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Abstract Optimizing designs using robust (global) opti-

mality criteria has been shown to be a more flexible

approach compared to using local optimality criteria.

Additionally, model based adaptive optimal design

(MBAOD) may be less sensitive to misspecification in the

prior information available at the design stage. In this

work, we investigate the influence of using a local (lnD) or

a robust (ELD) optimality criterion for a MBAOD of a

simulated dose optimization study, for rich and sparse

sampling schedules. A stopping criterion for accurate effect

prediction is constructed to determine the endpoint of the

MBAOD by minimizing the expected uncertainty in the

effect response of the typical individual. 50 iterations of the

MBAODs were run using the MBAOD R-package, with

the concentration from a one-compartment first-order

absorption pharmacokinetic model driving the population

effect response in a sigmoidal EMAX pharmacodynamics

model. The initial cohort consisted of eight individuals in

two groups and each additional cohort added two individ-

uals receiving a dose optimized as a discrete covariate. The

MBAOD designs using lnD and ELD optimality with

misspecified initial model parameters were compared by

evaluating the efficiency relative to an lnD-optimal design

based on the true parameter values. For the explored

example model, the MBAOD using ELD-optimal designs

converged quicker to the theoretically optimal lnD-optimal

design based on the true parameters for both sampling

schedules. Thus, using a robust optimality criterion in

MBAODs could reduce the number of adaptations required

and improve the practicality of adaptive trials using opti-

mal design.

Keywords Model based adaptive optimal design � Dose
optimization � Robust optimal design � ELD � API � Study
design

Introduction

When designing a future study, what is thought to be

known beforehand might not be a good representation of

the truth. Whether deciding upon sample size, sampling

schedule or which covariate to prioritize, the traditional

experimental design approaches are dependent on the prior

information and the resulting design will be based on an

expectation of reality. With the rising use of nonlinear

mixed-effects models (NLMEM) in drug development in

the past decades, new tools have become available to

predict what to expect in more intricate detail by study

simulation. As an extension of the NLMEM, model based

optimal experimental design (OD) has become a recog-

nized methodology for the design of pharmaceutical stud-

ies. In OD, the informativeness of a potential design is

summarized in the Fisher information matrix (FIM) [1]. By

finding the design which maximizes FIM, the expected

variance–covariance matrix can be minimized according to

the Cramer–Rao inequality [2, 3].

Several optimality criteria have been developed to allow

for numerical comparison of FIMs when optimizing the

designs. The most common criteria are D-optimality, in

which the determinant of the FIM is maximized to find the
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best design, and lnD-optimality where the natural loga-

rithm of the determinant of the FIM is maximized. D-op-

timality and lnD-optimality are considered local criteria

which assume that model parameters are known single

point values. There are however criteria for global (robust)

design in which only prior distributions of the parameters

are assumed to be known. Global design criteria have been

shown to be more flexible than local criteria and may be

less sensitive to parameter misspecification in the design

stage [1, 4–7]. One example of a global design criterion is

ELD-optimality where the expectation of the natural log-

arithm of the determinant of the FIM for the prior distri-

bution of parameters is maximized (the criterion is also

known as API optimality [8]). Regardless of the chosen

optimality criterion, a design optimized using the regular

model based OD methodology will be dependent on the

prior information regarding the model and parameters. If

the prior is not a good representation of the truth, the

design will be based on a misspecified guess of the model

and parameters, potentially resulting in a sub-optimal

design. Thus even when using OD for the design of a future

study, there is a risk of not finding a desired outcome due to

misspecified prior information in the design stage.

However, adaptive designs approaches for sequential

trials such as model based adaptive optimal design

(MBAOD) have been shown to be less sensitive to mis-

specified prior information in the design stage [9, 10].

Instead of preforming the optimal design for the entire

study population based on the information available prior

to the trial, as in a regular OD, the MBAOD approach

divides the study population into smaller cohorts. At the

initial cohort, the design is based on the prior information.

However, for the following cohorts, the prior information

regarding the parameters and model can be updated with

the information gained from the previous cohort. Thus, the

adaptive design approach will continuously improve the

parameter and model guess for the subsequent cohorts.

This iterative approach of guessing, learning, and

improving the design, may continue until an entire study

population has been enrolled. Additionally, the MBAOD

can be stopped before recruitment of all available subjects

using a stopping criterion for the MBAOD. The stopping

criterion, which can be based on, for example, a maximum

parameter variability or accuracy of the model prediction,

can then be evaluated at the end of each cohort to deter-

mine if the study should be stopped.

