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ABSTRACT 

 

Traffic signal control with ant colony optimization  

 

David Renfrew 

 

 Traffic signal control is an effective way to improve the efficiency of traffic 

networks and reduce users’ delays. Ant Colony Optimization (ACO) is a metaheuristic 

based on the behavior of ant colonies searching for food. ACO has successfully been 

used to solve many NP-hard combinatorial optimization problems and its stochastic and 

decentralized nature fits well with traffic flow networks. This thesis investigates the 

application of ACO to minimize user delay at traffic intersections. Computer simulation 

results show that this new approach outperforms conventional fully actuated control 

under the condition of high traffic demand. 
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Chapter 1 Introduction 
 

With the ever-increasing traffic demand, congestion has become a serious 

problem in many major cities around the world. ATMS (advanced traffic management 

system) is a systematic effort toward the design of an integrated transportation system 

with new technologies. By regulating the traffic demand at each intersection in the 

network, the goal is to avoid traffic conflict and shorten the queue length at a stop light. 

Many different approaches to the traffic signal control problem have been 

proposed by researchers over the years. Some of the earliest, large scale adaptive traffic 

signal control systems, such as TRANSYT (traffic network study tool) [1], SCOOT (split, 

cycle and offset optimization technique) [2], and SCATS (Sydney coordinated adaptive 

traffic system) [3], utilize pre-calculated off-line timing plans for signal cycles based on 

the current traffic conditions. More recent developments in traffic signal control employ 

artificial intelligent technology, such as neural networks and fuzzy logic [4]. Algorithms 

using Petri nets and Markov decision control have also been investigated in recent years 

[5]. 

Ant colony algorithm is a meta-heuristic approach for solving computationally 

hard combinatorial optimization (CO) problems [6] [7]. Inspired by the behavior of the 

ants in real world, ant colony algorithm is a multi-agent system, in which each single 

agent is called an artificial ant. It is one of the most successful examples of swarm 

intelligent systems and has been applied to solve many different types of problems, 

including the classical traveling salesman problem, path planning and network routing. 
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In nature, when searching for food, real ants wander randomly until they find food 

[8]. As an ant returns to the colony with food, it deposits pheromone, a chemical used for 

communication. These pheromone trails guide other ants as they continue their search for 

food. As more pheromone is deposited, the ants’ paths become less random and are 

biased toward the paths with higher pheromone concentration. 

In the ant colony algorithm, artificial ants search the solution space 

probabilistically to create candidate solutions. These candidate solutions are then 

evaluated and used to update pheromone concentrations. Over time the pheromone 

concentrations on paths evaporates. Only the paths that have been reinforced with 

additional pheromone are left.  

In this research, a new approach to finding the optimal signal timing plan for a 

traffic intersection is investigated using ant colony optimization algorithms. The ACO is 

used with a rolling horizon algorithm to achieve real-time adaptive control. Computer 

simulation results indicate that this new approach is more efficient than traditional fully 

actuated control (discussed in Section 5.3), especially under the conditions of high, but 

not saturated, traffic demand. 

This thesis is organized as follows: chapter two presents a literature review of 

current traffic control strategies and new developments in the field. Chapter three 

explains traffic dynamics, assumptions made for the traffic signal problem and the 

calculation of vehicle delays. Chapter four gives background on Ant Colony 

Optimization (ACO) algorithms. Chapter five explains how ACO is implemented in the 

traffic signal control problem. Chapter six contains simulation results. The convergence 

rates of ant colony algorithms to finding optimal solutions are investigated. Then 
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comparisons of vehicle delays in ACO algorithm and traditional fully-actuated control 

are made. Chapter seven gives conclusions and an outline of future works. 
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Chapter 2 Literature Review   
 

Traffic networks are an integral part of any city’s infrastructure, but increased 

vehicle use causes traffic congestion, leading to decreased flow rates. Two major causes 

of congestion are overall demand and disturbances in traffic flow from accidents, special 

events and illegal parking. Once traffic movements are saturated, traffic flow at the 

upstream link stops and vehicles cannot cross intersections on green lights. Additional 

congestion is then created on other movements, leading to gridlock and devastating urban 

traffic flow. Congestion leads to excess vehicle delays, reduced safety and increased air 

pollution and petroleum use. Additionally, congestion can cost governments billions of 

dollars a year [9]. 

 Expansion of traffic networks is expensive and due to available resources, it is 

often not feasible. As a result, increasing the efficiency of traffic networks with current 

facilities is essential. Improving traffic signal control strategies is a very effective way to 

improve traffic management. Advances in low power sensors and actuators, as well as 

low cost and reliable means of communication and computers, have made real-time 

adaptive traffic control systems feasible [5].  

There are many difficulties in dealing with traffic control. Traffic movements are 

stochastic and non-linear; so many conventional control techniques cannot yield optimal 

results. Additionally, traffic conditions can change quickly, so control strategies must be 

highly responsive. As traffic networks grow in size, finding the optimal strategy becomes 

a complex combinatorial problem, making real time implementation very difficult. Thus, 

advanced techniques in control and optimization must be employed.  
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 For large scale networks, traffic control systems can be classified as centralized or 

decentralized control [5]. To implement traffic control on large networks, the network is 

divided into smaller subsystems. In centralized control systems, a central controller 

creates the control policy and sends control signals to each subsystem. Centralized 

control can achieve global optimality because of the high level of communication 

between subsystems, but it is computationally intensive and very sensitive to a 

malfunctioning central controller or broken communication links. The central controller 

is also unresponsive to time-varying traffic dynamics.  

 Due to centralized control’s limitations, recent research has focused on 

decentralized control. In decentralized control, neighboring subsystems communicate for 

coordination purposes; but control decisions are made on a local level, involving only a 

few signals [10]. This approach is less computationally complex, more robust and 

responds to changes in traffic dynamics quickly. Because optimization is made on a local 

level, the global optimal solution might not be found. 

 To evaluate the effectiveness of control strategies, different performance 

measures are available. Some common measures are average vehicle delay, intersection 

queue lengths and number of vehicle stops. These measures are interrelated but 

optimizing one does not necessarily lead to optimization of the other criteria [11]. 

 Traffic control strategies fall into one of three categories: fixed time, semi-

actuated and fully-actuated control. Fixed time control is an open loop control strategy 

because signal cycles are computed off-line and do not consider current traffic dynamics. 

The preset cycle lengths are determined from past traffic data and heuristic information. 

Signal coordination is easily achieved with fixed time controllers. For this reason, fixed 
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time control is generally used in high volume business districts where signal coordination 

is required and turning lanes are not given their own green light phase [9]. If traffic flow 

fluctuates a lot, then fixed time controllers may cause long delays. Intensive off-line work 

is required to compute signal splits, offset and cycle length. Additionally, control rules 

must be monitored and updated due to long term changes in traffic dynamics.  

 Actuated control, also called traffic responsive control, is a closed loop control 

strategy because control policies respond to current traffic demand. In semi-actuated 

control, one or more, but not all of the movements are actuated. In fully actuated control, 

all movements are actuated. Signal actuation can be achieved in many different ways, 

making optimal actuation methods an area of active research.  

 Traffic networks are classified into three categories: isolated intersections, arterial 

streets (including freeways), and closed network intersections. On isolated intersections, 

arrivals are assumed to arrive randomly and are uncorrelated with the arrivals at other 

intersections. In arterial and closed networks, vehicle arrivals between neighboring 

intersections must be considered and the signals at neighboring intersections must be 

coordinated for optimal control. 

 For the remainder of this chapter, popular traffic control algorithms are presented. 

These methods utilize historic traffic data, expected flow rate and statistical distribution 

on arrivals as well as standard control practices to create traffic control policies.  

 SCOOT (Split, Cycle and Offset Optimization Technique) [2] and SCATS 

(Sydney Coordinated Adaptive Traffic System) [12] are on-line control strategies based 

on the off-line optimization techniques. Detectors monitor traffic flows and predict future 

arrivals by creating flow profiles. The flow profiles are used to evaluate incremental 
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changes to the signal’s splits, offsets and cycle times. If the changes are beneficial they 

are implemented by the controller.   

 Dynamic programming is a mathematical technique for solving optimal control 

problems [13]. Time is broken into small intervals and the optimal control policy for each 

interval is found. Dynamic Programming finds the optimal policy, but is often very 

computationally intense and requires more information on future arrivals than is typically 

available. These limitations make real-time implementation of Dynamic Programming 

difficult; but its off-line results can be used for comparison with other methods. Control 

strategies can be evaluated by how well they approximate the results of dynamic 

programming, but with less information and computation. 

 Two approaches for on-line optimization that are similar to off-line dynamic 

programming are binary choice logic and sequential approach. Binary choice logic, 

proposed by Miller [14], divides time into short, successive fixed intervals. At the 

beginning of each interval a choice is made to extend the signal or change the signal. The 

drawback of this technique is the time periods are very short (3-6 seconds), so optimal 

performance over longer time periods is not guaranteed. 

 In sequential approach, a longer period of time, generally 50-100 seconds, is 

considered. During this time period, 1 to 3 signal changes in one signal cycle can be 

made. All possible signal cycles over this time interval are sequentially evaluated to find 

the optimal switching times. The optimal policy is then implemented over the entire time 

period. This technique yields close to optimal results when the system is in steady state. 

But, because the decisions are made over longer periods of time this technique does not 

respond fast enough to time-varying traffic dynamics.  
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 The advantages of the above two techniques are combined in model-based 

optimization methods. OPAC, PRODYN, CRONOS and RHODES are examples of 

rigorously developed model-based methods [9]. These models incorporate a rolling 

horizon for optimization. A long time interval (usually 60 seconds) is considered and the 

optimal control policy is found but only implemented over a short period (usually around 

4 seconds). Each algorithm uses a similar length for the rolling horizon but different 

methods to find the optimal control policy. After the signal has been implemented for the 

shorter interval, the process is repeated.  

More recent traffic research has introduced fuzzy logic and artificial intelligence 

into traffic control. Fuzzy logic has been successfully applied to a single intersection and 

groups of intersections [15]. Fuzzy logic controllers create membership functions 

between their inputs and output. Then the controller chooses an output that is acceptable 

to all membership functions. In traffic control, the inputs are the intersection’s current 

state, which includes the waiting time of vehicles that are currently waiting, queue length 

and arrival rates. The output is the traffic control law, usually green extension times or 

optimal cycle time and splits [4]. The use of fuzzy controllers allows for different 

objectives to simultaneously be optimized by specifying a minimum level of acceptability 

for each objective. Optimizing the fuzzy logic rule bases is often difficult, but neural 

networks and genetic algorithms can be used to efficiently create the rule bases.  

Another new technique in traffic network control is artificial neural networks. 

Neural networks are very powerful in mathematical modeling, and their nonlinear 

mapping ability makes them ideal for predicting the highly nonlinear traffic flow [16]. 

Accurate traffic prediction and modeling is essential for choosing signal switch times in 
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optimal control. Neural networks use sensors to measure vehicle arrivals and departures 

along with the current queue to predict future queue lengths. The advantage of neural 

networks is that no assumption on an analytic model for traffic flow is made. 

Additionally, neural networks can easily be integrated into hardware. Unfortunately, 

neural networks design procedures can be lengthy and size of an effective network is hard 

to determine. Neural network training can take a long time and require a large amount of 

data [17]. 

 The use of neural networks in traffic modeling can be improved by adding fuzzy 

logic. The fuzzy logic is first used to classify traffic patterns into different sets. Then each 

set has its own set of rules for traffic prediction. This allows for better generalization and 

faster training times over conventional neural networks [18]. 

In this research, Ant Colony Optimization (ACO), a technique in Swarm 

Intelligence, is used to for the adaptive control of an isolated intersection. A rolling-

horizon approach with variable length is employed.  

