
 

 

 

ENHANCING DYNAMICS COURSES WITH MODEL ELICITING ACTIVITIES 

 

 

 

 

 

A Thesis 

presented to 

the Faculty of California Polytechnic State University, 

San Luis Obispo 

 

 

 

 

 

 

In Partial Fulfillment 

of the Requirements for the Degree 

Master of Science in Mechanical Engineering 

by 

Lawrence Fong 

November 2009 

 

 



ii 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 © 2009 

Lawrence Fong 

ALL RIGHTS RESERVED 

  



iii 

 

COMMITTEE MEMBERSHIP 

 

TITLE: Enhancing Dynamics Courses with Model Eliciting Activities 

 

 

AUTHOR: Lawrence Fong 

 

DATE SUBMITTED: 11/02/09 

 

 

 

COMMITTEE CHAIR:   Brian Self 

 

COMMITTEE MEMBER: Andrew Kean 

 

COMMITTEE MEMBER: James Widmann 

  



iv 

 

 

 

ABSTRACT 

ENHANCING DYNAMICS COURSES WITH MODEL ELICITING ACTIVITIES 

Lawrence Fong 

 Model eliciting activities are assignments which require students to develop models to 

describe realistic situations. Every MEA follows six principles: model-construction, reality, self-

assessment, model documentation, generalizability, and effective prototype. The six principles 

provide a solid guideline in which instructors can develop more MEAs, which can then be shared 

and used among several participating universities. Under NSF CCLI Grant #0717595, Cal Poly 

is currently developing Model Eliciting Activities for the subject of Mechanical Engineering.  

This report documents the undertakings to implement and enhance two Model Eliciting 

Activities (MEAs) into the Cal Poly curriculum. Specifically, the development of the Vehicle 

Accident Reconstruction (VAR) MEA and the Catapult MEA will be covered in detail.  

The VAR MEA was a project assigned in ME212 ―Engineering Dynamics,‖ which 

required students to apply momentum principles to a two-vehicle collision. Because of the heavy 

development time experienced by the MEA research team, a MatLab program which accepted 

user inputs via a graphical user interface (GUI) was developed. This GUI solved for initial 

velocities during two-vehicle collisions by applying appropriate momentum and work-energy 

principles. With this program, instructors can more easily develop crash scenarios, as well as 

check student work. 

The Catapult MEA was also a project assigned to ME212 students. It required them to 

analyze the launch trajectory of an actual scaled catapult using angular motion and work-energy 

principles. This scaled-catapult was instrumented with one ADXL278 dual-axis accelerometer 

and four CEA-06-240UZ-120 strain gages. This instrumentation allowed for the experimental 

data acquisition of the catapult angular velocity, acceleration, and strains. By postprocessing this 

experimental data using a MatLab program, the experimental results can then be compared to 

theoretical results. 

The overall goal for the VAR MEA GUI programming was to reduce instructor workload 

in order to promote usage the MEA through a broader range of universities. The goal of the 

Catapult instrumentation was to provide students with actual experimental data, which could 

then be used to confirm their theoretical model. The system was set up so that they could easily 

record their own experimental data for each catapult launch. 

  



v 

 

ACKNOWLEDGMENTS 

 I would like to thank all the members of my thesis committee for their guidance and 

support during this past year. I would also like to acknowledge NSF CCLI Grant #0717595 

which made this research possible.  



vi 

 

 

Table of Contents 

List of Figures ......................................................................................................................... viii 

List of Tables ............................................................................................................................ xi 

Nomenclature ........................................................................................................................... xii 

Introduction ................................................................................................................................1 

Model Eliciting Activities and Cal Poly ......................................................................................3 

What is an MEA? ....................................................................................................................3 

Difference between MEAs and Traditional Assignments .........................................................5 

History of MEAs .....................................................................................................................6 

Research Team ........................................................................................................................7 

Cal Poly and MEAs .................................................................................................................8 

MEAs in Cal Poly Dynamics Courses .........................................................................................9 

Vehicle Accident Reconstruction........................................................................................... 11 

Changing student misconceptions ...................................................................................... 15 

VAR Time Commitment ................................................................................................... 19 

VAR MatLab Development ............................................................................................... 20 