The aim of this work is to investigate any potential

advantage in using robust design criteria in MBAODs of a

simulated pharmacokinetic–pharmacodynamics (PKPD)

study when the dose of a hypothetical drug is optimized.

For the purpose of the study simulation, the prior

information regarding pharmacodynamics (PD) is assumed

to be misspecified, resulting in a 50% over estimated initial

guess of the PD fixed effect parameters. The pharmacoki-

netics (PK) of the PKPD model is assumed to be well

characterized with fixed parameter values to reduce the

complexity of the parameter estimation. No model mis-

specification is included. The stopping criteria for the

MBAOD assumes that the PD fixed effect curve will have a

95% confidence interval (CI) within 60–140% of the

population mean effect prediction, for all sampling points

and included doses.

For a rich and sparse sampling schedule, and using lnD

and ELD optimality criterion, the design efficiency of the

chosen doses for each cohort in the MBAODs is compared

relative to an lnD-optimal design based on the true

parameters. Additionally, the potential influence of the

optimality criterion on the number of individuals required

to reach the stopping criteria of the MBAOD, final

parameter relative estimation error and the overall dose

selection is evaluated.

Theoretical

With the vector of fixed effect parameters b ¼ b1; . . .; bj
� �

and the vector of random inter-individual deviations from

the fixed effects gi ¼ ½gi;1; . . .; gi;k� the ith individual’s

parameter vector hi is described by hi ¼ gðb; giÞ. The ith

individual’s response yi can be given by the response

function f and the residual error function h, describing the

random unexplained variability (RUV), as

yi ¼ f hi; nið Þ þ h hi; ni; eið Þ ð1Þ

where ni is the individual design vector containing design

variables such as sampling times and covariates and ei is the
residual error vector. For simplicity, with no covariance in the

random effects, gi and ei are sampled normal distributionswith

mean 0 and covariance matrix X ¼ diagðx2
1; . . .;x

2
kÞ and

P
¼ diagðr21; . . .;r2mÞ respectively. The vector of random

effects can thus be constructed as k ¼ ½x2
1; . . .;x

2
k ; r

2
1; . . .; r

2
m�

giving the vector of population parameters H ¼ b; k½ � ¼
b1; . . .; bj;x

2
1; . . .;x

2
k ; r

2
1; . . .; r

2
m

� �
. The expected model

responseE yið Þ and varianceVðyiÞ oftenmust be approximated

since f hi; nið Þ may lack an exact solution due to non-linearity

with respect to the random effect parameters. Therefore, the

model in Eq. (1) is linearized, often using a first order Taylor

expansion, with respect to gi and ei to guarantee marginal

normally distributed observations. The fastest and simplest

approximation of the model is the first order approximation

(FO) where the model is linearized around the typical values

gi = 0 and ei = 0 [11].

If the expectation of response E yið Þ and variance VðyiÞ
are normally distributed, the subject specific fisher infor-

mation matrix FIMi can be written as [8]
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FIMiðH; niÞ ¼
1

2

AðEðyiÞ;VðyiÞÞ CðVðyiÞÞ
CðVðyiÞÞ BðVðyiÞÞ

� �
ð2Þ

where

A EðyiÞ;VðyiÞð Þ ¼ 2 � oE yið Þ
ob

T

V yið Þ�1�oE yið Þ
ob

þ tr
oV yið Þ
ob

�V yið Þ�1�oV yið Þ
ob

�V yið Þ�1

� �

B VðyiÞð Þ ¼ tr
oV yið Þ
ok

� V yið Þ�1� oV yið Þ
ok

� V yið Þ�1

� �

C VðyiÞð Þ ¼ tr
oV yið Þ
ob

� V yið Þ�1� oV yið Þ
ob

� V yið Þ�1

� �

Furthermore, FIMi, can be reduced to its block-diagonal

form if the fixed effects are assumed to be independent on

the random effects accordingly [12]

FIMblock�diag
i ðH;niÞ ¼

1

2

AðE yið Þ;V yið ÞÞ 0
0 BðE yið Þ;V yið ÞÞ

� �

ð3Þ

with

A EðyiÞ;VðyiÞð Þ ¼ 2 � oE yið Þ
ob

T

V yið Þ�1� oE yið Þ
ob

If the study consists of N independent groups with si
individuals per group, and all individuals in a group have

the same elementary design then the population FIM can be

constructed as the sum of FIMs for all groups as

FIM H; nð Þ ¼
XN

i¼1

si � FIMi H; nið Þ: ð4Þ

where n ¼ n1; . . .; ni½ � contains all elementary designs.