ACO algorithms have successfully been applied to many computationally 

complex combinatorial problems; the traffic signal problem is addressed very naturally as 

a combinatorial optimization problem. Traffic signals form large, complex networks and 

advanced methods must be used to optimize signals lengths. 

The ability of the ACO to incorporate heuristic information about traffic networks 

makes it efficient. Additionally, ant colony optimization has successfully been applied to 

other traffic related problems, such as the vehicle routing problem (VRP), with positive 

results.  
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Chapter 3 Traffic Dynamics 
  

 In this chapter, the traffic signal problem and traffic terminology is presented. 

Then the rules for vehicle arrivals and departures are established. The assumptions on 

vehicle arrivals and departures, as well as traffic flows are presented. Finally, the method 

of evaluating traffic signals by computing vehicle delays is presented.  

3.1 Problem Statement 

 

Consider a traffic intersection with four external approaches.  Movements 1 and 3 

are opposite each other so they share green times; similarly movements 2 and 4 also share 

green times. For simplicity, each movement consists of a single lane and turning lanes are 

not considered. Video detectors are located at the intersection to count the queue lengths 

and there are no detectors outside the intersection. An estimate on the volume of traffic is 

assumed (see [5] and [19]). The vehicles are homogenous and leave the intersection at the 

same speed. 

The objective is to find the traffic signal switch times that minimize the average 

delay of the vehicles at the intersection.  

 

Figure 3-1. An isolated intersection with four movements 
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3.2 Traffic Terminology 

  

 An intersection consists of a number of movements and a crossing area. The 

number of vehicles waiting on a movement is called the queue. A signal cycle is a 

complete series of green lights for each movement. Its length is called the cycle time. The 

split is the percentage of green time for a movement with respect to the total cycle time. 

The all red time is the length of the time when all movements have a red signal. The all 

red time occurs between phase changes for safety. The minimum distance between 

vehicles is measured in seconds and called the minimum headway. Once a vehicle arrives 

at the intersection, the time it takes for the next vehicle to arrive is called the inter-arrival 

time. A vehicle’s delay is its time of departure minus its time of arrival. 

3.3 Departures 

 

 At a given time, , the queue length on movement  is denoted as . The 

number of vehicles initially in the queue that leave movement  during a time interval 

 is denoted . The time intervals correspond with signal phases. The 

output  is a function of the signal choice and the queue length at . 

  (3.1) 

where  is the headway between vehicles as they leave the intersection,  is the 

signal choice and  gives the integer part of its argument. The output function means 

that when a signal turns green, the first car in the queue leaves immediately. Then, each 

successive vehicle leaves the intersection  seconds after the vehicle in front of it until 

all vehicles are released or the traffic light changes to red. 
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3.4 Arrivals 

  

 Vehicles arrive from the external links randomly and uncorrelated, making the 

Poisson process a good model for the arrivals. In a Poisson process, inter-arrival times 

follow the exponential distribution [20]. Meaning the probability density function on the 

inter-arrival times is:  

  (3.2) 

where  is the arrival rate in vehicles per hour per movement and  is the unit step 

function. The step function is required because negative inter-arrival times do not make 

sense. A graph of the exponential probability density function with  is shown in 

Figure 3-2. 
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Figure 3-2. Exponential probability density function with   

 

 As shown in equation (3.2), the exponential distribution allows for instantaneous 

inter-arrival times. Due to geometric and physical considerations of traffic network, there 

must be a minimum headway between vehicles. To avoid this problem, the shifted 
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exponential distribution is used for inter-arrival times [21]. That is, the probability 

density function for the inter-arrival time is: 

 , (3.3) 

where  is the minimum headway between vehicles in seconds. The graph of the shifted 

exponential probability density function with  and  is shown in Figure 3-3. 
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Figure 3-3. Shifted Exponential probability density function with  

 

 This probability distribution acts very similar to the exponential distribution but 

the minimum inter-arrival time is now , instead of . If the headway is set to zero this 

formula gives the standard exponential distribution. The shifted exponential distribution 

gives the same expected inter-arrival time of  as with the exponential distribution with 

arrival rate . It should be noted that in order for this probability density to make sense 

. This requirement means that the expected inter-arrival time is greater than 

the minimum headway.  

 Vehicle arrival times are generated by: 
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  (3.4) 

where  is the next arrival time,  is the previous arrival time,  is the natural 

logarithm function and  is a uniformly distributed random number in  [22].  

The expected number of arrivals during a given time interval is required to 

compute the expected vehicle delay during a signal cycle. This is difficult to do with the 

shifted exponential distribution because the minimum headway causes the distribution to 

lose its Markov property [21]. The probability of an arrival at a given time, , is not solely 

based on the state of the system at , but also on the arrivals during the time interval 

. Fortunately, if the signal length is several times larger than the minimum 

headway, then the expected number of arrivals can be approximated by the Poisson 

distribution. That is, the probability of  vehicles arriving in  seconds is approximated 

by:  

  (3.5)  

where  is a non-negative integer representing the number of arrivals, and  is 

the duration of time period. The Poisson distribution gives the probability of a given 

number of arrivals during a time interval of a Poisson process. This approximation is 

sufficient because the probability densities of the exponential and shifted exponential 

distributions behave similarly and have same the expected inter-arrival time; so they give 

similar traffic dynamics. 

In the Poisson distribution, the expected number of new arrivals in  seconds is 

. 
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3.5 Traffic Flow 

 

 When the signal turns green for a movement, vehicles are released from the queue. 

The first vehicle leaves when the traffic light changes. Then each of the following 

vehicles leaves  seconds after the vehicle before it. If additional vehicles arrive before 

the queue is empty, then they are added to the end of the queue. New arrivals are also 

released  seconds after the vehicle in front of them is released. This process continues 

until either the queue is empty or the traffic light changes to red. If the queue is empty 

before a switch to red then additional vehicles pass freely through the intersection with 

zero delay. At the end of the green phase, the signal is red on all movements. The length 

of this period is the all red time. When a movement has a red signal, new arrivals are 

added to the queue and wait until the next green phase to be released. 

3.6 Vehicle Delays  

 

Ant Colony optimization is used to determine the traffic signal control that 

minimizes vehicle delay at the intersection. At the beginning of each signal phase, the 

algorithm evaluates candidate signal cycles by computing the total expected delay of the 

signal cycle. This computation has a deterministic and probabilistic part. The 

deterministic part is the delay of the vehicles already in the queue, and the probabilistic 

part is the expected delay of future arrivals. Because the actual arrival times of future 

vehicles is unknown, only the expected delay of future vehicles can be minimized. In 

order to calculate the expected delay, the arrival rate of new vehicles is assumed, as 

stated in the problem statement. The probability distribution of their inter-arrival times is 

also a necessary assumption to compute the expected delay.  



 16 

3.7 Delay of vehicles initially in queue 

 

Given a green phase of length ,  of the initial vehicles 

will be released on the green movements. Let  denote the position in the queue of 

a vehicle that will be released on the current queue. At the beginning of a green phase, 

the current delay of the  vehicle in the queue is , where  is the arrival time 

of the  vehicle. After the traffic light turns green, the additional delay is  

seconds. Thus, the combined delay of the  vehicles is  

  

  .  (3.6) 

3.8 Delay of vehicles not released on current phase 

 

As new cars arrive at an intersection, they are added to the movement’s queue. If 

they arrive during a sufficiently long green phase they will be released, otherwise they 

must wait to be released during a future green phase. The expected delay for a vehicle 

that is released during the phase it arrives is calculated differently than those that are not.  

First, consider a signal phase in which vehicles arrive but do not leave. Let  

denote the length of this phase. This situation occurs on a red phase or an over-congested 

green phase that does not allow new arrivals to exit the intersection.  

In a Poisson process, the expected number of new arrivals in  seconds is . 

Since the probability distribution of the inter-arrival times is identical, vehicle arrivals are 

uniformly distribution in the phase. So the expected delay for each new vehicle is  



 17 

[23]. Multiplying the expected number of vehicles by the average expected delay gives 

the expected total delay for new arrivals during an interval of length  as  

 .  (3.7) 

3.9 Delay of vehicles released on current phase 

 

Alternatively, consider a green phase where all new arrivals exit the intersection 

on the current phase. The delay of a new arrival is dependant on what position in the 

queue the vehicle arrives, similar to the delay of vehicles initially in the queue at the 

beginning of a green phase. Once a vehicle arrives, its delay is the minimum headway 

multiplied by its position in the queue. Therefore, future expected queue lengths are 

necessary to calculate the expected wait time of future arrivals. 

As vehicles arrive and depart the length of the queue changes. If vehicles inter-

arrival times follow the exponential distribution, then nearly instantaneous inter-arrival 

times occur. Short inter-arrival times cause fluctuations in the queue and make its length 

increase, making the expected queue difficult to determine. Fortunately, instantaneous 

inter-arrival times are not physically possible. As a result, an approximation to the 

exponential distribution on the vehicle arrivals is used to accurately approximate average 

expected vehicle delays.  

This approximation is made by partitioning the signal cycle into time intervals of 

length equal to the minimum vehicle headway. During each interval a vehicle arrives 

with probability . The probability of having multiple arrivals in an interval is zero. 

The exponential distribution can be derived from this approximation by taking the length 

of the intervals to zero, giving a continuous probability distribution for the inter-arrival 
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times [24]. Since the approximation does not take this limit, the minimum headway 

requirement is preserved.  

During each time interval one car from the queue will leave, according the 

established rules Section 3.3, and at most one car arrives. This makes the expected queue 

length easier to describe because queue lengths cannot increase.  

Depending on the first new vehicle’s arrival time, it can wait up to  

seconds before it reaches the front of the queue. Since vehicles depart faster than they 

arrive, the delay of each successive vehicle decreases. The expected delay decreases 

linearly until a new arrival waits close to zero seconds before it reaches the front of the 

queue. So the average time to the front of the queue is . Additionally, a 

vehicle must wait minimum headway seconds once it reaches the front of the queue 

before it is released. So the average time each car waits until it is released is: 

 .  (3.8) 

Equation (3.8) gives the average wait time of new vehicles, but the expected 

number of new arrivals before the queue is empty must also be determined. This is done 

by computing the expected time to an empty queue and then multiplying this time by the 

vehicle arrival rate.  

3.10 Time until queue is empty 

 

The expected time required to empty the queue is . This time is 

computed iteratively. First, the time until the vehicles initially in the queue are released is 

computed. Then, the expected number of new arrivals during this time interval is 

computed, along with the time until these new vehicles are released. This process of 
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computing the expected number of new arrivals during the last groups release times 

continues. Recall that the expected number of vehicles is not an integer and will get 

smaller with each iteration. Then, the time intervals are added up to give the expected 

time when the queue is empty.  

The initial vehicles are released at time , and  

additional vehicles are expected to arrive in this time. An additional  seconds 

are required to release these vehicles. This cycle of vehicles arriving and being released 

continues. The sum of all time intervals gives that the queue is expected to empty after 

 seconds. This sum a geometric series, so the total time to an 

empty queue can be written in closed form as: 

  (3.9)  

The above summation is convergent if ; this condition is assumed to be 

true; otherwise, the arrival rate would be higher than the release rate. 

The expected number of new vehicles is found by multiplying the length of this 

time interval by the arrival rate; giving an expectation of  new vehicles. 

3.11 Vehicle delay during a signal phase 

 

For the rest of this section, the expected total delay for a signal cycle is developed 

for a single movement using equations (3.6), (3.7), (3.8), and (3.9). The total expected 

delay for a signal cycle is the sum over all four movements. Because only one movement 

is considered at a time, notation can be simplified by letting  be the number of 

vehicle initially on movement  at time . 
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To compute the total expected wait for on a green phase three different cases are 

considered. The first is if , where no vehicles are expected at the end 

of the phase. The second is if , where all initial 

vehicles are released but the queue is not expected to be empty at the end of the phase. 

