

TRAFFIC SIGNAL CONTROL WITH ANT COLONY OPTIMIZATION

A Thesis

presented to

the Faculty of California Polytechnic State University,

San Luis Obispo

In Partial Fulfillment

of the Requirements for the Degree

Master of Science in Electrical Engineering

By

David Renfrew

2009

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DigitalCommons@CalPoly

https://core.ac.uk/display/19136291?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

 ii

© 2009

David Renfrew

ALL RIGHTS RESERVED

 iii

COMMITTEE MEMBERSHIP

TITLE: Traffic signal control with ant colony optimization

AUTHOR: David Renfrew

DATE SUBMITTED: November 2009

COMMITTEE CHAIR: Helen Yu, Associate Professor

COMMITTEE MEMBER: Fred DePiero, Professor

COMMITTEE MEMBER: Franz Kurfess, Professor

 iv

ABSTRACT

Traffic signal control with ant colony optimization

David Renfrew

 Traffic signal control is an effective way to improve the efficiency of traffic

networks and reduce users’ delays. Ant Colony Optimization (ACO) is a metaheuristic

based on the behavior of ant colonies searching for food. ACO has successfully been

used to solve many NP-hard combinatorial optimization problems and its stochastic and

decentralized nature fits well with traffic flow networks. This thesis investigates the

application of ACO to minimize user delay at traffic intersections. Computer simulation

results show that this new approach outperforms conventional fully actuated control

under the condition of high traffic demand.

 v

Table of Contents

List of Figures .. vi

List of Tables ... ix

Chapter 1 Introduction... 1

Chapter 2 Literature Review .. 4

Chapter 3 Traffic Dynamics .. 10

3.1 Problem Statement .. 10

3.2 Traffic Terminology.. 11

3.3 Departures ... 11

3.4 Arrivals ... 12

3.5 Traffic Flow .. 15

3.6 Vehicle Delays .. 15

3.7 Delay of vehicles initially in queue .. 16

3.8 Delay of vehicles not released on current phase... 16

3.9 Delay of vehicles released on current phase ... 17

3.10 Time until queue is empty... 18

3.11 Vehicle delay during a signal phase.. 19

3.12 Total vehicle delay during a signal cycle.. 22

Chapter 4 Ant Colony Optimization.. 24

4.1 Biological Ants ... 24

4.2 Ant Colony Optimization framework ... 26

4.3 Specific Ant Colony algorithms.. 28

4.4 Ant Colony applications ... 29

Chapter 5 Ant Colony and Traffic Optimization... 32

5.1 Motivation... 32

5.2 Ant Colony implementation.. 33

5.3 Fully actuated control ... 39

Chapter 6 Simulation Results .. 40

6.1 Convergence of pheromone levels to best solution .. 40

6.2 Ant System.. 42

6.3 Local search .. 47

6.4 Elitist Ant System ... 51

6.5 Elitist Ant System with local search ... 56

6.6 Heuristic Information.. 61

6.7 Rank-based Ant System.. 66

6.8 Pheromone convergence during traffic simulations ... 70

6.9 Choice of parameters and .. 72

6.10 Average delay ... 76

Chapter 7 Conclusions and Future Works... 80

References... 82

Appendix A Table of wait times.. 84

Appendix B Matlab Code.. 87

 vi

List of Figures

Figure 3-1. An isolated intersection with four movements... 10

Figure 3-2. Exponential probability density function with 12

Figure 3-3. Shifted Exponential probability density function with 13

Figure 4-1. Double bridge with equal lengths .. 25

Figure 4-2. Double bridge with unequal lengths .. 26

Figure 5-1. Example of Rolling Horizon Control... 34

Figure 5-2. Graph that ants traverse.. 35

Figure 5-3. Computational Flow Chart ... 36

Figure 5-4. with seven vehicles in queue... 38

Figure 6-1. Ant System rate of convergence with 10 ants, 43

Figure 6-2. Ant System rate of convergence with 25 ants, 43

Figure 6-3. Ant System rate of convergence with 50 ants, 44

Figure 6-4. Ant System average rate of convergence with 44

Figure 6-5. Ant System rate of convergence with 10 ants, 45

Figure 6-6. Ant System rate of convergence with 25 ants, 45

Figure 6-7. Ant System rate of convergence with 50 ants, 46

Figure 6-8. Ant System average rate of convergence with 46

Figure 6-9. Ant System with local search rate of convergence with 10 ants, 47

Figure 6-10. Ant System with local search rate of convergence with 25 ants, 48

Figure 6-11. Ant System with local search rate of convergence with 50 ants, 48

Figure 6-12. Ant System with local search average rate of convergence with 49

Figure 6-13. Ant System with local search rate of convergence with 10 ants, 49

Figure 6-14. Ant System with local search rate of convergence with 25 ants, 50

Figure 6-15. Ant System with local search rate of convergence with 50 ants, 50

Figure 6-16. Ant System with local search average rate of convergence with 51

Figure 6-17. Elitist Ant System rate of convergence with 10 ants, 52

Figure 6-18. Elitist Ant System rate of convergence with 25 ants, 53

Figure 6-19. Elitist Ant System rate of convergence with 50 ants, 53

Figure 6-20. Elitist Ant System average rate of convergence with 54

Figure 6-21. Elitist Ant System rate of convergence with 10 ants, 54

Figure 6-22. Elitist Ant System rate of convergence with 25 ants, 55

Figure 6-23. Elitist Ant System rate of convergence with 50 ants, 55

Figure 6-24. Elitist Ant System average rate of convergence with 56

Figure 6-25. Elitist Ant System with local search rate of convergence with 10 ants,

.. 57

Figure 6-26. Elitist Ant System with local search rate of convergence with 25 ants,

.. 58

Figure 6-27. Elitist Ant System with local search rate of convergence with 50 ants,

.. 58

Figure 6-28. Elitist Ant System with local search average rate of convergence with

.. 59

 vii

Figure 6-29. Elitist Ant System with local search rate of convergence with 10 ants,

.. 59

Figure 6-30. Elitist Ant System with local search rate of convergence with 25 ants,

.. 60

Figure 6-31. Elitist Ant System with local search rate of convergence with 50 ants,

.. 60

Figure 6-32. Elitist Ant System with local search average rate of convergence with

.. 61

Figure 6-33. Elitist Ant System with local search and heuristics rate of convergence

with 10 ants, ... 62

Figure 6-34. Elitist Ant System with local search and heuristics rate of convergence

with 25 ants, ... 62

Figure 6-35. Elitist Ant System with local search and heuristics rate of convergence

with 50 ants, ... 63

Figure 6-36. Elitist Ant System with local search and heuristics average rate of

convergence with ... 63

Figure 6-37. Elitist Ant System with local search and heuristics rate of convergence

with 10 ants, ... 64

Figure 6-38. Elitist Ant System with local search and heuristics rate of convergence

with 25 ants, ... 64

Figure 6-39. Elitist Ant System with local search and heuristics rate of convergence

with 50 ants, ... 65

Figure 6-40. Elitist Ant System with local search and heuristics average rate of

convergence with ... 65

Figure 6-41. Rank-based Ant System with local search and heuristics rate of

convergence with 10 ants, ... 66

Figure 6-42. Rank-based Ant System with local search and heuristics rate of

convergence with 25 ants, ... 67

Figure 6-43. Rank-based Ant System with local search and heuristics rate of

convergence with 50 ants, ... 67

Figure 6-44. Rank-based Ant System with local search and heuristics average rate of

convergence with ... 68

Figure 6-45. Rank-based Ant System with local search and heuristics rate of

convergence with 10 ants, ... 68

Figure 6-46. Rank-based Ant System with local search and heuristics rate of

convergence with 25 ants, ... 69

Figure 6-47. Rank-based Ant System with local search and heuristics rate of

convergence with 50 ants, ... 69

Figure 6-48. Rank-based Ant System with local search and heuristics average rate of

convergence with ... 70

Figure 6-49. Convergence rates during traffic simulation using Elitist ACO with local

search .. 71

Figure 6-50. Convergence rates during traffic simulation using Rank-based ACO......... 72

Figure 6-51. Pheromone convergence with .. 74

Figure 6-52. Pheromone convergence with .. 74

 viii

Figure 6-53. Pheromone convergence with ... 75

Figure 6-54. Pheromone convergence with .. 75

Figure 6-55. Average delay... 78

Figure 6-56. Upper and lower bounds on average vehicle delay...................................... 78

Figure 6-57. Average Queue Length .. 79

Figure 6-58. Longest Average Queue Length... 79

 ix

List of Tables

Table 6-1. Traffic Simulation Parameters... 40

Table A-1. ACO Control average vehicle delays ... 84

Table A-2. Fully Actuated Control average vehicle delays .. 85

 1

Chapter 1 Introduction

With the ever-increasing traffic demand, congestion has become a serious

problem in many major cities around the world. ATMS (advanced traffic management

system) is a systematic effort toward the design of an integrated transportation system

with new technologies. By regulating the traffic demand at each intersection in the

network, the goal is to avoid traffic conflict and shorten the queue length at a stop light.

Many different approaches to the traffic signal control problem have been

proposed by researchers over the years. Some of the earliest, large scale adaptive traffic

signal control systems, such as TRANSYT (traffic network study tool) [1], SCOOT (split,

cycle and offset optimization technique) [2], and SCATS (Sydney coordinated adaptive

traffic system) [3], utilize pre-calculated off-line timing plans for signal cycles based on

the current traffic conditions. More recent developments in traffic signal control employ

artificial intelligent technology, such as neural networks and fuzzy logic [4]. Algorithms

using Petri nets and Markov decision control have also been investigated in recent years

[5].

Ant colony algorithm is a meta-heuristic approach for solving computationally

hard combinatorial optimization (CO) problems [6] [7]. Inspired by the behavior of the

ants in real world, ant colony algorithm is a multi-agent system, in which each single

agent is called an artificial ant. It is one of the most successful examples of swarm

intelligent systems and has been applied to solve many different types of problems,

including the classical traveling salesman problem, path planning and network routing.

 2

In nature, when searching for food, real ants wander randomly until they find food

[8]. As an ant returns to the colony with food, it deposits pheromone, a chemical used for

communication. These pheromone trails guide other ants as they continue their search for

food. As more pheromone is deposited, the ants’ paths become less random and are

biased toward the paths with higher pheromone concentration.

In the ant colony algorithm, artificial ants search the solution space

probabilistically to create candidate solutions. These candidate solutions are then

evaluated and used to update pheromone concentrations. Over time the pheromone

concentrations on paths evaporates. Only the paths that have been reinforced with

additional pheromone are left.

In this research, a new approach to finding the optimal signal timing plan for a

traffic intersection is investigated using ant colony optimization algorithms. The ACO is

used with a rolling horizon algorithm to achieve real-time adaptive control. Computer

simulation results indicate that this new approach is more efficient than traditional fully

actuated control (discussed in Section 5.3), especially under the conditions of high, but

not saturated, traffic demand.

This thesis is organized as follows: chapter two presents a literature review of

current traffic control strategies and new developments in the field. Chapter three

explains traffic dynamics, assumptions made for the traffic signal problem and the

calculation of vehicle delays. Chapter four gives background on Ant Colony

Optimization (ACO) algorithms. Chapter five explains how ACO is implemented in the

traffic signal control problem. Chapter six contains simulation results. The convergence

rates of ant colony algorithms to finding optimal solutions are investigated. Then

 3

comparisons of vehicle delays in ACO algorithm and traditional fully-actuated control

are made. Chapter seven gives conclusions and an outline of future works.

 4

Chapter 2 Literature Review

Traffic networks are an integral part of any city’s infrastructure, but increased

vehicle use causes traffic congestion, leading to decreased flow rates. Two major causes

of congestion are overall demand and disturbances in traffic flow from accidents, special

events and illegal parking. Once traffic movements are saturated, traffic flow at the

upstream link stops and vehicles cannot cross intersections on green lights. Additional

congestion is then created on other movements, leading to gridlock and devastating urban

traffic flow. Congestion leads to excess vehicle delays, reduced safety and increased air

pollution and petroleum use. Additionally, congestion can cost governments billions of

dollars a year [9].

 Expansion of traffic networks is expensive and due to available resources, it is

often not feasible. As a result, increasing the efficiency of traffic networks with current

facilities is essential. Improving traffic signal control strategies is a very effective way to

improve traffic management. Advances in low power sensors and actuators, as well as

low cost and reliable means of communication and computers, have made real-time

adaptive traffic control systems feasible [5].

There are many difficulties in dealing with traffic control. Traffic movements are

stochastic and non-linear; so many conventional control techniques cannot yield optimal

results. Additionally, traffic conditions can change quickly, so control strategies must be

highly responsive. As traffic networks grow in size, finding the optimal strategy becomes

a complex combinatorial problem, making real time implementation very difficult. Thus,

advanced techniques in control and optimization must be employed.

 5

 For large scale networks, traffic control systems can be classified as centralized or

decentralized control [5]. To implement traffic control on large networks, the network is

divided into smaller subsystems. In centralized control systems, a central controller

creates the control policy and sends control signals to each subsystem. Centralized

control can achieve global optimality because of the high level of communication

between subsystems, but it is computationally intensive and very sensitive to a

malfunctioning central controller or broken communication links. The central controller

is also unresponsive to time-varying traffic dynamics.

 Due to centralized control’s limitations, recent research has focused on

decentralized control. In decentralized control, neighboring subsystems communicate for

coordination purposes; but control decisions are made on a local level, involving only a

few signals [10]. This approach is less computationally complex, more robust and

responds to changes in traffic dynamics quickly. Because optimization is made on a local

level, the global optimal solution might not be found.

 To evaluate the effectiveness of control strategies, different performance

measures are available. Some common measures are average vehicle delay, intersection

queue lengths and number of vehicle stops. These measures are interrelated but

optimizing one does not necessarily lead to optimization of the other criteria [11].

 Traffic control strategies fall into one of three categories: fixed time, semi-

actuated and fully-actuated control. Fixed time control is an open loop control strategy

because signal cycles are computed off-line and do not consider current traffic dynamics.

The preset cycle lengths are determined from past traffic data and heuristic information.