The design criteria compared in this work are lnD-op-

timality and ELD-optimality which finds the design that

maximizes the block-diagonal FIM accordingly

nlnD ¼ arg max
n

ln FIMblock�diag H; nð Þ
�� ��	 


ð5Þ

and

nELD ¼ arg max
n

EH ln FIMblock�diag H; nð Þ
�� ��	 
� �

ð6Þ

where EH is the expectation over the prior distribution of

the parameters H. For a more comprehensive description

on the derivation of the FIM, for different linearizations,

and additional design criteria see [8, 11, 12].

Methods

In this work, the response model f was described by a

sigmoidal Emax PD model being driven by drug concen-

tration described by a one-compartment first order

absorption PK. The PK model was assumed to be known

and fixed with parameter values based on the warfarin PK

model used in [13, 14]. The RUV of the PD model was

given by a combined additive and proportional residual

error model. The ith individual’s effect response yi was

given by

yi Ci; hið Þ ¼ bBase þ
C
bc
i � Emax;i

C
bc
i þ EC50

bc
i

 !

� 1þ eprop;i
	 


þ eadd;i

ð7Þ

Ci ti; hið Þ ¼ Dose � bKa
Vi � bKa � Cli

� e
�Cli

Vi
ti � e�bKati

� �
ðmg=LÞ ð8Þ

EMAXi ¼ bEmax � egEmax;i ð9Þ
EC50i ¼ bEC50 � egEC50;i ðmg=LÞ ð10Þ
Cli ¼ bCL � egCL;i ðL=hÞ ð11Þ
Vi ¼ bV � egV;i ðLÞ ð12Þ

where ti is the individual vector of time points at which the

system response is evaluated.

Design setup

Using the response model described above, a MBAOD for

a dose optimization trial was run 50 times using the

MBAOD R-package [15] in four possible design scenar-

ios; lnD or ELD-optimality for a sparse sampling sched-

ule with three samples at tsparse = (0.5,3,60) h, and lnD or

ELD-optimality for a rich sampling schedule with eight

samples trich = (0.5, 2, 3, 6, 24, 36, 72, 120) h. The

sampling schedules were fixed and the same for all

individuals and groups. For the optimizations using ELD

optimality, a normal distribution was assumed for the

fixed effects parameters with mean bj and standard

deviation SDj. In the first cohort SDj was calculated from

a 10% coefficient of variation and for the subsequent

cohorts, SDj was updated from the parameter variance in

the COVb from the estimation using all previous cohorts.

The expectation of the FIM was based on 10 samples

from the parameter prior distribution using Latin hyper-

cube sampling.
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In all MBAODs the initial parameter guess was a ?50%

misspecification of the true fixed-effect model parameters

(Table 1) and the dose was treated as a discrete covariate

with the allowed range of 0–500 mg in integer steps. The

initial design (before optimization) for the first cohort was

two groups dosed with 0 and 160 mg of the hypothetical

compound and four individuals per group. Subsequent

cohorts added one additional group with two individuals

receiving an optimized dose. A maximum of 50 cohorts

was allowed. At the start of each cohort, the dose was

optimized using the current, updated, parameter guesses

(and for ELD-optimization the parameter uncertainties).

Optimization was performed using the R-version of PopED

[8, 16]. Following the design optimization, individual data

was simulated using this design using the true parameter

values. For all cohorts, the parameters were then estimated

for all simulated data (including data from any previous

cohorts) using the FOCEI algorithm in NONMEM 7.3 [17]

via PsN version 4.5.16 [18]. After the estimation step the

MBAOD entered the stopping criterion evaluation (de-

scribed below) to determine whether a new cohort of

(simulated) patients should be included in the trial. If the

stopping criterion was not achieved, the MBAOD contin-

ued by updating the current guess of the parameters based

on the information from all the previous cohorts and

entered another cycle of design optimization, study simu-

lation and parameter estimation.