The third is if , where not all vehicles in the initial queue are released. 

Case 1: The queue is empty at the end of the phase. 

 If , then no vehicles are expected in the queue at the end of 

the phase.  

 If the queue is initially empty then the delay for the movement during this phase 

will be zero. Otherwise, the total expected delay from  to  is: 

 . (3.10) 

 The first term is the delay of the initial vehicles (3.6). The second term is the 

average wait of future vehicles (3.8) multiplied by the expected number of cars that will 

arrive before the queue is empty (3.9). Once all vehicles are released from the queue, new 

arrivals pass through the intersection with no wait. 

Case 2: All initial vehicles are released but the queue does not empty. 

If , then all initial vehicles are released. The 

number of vehicles that are expected to arrive is  and the number of vehicles 

released is . Therefore,  vehicles 

are expected at the end of cycle. Thus  
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   (3.11) 

of the new arrivals were released. This phase should be viewed as partly a phase that 

releases new vehicles and partly as a phase that does not. Vehicles that arrive during the 

first  seconds are released and vehicles that do not are not released. 

The total expected delay from  to  is: 

. (3.12) 

The first term is the delay of the initial vehicles (3.6). The second term is the 

average wait of future released vehicles (3.8) multiplied by the expected number of cars 

that will arrive and be released (3.11). The final term is the delay of the cars that are not 

released (3.7).  

Case 3: Not all vehicles in the initial queue are released. 

If , then  vehicles will be released. During this 

phase, an additional  vehicles are expected to arrive; none of them are released. 

Once again, at the end of the phase  vehicles are 

expected.  

 The total expected delay from  to  is: 

  .  (3.13) 

 The first term is the delay of the released vehicles (3.6).  The second term is the 

delay of initial vehicles not released and the third term is the expected delay of future 

arrivals (3.7).  
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The total expected delay of a signal cycle also includes the delay on the red 

movements. During a red phase, no vehicles are released and  vehicles are 

expected to arrive. Therefore,  vehicles are expected at the end of the red 

phase. 

 The total expected delay from  to  is thus: 

  . (3.14) 

 The first term is the delay of the initial vehicles and the second term is the 

expected delay of future arrivals (3.7).  

3.12 Total vehicle delay during a signal cycle  

 

 When choosing a signal cycle length and split, it is important to not only reduce 

the delay of vehicles released during the current cycle, but also ensure that the vehicles 

released during future signal cycles have short delays. If the queue is too long at the end 

of a cycle, then the delay of vehicles in the queue will be large. Additionally, future 

arrivals will also face longer delays. When evaluating candidate signal cycles the delay of 

the vehicles left in the queue at the end of the signal cycle, , needs to be considered. 

Since the phase lengths after time  are not chosen, a lower bound for the future 

additional delay is computed. Ideal release times are considered in the computation of a 

lower bound. That is, the green signal durations are assumed to be  seconds and red 

signal durations are assumed to be  seconds. This is not possible because the green 

phase lengths on one movement must be the same as the red phase length on its conflict 

movements, but it does favor reduced queues without intense computation. This lower 

bound on the delay for movement  is denoted as .  
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 Equations (3.10), (3.12), (3.13), and (3.14) are combined to compute the total 

expected delay of a signal cycle beginning at  with signal phase changes at  and  as: 

  (3.15) 

 Once again  denotes the signal choice on the movement. At any given , one set 

of parallel movements will be green and the other set will be red. 

 Note that equation (3.15) is always positive since each term is always greater than 

or equal to zero, and the queue on at least some of the movements is has positive 

probability of being non-empty.  
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Chapter 4 Ant Colony Optimization 
 

 Ant colony optimization (ACO) is a metaheuristic for solving computationally 

hard combinatorial optimization problems. The optimization problem is defined on 

 where  is a finite set of candidate solutions,  is the objective function to be 

minimized and  is a set of constraints. The goal is to find a globally optimal solution, 

, that minimizes  [6]. 

 ACO is used to solve combinatorial NP-hard problems. It was first tested on the 

Traveling Salesman Problem. ACO is also used to solve Routing Problems, Quadratic 

Assignment Problems and Scheduling Problems [6].  

4.1 Biological Ants 

 

ACO is based on the methods of foraging ant colonies [8]. When searching for 

food, ants wander randomly around their nests. Once an ant finds food, it evaluates the 

food source and then returns to the nest. On the return trip, the ant deposits pheromone, a 

chemical used for communication. The amount of pheromone deposited is based on the 

quantity and quality of the food. The pheromone trail guides other ants as they continue 

to search for food. As more pheromone is deposited, the ants’ paths become less random 

and are biased toward paths with higher pheromone concentration. As time progresses 

pheromone evaporates; so unless a path is traversed frequently, the pheromone on it 

disappears. Along with finding the best food sources, ants also find the shortest paths to 

food. Shorter paths are traversed faster, so pheromone is deposited on them more 

frequently. This leads to faster pheromone accumulation. 
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 The phenomenon of ants using pheromone to communicate and discover optimal 

paths is observed in the Double Bridge Experiment [25]. A path between an ant’s nest 

and food with a double bridge is laid out. In the first trial, the length of each bridge is 

equal, as shown in Figure 4-1. At first, ants move freely between the nest and food, 

choosing either path randomly. As time progresses, due to random fluctuations, one of 

the paths gains a higher pheromone concentration; this larger amount of pheromone 

attracts more ants. The increased number of ants deposits more pheromone on this path. 

A positive feedback loop is created and the number of ants that choose this path increases 

until all the ants are using it. 

 

Figure 4-1. Double bridge with equal lengths 

 

 In the second trial, one of the paths is made twice as long as the other path, as 

shown in Figure 4-2. Once again, ants start by randomly using both bridges, but soon 

more pheromone is concentrated on the shorter path. Eventually, the higher pheromone 

level causes all ants to travel along the shorter path. 

Food 
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Figure 4-2. Double bridge with unequal lengths 

 

4.2 Ant Colony Optimization framework 

 

 The movements of real ants are modeled by artificial ants in ant colony 

optimization. In ACO algorithms, artificial ants probabilistically search a graph, with the 

guidance of the pheromone, to create candidate solutions. Candidate solutions are then 

evaluated and used for pheromone updates. Many different versions of the ACO have 

been developed, but they all follow the same idea of solution construction guided by 

pheromone levels. The framework for ACO algorithms is as follows [7]: 

 1) Initialize Pheromone Values. The pheromone values on each path are set to the 

same constant value. 

 2) Solution Construction. Each ant begins on a start node and constructively 

builds a solution based on the pheromone values. A solution is an ordered set of nodes. 

Ants move from node  to node  with probability: 

Food 
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  (4.1) 

where  is the neighborhood of node . The neighborhood of node  is the set of all 

nodes that an ant can move to when at node . The pheromone value between node  and 

 is  and  is a heuristic value. The values of  and  are nonnegative; and they 

weight the relative importance of the pheromone and heuristic values respectively.  

 3) Update Pheromone. The pheromone update is the key difference between most 

ACO algorithms; but the general framework still holds. First pheromone is evaporated by 

the rule: 

 ,  (4.2) 

where  is the evaporation coefficient. 

Then pheromone on some of the paths is increased by: 

 . (4.3) 

Where the pheromone update, , is algorithm specific.  

 4) The solution construction and pheromone update are repeated until the stop 

condition is met.  

 Because each algorithm updates pheromone differently, different values are used 

for their parameters. Each parameter is chosen specifically for the application. But, in 

common applications, like the Traveling Salesman, formulas have been developed to give 

the range of parameter values [6]. 
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4.3 Specific Ant Colony algorithms 

 

 In this section, the Ant System, Elitist Ant System and Rank Based Ant System 

algorithms [6] are discussed. Each algorithm uses  ants to construct solutions; and the 

initial pheromone deposit and solution construction steps are the same. Their differences 

lie in the pheromone update step.  

 Each artificial ant begins at a start node and constructs a solution. The solution 

constructed by ant  is denoted by . Each solution  is given a cost, denoted by , 

which is related to the objective function being minimized. Ant system is the simplest 

method and the easiest to implement, but it is usually not sufficient in applications. Other 

ACO algorithms are modifications of the ant system algorithm. Specific algorithms are 

chosen based on the problem of interest. 

Ant System: 

 In this algorithm, all ants are considered equally. After each ant has constructed a 

solution, the pheromone levels on all arcs are evaporated with the same rate, as shown in 

equation (4.2). Then each ant adds pheromone to each link it took by: 

  (4.4) 

where  is the total number of ants,  is the pheromone deposited by ant  on the arc 

between  and , is defined by: 

  . (4.5) 

Elitist Ant System: 
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 In this algorithm, extra weight is given to the best-so-far solution, denoted as . 

As in the Ant System algorithm, pheromone is first evaporated as in equation (4.2), then 

ants deposit pheromone by 

  (4.6) 

where  is defined the same as in the Ant System algorithm,  is the weight for the 

best-so-far path and  is defined by: 

  (4.7) 

where  is the cost related to the best-so-far solution. 

Rank-Based Ant System: 

 In this algorithm, the ant’s solutions are sorted in order of increasing cost before 

the pheromone is deposited. Only the  best-ranked ants and the best-so-far ant are 

allowed to deposit pheromone. The best-so-far solution is weighted by , the  best ant 

is weighted by . Thus the pheromone update rule is: 

  (4.8) 

where  and  are as defined above. The pheromone evaporation stage is 

performed before the update, as in the other methods, but less pheromone is generally 

evaporated on each step. The rank-based update biases away from bad solutions, allowing 

for more conservative evaporation. 

4.4 Ant Colony applications 
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Ant colony algorithms have successfully been applied to very difficult 

combinatorial optimization problems. They were first applied to the Traveling Salesman 

Problem (TSP) by Marco Dorigo [26]. Some other successful applications of note are 

vehicle routing problems [27] and quadratic assignment problems.  

The Traveling Salesman Problem is based on a salesman who is given a set of 

customer cities and a starting location. The salesman wishes to find the shortest path that 

visits each city exactly once. Customer cities and the paths between them are represented 

as a weighted graph. Each city is a vertex on the graph and each path is an edge, weighted 

by its length. The TSP has practical applications in printed circuit boards and the 

positioning of X-ray devices [6]. 

When applying ACO to the TSP, ants begin at the starting point and randomly 

traverse the graph. Once an ant has visited every city, it updates the pheromone on edges 

it traversed. Ants deposit pheromone inversely to the total length of their trip. The 

heuristic information is usually inversely proportional to the length of an edge. A 

straight-forward choice is weighting the path between node  and  by  . 

Ant colony algorithms have been shown to find optimal solutions to the TSP in fewer 

iterations than other naturally inspired algorithms, such as genetic algorithms and 

simulated annealing [26].  

The vehicle routing problem involves resource allocation. A set of customers 

must receive deliveries from a central depot with a given number of delivery vehicles. 

Each delivery vehicle has a fixed capacity and each customer has a nonnegative demand. 

A vehicle cannot serve more customer demand that its capacity allows. The goal is to 
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determine the most efficient route for each vehicle so that each customer is visited 

exactly once and delivery vehicles do not exceed their capacity [28]. 

This problem is also represented as a weighted graph. The nodes are the central 

depot, denoted node 0, and each of the customers. The arcs represent the paths that 

connect the customers to each other and the central depot. Once again, each arc is 

weighted by the distance between the nodes it connects. To apply ACO to this problem 

each ant begins at the central depot and constructs a vehicle’s route until it reaches the 

vehicle’s capacity. Then the ant returns to the central depot and begins to construct a 

route for another vehicle. It continues to construct routes until each customer is served. 