Signal coordination is easily achieved with fixed time controllers. For this reason, fixed

 6

time control is generally used in high volume business districts where signal coordination

is required and turning lanes are not given their own green light phase [9]. If traffic flow

fluctuates a lot, then fixed time controllers may cause long delays. Intensive off-line work

is required to compute signal splits, offset and cycle length. Additionally, control rules

must be monitored and updated due to long term changes in traffic dynamics.

 Actuated control, also called traffic responsive control, is a closed loop control

strategy because control policies respond to current traffic demand. In semi-actuated

control, one or more, but not all of the movements are actuated. In fully actuated control,

all movements are actuated. Signal actuation can be achieved in many different ways,

making optimal actuation methods an area of active research.

 Traffic networks are classified into three categories: isolated intersections, arterial

streets (including freeways), and closed network intersections. On isolated intersections,

arrivals are assumed to arrive randomly and are uncorrelated with the arrivals at other

intersections. In arterial and closed networks, vehicle arrivals between neighboring

intersections must be considered and the signals at neighboring intersections must be

coordinated for optimal control.

 For the remainder of this chapter, popular traffic control algorithms are presented.

These methods utilize historic traffic data, expected flow rate and statistical distribution

on arrivals as well as standard control practices to create traffic control policies.

 SCOOT (Split, Cycle and Offset Optimization Technique) [2] and SCATS

(Sydney Coordinated Adaptive Traffic System) [12] are on-line control strategies based

on the off-line optimization techniques. Detectors monitor traffic flows and predict future

arrivals by creating flow profiles. The flow profiles are used to evaluate incremental

 7

changes to the signal’s splits, offsets and cycle times. If the changes are beneficial they

are implemented by the controller.

 Dynamic programming is a mathematical technique for solving optimal control

problems [13]. Time is broken into small intervals and the optimal control policy for each

interval is found. Dynamic Programming finds the optimal policy, but is often very

computationally intense and requires more information on future arrivals than is typically

available. These limitations make real-time implementation of Dynamic Programming

difficult; but its off-line results can be used for comparison with other methods. Control

strategies can be evaluated by how well they approximate the results of dynamic

programming, but with less information and computation.

 Two approaches for on-line optimization that are similar to off-line dynamic

programming are binary choice logic and sequential approach. Binary choice logic,

proposed by Miller [14], divides time into short, successive fixed intervals. At the

beginning of each interval a choice is made to extend the signal or change the signal. The

drawback of this technique is the time periods are very short (3-6 seconds), so optimal

performance over longer time periods is not guaranteed.

 In sequential approach, a longer period of time, generally 50-100 seconds, is

considered. During this time period, 1 to 3 signal changes in one signal cycle can be

made. All possible signal cycles over this time interval are sequentially evaluated to find

the optimal switching times. The optimal policy is then implemented over the entire time

period. This technique yields close to optimal results when the system is in steady state.

But, because the decisions are made over longer periods of time this technique does not

respond fast enough to time-varying traffic dynamics.

 8

 The advantages of the above two techniques are combined in model-based

optimization methods. OPAC, PRODYN, CRONOS and RHODES are examples of

rigorously developed model-based methods [9]. These models incorporate a rolling

horizon for optimization. A long time interval (usually 60 seconds) is considered and the

optimal control policy is found but only implemented over a short period (usually around

4 seconds). Each algorithm uses a similar length for the rolling horizon but different

methods to find the optimal control policy. After the signal has been implemented for the

shorter interval, the process is repeated.

More recent traffic research has introduced fuzzy logic and artificial intelligence

into traffic control. Fuzzy logic has been successfully applied to a single intersection and

groups of intersections [15]. Fuzzy logic controllers create membership functions

between their inputs and output. Then the controller chooses an output that is acceptable

to all membership functions. In traffic control, the inputs are the intersection’s current

state, which includes the waiting time of vehicles that are currently waiting, queue length

and arrival rates. The output is the traffic control law, usually green extension times or

optimal cycle time and splits [4]. The use of fuzzy controllers allows for different

objectives to simultaneously be optimized by specifying a minimum level of acceptability

for each objective. Optimizing the fuzzy logic rule bases is often difficult, but neural

networks and genetic algorithms can be used to efficiently create the rule bases.

Another new technique in traffic network control is artificial neural networks.

Neural networks are very powerful in mathematical modeling, and their nonlinear

mapping ability makes them ideal for predicting the highly nonlinear traffic flow [16].

Accurate traffic prediction and modeling is essential for choosing signal switch times in

 9

optimal control. Neural networks use sensors to measure vehicle arrivals and departures

along with the current queue to predict future queue lengths. The advantage of neural

networks is that no assumption on an analytic model for traffic flow is made.

Additionally, neural networks can easily be integrated into hardware. Unfortunately,

neural networks design procedures can be lengthy and size of an effective network is hard

to determine. Neural network training can take a long time and require a large amount of

data [17].

 The use of neural networks in traffic modeling can be improved by adding fuzzy

logic. The fuzzy logic is first used to classify traffic patterns into different sets. Then each

set has its own set of rules for traffic prediction. This allows for better generalization and

faster training times over conventional neural networks [18].

In this research, Ant Colony Optimization (ACO), a technique in Swarm

Intelligence, is used to for the adaptive control of an isolated intersection. A rolling-

horizon approach with variable length is employed.

ACO algorithms have successfully been applied to many computationally

complex combinatorial problems; the traffic signal problem is addressed very naturally as

a combinatorial optimization problem. Traffic signals form large, complex networks and

advanced methods must be used to optimize signals lengths.

The ability of the ACO to incorporate heuristic information about traffic networks

makes it efficient. Additionally, ant colony optimization has successfully been applied to

other traffic related problems, such as the vehicle routing problem (VRP), with positive

results.

 10

Chapter 3 Traffic Dynamics

 In this chapter, the traffic signal problem and traffic terminology is presented.

Then the rules for vehicle arrivals and departures are established. The assumptions on

vehicle arrivals and departures, as well as traffic flows are presented. Finally, the method

of evaluating traffic signals by computing vehicle delays is presented.

3.1 Problem Statement

Consider a traffic intersection with four external approaches. Movements 1 and 3

are opposite each other so they share green times; similarly movements 2 and 4 also share

green times. For simplicity, each movement consists of a single lane and turning lanes are

not considered. Video detectors are located at the intersection to count the queue lengths

and there are no detectors outside the intersection. An estimate on the volume of traffic is

assumed (see [5] and [19]). The vehicles are homogenous and leave the intersection at the

same speed.

The objective is to find the traffic signal switch times that minimize the average

delay of the vehicles at the intersection.

Figure 3-1. An isolated intersection with four movements

 11

3.2 Traffic Terminology

 An intersection consists of a number of movements and a crossing area. The

number of vehicles waiting on a movement is called the queue. A signal cycle is a

complete series of green lights for each movement. Its length is called the cycle time. The

split is the percentage of green time for a movement with respect to the total cycle time.

The all red time is the length of the time when all movements have a red signal. The all

red time occurs between phase changes for safety. The minimum distance between

vehicles is measured in seconds and called the minimum headway. Once a vehicle arrives

at the intersection, the time it takes for the next vehicle to arrive is called the inter-arrival

time. A vehicle’s delay is its time of departure minus its time of arrival.

3.3 Departures

 At a given time, , the queue length on movement is denoted as . The

number of vehicles initially in the queue that leave movement during a time interval

 is denoted . The time intervals correspond with signal phases. The

output is a function of the signal choice and the queue length at .

 (3.1)

where is the headway between vehicles as they leave the intersection, is the

signal choice and gives the integer part of its argument. The output function means

that when a signal turns green, the first car in the queue leaves immediately. Then, each

successive vehicle leaves the intersection seconds after the vehicle in front of it until

all vehicles are released or the traffic light changes to red.

 12

3.4 Arrivals

 Vehicles arrive from the external links randomly and uncorrelated, making the

Poisson process a good model for the arrivals. In a Poisson process, inter-arrival times

follow the exponential distribution [20]. Meaning the probability density function on the

inter-arrival times is:

 (3.2)

where is the arrival rate in vehicles per hour per movement and is the unit step

function. The step function is required because negative inter-arrival times do not make

sense. A graph of the exponential probability density function with is shown in

Figure 3-2.

0 5 10 15
0

0.05

0.1

0.15

0.2

Figure 3-2. Exponential probability density function with

 As shown in equation (3.2), the exponential distribution allows for instantaneous

inter-arrival times. Due to geometric and physical considerations of traffic network, there

must be a minimum headway between vehicles. To avoid this problem, the shifted

 13

exponential distribution is used for inter-arrival times [21]. That is, the probability

density function for the inter-arrival time is:

 , (3.3)

where is the minimum headway between vehicles in seconds. The graph of the shifted

exponential probability density function with and is shown in Figure 3-3.

0 5 10 15
0

0.05

0.1

0.15

0.2

0.25

Figure 3-3. Shifted Exponential probability density function with

 This probability distribution acts very similar to the exponential distribution but

the minimum inter-arrival time is now , instead of . If the headway is set to zero this

formula gives the standard exponential distribution. The shifted exponential distribution

gives the same expected inter-arrival time of as with the exponential distribution with

arrival rate . It should be noted that in order for this probability density to make sense

. This requirement means that the expected inter-arrival time is greater than

the minimum headway.

 Vehicle arrival times are generated by:

 14

 (3.4)

where is the next arrival time, is the previous arrival time, is the natural

logarithm function and is a uniformly distributed random number in [22].

The expected number of arrivals during a given time interval is required to

compute the expected vehicle delay during a signal cycle. This is difficult to do with the

shifted exponential distribution because the minimum headway causes the distribution to

lose its Markov property [21]. The probability of an arrival at a given time, , is not solely

based on the state of the system at , but also on the arrivals during the time interval

. Fortunately, if the signal length is several times larger than the minimum

headway, then the expected number of arrivals can be approximated by the Poisson

distribution. That is, the probability of vehicles arriving in seconds is approximated

by:

 (3.5)

where is a non-negative integer representing the number of arrivals, and is

the duration of time period. The Poisson distribution gives the probability of a given

number of arrivals during a time interval of a Poisson process. This approximation is

sufficient because the probability densities of the exponential and shifted exponential

distributions behave similarly and have same the expected inter-arrival time; so they give

similar traffic dynamics.

In the Poisson distribution, the expected number of new arrivals in seconds is

.

 15

3.5 Traffic Flow

 When the signal turns green for a movement, vehicles are released from the queue.

The first vehicle leaves when the traffic light changes. Then each of the following

vehicles leaves seconds after the vehicle before it. If additional vehicles arrive before

the queue is empty, then they are added to the end of the queue. New arrivals are also

released seconds after the vehicle in front of them is released. This process continues

until either the queue is empty or the traffic light changes to red. If the queue is empty

before a switch to red then additional vehicles pass freely through the intersection with

zero delay. At the end of the green phase, the signal is red on all movements. The length

of this period is the all red time. When a movement has a red signal, new arrivals are

added to the queue and wait until the next green phase to be released.

3.6 Vehicle Delays

Ant Colony optimization is used to determine the traffic signal control that

minimizes vehicle delay at the intersection. At the beginning of each signal phase, the

algorithm evaluates candidate signal cycles by computing the total expected delay of the

signal cycle. This computation has a deterministic and probabilistic part. The

deterministic part is the delay of the vehicles already in the queue, and the probabilistic

part is the expected delay of future arrivals. Because the actual arrival times of future

vehicles is unknown, only the expected delay of future vehicles can be minimized. In

order to calculate the expected delay, the arrival rate of new vehicles is assumed, as

stated in the problem statement. The probability distribution of their inter-arrival times is

also a necessary assumption to compute the expected delay.

 16

3.7 Delay of vehicles initially in queue

Given a green phase of length , of the initial vehicles

will be released on the green movements. Let denote the position in the queue of

a vehicle that will be released on the current queue. At the beginning of a green phase,

the current delay of the vehicle in the queue is , where is the arrival time

of the vehicle. After the traffic light turns green, the additional delay is

seconds. Thus, the combined delay of the vehicles is

 . (3.6)

3.8 Delay of vehicles not released on current phase

As new cars arrive at an intersection, they are added to the movement’s queue. If

they arrive during a sufficiently long green phase they will be released, otherwise they

must wait to be released during a future green phase. The expected delay for a vehicle

that is released during the phase it arrives is calculated differently than those that are not.

First, consider a signal phase in which vehicles arrive but do not leave. Let

denote the length of this phase. This situation occurs on a red phase or an over-congested

green phase that does not allow new arrivals to exit the intersection.

In a Poisson process, the expected number of new arrivals in seconds is .

Since the probability distribution of the inter-arrival times is identical, vehicle arrivals are

uniformly distribution in the phase. So the expected delay for each new vehicle is

 17

[23]. Multiplying the expected number of vehicles by the average expected delay gives

the expected total delay for new arrivals during an interval of length as

 . (3.7)

3.9 Delay of vehicles released on current phase

Alternatively, consider a green phase where all new arrivals exit the intersection

on the current phase. The delay of a new arrival is dependant on what position in the

queue the vehicle arrives, similar to the delay of vehicles initially in the queue at the

beginning of a green phase. Once a vehicle arrives, its delay is the minimum headway

multiplied by its position in the queue. Therefore, future expected queue lengths are

necessary to calculate the expected wait time of future arrivals.

As vehicles arrive and depart the length of the queue changes. If vehicles inter-

arrival times follow the exponential distribution, then nearly instantaneous inter-arrival

times occur. Short inter-arrival times cause fluctuations in the queue and make its length

increase, making the expected queue difficult to determine. Fortunately, instantaneous

inter-arrival times are not physically possible. As a result, an approximation to the

exponential distribution on the vehicle arrivals is used to accurately approximate average

expected vehicle delays.

This approximation is made by partitioning the signal cycle into time intervals of

length equal to the minimum vehicle headway. During each interval a vehicle arrives

with probability . The probability of having multiple arrivals in an interval is zero.

The exponential distribution can be derived from this approximation by taking the length

of the intervals to zero, giving a continuous probability distribution for the inter-arrival

 18

times [24]. Since the approximation does not take this limit, the minimum headway

requirement is preserved.