Stopping criterion

In the stopping criterion, 100,000 fixed effect parameter

vectors were generated with a multivariate student’s

t-distribution (rmvt) from the mvtnorm R-package:

simb ¼ rmvtðdf ; bb; SÞ ð13Þ

where simb is a matrix of 100,000 simulated parameter

vectors, bb is a vector of the estimated fixed effect param-

eters from NONMEM, df is the degrees of freedom and S is

the scale matrix. The degrees of freedom was dependent on

the cumulative number of included individuals nID and the

number of estimated parameters accordingly:

df ¼ nID � nb̂ þ
nk̂
2

� �
ð14Þ

where nb̂ and nk̂ are the number of estimated fixed effect

and random effect parameters respectively. Given the

variance–covariance matrix for the fixed effects COVb̂

from NONMEM and the degrees of freedom df, the scale

matrix S was constructed as

S ¼
COVb̂ðdf � 2Þ

df
ð15Þ

The parameters in simb were used by the model to simulate

100,000 population mean responses at the times specified

by the sampling schedule vector t, for all dose arms

included in the study. From the simulated responses, 95%

CIs of the predicted response at each sample time for all

doses was constructed. If all CIs fell within 60–140% of the

population mean response for all sampling times and doses,

the study was stopped.

Comparison of designs

The MBAODs using lnD-optimality and ELD-optimality

for rich and sparse sampling schedules were compared via

the total required number of simulated individuals to reach

Table 1 Parameter values of

the PKPD response model for

the true values used for

simulation and the misspecified

initial guess of the parameters

(in bold in the far right column)

Parameter Description True Guess

bCL (L/h) Clearance 0.15 FIX Same

bV (L) Volume of distribution 8 FIX Same

bKa (mg/h) Absorption rate 1 FIX Same

bBase (–) Baseline effect 1 1.5

bEMAX (–) Maximum effect 100 150

bEC50 (mg/L) 50% of maximum effective concentration 7 10.5

bc (–) Sigmoidicity Coefficient 2 3

x2
CL (L/h) Between subject variability of CL 0.07 FIX Same

x2
V (L) Between subject variability of V 0.02 FIX Same

x2
EMAX (L/h) Between subject variability of EMAX 0.0625 Same

x2
EC50 (L) Between subject variability of EC50 0.0625 Same

r2add (mg/L) Additive residual error component 0.001 FIX Same

r2prop (–) Proportional residual error component 0.015 Same

‘‘FIX’’ indicates that the parameters were not estimated, but rather assumed known in both design opti-

mization and parameter estimation
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the pre-determined stopping criteria and the relative esti-

mation error of the final parameter estimates. The relative

estimation error of the final estimate of parameter j in

iteration x, bj;x, was calculated by

REE bj;x
	 


¼
bbj;x � bj

bj
ð16Þ

where bbj is the estimate x of the true value bj of parameter

j.

Further, each design was compared to the theoretically

best design, generated by simulating an MBAOD using

lnD-optimality and while assuming the correct model

parameter values and with no parameter updating in the

MBAOD process. This comparison was done, first, by

computing the efficiency of each MBAOD design bn, based
on the initial parameter guess bH, relative to the theoreti-

cally best design for each cohort:

Efficiency ¼
FIM H; bn

� ����
���

FIM H; nð Þj j

0

@

1

A

1=P

where n is the optimal design based on the true parameters

in H and P is the total number of estimated parameters.

From the multiple MBAOD simulations, the median design

efficiency and a 95% non-parametric confidence interval

was constructed from the 2.5th and 97th percentiles of

design efficiency for each cohort. Second, the distribution

of selected doses across all iterations for all designs was

summarized in a histogram and compared to the the cor-

responding theoretically best design.

Results

With the initial parameter misspecification of ?50% on

all PD fixed effect parameters, the MBAODs using ELD-

optimality had efficiencies that stabilized more quickly to

values close to the theoretically optimal lnD-design based

on the true parameters, for both sparse and rich sampling

(Fig. 1). For the sparse sampling designs, the median

result of the MBAODs using ELD and lnD had high

efficiency even at the second cohort, but the variability in

efficiency between MBAOD iterations was much smaller

with the ELD designs compared to the lnD designs. After

the second cohort of patients the ELD and lnD designs

Fig. 1 The efficiency of the

MBAOD designs based on lnD

(Top) and ELD (Bottom)

optimality assuming 50%

misspecification in PD fixed-

effect parameters, relative to a

lnD-optimal design based on the

true parameter values, for the

sparse (Left) and rich (Right)

sampling schedules. The line

and the upper and lower bracket

limits represent the 50th, 2.5th

and 97.5th percentiles of the

achieved design efficiency after

each adaptive cohort from 50

MBAOD simulations

Fig. 2 Boxplots of the total sample size required to reach the

endpoint for 50 iterations of the model based adaptive optimal design

using lnD-optimality and ELD optimality for sparse and rich

sampling schedules
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Fig. 3 Boxplots of relative