Then it updates the pheromone on each node it took and starts over. This problem is 

harder than TSP because it involves solving TSP for each vehicle. Heuristic information 

for this problem is similar to the TSP but a customer’s distance from the central distance 

is also considered. A typical heuristic weight is , 

where  and  are parameters. The quantity  is the distance saved 

by going straight from node  to node  instead of visiting the central depot first. The 

extra factor of  discourages moving to nodes that are far away and the final 

term keeps the distance from the central depot from changing rapidly [27]. 
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Chapter 5 Ant Colony and Traffic Optimization 
 

This chapter begins with the motivation behind using ACO for traffic signal 

control. Then, the second section describes how the ACO is implemented for traffic 

signal control. 

5.1 Motivation 

 

The traffic signal problem is addressed very naturally as a combinatorial 

optimization problem. As traffic networks grow, the complexity of the finding an optimal 

solution becomes much more difficult. Total enumeration of all solutions becomes 

intractable very quickly, so advanced methods must be used [9]. ACO algorithms have 

successfully been applied to many computationally complex combinatorial problems, 

making ACO a good choice for solving the traffic signal problem. 

The ACO ability to incorporate heuristic information about traffic networks 

makes it more efficient. For example, in the isolated traffic signal problem the maximum 

queue length currently at the signal is accounted for. On more complicated traffic 

topologies, other heuristic measures can be incorporated, such as distances between 

signals.  

Ant colony optimization has successfully been applied to other traffic related 

problems, such as the vehicle routing problem (VRP), with positive results. Although the 

VRP has a different setup and objectives, similar heuristics and objective functions are 

used in both cases. 
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As will be discussed later in this section, the ACO can be used to optimize rolling 

horizon control. Rolling horizon control has successfully been used in traffic signal 

control [13]. Some of the advantages of this approach were discussed in Chapter Two. 

Additionally, ACO requires very few restrictions on the cost function. For 

example, many optimization techniques rely on computing a gradient. This requires the 

existence of a gradient and can be computationally expensive. ACO algorithms are not 

dependant on the form of objective function; if the objective function is changed the 

algorithm works the same. This allows the heuristic information, intersection topology, 

and vehicle arrival rates to be easily changed. Thus, the ACO robustly conforms to new 

situations.  

5.2 Ant Colony implementation 

 

The rolling horizon method is used to implement the optimal signal cycles. The 

length of the horizon is variable and set equal to the length of the signal cycle chosen. 

The length of a full signal cycle is used for the horizon; giving all movements equal 

weight in the decision process. Once the optimal policy is found, it is implemented for 

one phase. Then, the beginning of the horizon is advanced to the next signal switch time 

and the optimization process is repeated. Figure 5-1 shows an example of signal choices 

and time advances. 
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Figure 5-1. Example of Rolling Horizon Control 

 

Ant colony optimization uses artificial ants to evaluate candidate solution and find 

the optimal signal cycle switch times. The length of a green signal in a candidate solution 

is bounded between the predetermined minimum green time  and maximum green 

time . Additionally, to make the set of candidate solutions finite, time is discretized 

into one second time intervals. With these constraints, a graph is constructed for the ants 

to traverse, as shown in Figure 5-2. When an ant is at time  the set of admissible nodes 

that it can move to is    . All ants start at 

the current time, then they move right to a new node, representing the next signal switch 

time. From there they move to the right again to another node, representing the next 

signal switch time. This creates a full signal cycle. At a given time, , the set of 

candidate solutions is all the possible admissible combinations of the next two switch 

times,  and . 
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Figure 5-2. Graph that ants traverse 

 

After an ant creates a signal cycle,  and , the expected total delay, , 

of the ant’s solution is computed, using equation (3.15). But  is not quite the 

cost function that needs to be minimized. Shorter time intervals tend to have smaller total 

expected delays because fewer vehicles enter the intersection during the cycle. Therefore, 

the expected delay of fewer vehicles is being summed. Short cycle lengths are suboptimal 

when they create long queue lengths. To avoid long queues, the total expected delay is 

divided by the length of the cycle multiplied by the traffic volume plus the number initial 

vehicles. This gives the expected average delay per vehicle. This value, not the total 
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expected delay, is minimized. Thus the cost of the solution associated with the 

pheromone update in equation (4.5) is: 

 .  (5.1) 

This pheromone value is added to the edges which ant  traversed to create its solution. 

 Shown in Figure 5-3 is the flow chart for the Ant Colony code.  

 

Figure 5-3. Computational Flow Chart 
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 An advantage of the ACO is its ability to incorporate heuristic information about 

the solution space being searched [6]. In the traffic signal problem, releasing all vehicles 

in the queue usually results in smaller waiting times. So the green phase length should be 

set accordingly. For small queues, releasing the current queue and then switching the 

signal is optimal. For longer queues, additional time is optimal because, with high 

probability, additional vehicles will arrive before all vehicles are released. In either case, 

the optimal solution is near the time when all vehicles are released. This time is 

, where  is the length of the largest queue on the green 

movements at time . To bias the search towards switch times near this time, the 

pheromone levels are weighted by the heuristic value of  

  ,  (5.2) 

where  is a positive constant. The value of  is chosen experimentally. The exponential 

function is used because it has a sharp peak at its maximum. Any function with a local 

maximum can be used and choice of function is determined experimentally. A graph of  

with ,  and  is shown in Figure 5-4. 
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Figure 5-4.  with seven vehicles in queue 

 

 One problem with the ACO is its tendency to accumulate pheromone on near 

optimal solutions [6]. At initialization, all paths are chosen with equal probability. If a 

near optimal solution is randomly chosen more than any other path at initialization, then 

its paths will have the most pheromone. The positive feedback of the ant colony 

algorithm can cause pheromone to accumulate rapidly on this near optimal solution. As a 

result, the optimal path may not be found. When using an ACO algorithm with the best-

so-far ant this stagnation became especially apparent. Simulations in this research 

demonstrate this stagnation, see section 6.1. To avoid stagnation, a search of the solutions 

near the best-so-far solution can be added. This local search can be performed in many 

different ways and is dependant on the problem being optimized. 

 In the traffic signal problem this is accomplished by replacing every  iteration 

of the random solution search with a local search. In this local search the search space is 
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replaced with a neighborhood of size  of the best-so-far solution. On a normal iteration, 

the possible choices next switch times for an ant at time  is the set  

   .  In a local search, the search space is 

restricted to    intersected with the set of 

allowable signal settings. Where  is the best so far signal switch time. If a better 

solution is found, it replaces the old best-so-far solution. Pheromone evaporation and 

update is not performed on the local search iterations. This process leads to less 

stagnation and faster convergence.  

5.3 Fully actuated control   

 

 ACO algorithms are compared to a traditioned fully actuated control strategy.  In 

is sometimes called the vehicle-interval method [9]. In this strategy the minimum and 

maximum green times, as well as an extension time are given.  

 First, the minimum green time is assigned to a set of movements. If another 

vehicle arrives on a green movement during the minimum green time, then the controller 

extends the green signal by the extension time. The controller continues to extend the 

green signal if new vehicles arrive until the maximum green time is reached. If no vehicle 

arrives on the movements during an extension period, then the controller checks for a 

vehicle in the queue of the red movements. If there is a vehicle, this movement is given 

the minimum green time; otherwise, the signal remains the same.  
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Chapter 6 Simulation Results 
 

 In this chapter, the results of different ant colony algorithms and parameter 

choices are presented and compared. First, converge rates of pheromone concentration to 

the optimal solution using different algorithms and parameters are examined. Then, the 

average vehicle delay of the Ant Colony control is compared with a traditional fully 

actuated control algorithm. Table 6-1 shows the traffic parameters in seconds used in 

simulations. The parameters were chosen consistent with literature [5]. 

Table 6-1. Traffic Simulation Parameters 

Parameter Value 

Minimum green time (s) 5 

Maximum green time (s) 30 

All red time (s) 2 

Minimum headway (s) 2 

Extension time (s) 1 

 

6.1 Convergence of pheromone levels to best solution 

 

An accurate way to determine how long an ACO algorithm typically takes to find 

the optimal solution is required to evaluate it. Because the algorithm uses a probabilistic 

search, the correct solution can be found on the first iteration or never. Fortunately, there 

are many methods to ensure the possibility of never finding the optimal solution is ruled 

out [6]. In order to estimate algorithm convergence rates, algorithms are tested on 

examples where the optimal solution has a priori been calculated. Then the pheromone 

concentration on the optimal path is recorded. Eventually the pheromone becomes so 

concentrated on a path that running further iterations does not change the pheromone 

levels. 
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To see the qualitative behavior of the pheromone convergence, a simple case is 

considered. Each movement of the intersection initially has zero vehicles in their queue. 

In this case, it is optimal to switch the signal after the minimum green time. The figures 

that follow show the percent of the total pheromone lying on the optimal signal setting. 

 For each choice of ant colony parameters, one hundred trials are run. In each trial, 

every edge of the ants’ graph begins with equal pheromone. During an iteration of the 

trial, every ant constructs a solution and accordingly makes a pheromone update. The 

pheromone level on the optimal phase is plotted after every iteration; showing how the 

pheromone concentrates on the correct phase. The pheromone convergence from each 

trial is plotted on the same graph. Then, the average over all trials is compared for 

different numbers of ants. In the cases where many of the trials choose the wrong signal 

switch times, the average gives a picture of what percentage of trials found the optimal 

solution.  

 The number of ants used in ACO is an important implementation issue. As little 

as one ant could be used, but this does not take full advantage of the algorithm. When 

more ants are used, more exploration is done during each iteration. As a result, more 

pheromone is released per iteration, decreasing the chance of biasing towards poor 

solutions. But, increasing the number of ants increases the computational work done per 

iteration. Additionally, the large amount of pheromone deposited does not allow 

significant bias towards one path. As a result, the pheromone levels change slower and it 

is difficult to tell when the optimal solution is found.  

 In the following simulations, the size of the local neighborhood is . 

Meaning, on a local search step, the solution search space is restricted to paths that are 
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distance four of less from the best so far solution. The local neighborhood of four is 

chosen because the typical wrong solution without the local search is within four of the 

optimal solution. The local search is performed every third iteration. ACO is pretty robust 

to how often the local search is performed, but being performed more often is preferable 

[6]. In formula (5.2), the heuristic weight function, the constant is . In formula (4.1), 

the exponents  and  are both 1, more explanation on the choices of , , and  are 

given in Section 6.9. In the elitist ant update, formula (4.6), the elitist weight is . 

The choice of the elitist weight should be on the same order of magnitude as the rest of 

the ants [6]. In the rank based system the top ten ants are used to update. The pheromone 

evaporation coefficients of  and  are compared. The number of ants used and 

iterations taken is shown in the graphs. The vehicle arrival rate is 800 vehicles per hour 

per movement.  

6.2  Ant System 

 

 First, the original ant system algorithm is examined with ten, twenty-five and fifty 

ants. As seen in the Figure 6.1-8, when only ten ants are used, the pheromone levels tend 

to concentrate faster. This accumulation is even more apparent if , when more 

pheromone is evaporated on each iteration, causing the pheromone levels converge faster. 

Unfortunately, most trials do not converge to the optimal solution.  

 As more ants are used the optimal path is chosen more often, but too many 

iterations are necessary and the number of trials that chose the optimal path is not 

sufficient. As a result more advanced algorithms must be used.  
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Figure 6-1. Ant System rate of convergence with 10 ants,  
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Figure 6-2. Ant System rate of convergence with 25 ants,  



 44 

0 20 40 60 80 100
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4
Rate of convergence with 50 ants

Number of iterations

N
o

rm
a

liz
e

d
 p

h
e

ro
m

o
n

e
 o

n
 o

p
tim

a
l 
p

a
th

 

Figure 6-3. Ant System rate of convergence with 50 ants,  
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Figure 6-4. Ant System average rate of convergence with  
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Figure 6-5. Ant System rate of convergence with 10 ants,  
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Figure 6-6. Ant System rate of convergence with 25 ants,  



 46 

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
Rate of convergence with 50 ants

Number of iterations

N
o

rm
a

liz
e

d
 p

h
e

ro
m

o
n

e
 o

n
 o

p
tim

a
l 
p

a
th

 

Figure 6-7. Ant System rate of convergence with 50 ants,  
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Figure 6-8. Ant System average rate of convergence with  
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6.3  Local search 

 

 As described in chapter five, adding a local search can improve convergence. 