During each time interval one car from the queue will leave, according the

established rules Section 3.3, and at most one car arrives. This makes the expected queue

length easier to describe because queue lengths cannot increase.

Depending on the first new vehicle’s arrival time, it can wait up to

seconds before it reaches the front of the queue. Since vehicles depart faster than they

arrive, the delay of each successive vehicle decreases. The expected delay decreases

linearly until a new arrival waits close to zero seconds before it reaches the front of the

queue. So the average time to the front of the queue is . Additionally, a

vehicle must wait minimum headway seconds once it reaches the front of the queue

before it is released. So the average time each car waits until it is released is:

 . (3.8)

Equation (3.8) gives the average wait time of new vehicles, but the expected

number of new arrivals before the queue is empty must also be determined. This is done

by computing the expected time to an empty queue and then multiplying this time by the

vehicle arrival rate.

3.10 Time until queue is empty

The expected time required to empty the queue is . This time is

computed iteratively. First, the time until the vehicles initially in the queue are released is

computed. Then, the expected number of new arrivals during this time interval is

computed, along with the time until these new vehicles are released. This process of

 19

computing the expected number of new arrivals during the last groups release times

continues. Recall that the expected number of vehicles is not an integer and will get

smaller with each iteration. Then, the time intervals are added up to give the expected

time when the queue is empty.

The initial vehicles are released at time , and

additional vehicles are expected to arrive in this time. An additional seconds

are required to release these vehicles. This cycle of vehicles arriving and being released

continues. The sum of all time intervals gives that the queue is expected to empty after

 seconds. This sum a geometric series, so the total time to an

empty queue can be written in closed form as:

 (3.9)

The above summation is convergent if ; this condition is assumed to be

true; otherwise, the arrival rate would be higher than the release rate.

The expected number of new vehicles is found by multiplying the length of this

time interval by the arrival rate; giving an expectation of new vehicles.

3.11 Vehicle delay during a signal phase

For the rest of this section, the expected total delay for a signal cycle is developed

for a single movement using equations (3.6), (3.7), (3.8), and (3.9). The total expected

delay for a signal cycle is the sum over all four movements. Because only one movement

is considered at a time, notation can be simplified by letting be the number of

vehicle initially on movement at time .

 20

To compute the total expected wait for on a green phase three different cases are

considered. The first is if , where no vehicles are expected at the end

of the phase. The second is if , where all initial

vehicles are released but the queue is not expected to be empty at the end of the phase.

The third is if , where not all vehicles in the initial queue are released.

Case 1: The queue is empty at the end of the phase.

 If , then no vehicles are expected in the queue at the end of

the phase.

 If the queue is initially empty then the delay for the movement during this phase

will be zero. Otherwise, the total expected delay from to is:

 . (3.10)

 The first term is the delay of the initial vehicles (3.6). The second term is the

average wait of future vehicles (3.8) multiplied by the expected number of cars that will

arrive before the queue is empty (3.9). Once all vehicles are released from the queue, new

arrivals pass through the intersection with no wait.

Case 2: All initial vehicles are released but the queue does not empty.

If , then all initial vehicles are released. The

number of vehicles that are expected to arrive is and the number of vehicles

released is . Therefore, vehicles

are expected at the end of cycle. Thus

 21

 (3.11)

of the new arrivals were released. This phase should be viewed as partly a phase that

releases new vehicles and partly as a phase that does not. Vehicles that arrive during the

first seconds are released and vehicles that do not are not released.

The total expected delay from to is:

. (3.12)

The first term is the delay of the initial vehicles (3.6). The second term is the

average wait of future released vehicles (3.8) multiplied by the expected number of cars

that will arrive and be released (3.11). The final term is the delay of the cars that are not

released (3.7).

Case 3: Not all vehicles in the initial queue are released.

If , then vehicles will be released. During this

phase, an additional vehicles are expected to arrive; none of them are released.

Once again, at the end of the phase vehicles are

expected.

 The total expected delay from to is:

 . (3.13)

 The first term is the delay of the released vehicles (3.6). The second term is the

delay of initial vehicles not released and the third term is the expected delay of future

arrivals (3.7).

 22

The total expected delay of a signal cycle also includes the delay on the red

movements. During a red phase, no vehicles are released and vehicles are

expected to arrive. Therefore, vehicles are expected at the end of the red

phase.

 The total expected delay from to is thus:

 . (3.14)

 The first term is the delay of the initial vehicles and the second term is the

expected delay of future arrivals (3.7).

3.12 Total vehicle delay during a signal cycle

 When choosing a signal cycle length and split, it is important to not only reduce

the delay of vehicles released during the current cycle, but also ensure that the vehicles

released during future signal cycles have short delays. If the queue is too long at the end

of a cycle, then the delay of vehicles in the queue will be large. Additionally, future

arrivals will also face longer delays. When evaluating candidate signal cycles the delay of

the vehicles left in the queue at the end of the signal cycle, , needs to be considered.

Since the phase lengths after time are not chosen, a lower bound for the future

additional delay is computed. Ideal release times are considered in the computation of a

lower bound. That is, the green signal durations are assumed to be seconds and red

signal durations are assumed to be seconds. This is not possible because the green

phase lengths on one movement must be the same as the red phase length on its conflict

movements, but it does favor reduced queues without intense computation. This lower

bound on the delay for movement is denoted as .

 23

 Equations (3.10), (3.12), (3.13), and (3.14) are combined to compute the total

expected delay of a signal cycle beginning at with signal phase changes at and as:

 (3.15)

 Once again denotes the signal choice on the movement. At any given , one set

of parallel movements will be green and the other set will be red.

 Note that equation (3.15) is always positive since each term is always greater than

or equal to zero, and the queue on at least some of the movements is has positive

probability of being non-empty.

 24

Chapter 4 Ant Colony Optimization

 Ant colony optimization (ACO) is a metaheuristic for solving computationally

hard combinatorial optimization problems. The optimization problem is defined on

 where is a finite set of candidate solutions, is the objective function to be

minimized and is a set of constraints. The goal is to find a globally optimal solution,

, that minimizes [6].

 ACO is used to solve combinatorial NP-hard problems. It was first tested on the

Traveling Salesman Problem. ACO is also used to solve Routing Problems, Quadratic

Assignment Problems and Scheduling Problems [6].

4.1 Biological Ants

ACO is based on the methods of foraging ant colonies [8]. When searching for

food, ants wander randomly around their nests. Once an ant finds food, it evaluates the

food source and then returns to the nest. On the return trip, the ant deposits pheromone, a

chemical used for communication. The amount of pheromone deposited is based on the

quantity and quality of the food. The pheromone trail guides other ants as they continue

to search for food. As more pheromone is deposited, the ants’ paths become less random

and are biased toward paths with higher pheromone concentration. As time progresses

pheromone evaporates; so unless a path is traversed frequently, the pheromone on it

disappears. Along with finding the best food sources, ants also find the shortest paths to

food. Shorter paths are traversed faster, so pheromone is deposited on them more

frequently. This leads to faster pheromone accumulation.

 25

 The phenomenon of ants using pheromone to communicate and discover optimal

paths is observed in the Double Bridge Experiment [25]. A path between an ant’s nest

and food with a double bridge is laid out. In the first trial, the length of each bridge is

equal, as shown in Figure 4-1. At first, ants move freely between the nest and food,

choosing either path randomly. As time progresses, due to random fluctuations, one of

the paths gains a higher pheromone concentration; this larger amount of pheromone

attracts more ants. The increased number of ants deposits more pheromone on this path.

A positive feedback loop is created and the number of ants that choose this path increases

until all the ants are using it.

Figure 4-1. Double bridge with equal lengths

 In the second trial, one of the paths is made twice as long as the other path, as

shown in Figure 4-2. Once again, ants start by randomly using both bridges, but soon

more pheromone is concentrated on the shorter path. Eventually, the higher pheromone

level causes all ants to travel along the shorter path.

Food

 26

Figure 4-2. Double bridge with unequal lengths

4.2 Ant Colony Optimization framework

 The movements of real ants are modeled by artificial ants in ant colony

optimization. In ACO algorithms, artificial ants probabilistically search a graph, with the

guidance of the pheromone, to create candidate solutions. Candidate solutions are then

evaluated and used for pheromone updates. Many different versions of the ACO have

been developed, but they all follow the same idea of solution construction guided by

pheromone levels. The framework for ACO algorithms is as follows [7]:

 1) Initialize Pheromone Values. The pheromone values on each path are set to the

same constant value.

 2) Solution Construction. Each ant begins on a start node and constructively

builds a solution based on the pheromone values. A solution is an ordered set of nodes.

Ants move from node to node with probability:

Food

 27

 (4.1)

where is the neighborhood of node . The neighborhood of node is the set of all

nodes that an ant can move to when at node . The pheromone value between node and

 is and is a heuristic value. The values of and are nonnegative; and they

weight the relative importance of the pheromone and heuristic values respectively.

 3) Update Pheromone. The pheromone update is the key difference between most

ACO algorithms; but the general framework still holds. First pheromone is evaporated by

the rule:

 , (4.2)

where is the evaporation coefficient.

Then pheromone on some of the paths is increased by:

 . (4.3)

Where the pheromone update, , is algorithm specific.

 4) The solution construction and pheromone update are repeated until the stop

condition is met.

 Because each algorithm updates pheromone differently, different values are used

for their parameters. Each parameter is chosen specifically for the application. But, in

common applications, like the Traveling Salesman, formulas have been developed to give

the range of parameter values [6].

 28

4.3 Specific Ant Colony algorithms

 In this section, the Ant System, Elitist Ant System and Rank Based Ant System

algorithms [6] are discussed. Each algorithm uses ants to construct solutions; and the

initial pheromone deposit and solution construction steps are the same. Their differences

lie in the pheromone update step.

 Each artificial ant begins at a start node and constructs a solution. The solution

constructed by ant is denoted by . Each solution is given a cost, denoted by ,

which is related to the objective function being minimized. Ant system is the simplest

method and the easiest to implement, but it is usually not sufficient in applications. Other

ACO algorithms are modifications of the ant system algorithm. Specific algorithms are

chosen based on the problem of interest.

Ant System:

 In this algorithm, all ants are considered equally. After each ant has constructed a

solution, the pheromone levels on all arcs are evaporated with the same rate, as shown in

equation (4.2). Then each ant adds pheromone to each link it took by:

 (4.4)

where is the total number of ants, is the pheromone deposited by ant on the arc

between and , is defined by:

 . (4.5)

Elitist Ant System:

 29

 In this algorithm, extra weight is given to the best-so-far solution, denoted as .

As in the Ant System algorithm, pheromone is first evaporated as in equation (4.2), then

ants deposit pheromone by

 (4.6)

where is defined the same as in the Ant System algorithm, is the weight for the

best-so-far path and is defined by:

 (4.7)

where is the cost related to the best-so-far solution.

Rank-Based Ant System:

 In this algorithm, the ant’s solutions are sorted in order of increasing cost before

the pheromone is deposited. Only the best-ranked ants and the best-so-far ant are

allowed to deposit pheromone. The best-so-far solution is weighted by , the best ant

is weighted by . Thus the pheromone update rule is:

 (4.8)

where and are as defined above. The pheromone evaporation stage is

performed before the update, as in the other methods, but less pheromone is generally

evaporated on each step. The rank-based update biases away from bad solutions, allowing

for more conservative evaporation.

4.4 Ant Colony applications

 30

Ant colony algorithms have successfully been applied to very difficult

combinatorial optimization problems. They were first applied to the Traveling Salesman

Problem (TSP) by Marco Dorigo [26]. Some other successful applications of note are

vehicle routing problems [27] and quadratic assignment problems.

The Traveling Salesman Problem is based on a salesman who is given a set of

customer cities and a starting location. The salesman wishes to find the shortest path that

visits each city exactly once. Customer cities and the paths between them are represented

as a weighted graph. Each city is a vertex on the graph and each path is an edge, weighted

by its length. The TSP has practical applications in printed circuit boards and the

positioning of X-ray devices [6].

When applying ACO to the TSP, ants begin at the starting point and randomly

traverse the graph. Once an ant has visited every city, it updates the pheromone on edges

it traversed. Ants deposit pheromone inversely to the total length of their trip. The

heuristic information is usually inversely proportional to the length of an edge. A

straight-forward choice is weighting the path between node and by .

Ant colony algorithms have been shown to find optimal solutions to the TSP in fewer

iterations than other naturally inspired algorithms, such as genetic algorithms and

simulated annealing [26].

The vehicle routing problem involves resource allocation. A set of customers

must receive deliveries from a central depot with a given number of delivery vehicles.

Each delivery vehicle has a fixed capacity and each customer has a nonnegative demand.

A vehicle cannot serve more customer demand that its capacity allows. The goal is to

 31

determine the most efficient route for each vehicle so that each customer is visited

exactly once and delivery vehicles do not exceed their capacity [28].

This problem is also represented as a weighted graph. The nodes are the central

depot, denoted node 0, and each of the customers. The arcs represent the paths that

connect the customers to each other and the central depot. Once again, each arc is

weighted by the distance between the nodes it connects. To apply ACO to this problem

each ant begins at the central depot and constructs a vehicle’s route until it reaches the

vehicle’s capacity. Then the ant returns to the central depot and begins to construct a

route for another vehicle. It continues to construct routes until each customer is served.

Then it updates the pheromone on each node it took and starts over. This problem is

harder than TSP because it involves solving TSP for each vehicle. Heuristic information

for this problem is similar to the TSP but a customer’s distance from the central distance

is also considered. A typical heuristic weight is ,

where and are parameters. The quantity is the distance saved

by going straight from node to node instead of visiting the central depot first. The

extra factor of discourages moving to nodes that are far away and the final

term keeps the distance from the central depot from changing rapidly [27].

 32

Chapter 5 Ant Colony and Traffic Optimization

This chapter begins with the motivation behind using ACO for traffic signal

control. Then, the second section describes how the ACO is implemented for traffic

signal control.

5.1 Motivation

The traffic signal problem is addressed very naturally as a combinatorial

optimization problem. As traffic networks grow, the complexity of the finding an optimal

solution becomes much more difficult. Total enumeration of all solutions becomes

intractable very quickly, so advanced methods must be used [9]. ACO algorithms have

successfully been applied to many computationally complex combinatorial problems,

making ACO a good choice for solving the traffic signal problem.