estimation error for the final

parameter estimates in 50

iterations of the model based

adaptive optimal design using

lnD-optimality and ELD

optimality for rich and sparse

sampling schedules

Fig. 4 Histogram of the dose

chosen (Grey) in all cohorts in

50 iterations of the model based

adaptive optimal design using

lnD-optimality(Top) and ELD

optimality (Bottom) for sparse

(left) and rich (right) sampling

schedules. The black outline

represents the dose selection by

the theoretically best lnD

optimal design based on the true

parameter values for the same

number of cohorts in each

simulation
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were very similar. For the rich sampling designs, the

relative efficiencies of the designs were also high at the

second cohort of patients. The efficiencies of the ELD

designs between MBAOD iterations were somewhat

higher than the lnD designs for the first four iterations,

but from the fifth iteration and forward the designs were

very similar.

The number of individuals required to reach the

stopping criteria of the MBAOD was similar between the

lnD and ELD-optimal designs (Fig. 2). The maximum

number of required cohorts and individuals was however

less for the MBAOD using ELD-optimality in the sparse

sampling schedule scenario (Figs. 1, 2). Additionally,

there was little difference in the relative estimation error

between the optimality criteria (Fig. 3). The ELD resul-

ted in a more even distribution of chosen doses across all

50 iterations of the MBAOD and included the doses

from the lnD-optimal design based on the true parame-

ters more often than the MBAODs using lnD-optimality

(Fig. 4).

Discussion and conclusion

In this work, the effects of lnD and ELD optimality were

compared for model based optimal designs of simulated

dose optimization PKPD studies with rich and sparse

sampling. A stopping criterion for the MBAOD was con-

structed based on the accuracy of the effect prediction. The

designs from the two optimality criteria were compared in

terms of required sample size, final parameters, dose

selection and efficiency relative to the true lnD-optimal

design.

There were differences in the MBAODs using lnD- and

ELD-design calculations (Fig. 4) as well as in the speed at

which the lnD or ELD design approached the efficiency of

a lnD design calculated without model parameter mis-

specification. With the ELD designs achieving high effi-

ciency after just 2–3 cohorts of patients, compared to 3–5

cohorts needed for the lnD designs. Additionally, design

efficiencies in the second cohort were more variable when

using lnD-optimality than ELD-optimality, indicating

designs that are more sensitive to parameter estimates from

the initial cohort of patients and less robust to parameter

misspecification.

These differences were not noticeable in the number of

individuals needed to achieve the MBAOD stopping cri-

teria (Fig. 2), or in parameter bias (Fig. 3) for the 50

MBAOD iterations in this example. This apparent insen-

sitivity to the lnD or ELD design criteria in the final

parameter estimates and number of individuals in the study

could clearly be influenced by many factors. First of all,

only one set of true and misspecified parameters was

investigated. The design setup (number of individuals per

cohort, number of cohorts) and lowering the precision

criteria (from 60 to 140% of the mean prediction to

80–120% for example) could also influence results. In

addition, in this particular example, optimizing both dose

and sample times could have shown more differences

between the robust and local design criteria since it would

require the optimizations to find more optimal design

support points. Further, for the optimization using the ELD

approach, only 10 samples were taken from the prior dis-

tribution due to long run times, a large variance of the ELD

criterion may have destabilized the design. By increasing

the number of samples, the ELD approach could potentially

have been more robust.

However, in this example with these experimental

settings we see that the adaptive properties of a MBAOD

allow for local designs to be as robust as global optimality

criteria given that the local designs are allowed to adapt a

sufficient number of times. The MBAODs using ELD-

optimality did however converge quicker towards the

‘‘true’’ design, resulting in a maximum number of required

cohorts which was lower compared to the lnD–MBAOD.

Additionally, the doses according to the theoretically true

lnD-optimal design was included in the MBAOD more

often by the robust design (Fig. 4). The main disadvantage

of using ELD optimality in these examples was increased

run-times for design optimization. However, compared to

the time to execute the study on each adaptive cohort in a

real practical setting, these additional run-times would be

negligible. With the ELD MBAODs achieving more effi-

cient and robust designs earlier in the adaptive process,

this allows the MBAOD to approach a more practical

2-step or 3-step sequential design [19, 20]. Thus using a

robust optimality criterion in MBAOD could be more

practical for performing adaptive trials using optimal

design.
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