Unfortunately, as shown in the figures below, when it is used alone it does not help. The 

following graphs behave very similarly to the graphs in Section 6.2. The pheromone 

addition on the local search step is not sufficient to create a significant bias towards an 

optimal solution. 
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Figure 6-9. Ant System with local search rate of convergence with 10 ants,  
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Figure 6-10. Ant System with local search rate of convergence with 25 ants,  
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Figure 6-11. Ant System with local search rate of convergence with 50 ants,  
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Figure 6-12. Ant System with local search average rate of convergence with   
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Figure 6-13. Ant System with local search rate of convergence with 10 ants,  
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Figure 6-14. Ant System with local search rate of convergence with 25 ants,  
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Figure 6-15. Ant System with local search rate of convergence with 50 ants,  



 51 

0 20 40 60 80 100
0.03

0.04

0.05

0.06

0.07

0.08
Average rate of convergence 

Number of iterations

N
o

rm
a

liz
e

d
 p

h
e

ro
m

o
n

e
 o

n
 o

p
ti
m

a
l p

a
th

 

 

10 Ants

25 Ants

50 Ants

 

Figure 6-16. Ant System with local search average rate of convergence with  

  

6.4  Elitist Ant System 

  

 To improve the speed of convergence, the best-so-far path is weighted heavier in 

the Elitist Ant System. If bad solutions are chosen at the beginning too often, they will 

get too much pheromone and cause pheromone to concentrate on the wrong path. 

Alternatively, if the optimal solution is chosen, then convergence will be faster. The 

speed of convergence is very dependant on pheromone evaporation. Using more ants 

reduces the effects the elitist update. The pheromone concentrates slower on bad paths, 

but also does not indicate as fast when a good solution is found. Additionally, the number 

of ants required to offset bad updates from the elitist ant is too large.  



 52 

 When ,  the average over all iterations looks similar for the different 

number of ants. In the cases with fewer ants, there is a smaller chance of choosing the 

optimal solution, but if the correct solution is found convergence is faster. On the other 

hand, when more ants are used the pheromone concentrates slower, even after the optimal 

solution is found.  

 When  and only ten ants are used, the optimal solution is not found early 

very often and evaporation occurs rapidly. As a result, the optimal solution is not found 

very frequently. 
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Figure 6-17. Elitist Ant System rate of convergence with 10 ants,  
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Figure 6-18. Elitist Ant System rate of convergence with 25 ants,  
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Figure 6-19. Elitist Ant System rate of convergence with 50 ants,  
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Figure 6-20. Elitist Ant System average rate of convergence with  
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Figure 6-21. Elitist Ant System rate of convergence with 10 ants,  
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Figure 6-22. Elitist Ant System rate of convergence with 25 ants,  
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Figure 6-23. Elitist Ant System rate of convergence with 50 ants,  
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Figure 6-24. Elitist Ant System average rate of convergence with  

 

6.5  Elitist Ant System with local search 

  

 When the Elitist ant system is used, the local search helps to find the best path and 

the elitist ant will update this path more often. The local search was performed every 

three iterations. In the figures below, the pheromone levels can increase significantly on 

multiples of three, because the optimal setting has been found and then the elitist ant 

updates this path on each iteration. Fewer ants can be used and still guarantee 

convergence to the optimal path. In these situations, using ten ants is sufficient most of 

the time, but there are too many trials where the optimal path is found later in the 

simulations. When the local search is used, the probability of not finding the optimal 

solution decreases significantly. As a result, the use of less pheromone evaporation is not 
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needed to reduce the probability of bad convergence. The slower evaporation only slows 

convergence without significant advantages. 
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Figure 6-25. Elitist Ant System with local search rate of convergence with 10 ants,  
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Figure 6-26. Elitist Ant System with local search rate of convergence with 25 ants,  
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Figure 6-27. Elitist Ant System with local search rate of convergence with 50 ants,  
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Figure 6-28. Elitist Ant System with local search average rate of convergence with  
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Figure 6-29. Elitist Ant System with local search rate of convergence with 10 ants,  
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Figure 6-30. Elitist Ant System with local search rate of convergence with 25 ants,  
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Figure 6-31. Elitist Ant System with local search rate of convergence with 50 ants,  
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Figure 6-32. Elitist Ant System with local search average rate of convergence with  

 

6.6 Heuristic Information 

  

 By adding the heuristic in formula (5.2) convergence to the optimal is even faster 

and 10 ants are sufficient for simulations. Once again, evaporating pheromone slower is 

not needed to find the correct solution; it only makes the convergence slower. 
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Figure 6-33. Elitist Ant System with local search and heuristics rate of convergence with 10 ants, 
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Figure 6-34. Elitist Ant System with local search and heuristics rate of convergence with 25 ants, 
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Figure 6-35. Elitist Ant System with local search and heuristics rate of convergence with 50 ants, 
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Figure 6-36. Elitist Ant System with local search and heuristics average rate of convergence with 
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Figure 6-37. Elitist Ant System with local search and heuristics rate of convergence with 10 ants, 
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Figure 6-38. Elitist Ant System with local search and heuristics rate of convergence with 25 ants, 

 



 65 

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Rate of convergence with 50 ants

Number of iterations

N
o

rm
a

liz
e

d
 p

h
e

ro
m

o
n

e
 o

n
 o

p
tim

a
l p

a
th

 

Figure 6-39. Elitist Ant System with local search and heuristics rate of convergence with 50 ants, 
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Figure 6-40. Elitist Ant System with local search and heuristics average rate of convergence with 
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6.7 Rank-based Ant System 

 

 To achieve the fastest rates of convergence, ants’ solutions are ranked and the 

solutions with the highest cost function are discarded. Once the optimal solution is found 

pheromone accumulates more rapidly, because the best solutions are weighted heavier 

and the bad solutions are ignored. The rank-based ant system works the best and requires 

the fewest ants. As a result, it is used in simulations to test the effectiveness of ACO 

control.   

 The evaporation step is used to eliminate pheromone on bad solutions. But, the 

rank based update gives less weight to less optimal solutions[6]. As a result, pheromone 

evaporation is slower.  
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Figure 6-41. Rank-based Ant System with local search and heuristics rate of convergence with 10 

ants,   
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Figure 6-42. Rank-based Ant System with local search and heuristics rate of convergence with 25 

ants,  
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Figure 6-43. Rank-based Ant System with local search and heuristics rate of convergence with 50 

ants,  
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Figure 6-44. Rank-based Ant System with local search and heuristics average rate of convergence 

with  
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Figure 6-45. Rank-based Ant System with local search and heuristics rate of convergence with 10 

ants,  
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Figure 6-46. Rank-based Ant System with local search and heuristics rate of convergence with 25 

ants,  
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Figure 6-47. Rank-based Ant System with local search and heuristics rate of convergence with 50 

ants,  
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Figure 6-48. Rank-based Ant System with local search and heuristics average rate of convergence 

with  

 

6.8 Pheromone convergence during traffic simulations 

 

 The convergence rates in the simple problem when the queue begins empty 

between the elitist ACO and the rank based method when both use local search and 

heuristic information are similar. But when running in a traffic simulation, the elitist 

doesn’t converge as fast, and pheromone levels can get stuck, so the solution never 

converges. Figure 6-49 shows the convergence levels of pheromone during a 20 minute 

simulation with a traffic volume of eight hundred fifty vehicles per hour per movement. 

The elitist ant system is used with local search and heuristic weight. Ten ants are used 

and pheromone evaporation, .  If the weight of the elitist ant is increased then full 

convergence occurs more often, but suboptimal solutions can be weighted too heavily, 
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causing pheromone to concentrate on them. As a result, many iterations of the local 

search are required to find the optimal solution. 
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Figure 6-49. Convergence rates during traffic simulation using Elitist ACO with local search 

 

 In the rank based method, the same qualitative behavior shown in the figures of 

this chapter is seen in the convergence during a traffic simulation. Figure 6-50 shows the 

convergence levels of pheromone during a 20 minute simulation with a traffic volume of 

eight hundred fifty vehicles per hour per movement. The rank-based ant system is used 

with local search and heuristic weight. Ten ants are used and pheromone evaporation, 

.  
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Figure 6-50. Convergence rates during traffic simulation using Rank-based ACO 

 

6.9 Choice of parameters  and  

  

 Proper choice of parameter ACO leads to faster and more accurate convergence of 

the artificial ant’s pheromone. One important parameter choice is the weight  and , of 

the pheromone levels and heuristic information respectively, in the ant solution 

construction step. The heuristic weight function is an exponential, so the weight  and 

the heuristic scaling  are interchangeable. Observe that 

. For this reason,  is fixed at 
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one and  is varied. The following figures show the effects of bad parameter choices in 

the rank-based ant system with local search and heuristic weight. 

 The values of  and  are between 0 and 1, so exponentiating them by a parameter 

less than one increases smaller values more than larger ones. The extra weight to 

suboptimal solutions reduces the effects of the pheromone evaporation. Ants choose the 

suboptimal routes more often, so the pheromone does not fully evaporate. Several 

different paths are selected and updated with pheromone on each iteration, so pheromone 

does not completely converge to the optimal solution. Figure 6-51 shows pheromone 

convergence with , and Figure 6-52 shows pheromone convergence with . 

 Conversely, if  is too large then solutions are weighted to heavily and less 

exploration is done. The solutions chosen early are updated heavily and many iterations 

of the local search are required to find the optimal solution, if it is found at all. Figure 

6-53 shows pheromone convergence with , note that the pheromone often takes 

many more iterations before it begins to concentrate. If  is too small then the heuristic 

information is considered to strongly. If the optimal solution is not being weighted 

heaviest by the heuristic information then and pheromone might not fully converge. The 

extra weighting of the heuristic information causes the ants to choose this solution more 

often; since it is close to optimal it receives large updates. The feedback is too large and 

pheromone never disappears on a suboptimal path. Figure 6-54 shows pheromone 

convergence with . 
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Figure 6-51. Pheromone convergence with  
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Figure 6-52. Pheromone convergence with  
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Figure 6-53. Pheromone convergence with  
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Figure 6-54. Pheromone convergence with  
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6.10 Average delay 

  

 In this section, the control strategy of the ACO is compared with the traditional 

fully actuated controller, described in Chapter 5. The traffic simulation is run for ten 

minutes; allowing traffic to reach a steady state and reduce the effects of initial conditions. 

Then, the delay of each vehicle is recorded for the next ten minutes. A vehicle’s delay is 

defined to be its departure time minus its arrival time. At the end of each trial, the 

average delay over the second ten minute period is recorded. The average delay is  

  (6.1) 

where  and  is the arrival time and departure time of the  vehicle, respectively. 

The sum is taken over all vehicles that arrive in the second ten minute interval, and  is 

the total number of arrivals during this interval. All delays are record in seconds. The 

ACO algorithm and the Fully Actuated control were run on forty sets of vehicle arrival 

data. The table of the average delay time in each trial is given in Appendix A. The time 

resolution of the simulations is .01 seconds.  

 In low traffic flows the fully actuated controller performs better. When the traffic 

flow is less than six hundred vehicles per hour per movement, the expected vehicle inter-

arrival time is greater than six seconds. The minimum green time is five seconds and with 

the two second all red time, so the minimum time between a phase transition is seven 

seconds. The probability of a vehicle arriving during a red signal is small but cannot be 

ignored. The fully actuated controller is better suited for this situation because it waits for 

a vehicle on red to arrive before changing.  
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 Once traffic flow is larger than six hundred vehicles per hour per movement, the 

number of vehicles that arrive per red signal is frequently greater than one. With the 

higher arrival rates the red movements need to be considered when creating traffic 

control signals. The fully actuated controller gives too much preference to the green 

direction. On the other hand, the objective function of the rolling horizon control takes all 

movements into account.  

