. Hyper-

spectral information provides optical ocean

ographers the potential to accurately correct 

remote sensing images and classify complex 

oceanic environments, fi ner-scale features 

(e.g., bottom type and characteristics and 

phytoplankton blooms), and depth-depen

dent IOPs. 



 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

With higher spectral resolution data (i.e., 

more wavelengths) come more degrees of 

freedom for optical models and empirical 

algorithms. Many ocean color algorithms 

in use today involve empirical relationships 

between the property of interest (i.e., chloro

phyll a concentration, IOPs, etc.) and wave

band ratios of remote sensing refl ectance or 

water-leaving radiance (O’Reilly et al., 1998). 

Most of these algorithms are derived by re

gressions of radiance at select (or available) 

wavebands or waveband ratios versus the 

property of interest. Naturally, the regression 

results are maximized at the highest num

ber of statistically independent wavelengths 

available. Also, the spectral resolution of 

derived IOPs is limited by the number of 

wavebands of the ocean color remote sens

ing data used in the regression. 

Multispectral measurements of absorp

tion are useful for determining the relative 

concentrations and variability of the differ

ent constituents in the water column: water 

itself, phytoplankton, CDOM, and inorgan

ics (Schofield et al., In press and references 

therein). Absorption peaks of chlorophyll a, 

non-pigmented troughs, and the exponen

tial slopes of CDOM and inorganic material 

are well distinguished in absorption spec

tra collected by most multispectral sensors. 

However, in order to identify phytoplankton 

by taxonomic group or species, quantifi 

cation of the absorption by accessory or 

marker pigments beyond chlorophyll a is 

oftentimes necessary. Some accessory pig

ments are unique to individual phytoplank

ton taxa and usually cannot be discerned in 

absorption spectra with a limited number of 

wavelengths or wavebands (accessory pig

ment peaks are generally narrow), but can 

be discriminated in hyperspectral data. This 

discrimination can be accomplished with 

various methods such as spectral unmixing 

and deconvolution, Gaussian decomposi

tion, and derivative analysis (usually taken 

to the fourth derivative) together with simi

larity index analysis (e.g., Millie et al., 1997; 

Schofield et al., In press). These decomposi

tion analyses are techniques that separate 

pigment peaks and shoulders from troughs 

in phytoplankton absorption curves of 

mixed assemblages. The similarity index is 

typically used to correlate measured absorp

tion with known phytoplankton absorption 

ly distinct backscattering spectra between 

species (cultured) (Bricaud et al., 1983; Ahn 

et al., 1992) whereas other microorgan

isms, such as bacteria and fl agellates, show 

wavelength independent backscatter (Morel 

and Ahn, 1990, 1991). These studies and the 

results of numerous modeling efforts (see 

Stramski et al., 2001 and references therein) 

demonstrate that backscatter is not spectral

“Hyperspectral information provides optical oceanographers 

the potential to accurately correct remote sensing images and 

classify complex oceanic environments, fi ner-scale features..., 

and depth-dependent [inherent optical properties].” 

curves for identification purposes by taking 

into account the differences in shapes be

tween two spectra based on the peaks and 

troughs of each spectrum. These identifi ca

tion techniques usually cannot be applied 

to multispectral data because the required 

features (i.e., peaks and troughs) are not well 

resolved. 

While the absorption properties of nu

merous planktonic species and other water 

column constituents have been studied ex

tensively, the same cannot be said for their 

backscattering properties. Backscattering 

properties must be known in order to ac

curately interpret ocean color measure

ments because the reflectance of the upper 

ocean is directly related to the ratio of the 

backscattering coefficient to the absorption 

coefficient. Hyperspectral backscattering 

measurements can be used to distinguish 

phytoplankton populations from co-varying 

seawater constituents because the spectral 

dependence of backscattering by algal cells 

is different from that of other particles (Bri

caud et al., 1983; Stramski et al., 2001). Also, 

hyperspectral backscatter measurements in 

the laboratory have revealed that some phy

toplankton species may show complex, high

ly flat (as it is oftentimes modeled) or easily 

predicted for all particles. Therefore, back

scatter has the potential to provide a means 

to identify phytoplankton by group or spe

cies and to determine particle characteristics. 

This provides incentive for the development 

of in situ hyperspectral backscatter sensors 

and algorithms. 

Examples of Hyperspectral 
Analyses 
Hyperspectral data used in combination 

with spectral techniques such as derivative 

analysis, spectral angle mapping, spectral 

deconvolution, and similarity indices can aid 

in the characterization of marine ecosystems 

including the detection and identifi cation of 

harmful algal blooms, an increasing prob

lem in the world’s coastal oceans (Millie et 

al., 1997; Lohrenz et al., 1999). For example, 

Figure 1 shows phytoplankton absorption 

spectra for a red tide species, Karenis bre

vis, measured with a multispectral sensor, 

a hyperspectral sensor, and modeled us

ing Mie theory (following Mahoney, 2001). 