The ACO ability to incorporate heuristic information about traffic networks

makes it more efficient. For example, in the isolated traffic signal problem the maximum

queue length currently at the signal is accounted for. On more complicated traffic

topologies, other heuristic measures can be incorporated, such as distances between

signals.

Ant colony optimization has successfully been applied to other traffic related

problems, such as the vehicle routing problem (VRP), with positive results. Although the

VRP has a different setup and objectives, similar heuristics and objective functions are

used in both cases.

 33

As will be discussed later in this section, the ACO can be used to optimize rolling

horizon control. Rolling horizon control has successfully been used in traffic signal

control [13]. Some of the advantages of this approach were discussed in Chapter Two.

Additionally, ACO requires very few restrictions on the cost function. For

example, many optimization techniques rely on computing a gradient. This requires the

existence of a gradient and can be computationally expensive. ACO algorithms are not

dependant on the form of objective function; if the objective function is changed the

algorithm works the same. This allows the heuristic information, intersection topology,

and vehicle arrival rates to be easily changed. Thus, the ACO robustly conforms to new

situations.

5.2 Ant Colony implementation

The rolling horizon method is used to implement the optimal signal cycles. The

length of the horizon is variable and set equal to the length of the signal cycle chosen.

The length of a full signal cycle is used for the horizon; giving all movements equal

weight in the decision process. Once the optimal policy is found, it is implemented for

one phase. Then, the beginning of the horizon is advanced to the next signal switch time

and the optimization process is repeated. Figure 5-1 shows an example of signal choices

and time advances.

 34

Figure 5-1. Example of Rolling Horizon Control

Ant colony optimization uses artificial ants to evaluate candidate solution and find

the optimal signal cycle switch times. The length of a green signal in a candidate solution

is bounded between the predetermined minimum green time and maximum green

time . Additionally, to make the set of candidate solutions finite, time is discretized

into one second time intervals. With these constraints, a graph is constructed for the ants

to traverse, as shown in Figure 5-2. When an ant is at time the set of admissible nodes

that it can move to is . All ants start at

the current time, then they move right to a new node, representing the next signal switch

time. From there they move to the right again to another node, representing the next

signal switch time. This creates a full signal cycle. At a given time, , the set of

candidate solutions is all the possible admissible combinations of the next two switch

times, and .

NS

EW

1t 2t
3tR G

G R

NS

EW

1t 2t 3t
G R

R G

NS

 EW

1t 2t 3t

R G

G R

 35

Figure 5-2. Graph that ants traverse

After an ant creates a signal cycle, and , the expected total delay, ,

of the ant’s solution is computed, using equation (3.15). But is not quite the

cost function that needs to be minimized. Shorter time intervals tend to have smaller total

expected delays because fewer vehicles enter the intersection during the cycle. Therefore,

the expected delay of fewer vehicles is being summed. Short cycle lengths are suboptimal

when they create long queue lengths. To avoid long queues, the total expected delay is

divided by the length of the cycle multiplied by the traffic volume plus the number initial

vehicles. This gives the expected average delay per vehicle. This value, not the total

1t

min1 tt +

max1 tt +

st +1

minmin1 ttt ++

stt ++ min1

maxmin1 ttt ++

min1 tst ++

sst ++1

max1 tt ++τ

minmax1 ttt ++

stt ++ max1

maxmax1 ttt ++

. . .
. . .

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

1t 2t 3t

 36

expected delay, is minimized. Thus the cost of the solution associated with the

pheromone update in equation (4.5) is:

 . (5.1)

This pheromone value is added to the edges which ant traversed to create its solution.

 Shown in Figure 5-3 is the flow chart for the Ant Colony code.

Figure 5-3. Computational Flow Chart

Generate vehicle arrival times

Set Ant Colony parameters

Set pheromone levels equal on all paths

Ants generate random solutions

Evaluate solutions

Update pheromone

Max number of iterations?

Generate control

Time Over?

 Stop

Simulate traffic

 Start

Yes

Yes

No

No

 37

 An advantage of the ACO is its ability to incorporate heuristic information about

the solution space being searched [6]. In the traffic signal problem, releasing all vehicles

in the queue usually results in smaller waiting times. So the green phase length should be

set accordingly. For small queues, releasing the current queue and then switching the

signal is optimal. For longer queues, additional time is optimal because, with high

probability, additional vehicles will arrive before all vehicles are released. In either case,

the optimal solution is near the time when all vehicles are released. This time is

, where is the length of the largest queue on the green

movements at time . To bias the search towards switch times near this time, the

pheromone levels are weighted by the heuristic value of

 , (5.2)

where is a positive constant. The value of is chosen experimentally. The exponential

function is used because it has a sharp peak at its maximum. Any function with a local

maximum can be used and choice of function is determined experimentally. A graph of

with , and is shown in Figure 5-4.

 38

5 10 15 20 25 30 35
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Signal Length

e
ta

Heuristic Weight Function

Figure 5-4. with seven vehicles in queue

 One problem with the ACO is its tendency to accumulate pheromone on near

optimal solutions [6]. At initialization, all paths are chosen with equal probability. If a

near optimal solution is randomly chosen more than any other path at initialization, then

its paths will have the most pheromone. The positive feedback of the ant colony

algorithm can cause pheromone to accumulate rapidly on this near optimal solution. As a

result, the optimal path may not be found. When using an ACO algorithm with the best-

so-far ant this stagnation became especially apparent. Simulations in this research

demonstrate this stagnation, see section 6.1. To avoid stagnation, a search of the solutions

near the best-so-far solution can be added. This local search can be performed in many

different ways and is dependant on the problem being optimized.

 In the traffic signal problem this is accomplished by replacing every iteration

of the random solution search with a local search. In this local search the search space is

 39

replaced with a neighborhood of size of the best-so-far solution. On a normal iteration,

the possible choices next switch times for an ant at time is the set

 . In a local search, the search space is

restricted to intersected with the set of

allowable signal settings. Where is the best so far signal switch time. If a better

solution is found, it replaces the old best-so-far solution. Pheromone evaporation and

update is not performed on the local search iterations. This process leads to less

stagnation and faster convergence.

5.3 Fully actuated control

 ACO algorithms are compared to a traditioned fully actuated control strategy. In

is sometimes called the vehicle-interval method [9]. In this strategy the minimum and

maximum green times, as well as an extension time are given.

 First, the minimum green time is assigned to a set of movements. If another

vehicle arrives on a green movement during the minimum green time, then the controller

extends the green signal by the extension time. The controller continues to extend the

green signal if new vehicles arrive until the maximum green time is reached. If no vehicle

arrives on the movements during an extension period, then the controller checks for a

vehicle in the queue of the red movements. If there is a vehicle, this movement is given

the minimum green time; otherwise, the signal remains the same.

 40

Chapter 6 Simulation Results

 In this chapter, the results of different ant colony algorithms and parameter

choices are presented and compared. First, converge rates of pheromone concentration to

the optimal solution using different algorithms and parameters are examined. Then, the

average vehicle delay of the Ant Colony control is compared with a traditional fully

actuated control algorithm. Table 6-1 shows the traffic parameters in seconds used in

simulations. The parameters were chosen consistent with literature [5].

Table 6-1. Traffic Simulation Parameters

Parameter Value

Minimum green time (s) 5

Maximum green time (s) 30

All red time (s) 2

Minimum headway (s) 2

Extension time (s) 1

6.1 Convergence of pheromone levels to best solution

An accurate way to determine how long an ACO algorithm typically takes to find

the optimal solution is required to evaluate it. Because the algorithm uses a probabilistic

search, the correct solution can be found on the first iteration or never. Fortunately, there

are many methods to ensure the possibility of never finding the optimal solution is ruled

out [6]. In order to estimate algorithm convergence rates, algorithms are tested on

examples where the optimal solution has a priori been calculated. Then the pheromone

concentration on the optimal path is recorded. Eventually the pheromone becomes so

concentrated on a path that running further iterations does not change the pheromone

levels.

 41

To see the qualitative behavior of the pheromone convergence, a simple case is

considered. Each movement of the intersection initially has zero vehicles in their queue.

In this case, it is optimal to switch the signal after the minimum green time. The figures

that follow show the percent of the total pheromone lying on the optimal signal setting.

 For each choice of ant colony parameters, one hundred trials are run. In each trial,

every edge of the ants’ graph begins with equal pheromone. During an iteration of the

trial, every ant constructs a solution and accordingly makes a pheromone update. The

pheromone level on the optimal phase is plotted after every iteration; showing how the

pheromone concentrates on the correct phase. The pheromone convergence from each

trial is plotted on the same graph. Then, the average over all trials is compared for

different numbers of ants. In the cases where many of the trials choose the wrong signal

switch times, the average gives a picture of what percentage of trials found the optimal

solution.

 The number of ants used in ACO is an important implementation issue. As little

as one ant could be used, but this does not take full advantage of the algorithm. When

more ants are used, more exploration is done during each iteration. As a result, more

pheromone is released per iteration, decreasing the chance of biasing towards poor

solutions. But, increasing the number of ants increases the computational work done per

iteration. Additionally, the large amount of pheromone deposited does not allow

significant bias towards one path. As a result, the pheromone levels change slower and it

is difficult to tell when the optimal solution is found.

 In the following simulations, the size of the local neighborhood is .

Meaning, on a local search step, the solution search space is restricted to paths that are

 42

distance four of less from the best so far solution. The local neighborhood of four is

chosen because the typical wrong solution without the local search is within four of the

optimal solution. The local search is performed every third iteration. ACO is pretty robust

to how often the local search is performed, but being performed more often is preferable

[6]. In formula (5.2), the heuristic weight function, the constant is . In formula (4.1),

the exponents and are both 1, more explanation on the choices of , , and are

given in Section 6.9. In the elitist ant update, formula (4.6), the elitist weight is .

The choice of the elitist weight should be on the same order of magnitude as the rest of

the ants [6]. In the rank based system the top ten ants are used to update. The pheromone

evaporation coefficients of and are compared. The number of ants used and

iterations taken is shown in the graphs. The vehicle arrival rate is 800 vehicles per hour

per movement.

6.2 Ant System

 First, the original ant system algorithm is examined with ten, twenty-five and fifty

ants. As seen in the Figure 6.1-8, when only ten ants are used, the pheromone levels tend

to concentrate faster. This accumulation is even more apparent if , when more

pheromone is evaporated on each iteration, causing the pheromone levels converge faster.

Unfortunately, most trials do not converge to the optimal solution.

 As more ants are used the optimal path is chosen more often, but too many

iterations are necessary and the number of trials that chose the optimal path is not

sufficient. As a result more advanced algorithms must be used.

 43

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Rate of convergence with 10 ants

Number of iterations

N
o

rm
a

liz
e

d
 p

h
e

ro
m

o
n

e
 o

n
 o

p
tim

a
l
p

a
th

Figure 6-1. Ant System rate of convergence with 10 ants,

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Rate of convergence with 25 ants

Number of iterations

N
o

rm
a

liz
e

d
 p

h
e

ro
m

o
n

e
 o

n
 o

p
tim

a
l
p

a
th

Figure 6-2. Ant System rate of convergence with 25 ants,

 44

0 20 40 60 80 100
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4
Rate of convergence with 50 ants

Number of iterations

N
o

rm
a

liz
e

d
 p

h
e

ro
m

o
n

e
 o

n
 o

p
tim

a
l
p

a
th

Figure 6-3. Ant System rate of convergence with 50 ants,

0 20 40 60 80 100
0.03

0.04

0.05

0.06

0.07

0.08
Average rate of convergence

Number of iterations

N
o

rm
a

liz
e

d
 p

h
e

ro
m

o
n

e
 o

n
 o

p
ti
m

a
l p

a
th

10 Ants

25 Ants

50 Ants

Figure 6-4. Ant System average rate of convergence with

 45

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Rate of convergence with 10 ants

Number of iterations

N
o

rm
a

liz
e

d
 p

h
e

ro
m

o
n

e
 o

n
 o

p
tim

a
l
p

a
th

Figure 6-5. Ant System rate of convergence with 10 ants,

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
Rate of convergence with 25 ants

Number of iterations

N
o

rm
a

liz
e

d
 p

h
e

ro
m

o
n

e
 o

n
 o

p
ti
m

a
l p

a
th

Figure 6-6. Ant System rate of convergence with 25 ants,

 46

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
Rate of convergence with 50 ants

Number of iterations

N
o

rm
a

liz
e

d
 p

h
e

ro
m

o
n

e
 o

n
 o

p
tim

a
l
p

a
th

Figure 6-7. Ant System rate of convergence with 50 ants,

0 20 40 60 80 100
0.02

0.04

0.06

0.08

0.1

0.12
Average rate of convergence

Number of iterations

N
o

rm
a

liz
e

d
 p

h
e

ro
m

o
n

e
 o

n
 o

p
ti
m

a
l p

a
th

10 Ants

25 Ants

50 Ants

Figure 6-8. Ant System average rate of convergence with

 47

6.3 Local search

 As described in chapter five, adding a local search can improve convergence.

Unfortunately, as shown in the figures below, when it is used alone it does not help. The

following graphs behave very similarly to the graphs in Section 6.2. The pheromone

addition on the local search step is not sufficient to create a significant bias towards an

optimal solution.