 Figure 6-55 plots the average vehicle delay of each control strategy over all trials.  

As traffic approaches saturation, the average delay for the fully actuated control increases 

much faster than in ACO control. Figure 6-56 shows the minimum and maximum 

average wait times from a trial. As a second performance measure, the average queue 

lengths from each control strategy are compared. In Figure 6-57 the average queue 

lengths are shown. They behave similarly to the average delays, with the queue lengths 

growing much faster in fully actuated control as the arrival rate approaches saturation. 

Figure 6-58 shows the longest average queue length from a trial. 

 The ant colony simulations run an order of magnitude faster than real-time, so 

they can be effectively implemented in real time systems. The rank-based ant system 

using local search, elitist ant, heuristic weights and ten ants takes eight minutes to run 

twenty minutes of simulation. 
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Figure 6-55. Average delay 
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Figure 6-56. Upper and lower bounds on average vehicle delay 
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Figure 6-57. Average Queue Length 
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Chapter 7 Conclusions and Future Works 
 

 Effective traffic signal control is the most efficient way to manage traffic flows. 

Good traffic management reduces user delay, fuel consumption and leads to less network 

congestion. Because traffic flows are nonlinear and stochastic, there are many difficulties 

in creating good traffic signal policy. Control strategies must be responsive to 

fluctuations in traffic flow that can occur on short time scales. Additionally, longer time 

scales must be considered to reach global optimality.  

 In this thesis, ant colony optimization is used in the control of traffic signals. 

ACO has successfully been applied to many combinatorial optimization problems. The 

probabilistic searches of ant colony algorithms work well with the stochastic nature of 

traffic flows. Ant colony optimization handles nonlinearities and non-differentiability of 

objective functions. Additionally, it is successfully applied to the effective rolling horizon 

control technique.  

 The use of ant colony optimization in traffic control outperforms traditional fully 

actuated control in high traffic demand and warrants further evaluation on more complex 

signal systems. In computer simulations, the ACO runs faster than real time, making it a 

viable option in real time control. With the addition of heuristic information and rank-

based ant updates the optimal solution is found quickly. Once the optimal solution is 

found, pheromone accumulates quickly. 

 In addition to evaluating the average delay of vehicles, the convergence rates and 

accuracy of various ACO methods is evaluated. For the traffic signal problem, the Elitist 

ant system performs well. The addition of a local search helps pheromone to converge to 

the optimal solution. Including heuristic information from the queue length increases the 
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convergence speed. Once the rank based pheromone update is added pheromone 

accumulates on the optimal solution very quickly once it is found.  

 The results on a single intersection warrant further research on more complicated 

systems. Isolated intersections can be made more complex by adding turning lanes. When 

turning lanes are added the signal control follows an eight phase dual ring sequence [5]. 

So a full signal cycle also considers green phases for the turning lanes. This control is 

more complex because not only are the phase lengths chosen but the order of the phases 

is also determined. The addition of an eight phase signal makes the graph ants transverse 

larger. At each node an ant decides which phase comes next and how long the phase 

should be.   

 The next step is a five intersection network with a central intersection and four 

surrounding intersections. Utilizing a decentralized control strategy, each intersection has 

a graph of candidate signal cycles for the ants to traverse. Intersections have internal 

movements that receive vehicles from other intersections. Traffic from adjacent 

intersections do not arrive according to a Poisson distribution, but would follow 

Robertson’s platoon flows. Each intersection communicates with other intersections, 

sending traffic data and arrival rates. The rolling horizon at each intersection is long 

enough to utilize all available information from neighboring intersections. 
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Appendix A Table of wait times 
  

 The following tables show the average vehicle delay in the ACO and Fully-

Actuated control. The first row gives the vehicle arrival rate in vehicles per hour per 

movement. The rest of the columns give the average vehicle delay during each trial. 

Table A-1. ACO Control average vehicle delays 

400 450 500 550 600 650 700 750 800 850 

3.60 3.79 3.72 3.61 4.19 5.13 5.44 5.73 6.81 8.62 

3.75 3.55 4.01 3.87 4.53 4.54 5.03 6.77 7.47 10.50 

3.61 4.16 3.81 4.24 4.17 4.97 5.15 6.41 7.57 8.96 

3.39 3.39 3.91 4.31 4.22 4.60 5.64 6.70 6.60 11.20 

3.65 3.82 3.80 4.43 4.38 5.21 5.01 5.89 6.53 8.01 

4.05 3.15 3.96 4.00 4.18 4.49 5.25 6.23 8.92 11.09 

3.31 3.88 3.68 4.12 4.30 4.57 5.73 5.45 7.18 13.39 

3.47 3.48 3.51 4.22 4.07 4.99 5.05 5.57 7.87 9.54 

3.06 3.22 3.92 3.60 4.13 4.46 4.40 5.92 8.13 7.46 

3.20 3.74 3.76 4.20 4.41 4.57 5.09 5.58 6.84 9.68 

3.24 3.63 3.84 3.85 3.99 5.06 5.08 5.21 7.00 12.98 

3.48 3.59 4.25 4.03 4.27 4.65 4.77 6.28 7.34 11.02 

2.94 3.68 3.54 3.58 5.06 4.96 5.42 6.15 6.49 10.10 

3.41 3.41 3.81 4.04 4.29 4.63 5.48 6.95 7.61 8.18 

4.08 3.34 3.90 4.06 4.00 4.96 6.27 5.45 6.85 10.43 

3.90 3.37 4.35 3.95 3.94 4.92 5.13 4.97 6.70 8.88 

3.70 3.59 3.74 4.09 4.60 5.63 4.85 6.10 7.77 10.51 

3.73 3.88 3.96 3.71 4.85 5.16 5.80 5.87 8.44 15.89 

3.25 3.49 3.53 4.42 4.20 5.88 4.97 5.50 7.82 9.02 

3.57 3.71 3.88 3.85 4.52 4.60 4.68 5.90 6.92 10.74 

3.77 3.73 3.81 4.27 3.86 4.73 6.28 6.77 6.82 9.65 

3.48 3.39 3.70 4.03 4.34 4.78 6.00 5.79 6.99 8.22 

3.62 3.70 3.44 3.91 4.02 4.19 4.83 5.38 #### 9.24 

3.40 3.83 3.84 4.41 4.38 4.60 5.38 5.77 6.97 8.58 

3.51 3.48 3.90 4.01 4.38 4.86 4.82 5.72 7.90 10.27 

3.50 3.23 3.66 4.09 4.51 4.86 5.40 5.60 6.68 9.18 

3.32 3.99 4.10 4.16 4.22 4.25 5.38 6.13 6.83 13.16 

3.76 3.60 3.57 4.30 4.85 4.48 4.86 5.24 6.92 12.03 
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3.82 3.46 3.92 3.90 4.64 4.28 5.89 5.39 7.85 8.58 

3.07 3.58 3.83 4.04 4.29 5.06 5.77 5.17 6.79 7.74 

3.48 3.41 3.83 3.77 4.35 4.95 5.17 5.57 7.29 9.34 

3.81 3.41 3.78 4.01 4.59 4.54 4.82 7.04 6.27 8.57 

3.41 3.54 3.92 3.98 4.45 4.57 6.02 5.56 7.80 12.73 

3.71 3.51 4.12 4.20 4.18 4.00 5.33 5.51 6.77 9.89 

3.51 3.55 3.26 3.82 4.53 4.41 4.98 5.94 7.82 10.77 

3.77 3.76 3.73 4.30 4.54 4.92 5.03 5.56 8.21 10.64 

3.45 3.51 3.91 4.14 4.03 5.09 5.84 5.77 6.42 9.78 

3.43 3.99 3.63 4.06 4.24 4.76 5.78 7.75 8.41 10.10 

3.49 3.40 3.76 3.77 4.70 4.94 5.15 6.11 7.07 10.30 

3.28 3.29 3.72 4.11 4.04 5.03 4.97 5.24 8.01 10.46 

 

Table A-2. Fully Actuated Control average vehicle delays 

400 450 500 550 600 650 700 750 800 850 

2.87 2.62 2.82 3.27 3.78 5.75 9 7.36 13.5 17.55 

3.08 2.97 3.28 3.74 4.35 4.67 4.68 12.6 11.9 19.02 

2.54 3.12 3.43 2.94 3.93 5.41 6.82 10.1 15.8 17.09 

2.65 2.85 3.19 3.77 3.43 4.75 8.3 10.8 9.88 19.05 

2.48 2.39 3.73 3.93 3.47 5.89 5.73 8.84 10.9 14.09 

2.9 2.86 2.93 3.27 3.75 4.27 5.55 13.3 14.3 20.53 

2.58 2.73 2.94 3.27 3.82 4.48 7.31 7.64 10.3 22.93 

2.83 2.55 2.92 3.85 4.32 4.08 6.03 8.75 10.6 17.02 

2.56 2.65 3.52 3.47 3.78 4.63 5.96 7.02 12.3 14.81 

2.52 2.9 2.94 3.74 4.28 4.83 5.58 6.89 10.6 18.75 

2.55 2.75 2.98 3.48 3.48 4.9 4.75 9.13 13.6 21.13 

2.78 2.59 3.04 3.55 4.05 4.89 6.2 10.5 13.6 21.37 

2.53 2.76 3.28 3.89 4.06 4.66 6.18 8.81 11.6 16.2 

2.28 2.69 3.08 3.74 3.78 6.03 8.11 9.41 13.6 16.77 

2.54 2.68 3.07 4 3.77 5.49 7.9 7.83 9.83 20.28 

2.93 2.92 3.23 3.22 3.45 5.66 6.62 7.33 11.4 16.06 

2.64 2.66 2.96 3.86 4.24 5.21 7.19 13.2 12.8 20.62 

2.51 2.94 3.06 3.19 4.02 5.51 6.09 7.27 16.1 23.32 

2.75 2.95 2.7 4.52 3.59 6.47 8.37 6.27 14.1 17.57 

2.37 2.9 3.12 2.76 3.94 5.29 5.84 7.88 15.3 18.87 

2.45 2.96 3.17 3.54 3.24 5.11 6.09 11.6 13.1 17.93 

2.49 2.6 3.01 3.94 3.96 4.88 8.1 8.28 13.2 16.84 

2.49 2.76 3.08 3.81 3.8 4.12 5.03 7.42 14.6 16.9 
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2.45 2.73 3.07 3.17 4 4.92 4.66 10.6 14.7 15.2 

2.41 2.79 3 3.88 4.16 4.73 8.29 7.79 14.2 19.92 

2.62 2.76 3.42 3.75 3.9 6.08 6.35 8.64 13.9 15.8 

2.2 3.16 3.37 3.81 4.14 3.68 5.6 8.61 12.9 20.51 

2.74 2.82 3.41 3.15 4.54 4.98 5.98 6.4 10.9 26.17 

2.46 2.65 3.48 3.52 3.6 5.8 6.97 8.35 17.1 17.72 

2.67 3.01 3.14 3.56 3.92 4.59 6.53 7.49 10.6 15.52 

2.27 2.98 3.26 4.38 3.85 5.56 7.12 7.29 15.2 18.03 

2.13 2.75 3.26 3.01 4.46 6.24 6.59 11.6 13 15.75 

2.34 2.59 2.77 3.15 4.5 4.95 9.45 9.13 16.2 23.24 

2.63 2.79 3.34 3.58 4.16 4.17 7.07 9.66 8.89 18.35 

2.27 3 3.02 3.05 3.76 5.3 5.63 11 14.6 18.64 

2.55 3.02 2.92 3.25 4.02 5.29 6.12 9.66 16.6 19.55 

2.52 2.53 2.98 3.52 3.63 5.48 6.77 8.87 12.9 18.33 

2.49 2.74 3.51 3.53 3.62 5.87 5.26 11.7 15.2 18.26 

2.49 2.87 2.84 3.26 4.33 5.48 5.58 8.56 11.7 19.89 

2.41 3.13 2.58 3.5 4.18 5.8 6.26 6.97 16.5 19.55 
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Appendix B Matlab Code 
 