K. brevis can be identified by its accessory 

pigment, Gyroxanthin–diester, which has 

unique absorption peaks at 444 and 469 nm 
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(Örnólfsdóttir et al., 2003). As seen in Figure 

1, the multispectral spectrum lacks detailed 

absorption information, i.e., pigment peaks 

by distinguishing accessory pigments, due 

to a limited number of wavebands. Hyper-

spectral data allow for the detection of spe

cies-discriminating accessory pigments and 

are more adequate for comparing measured 

spectra to a reference spectrum for similar

ity index analysis (Figure 1). Wood et al. 

(2002) have also used these techniques and 

presented evidence that distinctive hyper-

spectral signatures are associated with Syn

echococcus blooms in upwelling and nutrient 

enrichment systems in the Gulf of Califor

nia. Cannizzaro et al. (2002) show that it is 

possible to utilize multispectral techniques 

(SeaWiFS) to detect K. brevis. However, their 

method works only for waters under certain 

optical conditions (low concentrations of 

CDOM and suspended sediments relative to 

chlorophyll a or low backscattering relative 

to absorption) as different ocean color prod

ucts (particulate backscattering and its rela

tionship to chlorophyll a) are used as proxies 

for K. brevis abundance. 

In the past, multispectral techniques have 

been used for the derivation of water depth 

and bottom bathymetry (e.g., Philpot, 1989; 

Maritorena et al., 1994), and more recently 

for characterization of bottom type (see 

“Light in Shallow Waters” in Limnology and 

Oceanography, 48(2), 2003). These analy

ses generally involve empirical algorithms, 

where reflectance waveband ratios are re

gressed against water depth. Wavelength lim

itations and commonly employed assump

tions that the water optical properties are 

vertically uniform and constant over the area 

being mapped can lead to inaccurate retriev

als of bottom depth and characteristics un

der certain conditions. These retrievals can 

be improved with hyperspectral data (Lee 

and Carder, 2002 and references therein). 

For example, Figure 2 shows hyperspectral 

remote sensing reflectance spectra for two 

water types generated by the Hydrolight 

radiative transfer model (Mobley, 1994). 

Water 1 is 6.5 m and has low chlorophyll a 

and CDOM concentrations with a bottom 

type of a mixture of soft coral and Sargas

sum, while Water 2 is 13 m deep, “pure wa

ter” with a flat green sponge bottom type. By 

inspection of the hyperspectral spectra, the 

difference between the two curves is obvious 

in the 500-600 nm range. However, spectra 

for the two water types produced using only 

the SeaWiFS wavebands appear almost iden

tical (note: the SeaWiFS spectra were derived 

by applying the SeaWiFS spectral response 

function to the hyperspectral signatures). A 

second example, Figure 3, shows 122 remote 

sensing reflectance spectra generated by Hy

drolight for various combinations of nine 

different sets of IOPs, 32 different bottom 

reflectances, and 22 depths between 5.5 and 

50 m. These spectra are clearly unique. How

ever, every spectrum has nearly the same 

remote sensing reflectance wavelength ratio: 

Rrs(490)/Rrs(555) = 1.71 ± 0.01. This ratio, 

if used in the SeaWiFS Ocean Chlorophyll 2 

(OC2) band-ratio algorithm (O’Reilly et al., 

1998, as revised on http://seawifs.gsfc.nasa. 

gov/SEAWIFS/RECAL/Repro3/OC4_repro

cess.html), gives a chlorophyll concentra

tion of 0.59 ± 0.01 mg Chl m-3. Thus these 

simulated water bodies, which have IOPs 

corresponding to chlorophyll concentrations 

between 0.0 (pure water) and 0.2 mg Chl 

m-3, are all viewed as the same by the OC2 

algorithm. The OC2 algorithm fails here 

because of bottom effects in optically clear 

waters simulated by Hydrolight. 

While much of the interest in hyper-

spectral approaches relates to the visible 

wavebands, several oceanic constituents of 

interest have distinct spectral signatures 

in the UVA/UVB (e.g., Ogura and Hanya, 

1966). Chief among these is nitrate, a ma

jor plant nutrient that limits the primary 
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Figure 1. Phytoplankton taxonomic group or species identification is now achievable 

with the development of hyperspectral instruments; generally narrow accessory pig-

ment absorption wavelength peaks that are unique to specific species can be discerned. 