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Rate of convergence with 10 ants

Number of iterations

N
o

rm
a

liz
e

d
 p

h
e

ro
m

o
n

e
 o

n
 o

p
tim

a
l
p

a
th

Figure 6-9. Ant System with local search rate of convergence with 10 ants,

 48

0 20 40 60 80 100
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
Rate of convergence with 25 ants

Number of iterations

N
o

rm
a

liz
e

d
 p

h
e

ro
m

o
n

e
 o

n
 o

p
tim

a
l
p

a
th

Figure 6-10. Ant System with local search rate of convergence with 25 ants,

0 20 40 60 80 100
0

0.05

0.1

0.15

0.2

0.25
Rate of convergence with 50 ants

Number of iterations

N
o

rm
a

liz
e

d
 p

h
e

ro
m

o
n

e
 o

n
 o

p
tim

a
l
p

a
th

Figure 6-11. Ant System with local search rate of convergence with 50 ants,

 49

0 20 40 60 80 100

0.04

0.045

0.05

0.055

0.06
Average rate of convergence

Number of iterations

N
o

rm
a

liz
e

d
 p

h
e

ro
m

o
n

e
 o

n
 o

p
tim

a
l p

a
th

10 Ants

25 Ants

50 Ants

Figure 6-12. Ant System with local search average rate of convergence with

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Rate of convergence with 10 ants

Number of iterations

N
o

rm
a

liz
e

d
 p

h
e

ro
m

o
n

e
 o

n
 o

p
tim

a
l
p

a
th

Figure 6-13. Ant System with local search rate of convergence with 10 ants,

 50

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
Rate of convergence with 25 ants

Number of iterations

N
o

rm
a

liz
e

d
 p

h
e

ro
m

o
n

e
 o

n
 o

p
tim

a
l
p

a
th

Figure 6-14. Ant System with local search rate of convergence with 25 ants,

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Rate of convergence with 50 ants

Number of iterations

N
o

rm
a

liz
e

d
 p

h
e

ro
m

o
n

e
 o

n
 o

p
tim

a
l
p

a
th

Figure 6-15. Ant System with local search rate of convergence with 50 ants,

 51

0 20 40 60 80 100
0.03

0.04

0.05

0.06

0.07

0.08
Average rate of convergence

Number of iterations

N
o

rm
a

liz
e

d
 p

h
e

ro
m

o
n

e
 o

n
 o

p
ti
m

a
l p

a
th

10 Ants

25 Ants

50 Ants

Figure 6-16. Ant System with local search average rate of convergence with

6.4 Elitist Ant System

 To improve the speed of convergence, the best-so-far path is weighted heavier in

the Elitist Ant System. If bad solutions are chosen at the beginning too often, they will

get too much pheromone and cause pheromone to concentrate on the wrong path.

Alternatively, if the optimal solution is chosen, then convergence will be faster. The

speed of convergence is very dependant on pheromone evaporation. Using more ants

reduces the effects the elitist update. The pheromone concentrates slower on bad paths,

but also does not indicate as fast when a good solution is found. Additionally, the number

of ants required to offset bad updates from the elitist ant is too large.

 52

 When , the average over all iterations looks similar for the different

number of ants. In the cases with fewer ants, there is a smaller chance of choosing the

optimal solution, but if the correct solution is found convergence is faster. On the other

hand, when more ants are used the pheromone concentrates slower, even after the optimal

solution is found.

 When and only ten ants are used, the optimal solution is not found early

very often and evaporation occurs rapidly. As a result, the optimal solution is not found

very frequently.

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Rate of convergence with 10 ants

Number of iterations

N
o

rm
a

liz
e

d
 p

h
e

ro
m

o
n

e
 o

n
 o

p
tim

a
l
p

a
th

Figure 6-17. Elitist Ant System rate of convergence with 10 ants,

 53

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Rate of convergence with 25 ants

Number of iterations

N
o

rm
a

liz
e

d
 p

h
e

ro
m

o
n

e
 o

n
 o

p
ti
m

a
l p

a
th

Figure 6-18. Elitist Ant System rate of convergence with 25 ants,

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Rate of convergence with 50 ants

Number of iterations

N
o

rm
a

liz
e

d
 p

h
e

ro
m

o
n

e
 o

n
 o

p
ti
m

a
l p

a
th

Figure 6-19. Elitist Ant System rate of convergence with 50 ants,

 54

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5
Average rate of convergence

Number of iterations

N
o

rm
a

liz
e

d
 p

h
e

ro
m

o
n

e
 o

n
 o

p
ti
m

a
l p

a
th

10 Ants

25 Ants

50 Ants

Figure 6-20. Elitist Ant System average rate of convergence with

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Rate of convergence with 10 ants

Number of iterations

N
o

rm
a

liz
e

d
 p

h
e

ro
m

o
n

e
 o

n
 o

p
tim

a
l
p

a
th

Figure 6-21. Elitist Ant System rate of convergence with 10 ants,

 55

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Rate of convergence with 25 ants

Number of iterations

N
o

rm
a

liz
e

d
 p

h
e

ro
m

o
n

e
 o

n
 o

p
ti
m

a
l p

a
th

Figure 6-22. Elitist Ant System rate of convergence with 25 ants,

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Rate of convergence with 50 ants

Number of iterations

N
o

rm
a

liz
e

d
 p

h
e

ro
m

o
n

e
 o

n
 o

p
tim

a
l
p

a
th

Figure 6-23. Elitist Ant System rate of convergence with 50 ants,

 56

0 20 40 60 80 100
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45
Average rate of convergence

Number of iterations

N
o

rm
a

liz
e

d
 p

h
e

ro
m

o
n

e
 o

n
 o

p
tim

a
l
p

a
th

10 Ants

25 Ants

50 Ants

Figure 6-24. Elitist Ant System average rate of convergence with

6.5 Elitist Ant System with local search

 When the Elitist ant system is used, the local search helps to find the best path and

the elitist ant will update this path more often. The local search was performed every

three iterations. In the figures below, the pheromone levels can increase significantly on

multiples of three, because the optimal setting has been found and then the elitist ant

updates this path on each iteration. Fewer ants can be used and still guarantee

convergence to the optimal path. In these situations, using ten ants is sufficient most of

the time, but there are too many trials where the optimal path is found later in the

simulations. When the local search is used, the probability of not finding the optimal

solution decreases significantly. As a result, the use of less pheromone evaporation is not

 57

needed to reduce the probability of bad convergence. The slower evaporation only slows

convergence without significant advantages.

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Rate of convergence with 10 ants

Number of iterations

N
o

rm
a

liz
e

d
 p

h
e

ro
m

o
n

e
 o

n
 o

p
tim

a
l p

a
th

Figure 6-25. Elitist Ant System with local search rate of convergence with 10 ants,

 58

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Rate of convergence with 25 ants

Number of iterations

N
o

rm
a

liz
e

d
 p

h
e

ro
m

o
n

e
 o

n
 o

p
tim

a
l p

a
th

Figure 6-26. Elitist Ant System with local search rate of convergence with 25 ants,

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Rate of convergence with 50 ants

Number of iterations

N
o

rm
a

liz
e

d
 p

h
e

ro
m

o
n

e
 o

n
 o

p
tim

a
l p

a
th

Figure 6-27. Elitist Ant System with local search rate of convergence with 50 ants,

 59

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1
Average rate of convergence

Number of iterations

N
o

rm
a

liz
e

d
 p

h
e

ro
m

o
n

e
 o

n
 o

p
ti
m

a
l p

a
th

10 Ants

25 Ants

50 Ants

Figure 6-28. Elitist Ant System with local search average rate of convergence with

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Rate of convergence with 10 ants

Number of iterations

N
o

rm
a

liz
e

d
 p

h
e

ro
m

o
n

e
 o

n
 o

p
tim

a
l p

a
th

Figure 6-29. Elitist Ant System with local search rate of convergence with 10 ants,

 60

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Rate of convergence with 25 ants

Number of iterations

N
o

rm
a

liz
e

d
 p

h
e

ro
m

o
n

e
 o

n
 o

p
tim

a
l p

a
th

Figure 6-30. Elitist Ant System with local search rate of convergence with 25 ants,

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Rate of convergence with 50 ants

Number of iterations

N
o

rm
a

liz
e

d
 p

h
e

ro
m

o
n

e
 o

n
 o

p
tim

a
l p

a
th

Figure 6-31. Elitist Ant System with local search rate of convergence with 50 ants,

 61

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1
Average rate of convergence

Number of iterations

N
o

rm
a

liz
e

d
 p

h
e

ro
m

o
n

e
 o

n
 o

p
ti
m

a
l p

a
th

10 Ants

25 Ants

50 Ants

Figure 6-32. Elitist Ant System with local search average rate of convergence with

6.6 Heuristic Information

 By adding the heuristic in formula (5.2) convergence to the optimal is even faster

and 10 ants are sufficient for simulations. Once again, evaporating pheromone slower is

not needed to find the correct solution; it only makes the convergence slower.

 62

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Rate of convergence with 10 ants

Number of iterations

N
o

rm
a

liz
e

d
 p

h
e

ro
m

o
n

e
 o

n
 o

p
tim

a
l p

a
th

Figure 6-33. Elitist Ant System with local search and heuristics rate of convergence with 10 ants,

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Rate of convergence with 25 ants

Number of iterations

N
o

rm
a

liz
e

d
 p

h
e

ro
m

o
n

e
 o

n
 o

p
tim

a
l p

a
th

Figure 6-34. Elitist Ant System with local search and heuristics rate of convergence with 25 ants,

 63

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Rate of convergence with 50 ants

Number of iterations

N
o

rm
a

liz
e

d
 p

h
e

ro
m

o
n

e
 o

n
 o

p
tim

a
l p

a
th

Figure 6-35. Elitist Ant System with local search and heuristics rate of convergence with 50 ants,

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1
Average rate of convergence

Number of iterations

N
o

rm
a

liz
e

d
 p

h
e

ro
m

o
n

e
 o

n
 o

p
ti
m

a
l p

a
th

10 Ants

25 Ants

50 Ants

Figure 6-36. Elitist Ant System with local search and heuristics average rate of convergence with

 64

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Rate of convergence with 10 ants

Number of iterations

N
o

rm
a

liz
e

d
 p

h
e

ro
m

o
n

e
 o

n
 o

p
tim

a
l p

a
th

Figure 6-37. Elitist Ant System with local search and heuristics rate of convergence with 10 ants,

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Rate of convergence with 25 ants

Number of iterations

N
o

rm
a

liz
e

d
 p

h
e

ro
m

o
n

e
 o

n
 o

p
tim

a
l p

a
th

Figure 6-38. Elitist Ant System with local search and heuristics rate of convergence with 25 ants,

 65

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Rate of convergence with 50 ants

Number of iterations

N
o

rm
a

liz
e

d
 p

h
e

ro
m

o
n

e
 o

n
 o

p
tim

a
l p

a
th

Figure 6-39. Elitist Ant System with local search and heuristics rate of convergence with 50 ants,

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1
Average rate of convergence

Number of iterations

N
o

rm
a

liz
e

d
 p

h
e

ro
m

o
n

e
 o

n
 o

p
ti
m

a
l p

a
th

10 Ants

25 Ants

50 Ants

Figure 6-40. Elitist Ant System with local search and heuristics average rate of convergence with

 66

6.7 Rank-based Ant System

 To achieve the fastest rates of convergence, ants’ solutions are ranked and the

solutions with the highest cost function are discarded. Once the optimal solution is found

pheromone accumulates more rapidly, because the best solutions are weighted heavier

and the bad solutions are ignored. The rank-based ant system works the best and requires

the fewest ants. As a result, it is used in simulations to test the effectiveness of ACO

control.

 The evaporation step is used to eliminate pheromone on bad solutions. But, the

rank based update gives less weight to less optimal solutions[6]. As a result, pheromone

evaporation is slower.

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Rate of convergence with 10 ants

Number of iterations

N
o

rm
a

liz
e

d
 p

h
e

ro
m

o
n

e
 o

n
 o

p
tim

a
l p

a
th

Figure 6-41. Rank-based Ant System with local search and heuristics rate of convergence with 10

ants,

 67

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Rate of convergence with 25 ants

Number of iterations

N
o

rm
a

liz
e

d
 p

h
e

ro
m

o
n

e
 o

n
 o

p
tim

a
l p

a
th

Figure 6-42. Rank-based Ant System with local search and heuristics rate of convergence with 25

ants,

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Rate of convergence with 50 ants

Number of iterations

N
o

rm
a

liz
e

d
 p

h
e

ro
m

o
n

e
 o

n
 o

p
tim

a
l p

a
th

Figure 6-43. Rank-based Ant System with local search and heuristics rate of convergence with 50

ants,

 68

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1
Average rate of convergence

Number of iterations

N
o

rm
a

liz
e

d
 p

h
e

ro
m

o
n

e
 o

n
 o

p
ti
m

a
l p

a
th

10 Ants

25 Ants

50 Ants

Figure 6-44. Rank-based Ant System with local search and heuristics average rate of convergence

with

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Rate of convergence with 10 ants

Number of iterations

N
o

rm
a

liz
e

d
 p

h
e

ro
m

o
n

e
 o

n
 o

p
tim

a
l p

a
th

Figure 6-45. Rank-based Ant System with local search and heuristics rate of convergence with 10

ants,

 69

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Rate of convergence with 25 ants

Number of iterations

N
o

rm
a

liz
e

d
 p

h
e

ro
m

o
n

e
 o

n
 o

p
tim

a
l p

a
th

Figure 6-46. Rank-based Ant System with local search and heuristics rate of convergence with 25

ants,

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Rate of convergence with 50 ants

Number of iterations

N
o

rm
a

liz
e

d
 p

h
e

ro
m

o
n

e
 o

n
 o

p
tim

a
l p

a
th

Figure 6-47. Rank-based Ant System with local search and heuristics rate of convergence with 50

ants,

 70

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1
Average rate of convergence

Number of iterations

N
o

rm
a

liz
e

d
 p

h
e

ro
m

o
n

e
 o

n
 o

p
ti
m

a
l p

a
th

10 Ants

25 Ants

50 Ants

Figure 6-48. Rank-based Ant System with local search and heuristics average rate of convergence

with

6.8 Pheromone convergence during traffic simulations

 The convergence rates in the simple problem when the queue begins empty

between the elitist ACO and the rank based method when both use local search and

heuristic information are similar. But when running in a traffic simulation, the elitist

doesn’t converge as fast, and pheromone levels can get stuck, so the solution never

converges. Figure 6-49 shows the convergence levels of pheromone during a 20 minute

simulation with a traffic volume of eight hundred fifty vehicles per hour per movement.

The elitist ant system is used with local search and heuristic weight. Ten ants are used

and pheromone evaporation, . If the weight of the elitist ant is increased then full

convergence occurs more often, but suboptimal solutions can be weighted too heavily,

 71

causing pheromone to concentrate on them. As a result, many iterations of the local

search are required to find the optimal solution.