%%start.m 

 
global volume headway redtime; 
volume=800;                     %Vehicles per hour 
headway=2;                      %Spacing between cars on internal  

            %movements 
redtime =2;                     %All red time for intersections 

  
NumCars=fix(volume*.5);         %Number of cars generated in each  

      %direction 
gencar()     %Generate vehicles 

 

 
%%gencar.m      
 

%outputs NumCars number of cars with shifted exponential distribution 

  
%first generate spacing between cars   
arrival = headway - (3600/volume -headway)*log(rand(4,NumCars)); 

  
%add spacing to get arrival times 
for j = 2:NumCars 
     arrival(1:4,j)= arrival(1:4,j-1)+arrival(1:4,j); 
end 

                                    
  

 

%%inctime.m 

 
%Traffic flow is simulated and control signals generated 
%Time is incremented to the next signal choice, once the optimal signal 

is 
%found 
%ACO parameters 
iterations=75;          %Number of iterations before choosing a switch  

     %time 
numants=10;             %number of ants used 
evaporation =.8;        %pheromone evaporation rate 
local=1;                %1 if local search is to be used, 0 otherwise 
locstep = 5;            %How often local search is performed 
localneighbor=4;        %Size of local search neighborhood 
heur=1;                 %1 if heuristic information is to be used, 0  

     %otherwise 
elitist =1;             %1 if elitist ant is to be used, 0 otherwise 
rank =1;   %1 if rank-based update is to be used, 0   

     %otherwise 
N=10;                           %number of ants used in rank-based 
totalsig = zeros(1,400);        %array containing signal switch times 
totalqueue = zeros(4,400);      %array containing queue on each   

      %movement at switch times 
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await=zeros(4,NumCars);         %array containing delay of each   

      %vehicle 

  
t=0;                            %start time 
initial = zeros(4,1);           %number of cars in each direction at  

      %start of each phase 
totalsig(1) = t;                %totalsig is vector of switching times 
totalqueue(:,1)=initial;        %Array of queue length at each change 

        % in each direction 
totalwait=zeros(4,1);           %Array of vehicle wait times 
green = [1,0,1,0]';             %1 if green on a movement otherwise 0 
next=ones(4,1);                 %Index of next arrival 
l = volume/3600;                %lambda, vehicle arrival rate 
inc=1;                          %Number of signal transitions 
currentwait=zeros(4,1);         %The current wait of vehicles waiting 

             % at the queue 
cycle = zeros(4,1); 

  

  
while t<min(arrival(:,size(arrival,2)))-200  %Loops until stopping time 

  
    greendir= mod(green(1)+1,2)+1;   %1 if movement 1 is green,   

       %otherwise 2 
    reddir= mod(greendir,2)+1;       %1 if movement 1 is red ,   

       %otherwise 2 

     

  
    ACO()                            %run ACO to find optimal   

       %signal 

  
    ccc = [t1,t2,t3]; 
    sigset(1) = t; 
    sigset(2) = sigset(1)+gsetting(1);   
    sigset(3) = sigset(2)+gsetting(2); 

    

  

     
    movecars()      %The chosen path is evaluated and vehicle’s wait  

    time is computed 

    

  

     
    t = sigset(2);      %Advance time to next signal change 

  
    green=~green;         %switch green to other direction  
    totalsig(inc) =  t;      %keep track of signal 
    totalqueue(:,inc)=initial;   %keep track of queue lengths 
    inc=inc+1; 

  

     
end 
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%%ACO.m 
 

%Pheromone levels are initialized, then ants construct new solutions on 

%each iteration 

 
prob = cat(3,cat(1,ones(1,26),zeros(25,26)),ones(26,26,1));  
prob2=prob;             %prob2 used with heuristic 

  
%prob is a 3-d array consisting of 2, 26 by 26 matrices, dimension. The  
%matrix in the first slot is for the next time change and 
%the matrix in the second slot is for the time change after that. The 
%ij-th slot of the 2nd matrix gives the probability of an ant moving 

%from time t+i to time t+i+j  
%It is updated after each iteration 

  
weight = 1:26; 
weight = exp(-abs(weight -  (max(green.*initial)*2 - 2)+6)/5);   

%Weight is used for heuristic information          

  
gminwait=10000;  

  
for iteration = 1:iterations       %based on ants 

     

     
        updatepher()        %Ants create solution and find optimal path 

       

  
end 

 

%%updatepher.m         
 

% At each iteration ants create and evaluate candidate solutions, here 
% they deposit pheromone, based on ACO parameters, and pheromone is 
% evaporated. 

  
minwait=10000; 
if local == 1 && mod(iteration,locstep )==0    %Do local search on 5th  

         %iteration 

        
        locmin(1)=max(1,gsetting(1)-6-localneighbor); 
        locmax(1)=min(26,gsetting(1)-6+localneighbor); 
        locmin(2)=max(1,gsetting(2)-6-localneighbor); 
        locmax(2)=min(26,gsetting(2)-6+localneighbor);         

         

         
locprob = {ones(1,locmax(1)-locmin(1)+1),ones(locmax(1)... 

locmin(1)+1,locmax(2)-locmin(2)+1)}; 

  

  
optcen() 
        antwait =waittime;              %waittime of each ant 
        aset = setting;                 %signal setting of each ant  
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        for a = 2:numants               %Number of ants 
            optcen()                   %calc waittime for each ant 
            antwait = [antwait ;waittime];           
            aset = [aset; setting];                     
        end 

         

        
else 
        optcen2() 
        antwait =waittime;              %wait time of each ant 
        aset = setting;                 %signal setting of each ant  
        for a = 2:numants               %Number of ants 
            optcen2()                   %calc wait time for each ant 
            antwait = [antwait ;waittime];           
            aset = [aset; setting];                     
        end 
end 

  
%Ranking 

  
sorted = sortrows([antwait,aset]); 
aset = sorted(:,2:3); 

  
if minwait < gminwait        %Pick best solution so far 
    gminwait = minwait; 
    goptsig = optsig; 
    gsetting = [goptsig(2)-goptsig(1),goptsig(3)-goptsig(2)] ; 
end 

  
if ~(mod(iteration, localneighbor )==0 && local ==1)  %If not using       
   %local search or not local search step  

  
    prob = evaporation*prob;             %Evaporation of pheromone 

  
    if rank == 1 

     
    for r = 1:size(aset,1) 
        for s = 1:size(aset,2)    %Add weight to best solution of last  

       %group 

  
            if s ==1 
                prob(1,aset(r,s)-4-2,s) = prob(1, aset(r,s)-4-2, s)... 

+(max(0,(N-r))/(antwait(r))); 
            else 
                prob(aset(r,s-1)-4-2,aset(r,s)-4-2,s)=... 

prob(aset(r,s-1)-4-2,aset(r,s)-4-2,s)+(max(0,(N-r))/(antwait(r))); 
            end 
        end 
    end 

         

         
    else 
        for r = 1:size(aset,1) 
            for s = 1:size(aset,2)    %Deposit pheromone on paths 
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                if s ==1 
                    prob(1,aset(r,s)-4-2,s) = ... 

prob(1, aset(r,s)-4-2, s) +(1/antwait(r)); 
                else 
                    prob(aset(r,s-1)-4-2,aset(r,s)-4-2,s)=... 

prob(aset(r,s-1)-4-2,aset(r,s)-4-2,s)+(1/antwait(r)); 
                end 
            end 
        end 
    end 

  

 
    if elitist ==1                  %add elitist ant's pheromone   

      %deposit 
        prob(1,gsetting(1)-4-2,1) = prob(1,gsetting(1)-4-2,1) +... 

(10)/ gminwait ; 
        prob(gsetting(1)-4-2,gsetting(2)-4-2,2) = ... 

prob(gsetting(1)-4-2,gsetting(2)-4-2,2) +10/ gminwait ; 
    end 

  
    if heur==1                      %include heuristics  
    prob2 = cat(3,cat(1,prob(1,:,1).*weight,zeros(25,26)),prob(:,:,2)); 
    else 
        prob2=prob; 
    end 

  
end 

 

optcen.m 
 

%Each ant creates a candidate solution randomly based on pheromone 

%deposits and then the expected delay is computed to evaluate the 

%solution 
%This is used on local search step 

  

  
global volume; 

  

  
   %Randomly pick next solution based on pheromone   
   sumprob1 = sum(locprob{1},2); 

  
   sumprob2 = sum(locprob{2},2) ; 

    

    
   sumprob = {sumprob1,sumprob2}; 

     
s=1;j=1;offset=0; 
setting=zeros(1,2); 
signal=zeros(2,1); 

  
while s < 3 
signal(s)=rand*sumprob{s}(j) ;   %Choose signal switch times based on  
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                                 %pheromone  

     
    i =1; 
        while signal(s) > sum(locprob{s}(j+offset,1:i)) %pick the  

          %signal  
            i = i+1; 
        end 

  
        j=i-locmin(s)+1; 
        j=1; 

  
        setting(s)=i+3+locmin(s)+redtime; 

  
    s = s+1; 
end 
                 %sigset is the next two switch times 
                 %setting is length of next two phases 

  

  

  
sigset = [t]; 

  
t1= initial; 

  
for i = 1:size(setting,2) 
   sigset =  cat(2, sigset, sigset(i)+setting(i)); 
end 

  
%t1 is vehicles in queue initially 
%t2 is expected number of vehicles in queue at next signal change 
%t3 is expected number of vehicles in queue at second signal change 

   
%On green movements 
t2 = green.*max(0 , t1 - floor((setting(1)-redtime)/headway +1)+... 
    volume/3600* min(headway*(t1-1)/(1-

(volume/3600)*headway),setting(1))); 
%On red movements 
t2 = t2 + ~green.*(t1+volume/3600*setting(1)); 

  

  
t3 = ~green.*max(0 , t2 - floor((setting(2)-redtime)/headway +1)+... 
    volume/3600* min(headway*(t2-1)/(1-

(volume/3600)*headway),setting(2))); 
t3 = t3 + green.*(t2+volume/3600*setting(2)); 

  
compwait()        %Compute wait time of signal choice 

  

  
if waittime < minwait 
    minwait = waittime; 
    optsig = sigset; 
    optsetting = setting; 
end 
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optcen2.m 
 
%Each ant creates a candidate solution randomly based on pheromone 

%deposits 
%and then the expected delay is computed to evaluate the solution 
%This is used when not using local search 

    
sumprob = sum(prob2,2);   %Randomly pick next solution based on   

     %pheromone          
s=1;j=1; setting=zeros(1,2); 
signal=zeros(2,1); 
while s < 3 
signal(s)=rand*sumprob(j,1,s) ;   %Choose signal switch times based on  
                                %pheromone  
    i = 1; 
    sp = prob2(j,1:i,s); 

         
        while signal(s) > sp %pick the signal  
        i = i+1; 
        sp = sp + prob2(j,i,s); 
        end 

         
        j=i; 
        setting(s)=i+4+redtime; 
    s = s+1; 
end 
                 %sigset is the next two switch times 
                 %setting is length of next two phases 
sigset = t; 

  
t1= initial; 

  
for i = 1:size(setting,2) 
   sigset =  [ sigset, sigset(i)+setting(i)]; 
end 

  
%On green movements 
t2 = green.*max(0 , t1 - floor((setting(1)-redtime)/headway +1)+... 
    volume/3600* min(headway*(t1-1)/(1-

(volume/3600)*headway),setting(1))); 
%On red movements 
t2 = t2 + ~green.*(t1+volume/3600*setting(1)); 

  
t3 = ~green.*max(0 , t2 - floor((setting(2)-redtime)/headway +1)+... 
    volume/3600* min(headway*(t2-1)/(1-

(volume/3600)*headway),setting(2))); 
t3 = t3 + green.*(t2+volume/3600*setting(2)); 

  
compwait()   %Compute expected wait time of signal 
if waittime < minwait 
    minwait = waittime; 
    optsig = sigset; 
    optsetting = setting; 
end 
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%%Compwait.m 

 
%Computes the expected wait time of a signal 

   
cycle = zeros(4,1); 

  
%computes lower bound on extra wait time 
M = 30/headway+1-30*volume/3600; 
q= t3 +(~green)*7*volume/3600; 
for k =1:4 
    while t3(k) > M - (~green(k))*7*volume/3600 + cycle(k)*... 