Shown here are three different methods used to measure phytoplankton absorption 

spectra for a red tide species, Karenis brevis, on the west Florida shelf. Closed circles 

symbolize absorption measured with a multispectral sensor (ac-9). Open circles signify 

data modeled using Mie theory (following Mahoney, 2001), and plus signs represent 

data measured with a hyperspectral sensor (HiStar). It is apparent in this figure that 

the multispectral spectrum lacks the distinguishing accessory pigment peaks due to a 

limited number of wavebands. Hyperspectral data, however, allow for the detection of 

species-discriminating accessory pigments and are more adequate for comparing mea-

sured spectra to a reference spectrum and thus phytoplankton species identification. 

K. brevis can be identified by its accessory pigment, Gyroxanthin–diester, which has 

unique absorption peaks at 444 and 469 nm (Örnólfsdóttir et al., 2003). (Multispectral 

data were provided by Oscar Schofield and John Kerfoot, Rutgers University and hyper-

spectral data were provided by Steven Lohrenz, University of Southern Mississippi.) 

350 400 450 500 550 600 650 700 750 

0 

0.1 

0.2 
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Mi e 
HiStar 

Gyroxanthin−diester 

Wavelength (nm) 

Figure 3. Chlorophyll concentration algorithms designed for multispectral instrumenta

tion may not be useful for shallow, optically clear waters. Shown here are one hundred 

twenty two Hydrolight-generated remote sensing reflectance (Rrs) spectra for Bahamian 

waters using various combinations of nine different sets of IOPs, 32 diff erent bottom 

reflectances, and 22 depths between 5.5 and 50 m. These spectra are clearly unique. 

However, every spectrum has nearly the same remote sensing reflectance wavelength 

ratio: Rrs(490)/Rrs(555) = 1.71 ± 0.01 (490 and 555 nm are indicated by the vertical black 

dashed lines). If this ratio were applied to the commonly used SeaWiFS band-ratio 

algorithm (OC2; O’Reilly et al., 1998), it would give a chlorophyll concentration of 0.59 

± 0.01 mg Chl m-3. In other words, the same chlorophyll concentration would be deter

mined for all 122 spectra despite the fact that these simulated water bodies have IOPs 

corresponding to chlorophyll concentrations between 0.0 (pure water) and 0.2 mg Chl 

m-3. The OC2 algorithm fails here because of bottom effects in optically clear waters. 

Figure 2. Bottom effects in shallow coastal waters may lead to inaccurate remote 

sensing retrievals of bottom depth if limited spectral bands are utilized for analysis. 

This figure shows modeled hyperspectral (solid lines) and multispectral (SeaWiFS 

wavebands; circles) spectra for two water types, generated by the Hydrolight radia

tive transfer model (Mobley, 1994). Water 1 (blue) is 6.5 m deep and has low chloro

phyll-a and CDOM concentrations with a bottom type of a mixture of soft coral and 

Sargassum, while Water 2 (green) is 13 m deep, “pure water” with a flat green sponge 

bottom type. By inspection of the hyperspectral spectra, the difference between the 

two curves is obvious in the 500-600 nm range. However, spectra for the two water 

types produced using only the SeaWiFS wavebands appear almost identical. (Sea-

WiFS spectra in this figure were derived by applying the SeaWiFS spectral response 

function to the hyperspectral signatures). 
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ABOVE AND PRECEDING THREE SPREADS: Th ree bands 

(RGB= 666, 547, 439 nm) from a March 23, 1996 Air 

borne Visible/Infrared Imaging Spectrometer (AVIRIS) 

image taken over the Florida Keys from an ER-2 aircraft 

at 20 km above ground. The top of the image is near 

the eastern end of the Keys; the bottom of the image is 

near the western end. The rough heading is 260 degrees 

(clockwise from north) top to bottom (i.e., just south of 

west). AVIRIS is an optical sensor that delivers calibrated 

images of upwelling spectral radiance in 224 contiguous 

spectral channels (bands) with wavelengths from 400 

to 2500 nanometers. Note that this image is not atmo

spherically corrected. It is pi*radiance/[mean_solar_ir 

radiance_at_the_top_of_the_atmosphere * cos(solar_ 

zenith_angle)]. Original data courtesy of NASA/JPL. 