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of iterations

N
o

rm
a

liz
e

d
 p

h
e

ro
m

o
n

e
 o

n
 o

p
tim

a
l p

a
th

Figure 6-49. Convergence rates during traffic simulation using Elitist ACO with local search

 In the rank based method, the same qualitative behavior shown in the figures of

this chapter is seen in the convergence during a traffic simulation. Figure 6-50 shows the

convergence levels of pheromone during a 20 minute simulation with a traffic volume of

eight hundred fifty vehicles per hour per movement. The rank-based ant system is used

with local search and heuristic weight. Ten ants are used and pheromone evaporation,

.

 72

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of iterations

N
o
rm

a
liz

e
d
 p

h
e
ro

m
o
n
e
 o

n
 o

p
ti
m

a
l
p
a
th

Figure 6-50. Convergence rates during traffic simulation using Rank-based ACO

6.9 Choice of parameters and

 Proper choice of parameter ACO leads to faster and more accurate convergence of

the artificial ant’s pheromone. One important parameter choice is the weight and , of

the pheromone levels and heuristic information respectively, in the ant solution

construction step. The heuristic weight function is an exponential, so the weight and

the heuristic scaling are interchangeable. Observe that

. For this reason, is fixed at

 73

one and is varied. The following figures show the effects of bad parameter choices in

the rank-based ant system with local search and heuristic weight.

 The values of and are between 0 and 1, so exponentiating them by a parameter

less than one increases smaller values more than larger ones. The extra weight to

suboptimal solutions reduces the effects of the pheromone evaporation. Ants choose the

suboptimal routes more often, so the pheromone does not fully evaporate. Several

different paths are selected and updated with pheromone on each iteration, so pheromone

does not completely converge to the optimal solution. Figure 6-51 shows pheromone

convergence with , and Figure 6-52 shows pheromone convergence with .

 Conversely, if is too large then solutions are weighted to heavily and less

exploration is done. The solutions chosen early are updated heavily and many iterations

of the local search are required to find the optimal solution, if it is found at all. Figure

6-53 shows pheromone convergence with , note that the pheromone often takes

many more iterations before it begins to concentrate. If is too small then the heuristic

information is considered to strongly. If the optimal solution is not being weighted

heaviest by the heuristic information then and pheromone might not fully converge. The

extra weighting of the heuristic information causes the ants to choose this solution more

often; since it is close to optimal it receives large updates. The feedback is too large and

pheromone never disappears on a suboptimal path. Figure 6-54 shows pheromone

convergence with .

 74

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Number of iterations

N
o

rm
a

liz
e

d
 p

h
e

ro
m

o
n

e
 o

n
 o

p
tim

a
l p

a
th

Figure 6-51. Pheromone convergence with

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Number of iterations

N
o

rm
a

liz
e

d
 p

h
e

ro
m

o
n

e
 o

n
 o

p
tim

a
l p

a
th

Figure 6-52. Pheromone convergence with

 75

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of iterations

N
o

rm
a

liz
e

d
 p

h
e

ro
m

o
n

e
 o

n
 o

p
tim

a
l p

a
th

Figure 6-53. Pheromone convergence with

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of iterations

N
o

rm
a

liz
e

d
 p

h
e

ro
m

o
n

e
 o

n
 o

p
tim

a
l p

a
th

Figure 6-54. Pheromone convergence with

 76

6.10 Average delay

 In this section, the control strategy of the ACO is compared with the traditional

fully actuated controller, described in Chapter 5. The traffic simulation is run for ten

minutes; allowing traffic to reach a steady state and reduce the effects of initial conditions.

Then, the delay of each vehicle is recorded for the next ten minutes. A vehicle’s delay is

defined to be its departure time minus its arrival time. At the end of each trial, the

average delay over the second ten minute period is recorded. The average delay is

 (6.1)

where and is the arrival time and departure time of the vehicle, respectively.

The sum is taken over all vehicles that arrive in the second ten minute interval, and is

the total number of arrivals during this interval. All delays are record in seconds. The

ACO algorithm and the Fully Actuated control were run on forty sets of vehicle arrival

data. The table of the average delay time in each trial is given in Appendix A. The time

resolution of the simulations is .01 seconds.

 In low traffic flows the fully actuated controller performs better. When the traffic

flow is less than six hundred vehicles per hour per movement, the expected vehicle inter-

arrival time is greater than six seconds. The minimum green time is five seconds and with

the two second all red time, so the minimum time between a phase transition is seven

seconds. The probability of a vehicle arriving during a red signal is small but cannot be

ignored. The fully actuated controller is better suited for this situation because it waits for

a vehicle on red to arrive before changing.

 77

 Once traffic flow is larger than six hundred vehicles per hour per movement, the

number of vehicles that arrive per red signal is frequently greater than one. With the

higher arrival rates the red movements need to be considered when creating traffic

control signals. The fully actuated controller gives too much preference to the green

direction. On the other hand, the objective function of the rolling horizon control takes all

movements into account.

 Figure 6-55 plots the average vehicle delay of each control strategy over all trials.

As traffic approaches saturation, the average delay for the fully actuated control increases

much faster than in ACO control. Figure 6-56 shows the minimum and maximum

average wait times from a trial. As a second performance measure, the average queue

lengths from each control strategy are compared. In Figure 6-57 the average queue

lengths are shown. They behave similarly to the average delays, with the queue lengths

growing much faster in fully actuated control as the arrival rate approaches saturation.

Figure 6-58 shows the longest average queue length from a trial.

 The ant colony simulations run an order of magnitude faster than real-time, so

they can be effectively implemented in real time systems. The rank-based ant system

using local search, elitist ant, heuristic weights and ten ants takes eight minutes to run

twenty minutes of simulation.

 78

400 500 600 700 800
0

5

10

15

20

Volume in vehicles per hour

A
v
e

ra
g

e
 d

e
la

y
 in

 s
e

c
o

n
d

s

Average delay

ACO control

Fully Actuated control

Figure 6-55. Average delay

400 500 600 700 800
0

5

10

15

20

25

30

Volume in vehicles per hour

A
v
e

ra
g

e
 D

e
la

y

ACO control

Fully Actuated control

Figure 6-56. Upper and lower bounds on average vehicle delay

 79

400 450 500 550 600 650 700 750 800 850
0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
Average Queue Lengths

Q
u

e
u

e
 L

e
n

g
th

Vehicle arrival rate

Figure 6-57. Average Queue Length

400 450 500 550 600 650 700 750 800 850
0

1

2

3

4

5

6

7
Longest Average Queue

Q
u

e
u

e
 L

e
n

g
th

Vehicle arrival rate

Figure 6-58. Longest Average Queue Length

 80

Chapter 7 Conclusions and Future Works

 Effective traffic signal control is the most efficient way to manage traffic flows.

Good traffic management reduces user delay, fuel consumption and leads to less network

congestion. Because traffic flows are nonlinear and stochastic, there are many difficulties

in creating good traffic signal policy. Control strategies must be responsive to

fluctuations in traffic flow that can occur on short time scales. Additionally, longer time

scales must be considered to reach global optimality.

 In this thesis, ant colony optimization is used in the control of traffic signals.

ACO has successfully been applied to many combinatorial optimization problems. The

probabilistic searches of ant colony algorithms work well with the stochastic nature of

traffic flows. Ant colony optimization handles nonlinearities and non-differentiability of

objective functions. Additionally, it is successfully applied to the effective rolling horizon

control technique.

 The use of ant colony optimization in traffic control outperforms traditional fully

actuated control in high traffic demand and warrants further evaluation on more complex

signal systems. In computer simulations, the ACO runs faster than real time, making it a

viable option in real time control. With the addition of heuristic information and rank-

based ant updates the optimal solution is found quickly. Once the optimal solution is

found, pheromone accumulates quickly.

 In addition to evaluating the average delay of vehicles, the convergence rates and

accuracy of various ACO methods is evaluated. For the traffic signal problem, the Elitist

ant system performs well. The addition of a local search helps pheromone to converge to

the optimal solution. Including heuristic information from the queue length increases the

 81

convergence speed. Once the rank based pheromone update is added pheromone

accumulates on the optimal solution very quickly once it is found.

 The results on a single intersection warrant further research on more complicated

systems. Isolated intersections can be made more complex by adding turning lanes. When

turning lanes are added the signal control follows an eight phase dual ring sequence [5].

So a full signal cycle also considers green phases for the turning lanes. This control is

more complex because not only are the phase lengths chosen but the order of the phases

is also determined. The addition of an eight phase signal makes the graph ants transverse

larger. At each node an ant decides which phase comes next and how long the phase

should be.

 The next step is a five intersection network with a central intersection and four

surrounding intersections. Utilizing a decentralized control strategy, each intersection has

a graph of candidate signal cycles for the ants to traverse. Intersections have internal

movements that receive vehicles from other intersections. Traffic from adjacent

intersections do not arrive according to a Poisson distribution, but would follow

Robertson’s platoon flows. Each intersection communicates with other intersections,

sending traffic data and arrival rates. The rolling horizon at each intersection is long

enough to utilize all available information from neighboring intersections.

 82

References

[1] Transportation research center, "Traffic network study tool: TRANSYT-7F

software summary," University of Florida, 1987.

[2] P. B. Hunt, Robertson, D. I., et al., "The SCOOT on-line traffic signal

optimization technique," Traffic engineering and control, April 1982.

[3] P. Lowrie, "The Sydney coordinated adaptive control systems - principles,

methodology, algorithms," IEE conference publication, vol. 207, 1982.

[4] W. Wei, Y. Zhang, J. B. Mbede, Z. Zhang, and J. Song, "Traffic signal control

using fuzzy logic and MOGA," Proceedings of the IEEE conference on systems,

man, and cybernetics, 2001.

[5] X.-H. Yu, "Decentralized adaptive signal control for traffic networks," in

Transportation research trends, P. O. Inweldi, Ed. New York: Nova Science

Publishers, 2008.

[6] M. Dorigo and T. Stutzle, Ant colony optimization. Cambridge, Massachusetts:

MIT Press, 2004.

[7] M. Dorigo and C. Blum, "Ant colony optimization theory: A survey," Theoretical

Computer Science, vol. 344, pp. 243-278, 2005.

[8] D. Angus, "Ant colony Optimization: From Biological inspiration to an

Algorithmic Framework," Technical Report, CISCP, 2006.

[9] M. Papageorgiou, C. Diakaki, V. Dinopoulou, A. Kotsialos, and W. Yibing,

"Review of road traffic control strategies," Proceedings of the IEEE, vol. 91, pp.

2043-2067, 2003.

[10] X.-H. Yu and W. W. Recker, "Stochastic adaptive control model for traffic signal

systems," Transportation Research Part C: Emerging Technologies, vol. 14, pp.

263-282, 2006.

[11] T. Riedel and U. Brunner, "A control algorithm for traffic lights," in First IEEE

Conference on Control Applications, 1992, pp. 901-906

[12] J. Y. K. Luk, "Two traffic-responsive area traffic control methods: SCAT and

SCOOT," Traffic engineering and control, 1984.

[13] N. Gartner, "OPAC: A demand-responsive strategy for traffic signal control,"

Transportation research record, no. 906, 1983.

[14] A. J. Miller, "A computer control system for traffic networks," Proc. 2nd Int.

Symp. Traffic Theory, pp. 200-220, 1963.

[15] J.-D. Schmöcker, S. Ahuja, and M. G. H. Bell, "Multi-objective signal control of

urban junctions - Framework and a London case study," Transportation Research

Part C: Emerging Technologies, vol. 16, pp. 454-470, 2008.

[16] C. Ledoux, "An urban traffic flow model integrating neural networks,"

Transportation Research Part C: Emerging Technologies, vol. 5, pp. 287-300,

1997.

[17] M. Papageorgiou, A. Messmer, J. Azema, and D. Drewanz, "A neural network

approach to freeway network traffic control," Control Engineering Practice, vol.

3, pp. 1719-1726, 1995.

 83

[18] C. Quek, M. Pasquier, and B. B. S. Lim, "POP-TRAFFIC: a novel fuzzy neural

approach to road traffic analysis and prediction," Intelligent Transportation

Systems, IEEE Transactions on, vol. 7, pp. 133-146, 2006.

[19] V. S. Borkar, Topics in controlled Markov chains: Longman scientific & technical

group, 1991.

[20] R. D. Yates, Goodman, D.J., Probability and Stochastic Processes, second ed.

New York: Wiley, 2005.

[21] R. T. Luttinen, "Statistical Analysis of Vehicle Time Headways." vol. Doctor of

Science in Technology: Helsinki University of Technology, 1996.

[22] B. V. Ramanathan, "Actuated signal network simulation program," Institute of

Transportation Studies University of California Irvine 1993.

[23] S. M. Ross, Applied Probability Models with Optimization Applications. San

Francisco: Holden-Day, 1970.

[24] F. M. Dekking, C. Kraaikamp, H. P. Lopuhaa, and L. E. Meester, A modern

introduction to probability and statistics: Springer, 2005.

[25] J. Vaslin, "Ant Colony Optimization: An adaptive nature inspired algorithm

explained, concretely implemented, and applied to routing protocols in wired and

wireless networks," India: International Institute of Information Technology,

2006.

[26] M. Dorigo and L. M. Gambardella, "Ant colonies for the traveling salesman

problem," Biosystems, vol. 43, pp. 73-81, 1997.

[27] B. Bullnheimer, R. F. Hartl, and C. Strauss, "An improved Ant System algorithm

for the Vehicle Routing Problem," Annals of Operations Research, vol. 89, pp.

319-328, 1999.

[28] R. Montemanni, L. Gambardella, A. Rizzoli, and A. Donati, "Ant Colony System

for a Dynamic Vehicle Routing Problem," Journal of Combinatorial Optimization,

vol. 10, pp. 327-343, 2005.

 84

Appendix A Table of wait times

 The following tables show the average vehicle delay in the ACO and Fully-

Actuated control. The first row gives the vehicle arrival rate in vehicles per hour per

movement. The rest of the columns give the average vehicle delay during each trial.