(M - 7*volume/3600) &&cycle(k) <5 
        cycle(k) = cycle(k) +1; 
        q(k) = t3(k) -(M - (~green(k))*7*volume/3600 + (cycle(k)-1)*... 

(M - 7*volume/3600)); 
        if cycle(k) == 5 && iteration ==70 
            t 
        end 
    end 
end 
  

%compute initial vehicles released, new arrivals released and not 

%released 
initrel = green.* min(1 +  fix((setting(1)-redtime)/headway),t1)+... 
~green.* min(1 +  fix((setting(2)-redtime)/headway),t2); 
newrel = green.*max(0,min(1+fix((setting(1)-redtime)/headway)-t1,... 
    l * (t1-1)*headway/(1- l * headway)))+... 
~green.*max(0,min(1+fix((setting(2)-redtime)/headway)-t2,... 
    l * (t2-1)*headway/(1- l * headway))); 

  
notrel = green.*(t1 - initrel)+... 
    ~green.*(t2-initrel); 

  

  
%compute wait time of each group of vehicles 

inwait = initrel.*(initrel-1)*headway/2; 
newwait = green.*newrel*headway.*(t1+1)/2+... 
    ~green.*newrel*headway.*(t2+1)/2; 
notrwait = green.*notrel*setting(1)+... 
    ~green.*notrel*setting(2); 
nnrwait = green.*max(0,l* (setting(1)-redtime- newrel*headway).^2/2.*... 
    sign(((t1-1)*headway)/(1-l * headway)-setting(1)+redtime))+... 
    ~green.*max(0,l* (setting(2)-redtime- newrel*headway).^2/2.*... 
    sign(((t2-1)*headway)/(1-l * headway)-setting(2)+redtime)); 

  
new = green.*max(0,l * q*headway/(1- l * headway)); 
wait3 = (~green).*t3*(5+2)+... 
cycle*(30+5+2)^2*l/2+M*(M-1)/2.*cycle+... %wait time from uncleared  

        %cycles 
    max(0,q.*(q-1)*headway/2) +...       %cars at beginning of final  

        %cycle 
    new*headway.*(q+1)/2;         %cars  
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redwait = (green).*(t2*setting(2) +... 
    (volume/3600).*(setting(2).^2)/2 )+... 
(~green).*(t1*setting(1) +... 
    (volume/3600).*(setting(1).^2)/2 ); 
  

%Total expected wait time 

wait = inwait+newwait+notrwait+nnrwait+wait3+redwait+currentwait; 
 

%Average expected wait time 
waittime =(sum(wait))/((sigset(3)-sigset(1))*volume/900+sum(initial)); 

  

%%Movecars.m 

 

 
%Move cars according to the optimal control 

  
setting = sigset(2)-sigset(1); 
queue =initial;              

  
for k =greendir:2:greendir+2        %clear green cars on green   

       %movements 
    m=next(k); n=0;       
    for j=0:initial(k)-1            %loop through vehicles in queue to  

      %determine if relased or not 

  
        if headway* j <=setting(1)-redtime   %Vehicle relased 
            await(k,m+j)=await(k,m+j)+headway*(j); 
            n=n+1; 
        end 

         
    end 

  
    m=m+n; 

     
    next(k)=m;               %next is now the index of the next vehicle 

     %to be released 

  
    initial(k)=0; 

     
    while arrival(k,m) <sigset(2)-redtime     %new arrivals while  

       %signal is still green 

  

  

  
        if arrival(k,m)<sigset(1)+(queue(k)-1)*headway  %if arrives 

%before traffic has been released 

  
           if queue(k)*headway <= setting(1)-redtime     %if initial 

%queue will be released on current signal         

  
               await(k,m)=sigset(1)+ headway*queue(k) - arrival(k,m); 
               next(k)=next(k)+1; 
               queue(k)=queue(k)+1;  
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           else 
             %If queue is too long then calculation begins on next (red) 
               %phase 

                
              initial(k)=initial(k)+1; 
              queue(k)=queue(k)+1;             

      end 

  
        else             %if vehicle arrives when queue is empty then  

    %no wait 
            await(k,m)=0; 
            next(k)=m+1; 
        end 
       m=m+1;  
    end 

     
    if arrival(k,next(k)+initial(k))<sigset(2) && ...  

 arrival(k,next(k)+initial(k))>sigset(2)-2 
        initial(k) = initial(k)+1; 
    end 
    currentwait(k) = ... 

 sum(max(0,(-arrival(k,next(k):next(k)+initial(k))+sigset(2)))); 
end 

  

  
for k=reddir:2:reddir+2          %Loop over red directions 

  
    m=next(k); 

  
    initial(k)=0;                %reset initial 

  

     

  
    while arrival(k,m) <sigset(2) 
        await(k,m)= sigset(2) - arrival(k,m);       %add wait time to 

%vehicles in queue 
        initial(k)=initial(k)+1;                    %Count vehicles in 

%queue         
        m=m+1; 
    end 

     

  
currentwait(k) = sum(await(k,next(k):next(k)+max(0,(initial(k)-1)))); 

%Update current wait 
end 
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%%Fullact.m 

 
%Fully actuated control 

  
t=0;                     %start time   
totalsig = t;                   %totalsig is vector of switching times 

  
totalwait=zeros(4,1);           %Arrary of vehcile wait times 
green = [1,0,1,0]'; next=ones(4,1); 
    greendir= mod(green(1)+1,2)+1; 
    reddir= mod(greendir,2)+1; 
initial = zeros(4,1);           %number of cars in each direction at  

      %start of optimization 
totalqueue=initial;                 %Array of quenelenth at each change 

      %in each direction  
inc =1; 
chg=zeros(4,1); 
currentwait=zeros(4,1); 
nextarrival = ones(4,1); 
changegreen=0; 
first=1; 
fulltime=0; 

  
while t<min(arrival(:,size(arrival,2)))-100  

 
    sigset = [t]; 
    nextchangefullact() 

     
t=t +redtime; 

  
    if endflag ==1 
        for k=reddir:2:reddir+2 
            m=nextarrival(k); 

             
            while arrival(k,m) <t 
            m=m+1; 
            end 
        end 
    end 

    
goptsig =[sigset,t,t+7]; 
sigset = [sigset, goptsig(2),goptsig(3)];  
movecars() 

  
green=~green; 
        greendir= mod(green(1)+1,2)+1; 
        reddir= mod(greendir,2)+1; 
        totalsig = [totalsig, t]; 
        totalqueue=[totalqueue,initial]; 
        first =0; 
        [totalsig;totalqueue]; 

  
end 
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%%nextchangefullact.m 

 
%Inputs are current quene 
%arrival times 
%green 

%Determines next time fully actuated controller changes the signal 

  
changegreen=0;  %Is 1 if conditions for changing signal are met 
endflag =0;     %Is 1 if signal should be changed     
time =0;        %Length of signal 

  
for k =greendir:2:greendir+2 %clear green cars 
    time(k) = max(0,(initial(k)-1))*headway; 

     
end 

  
if max(time) >30                            %if time to release cars in 

     %queue is longer than max green time 
     mintime = [time(greendir),time(greendir+2)]; 
         [maxtime,argmax]=max(mintime);       
         [mintime,argmin]=min(mintime); 

            

         
        nextarrival(greendir+2*(argmax-1))=... 

nextarrival(greendir+2*(argmax-1))+16; 
        while arrival(greendir+2*(argmin-1),... 

nextarrival(greendir+2*(argmin-1))) < t+30 
            nextarrival(greendir+2*(argmin-1))=... 

nextarrival(greendir+2*(argmin-1))+1; 
        end 

         

     
    time=30; 
    endflag=1; 
    t=t+30; 

         
else 
    nextarrival = nextarrival+initial.*green;    %All cars in queue are 

         %released 
end 

  

  
while endflag ~= 1 
    endclear = [0,0];           %Is 1 if there are no more cars   

      %arriving 
    if max(time) ~=0            %If there are cars in queue 
        while and(endclear(1),endclear(2)) ~=1 

  
            if arrival(greendir,nextarrival(greendir))<... 

t+time(greendir)+2 %If car arrives before queue is released 
                time(greendir) = time(greendir)+2; 
                nextarrival(greendir)=nextarrival(greendir)+1; 
            else 
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                endclear(1)=1; 
            end 

             
            if arrival(greendir+2, nextarrival(greendir+2))< ... 

t+time(greendir+2)+2 %If car arrives before queue is released 
                time(greendir+2) = time(greendir+2)+2; 
                nextarrival(greendir+2)=nextarrival(greendir+2)+1; 

  
            else 
                endclear(2)=1;  
            end 

         
            if max(time)>29                %If cars keep arriving until 

        %the max green time 
                endflag=1; 
                endclear(1)=1; 
                endclear(2)=1; 
                t=t+30; 
            end 

            
        end 

           
            mintime = [time(greendir),time(greendir+2)]; %Which green  

      %signal requires less green time 
            [mintime,argmin]=min(mintime); 
        %Let cars pass on shorter green signal if other direction is  

  %still green 

  
        while arrival(greendir+2*(argmin-1),... 

nextarrival(greendir+2*(argmin-1)))< t+max(time)*(1-endflag)  
            nextarrival(greendir+2*(argmin-1))=... 

nextarrival(greendir+2*(argmin-1))+1; 
        end 

         

         
    else   %If  queue is empty 
       time = max(time);         %Make time a scalar 

         
        if arrival(greendir,nextarrival(greendir))< t+2 %If car arrives 

       %before minimum green if up 

            
            time = time+2; 
            nextarrival(greendir)=nextarrival(greendir)+1; 
            if arrival(greendir+2,nextarrival(greendir+2))< t+2 
                nextarrival(greendir+2)=nextarrival(greendir+2)+1; 

  
            end 
        elseif arrival(greendir+2, nextarrival(greendir+2))< t+2 
            time = time+2; 
            nextarrival(greendir+2)=nextarrival(greendir+2)+1; 

  
        else 
            endflag=1;  
        end 
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        if fulltime+ time >28 
            endflag =1; 
            t = t +time; 
        end 
        %end 
    end 
    fulltime=max(max(time),1)+fulltime; %Check if reached minimum green 

        %time 
    if fulltime <= 5 
        endflag=0; 
    end 

  
    if endflag ~=1 

       
    t=t+max(max(time),1)   ; 

     
    time =0; 
    end 

  
    if endflag ==1 
        time =max(time); 
        if arrival(reddir,nextarrival(reddir)) <t + time ... 

||arrival(reddir+2,nextarrival(reddir+2)) <t + time||fulltime+ time >28 

  
             changegreen=1; 
            fulltime =0; 
        else 

  

                 
            endflag =0; 
            t= t+1; 

            
        end 
    end 

  
end 

 

 

 

 

 