Caption courtesy of Marcos Montes of Naval Research 

Laboratory, Washington D.C. 

production of organic matter in many re

gions of the world’s oceans. The net vertical 

transport of nitrate, for example, constrains 

the export flux of organic matter from the 

surface ocean in a steady-state sense. Nitrate 

dissolved in seawater exhibits a broad ab

sorption maximum centered at ~210 nm; it 

competes with the absorption of bromide, 

a conservative component of sea-salt, and 

to a lesser extent, the carbonate ion (Figure 

4). In anaerobic areas, sulphide also absorbs 

in a band around 220 nm and various dis

solved organic compounds of oceanographic 

and practical purposes (e.g., TNT) exhibit 

absorption maxima in the UV. Past attempts 

to estimate the concentration of nitrate and 

other compounds with multispectral instru

ments have been met with equivocal suc

cess. The introduction of a fi eld-deployable 

hyperspectral UV absorption spectrometer, 

i.e., the In Situ Ultraviolet Spectrometer 

(ISUS), coupled with advanced spectro

scopic deconvolution techniques, has made 

routine spectral measurements of nutrients 

possible (Johnson and Coletti, 2002; Figure 

4). Oceanographers are now able to resolve 

nitrate concentrations in the ocean at tem

poral and spatial scales consistent with mea

surements of temperature and salinity and 

to an accuracy and precision more than ac

ceptable for oceanographic biogeochemical 

investigations, as a direct result of a hyper-

spectral approach to the problem. 

Summary and Conclusions 
Hyperspectral technology provides a means 

for optical oceanographers to classify and 

quantify complex oceanic environments (in 

situ and remotely): bottom depth and type, 

particle characteristics, depth-dependent 

IOPs, and specific chemical compounds. 

Hyperspectral data enable, for the fi rst time, 

a real attempt at environmental spectros

copy. In situ and remote phytoplankton 

taxonomic group or species identifi cation 

is now achievable with the development of 

hyperspectral instruments; generally narrow 

accessory pigment absorption wavelength 

peaks that are unique to specific species can 

be discerned. High spectral resolution back

scattering spectra are unique to some phy

toplankton species and can aid in the char

acterization of oceanic particles. One other 

exciting aspect of hyperspectral technology 

is the development of optically based chemi

cal sensors. These sensors allow for long-

term monitoring of ecologically important 

nutrients and potentially harmful pollutants 

at unprecedented time and space scales. 

Hyperspectral instrumentation is becom

ing increasingly important to oceanographic 

research as coastal and open ocean observ

ing systems are rapidly developing into key 

elements for scientific research, monitoring, 

decision-making, science education, and 

outreach. Some concerns of these observa

tories are that autonomous sampling plat

forms can be limited by weight and volume 

and data bandwidth capabilities. The incor

poration of hyperspectral sensors to autono

mous sampling platforms of an observing 

system can expand the amount of informa

tion gained from one instrument without 

compromising platform payload. High 

spectral resolution sensors provide a greater 

number of wavelengths for various analysis 

techniques, particularly in optically complex 

coastal environments. In addition, emerging 

cabled observatories offer exceptional power 

and data bandwidth for hyperspectral sen

sors. 

Optical oceanographers have been posing 

hyperspectrally-related questions since the 

popularity of ocean exploration expanded 

in the 1950s. However, technological and 

computing constraints limited us to the 

use of multispectral or even single wave

length sensors in our field studies. Now that 

computing power has become more than 

adequate to handle large quantities of data 



 

 

 

 

 

 

 

 

 

  

 

 

  

   

 

  

  

   

  

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

   

 

 

  

 

  

  

  

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

   

 

 

 

   

 

Figure 4. Nitrate is a major plant nutrient that limits the primary production of organic matter 

in many regions of the world’s oceans. Nitrate dissolved in seawater exhibits a broad absorption 

maximum centered at ~210 nm. The introduction of a field-deployable hyperspectral UV absorp

tion spectrometer, known as In Situ Ultraviolet Spectrometer (ISUS), coupled with advanced spec

troscopic deconvolution techniques, has made routine spectral measurements of nutrients pos

sible at unprecedented time and space scales. The specific molar absorption of bromide (black, 

dotted line) and nitrate (black, solid line) are shown with the absorption spectrum of whole 

water (red line; 1 nm resolution) measured with the ISUS (MBARI/Satlantic Inc.) deployed on a 

Conductivity-Temperature Depth profiler (CTD) at 150 m depth in the western Equatorial Pacific. 

Most of the variance in absorption is explained by bromide; advanced deconvolution techniques 

are required to extract the concentration of nitrate (here 14.9 mM) based on its absorption. 

and technology has allowed miniaturiza

tion of in situ and remotely sensed optical 

sensors, we have been able to utilize hyper-

spectral instruments in the field to answer a 

host of scientific questions that were never 

before possible. This is an exciting time for 

oceanographers. New spectral algorithms 

and techniques will be further developed 

and refined as high spectral resolution tech

nologies are improved for IOP sensors for 

measurements of absorption, attenuation, 

scattering, backscattering, and the volume 

scattering function. Potentially, a suite of 

relatively small, robust hyperspectral in

struments will be available to measure and 

resolve bottom depth and type, particle size 

and type (including phytoplankton species 

identification), and micro- and macro-nu

trient concentrations in situ in the very near 

future. 
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