Table A-1. ACO Control average vehicle delays

400 450 500 550 600 650 700 750 800 850

3.60 3.79 3.72 3.61 4.19 5.13 5.44 5.73 6.81 8.62

3.75 3.55 4.01 3.87 4.53 4.54 5.03 6.77 7.47 10.50

3.61 4.16 3.81 4.24 4.17 4.97 5.15 6.41 7.57 8.96

3.39 3.39 3.91 4.31 4.22 4.60 5.64 6.70 6.60 11.20

3.65 3.82 3.80 4.43 4.38 5.21 5.01 5.89 6.53 8.01

4.05 3.15 3.96 4.00 4.18 4.49 5.25 6.23 8.92 11.09

3.31 3.88 3.68 4.12 4.30 4.57 5.73 5.45 7.18 13.39

3.47 3.48 3.51 4.22 4.07 4.99 5.05 5.57 7.87 9.54

3.06 3.22 3.92 3.60 4.13 4.46 4.40 5.92 8.13 7.46

3.20 3.74 3.76 4.20 4.41 4.57 5.09 5.58 6.84 9.68

3.24 3.63 3.84 3.85 3.99 5.06 5.08 5.21 7.00 12.98

3.48 3.59 4.25 4.03 4.27 4.65 4.77 6.28 7.34 11.02

2.94 3.68 3.54 3.58 5.06 4.96 5.42 6.15 6.49 10.10

3.41 3.41 3.81 4.04 4.29 4.63 5.48 6.95 7.61 8.18

4.08 3.34 3.90 4.06 4.00 4.96 6.27 5.45 6.85 10.43

3.90 3.37 4.35 3.95 3.94 4.92 5.13 4.97 6.70 8.88

3.70 3.59 3.74 4.09 4.60 5.63 4.85 6.10 7.77 10.51

3.73 3.88 3.96 3.71 4.85 5.16 5.80 5.87 8.44 15.89

3.25 3.49 3.53 4.42 4.20 5.88 4.97 5.50 7.82 9.02

3.57 3.71 3.88 3.85 4.52 4.60 4.68 5.90 6.92 10.74

3.77 3.73 3.81 4.27 3.86 4.73 6.28 6.77 6.82 9.65

3.48 3.39 3.70 4.03 4.34 4.78 6.00 5.79 6.99 8.22

3.62 3.70 3.44 3.91 4.02 4.19 4.83 5.38 #### 9.24

3.40 3.83 3.84 4.41 4.38 4.60 5.38 5.77 6.97 8.58

3.51 3.48 3.90 4.01 4.38 4.86 4.82 5.72 7.90 10.27

3.50 3.23 3.66 4.09 4.51 4.86 5.40 5.60 6.68 9.18

3.32 3.99 4.10 4.16 4.22 4.25 5.38 6.13 6.83 13.16

3.76 3.60 3.57 4.30 4.85 4.48 4.86 5.24 6.92 12.03

 85

3.82 3.46 3.92 3.90 4.64 4.28 5.89 5.39 7.85 8.58

3.07 3.58 3.83 4.04 4.29 5.06 5.77 5.17 6.79 7.74

3.48 3.41 3.83 3.77 4.35 4.95 5.17 5.57 7.29 9.34

3.81 3.41 3.78 4.01 4.59 4.54 4.82 7.04 6.27 8.57

3.41 3.54 3.92 3.98 4.45 4.57 6.02 5.56 7.80 12.73

3.71 3.51 4.12 4.20 4.18 4.00 5.33 5.51 6.77 9.89

3.51 3.55 3.26 3.82 4.53 4.41 4.98 5.94 7.82 10.77

3.77 3.76 3.73 4.30 4.54 4.92 5.03 5.56 8.21 10.64

3.45 3.51 3.91 4.14 4.03 5.09 5.84 5.77 6.42 9.78

3.43 3.99 3.63 4.06 4.24 4.76 5.78 7.75 8.41 10.10

3.49 3.40 3.76 3.77 4.70 4.94 5.15 6.11 7.07 10.30

3.28 3.29 3.72 4.11 4.04 5.03 4.97 5.24 8.01 10.46

Table A-2. Fully Actuated Control average vehicle delays

400 450 500 550 600 650 700 750 800 850

2.87 2.62 2.82 3.27 3.78 5.75 9 7.36 13.5 17.55

3.08 2.97 3.28 3.74 4.35 4.67 4.68 12.6 11.9 19.02

2.54 3.12 3.43 2.94 3.93 5.41 6.82 10.1 15.8 17.09

2.65 2.85 3.19 3.77 3.43 4.75 8.3 10.8 9.88 19.05

2.48 2.39 3.73 3.93 3.47 5.89 5.73 8.84 10.9 14.09

2.9 2.86 2.93 3.27 3.75 4.27 5.55 13.3 14.3 20.53

2.58 2.73 2.94 3.27 3.82 4.48 7.31 7.64 10.3 22.93

2.83 2.55 2.92 3.85 4.32 4.08 6.03 8.75 10.6 17.02

2.56 2.65 3.52 3.47 3.78 4.63 5.96 7.02 12.3 14.81

2.52 2.9 2.94 3.74 4.28 4.83 5.58 6.89 10.6 18.75

2.55 2.75 2.98 3.48 3.48 4.9 4.75 9.13 13.6 21.13

2.78 2.59 3.04 3.55 4.05 4.89 6.2 10.5 13.6 21.37

2.53 2.76 3.28 3.89 4.06 4.66 6.18 8.81 11.6 16.2

2.28 2.69 3.08 3.74 3.78 6.03 8.11 9.41 13.6 16.77

2.54 2.68 3.07 4 3.77 5.49 7.9 7.83 9.83 20.28

2.93 2.92 3.23 3.22 3.45 5.66 6.62 7.33 11.4 16.06

2.64 2.66 2.96 3.86 4.24 5.21 7.19 13.2 12.8 20.62

2.51 2.94 3.06 3.19 4.02 5.51 6.09 7.27 16.1 23.32

2.75 2.95 2.7 4.52 3.59 6.47 8.37 6.27 14.1 17.57

2.37 2.9 3.12 2.76 3.94 5.29 5.84 7.88 15.3 18.87

2.45 2.96 3.17 3.54 3.24 5.11 6.09 11.6 13.1 17.93

2.49 2.6 3.01 3.94 3.96 4.88 8.1 8.28 13.2 16.84

2.49 2.76 3.08 3.81 3.8 4.12 5.03 7.42 14.6 16.9

 86

2.45 2.73 3.07 3.17 4 4.92 4.66 10.6 14.7 15.2

2.41 2.79 3 3.88 4.16 4.73 8.29 7.79 14.2 19.92

2.62 2.76 3.42 3.75 3.9 6.08 6.35 8.64 13.9 15.8

2.2 3.16 3.37 3.81 4.14 3.68 5.6 8.61 12.9 20.51

2.74 2.82 3.41 3.15 4.54 4.98 5.98 6.4 10.9 26.17

2.46 2.65 3.48 3.52 3.6 5.8 6.97 8.35 17.1 17.72

2.67 3.01 3.14 3.56 3.92 4.59 6.53 7.49 10.6 15.52

2.27 2.98 3.26 4.38 3.85 5.56 7.12 7.29 15.2 18.03

2.13 2.75 3.26 3.01 4.46 6.24 6.59 11.6 13 15.75

2.34 2.59 2.77 3.15 4.5 4.95 9.45 9.13 16.2 23.24

2.63 2.79 3.34 3.58 4.16 4.17 7.07 9.66 8.89 18.35

2.27 3 3.02 3.05 3.76 5.3 5.63 11 14.6 18.64

2.55 3.02 2.92 3.25 4.02 5.29 6.12 9.66 16.6 19.55

2.52 2.53 2.98 3.52 3.63 5.48 6.77 8.87 12.9 18.33

2.49 2.74 3.51 3.53 3.62 5.87 5.26 11.7 15.2 18.26

2.49 2.87 2.84 3.26 4.33 5.48 5.58 8.56 11.7 19.89

2.41 3.13 2.58 3.5 4.18 5.8 6.26 6.97 16.5 19.55

 87

Appendix B Matlab Code

%%start.m

global volume headway redtime;
volume=800; %Vehicles per hour
headway=2; %Spacing between cars on internal

 %movements
redtime =2; %All red time for intersections

NumCars=fix(volume*.5); %Number of cars generated in each

 %direction
gencar() %Generate vehicles

%%gencar.m

%outputs NumCars number of cars with shifted exponential distribution

%first generate spacing between cars
arrival = headway - (3600/volume -headway)*log(rand(4,NumCars));

%add spacing to get arrival times
for j = 2:NumCars
 arrival(1:4,j)= arrival(1:4,j-1)+arrival(1:4,j);
end

%%inctime.m

%Traffic flow is simulated and control signals generated
%Time is incremented to the next signal choice, once the optimal signal

is
%found
%ACO parameters
iterations=75; %Number of iterations before choosing a switch

 %time
numants=10; %number of ants used
evaporation =.8; %pheromone evaporation rate
local=1; %1 if local search is to be used, 0 otherwise
locstep = 5; %How often local search is performed
localneighbor=4; %Size of local search neighborhood
heur=1; %1 if heuristic information is to be used, 0

 %otherwise
elitist =1; %1 if elitist ant is to be used, 0 otherwise
rank =1; %1 if rank-based update is to be used, 0

 %otherwise
N=10; %number of ants used in rank-based
totalsig = zeros(1,400); %array containing signal switch times
totalqueue = zeros(4,400); %array containing queue on each

 %movement at switch times

 88

await=zeros(4,NumCars); %array containing delay of each

 %vehicle

t=0; %start time
initial = zeros(4,1); %number of cars in each direction at

 %start of each phase
totalsig(1) = t; %totalsig is vector of switching times
totalqueue(:,1)=initial; %Array of queue length at each change

 % in each direction
totalwait=zeros(4,1); %Array of vehicle wait times
green = [1,0,1,0]'; %1 if green on a movement otherwise 0
next=ones(4,1); %Index of next arrival
l = volume/3600; %lambda, vehicle arrival rate
inc=1; %Number of signal transitions
currentwait=zeros(4,1); %The current wait of vehicles waiting

 % at the queue
cycle = zeros(4,1);

while t<min(arrival(:,size(arrival,2)))-200 %Loops until stopping time

 greendir= mod(green(1)+1,2)+1; %1 if movement 1 is green,

 %otherwise 2
 reddir= mod(greendir,2)+1; %1 if movement 1 is red ,

 %otherwise 2

 ACO() %run ACO to find optimal

 %signal

 ccc = [t1,t2,t3];
 sigset(1) = t;
 sigset(2) = sigset(1)+gsetting(1);
 sigset(3) = sigset(2)+gsetting(2);

 movecars() %The chosen path is evaluated and vehicle’s wait

 time is computed

 t = sigset(2); %Advance time to next signal change

 green=~green; %switch green to other direction
 totalsig(inc) = t; %keep track of signal
 totalqueue(:,inc)=initial; %keep track of queue lengths
 inc=inc+1;

end

 89

%%ACO.m

%Pheromone levels are initialized, then ants construct new solutions on

%each iteration

prob = cat(3,cat(1,ones(1,26),zeros(25,26)),ones(26,26,1));
prob2=prob; %prob2 used with heuristic

%prob is a 3-d array consisting of 2, 26 by 26 matrices, dimension. The
%matrix in the first slot is for the next time change and
%the matrix in the second slot is for the time change after that. The
%ij-th slot of the 2nd matrix gives the probability of an ant moving

%from time t+i to time t+i+j
%It is updated after each iteration

weight = 1:26;
weight = exp(-abs(weight - (max(green.*initial)*2 - 2)+6)/5);

%Weight is used for heuristic information

gminwait=10000;

for iteration = 1:iterations %based on ants

 updatepher() %Ants create solution and find optimal path

end

%%updatepher.m

% At each iteration ants create and evaluate candidate solutions, here
% they deposit pheromone, based on ACO parameters, and pheromone is
% evaporated.

minwait=10000;
if local == 1 && mod(iteration,locstep)==0 %Do local search on 5th

 %iteration

 locmin(1)=max(1,gsetting(1)-6-localneighbor);
 locmax(1)=min(26,gsetting(1)-6+localneighbor);
 locmin(2)=max(1,gsetting(2)-6-localneighbor);
 locmax(2)=min(26,gsetting(2)-6+localneighbor);

locprob = {ones(1,locmax(1)-locmin(1)+1),ones(locmax(1)...

locmin(1)+1,locmax(2)-locmin(2)+1)};

optcen()
 antwait =waittime; %waittime of each ant
 aset = setting; %signal setting of each ant

 90

 for a = 2:numants %Number of ants
 optcen() %calc waittime for each ant
 antwait = [antwait ;waittime];
 aset = [aset; setting];
 end

else
 optcen2()
 antwait =waittime; %wait time of each ant
 aset = setting; %signal setting of each ant
 for a = 2:numants %Number of ants
 optcen2() %calc wait time for each ant
 antwait = [antwait ;waittime];
 aset = [aset; setting];
 end
end

%Ranking

sorted = sortrows([antwait,aset]);
aset = sorted(:,2:3);

if minwait < gminwait %Pick best solution so far
 gminwait = minwait;
 goptsig = optsig;
 gsetting = [goptsig(2)-goptsig(1),goptsig(3)-goptsig(2)] ;
end

if ~(mod(iteration, localneighbor)==0 && local ==1) %If not using
 %local search or not local search step

 prob = evaporation*prob; %Evaporation of pheromone

 if rank == 1

 for r = 1:size(aset,1)
 for s = 1:size(aset,2) %Add weight to best solution of last

 %group

 if s ==1
 prob(1,aset(r,s)-4-2,s) = prob(1, aset(r,s)-4-2, s)...

+(max(0,(N-r))/(antwait(r)));
 else
 prob(aset(r,s-1)-4-2,aset(r,s)-4-2,s)=...

prob(aset(r,s-1)-4-2,aset(r,s)-4-2,s)+(max(0,(N-r))/(antwait(r)));
 end
 end
 end

 else
 for r = 1:size(aset,1)
 for s = 1:size(aset,2) %Deposit pheromone on paths

 91

 if s ==1
 prob(1,aset(r,s)-4-2,s) = ...

prob(1, aset(r,s)-4-2, s) +(1/antwait(r));
 else
 prob(aset(r,s-1)-4-2,aset(r,s)-4-2,s)=...

prob(aset(r,s-1)-4-2,aset(r,s)-4-2,s)+(1/antwait(r));
 end
 end
 end
 end

 if elitist ==1 %add elitist ant's pheromone

 %deposit
 prob(1,gsetting(1)-4-2,1) = prob(1,gsetting(1)-4-2,1) +...

(10)/ gminwait ;
 prob(gsetting(1)-4-2,gsetting(2)-4-2,2) = ...

prob(gsetting(1)-4-2,gsetting(2)-4-2,2) +10/ gminwait ;
 end

 if heur==1 %include heuristics
 prob2 = cat(3,cat(1,prob(1,:,1).*weight,zeros(25,26)),prob(:,:,2));
 else
 prob2=prob;
 end

end

optcen.m

%Each ant creates a candidate solution randomly based on pheromone

%deposits and then the expected delay is computed to evaluate the

%solution
%This is used on local search step

global volume;

 %Randomly pick next solution based on pheromone
 sumprob1 = sum(locprob{1},2);

 sumprob2 = sum(locprob{2},2) ;

 sumprob = {sumprob1,sumprob2};

s=1;j=1;offset=0;
setting=zeros(1,2);
signal=zeros(2,1);

while s < 3
signal(s)=rand*sumprob{s}(j) ; %Choose signal switch times based on

 92

 %pheromone

 i =1;
 while signal(s) > sum(locprob{s}(j+offset,1:i)) %pick the

 %signal
 i = i+1;
 end

 j=i-locmin(s)+1;
 j=1;

 setting(s)=i+3+locmin(s)+redtime;

 s = s+1;
end
 %sigset is the next two switch times
 %setting is length of next two phases

sigset = [t];

t1= initial;

for i = 1:size(setting,2)
 sigset = cat(2, sigset, sigset(i)+setting(i));
end

%t1 is vehicles in queue initially
%t2 is expected number of vehicles in queue at next signal change
%t3 is expected number of vehicles in queue at second signal change

%On green movements
t2 = green.*max(0 , t1 - floor((setting(1)-redtime)/headway +1)+...
 volume/3600* min(headway*(t1-1)/(1-

(volume/3600)*headway),setting(1)));
%On red movements
t2 = t2 + ~green.*(t1+volume/3600*setting(1));

t3 = ~green.*max(0 , t2 - floor((setting(2)-redtime)/headway +1)+...
 volume/3600* min(headway*(t2-1)/(1-

(volume/3600)*headway),setting(2)));
t3 = t3 + green.*(t2+volume/3600*setting(2));

compwait() %Compute wait time of signal choice

if waittime < minwait
 minwait = waittime;
 optsig = sigset;
 optsetting = setting;
end

 93

optcen2.m

%Each ant creates a candidate solution randomly based on pheromone

%deposits
%and then the expected delay is computed to evaluate the solution
%This is used when not using local search

sumprob = sum(prob2,2); %Randomly pick next solution based on

 %pheromone
s=1;j=1; setting=zeros(1,2);
signal=zeros(2,1);
while s < 3
signal(s)=rand*sumprob(j,1,s) ; %Choose signal switch times based on
 %pheromone
 i = 1;
 sp = prob2(j,1:i,s);

 while signal(s) > sp %pick the signal
 i = i+1;
 sp = sp + prob2(j,i,s);
 end

 j=i;
 setting(s)=i+4+redtime;
 s = s+1;
end
 %sigset is the next two switch times
 %setting is length of next two phases
sigset = t;

t1= initial;

for i = 1:size(setting,2)
 sigset = [sigset, sigset(i)+setting(i)];
end

%On green movements
t2 = green.*max(0 , t1 - floor((setting(1)-redtime)/headway +1)+...
 volume/3600* min(headway*(t1-1)/(1-

(volume/3600)*headway),setting(1)));
%On red movements
t2 = t2 + ~green.*(t1+volume/3600*setting(1));

t3 = ~green.*max(0 , t2 - floor((setting(2)-redtime)/headway +1)+...
 volume/3600* min(headway*(t2-1)/(1-

(volume/3600)*headway),setting(2)));
t3 = t3 + green.*(t2+volume/3600*setting(2));

compwait() %Compute expected wait time of signal
if waittime < minwait
 minwait = waittime;
 optsig = sigset;
 optsetting = setting;
end

 94

%%Compwait.m

%Computes the expected wait time of a signal

cycle = zeros(4,1);

%computes lower bound on extra wait time
M = 30/headway+1-30*volume/3600;
q= t3 +(~green)*7*volume/3600;
for k =1:4
 while t3(k) > M - (~green(k))*7*volume/3600 + cycle(k)*...

(M - 7*volume/3600) &&cycle(k) <5
 cycle(k) = cycle(k) +1;
 q(k) = t3(k) -(M - (~green(k))*7*volume/3600 + (cycle(k)-1)*...

(M - 7*volume/3600));
 if cycle(k) == 5 && iteration ==70
 t
 end
 end
end

%compute initial vehicles released, new arrivals released and not

%released
initrel = green.* min(1 + fix((setting(1)-redtime)/headway),t1)+...
~green.* min(1 + fix((setting(2)-redtime)/headway),t2);
newrel = green.*max(0,min(1+fix((setting(1)-redtime)/headway)-t1,...
 l * (t1-1)*headway/(1- l * headway)))+...
~green.*max(0,min(1+fix((setting(2)-redtime)/headway)-t2,...
 l * (t2-1)*headway/(1- l * headway)));

notrel = green.*(t1 - initrel)+...
 ~green.*(t2-initrel);

%compute wait time of each group of vehicles

inwait = initrel.*(initrel-1)*headway/2;
newwait = green.*newrel*headway.*(t1+1)/2+...
 ~green.*newrel*headway.*(t2+1)/2;
notrwait = green.*notrel*setting(1)+...
 ~green.*notrel*setting(2);
nnrwait = green.*max(0,l* (setting(1)-redtime- newrel*headway).^2/2.*...
 sign(((t1-1)*headway)/(1-l * headway)-setting(1)+redtime))+...
 ~green.*max(0,l* (setting(2)-redtime- newrel*headway).^2/2.*...
 sign(((t2-1)*headway)/(1-l * headway)-setting(2)+redtime));

new = green.*max(0,l * q*headway/(1- l * headway));
wait3 = (~green).*t3*(5+2)+...
cycle*(30+5+2)^2*l/2+M*(M-1)/2.*cycle+... %wait time from uncleared

 %cycles
 max(0,q.*(q-1)*headway/2) +... %cars at beginning of final

 %cycle
 new*headway.*(q+1)/2; %cars

 95

redwait = (green).*(t2*setting(2) +...
 (volume/3600).*(setting(2).^2)/2)+...
(~green).*(t1*setting(1) +...
 (volume/3600).*(setting(1).^2)/2);

%Total expected wait time

wait = inwait+newwait+notrwait+nnrwait+wait3+redwait+currentwait;

%Average expected wait time
waittime =(sum(wait))/((sigset(3)-sigset(1))*volume/900+sum(initial));

%%Movecars.m

%Move cars according to the optimal control

setting = sigset(2)-sigset(1);
queue =initial;

for k =greendir:2:greendir+2 %clear green cars on green

 %movements
 m=next(k); n=0;
 for j=0:initial(k)-1 %loop through vehicles in queue to

 %determine if relased or not

 if headway* j <=setting(1)-redtime %Vehicle relased
 await(k,m+j)=await(k,m+j)+headway*(j);
 n=n+1;
 end

 end

 m=m+n;

 next(k)=m; %next is now the index of the next vehicle

 %to be released

 initial(k)=0;

 while arrival(k,m) <sigset(2)-redtime %new arrivals while

 %signal is still green

 if arrival(k,m)<sigset(1)+(queue(k)-1)*headway %if arrives

%before traffic has been released

 if queue(k)*headway <= setting(1)-redtime %if initial

%queue will be released on current signal

 await(k,m)=sigset(1)+ headway*queue(k) - arrival(k,m);
 next(k)=next(k)+1;
 queue(k)=queue(k)+1;

 96

 else
 %If queue is too long then calculation begins on next (red)
 %phase

 initial(k)=initial(k)+1;
 queue(k)=queue(k)+1;

 end

 else %if vehicle arrives when queue is empty then

 %no wait
 await(k,m)=0;
 next(k)=m+1;
 end
 m=m+1;
 end

 if arrival(k,next(k)+initial(k))<sigset(2) && ...

 arrival(k,next(k)+initial(k))>sigset(2)-2
 initial(k) = initial(k)+1;
 end
 currentwait(k) = ...

 sum(max(0,(-arrival(k,next(k):next(k)+initial(k))+sigset(2))));
end

for k=reddir:2:reddir+2 %Loop over red directions

 m=next(k);

 initial(k)=0; %reset initial

 while arrival(k,m) <sigset(2)
 await(k,m)= sigset(2) - arrival(k,m); %add wait time to

%vehicles in queue
 initial(k)=initial(k)+1; %Count vehicles in

%queue
 m=m+1;
 end

currentwait(k) = sum(await(k,next(k):next(k)+max(0,(initial(k)-1))));

%Update current wait
end

 97

%%Fullact.m

%Fully actuated control

t=0; %start time
totalsig = t; %totalsig is vector of switching times

totalwait=zeros(4,1); %Arrary of vehcile wait times
green = [1,0,1,0]'; next=ones(4,1);
 greendir= mod(green(1)+1,2)+1;
 reddir= mod(greendir,2)+1;
initial = zeros(4,1); %number of cars in each direction at

 %start of optimization
totalqueue=initial; %Array of quenelenth at each change

 %in each direction
inc =1;
chg=zeros(4,1);
currentwait=zeros(4,1);
nextarrival = ones(4,1);
changegreen=0;
first=1;
fulltime=0;

while t<min(arrival(:,size(arrival,2)))-100

 sigset = [t];
 nextchangefullact()

t=t +redtime;

 if endflag ==1
 for k=reddir:2:reddir+2
 m=nextarrival(k);

 while arrival(k,m) <t
 m=m+1;
 end
 end
 end

goptsig =[sigset,t,t+7];
sigset = [sigset, goptsig(2),goptsig(3)];
movecars()

green=~green;
 greendir= mod(green(1)+1,2)+1;
 reddir= mod(greendir,2)+1;
 totalsig = [totalsig, t];
 totalqueue=[totalqueue,initial];
 first =0;
 [totalsig;totalqueue];

end

 98

%%nextchangefullact.m

%Inputs are current quene
%arrival times
%green

%Determines next time fully actuated controller changes the signal

changegreen=0; %Is 1 if conditions for changing signal are met
endflag =0; %Is 1 if signal should be changed
time =0; %Length of signal

for k =greendir:2:greendir+2 %clear green cars
 time(k) = max(0,(initial(k)-1))*headway;

end

if max(time) >30 %if time to release cars in

 %queue is longer than max green time
 mintime = [time(greendir),time(greendir+2)];
 [maxtime,argmax]=max(mintime);
 [mintime,argmin]=min(mintime);

 nextarrival(greendir+2*(argmax-1))=...

nextarrival(greendir+2*(argmax-1))+16;
 while arrival(greendir+2*(argmin-1),...

nextarrival(greendir+2*(argmin-1))) < t+30
 nextarrival(greendir+2*(argmin-1))=...

nextarrival(greendir+2*(argmin-1))+1;
 end

 time=30;
 endflag=1;
 t=t+30;

else
 nextarrival = nextarrival+initial.*green; %All cars in queue are

 %released
end

while endflag ~= 1
 endclear = [0,0]; %Is 1 if there are no more cars

 %arriving
 if max(time) ~=0 %If there are cars in queue
 while and(endclear(1),endclear(2)) ~=1

 if arrival(greendir,nextarrival(greendir))<...

t+time(greendir)+2 %If car arrives before queue is released
 time(greendir) = time(greendir)+2;
 nextarrival(greendir)=nextarrival(greendir)+1;
 else

 99

 endclear(1)=1;
 end

 if arrival(greendir+2, nextarrival(greendir+2))< ...

t+time(greendir+2)+2 %If car arrives before queue is released
 time(greendir+2) = time(greendir+2)+2;
 nextarrival(greendir+2)=nextarrival(greendir+2)+1;

 else
 endclear(2)=1;
 end

 if max(time)>29 %If cars keep arriving until

 %the max green time
 endflag=1;
 endclear(1)=1;
 endclear(2)=1;
 t=t+30;
 end

 end

 mintime = [time(greendir),time(greendir+2)]; %Which green

 %signal requires less green time
 [mintime,argmin]=min(mintime);
 %Let cars pass on shorter green signal if other direction is

 %still green

 while arrival(greendir+2*(argmin-1),...

nextarrival(greendir+2*(argmin-1)))< t+max(time)*(1-endflag)
 nextarrival(greendir+2*(argmin-1))=...

nextarrival(greendir+2*(argmin-1))+1;
 end

 else %If queue is empty
 time = max(time); %Make time a scalar

 if arrival(greendir,nextarrival(greendir))< t+2 %If car arrives

 %before minimum green if up

 time = time+2;
 nextarrival(greendir)=nextarrival(greendir)+1;
 if arrival(greendir+2,nextarrival(greendir+2))< t+2
 nextarrival(greendir+2)=nextarrival(greendir+2)+1;

 end
 elseif arrival(greendir+2, nextarrival(greendir+2))< t+2
 time = time+2;
 nextarrival(greendir+2)=nextarrival(greendir+2)+1;

 else
 endflag=1;
 end

 100

 if fulltime+ time >28
 endflag =1;
 t = t +time;
 end
 %end
 end
 fulltime=max(max(time),1)+fulltime; %Check if reached minimum green

 %time
 if fulltime <= 5
 endflag=0;
 end

 if endflag ~=1

 t=t+max(max(time),1) ;

 time =0;
 end

 if endflag ==1
 time =max(time);
 if arrival(reddir,nextarrival(reddir)) <t + time ...

||arrival(reddir+2,nextarrival(reddir+2)) <t + time||fulltime+ time >28

 changegreen=1;
 fulltime =0;
 else

 endflag =0;
 t= t+1;

 end
 end

end