VAR Cases .................................................................................................................... 23 

VAR GUI Summary and Recommendations .................................................................. 28 

Catapult ................................................................................................................................. 29 

Instrumentation ................................................................................................................. 34 

Angular Position, Velocity, and Acceleration................................................................. 36 

Switching to CompactRIO ............................................................................................. 40 

Axial Stress and Force at Stopper Pin ............................................................................ 43 

Data From the CompactRIO .......................................................................................... 49 

MatLab, Post-processing, and Results ............................................................................ 50 

Catapult Instrument Summary and Recommendations ....................................................... 58 

Overall Response to MEAs ................................................................................................... 60 

Conclusion ................................................................................................................................ 64 

Works Cited .............................................................................................................................. 66 



vii 

 

Appendix A VAR Case 1 .................................................................................................... A-1 

Appendix B VAR Case 2 ..................................................................................................... B-1 

Appendix C VAR Case 3 ..................................................................................................... C-1 

Appendix D VAR Case 4 .................................................................................................... D-1 

Appendix E VAR Case 5 ..................................................................................................... E-1 

Appendix F MatLab GUI User Guide .................................................................................. F-1 

Appendix G VAR MatLab GUI .......................................................................................... G-1 

Appendix H Derivation for VAR Cases .............................................................................. H-1 

Appendix I Catapult Postprocessing Code ........................................................................... I-1 

Appendix J Catapult Theoretical Code ................................................................................. J-1 

Appendix K Selected Catapult Hand Calculations ............................................................... K-1 

Appendix L ADXL-278 Specifications ................................................................................ L-1 

  



viii 

 

List of Figures 

Figure 1. Difference between traditional word problems and Model Eliciting 

Activities. (Lesh, Beyond Constructivism: Models and Modeling Perspectives on 

Mathematics 2004, 4) .................................................................................................................. 3 

Figure 2. Catapult built by Grand Valley State University students. ........................................... 10 

Figure 3. Background information provided for VAR MEA. ..................................................... 12 

Figure 4. Memorandum provided for VAR MEA. ..................................................................... 13 

Figure 5. One of the cases assigned for the VAR MEA. ............................................................ 15 

Figure 6. Question 18 of the DCI testing students‘ understanding of an impact.......................... 17 

Figure 7. Question 20 of the DCI testing students‘ understanding of an impact.......................... 18 

Figure 8. Input-window for VAR development program............................................................ 21 

Figure 9. MatLab GUI for VAR MEA development. ................................................................. 22 

Figure 10. Velocity vector plot for instantaneous pre and post collision velocities, 

generated with the GUI. ............................................................................................................ 23 

Figure 11. Case A for stick collision. ......................................................................................... 25 

Figure 12. Case A for non-stick collision. .................................................................................. 25 

Figure 13. VAR GUI iteration for Case F. convY and convX indicate the percent 

difference between initial and final momentum magnitudes, in the Y and X 

direction. ................................................................................................................................... 27 

Figure 14. Catapult MEA assigned to ME212 classes. ............................................................... 30 

Figure 15. Catapult provided to students for analysis. ................................................................ 31 

Figure 16. Force versus displacement curve for rubber band...................................................... 32 

Figure 17. Diagram of catapult locations. .................................................................................. 33 

Figure 18. Broken catapult arm after some initial trials with two rubber bands. ......................... 36 

Figure 19.  Catapult with accelerometer. The accelerometer is highlighted in 

yellow. The blue and red arrows represent the directions of tangential and normal 

acceleration, respectively. ......................................................................................................... 37 

Figure 20. Close-up of accelerometer on catapult arm. .............................................................. 37 

Figure 21. Circuit diagram for 5V voltage regulator & hardware accelerometer 

signal filtering. .......................................................................................................................... 38 

Figure 22. Voltage regulator internals and packaging. ............................................................... 38 

Figure 23. Angular velocity data for multiple runs, using NI-6008. ........................................... 39 

Figure 24. Experimental results for angular velocity and position. Position was 

calculated from numerical integration of velocity. ..................................................................... 40 

Figure 25. Trial for testing reduced sampling rate of 1000Hz, using CompactRIO 

and NI-9205. ............................................................................................................................. 42 

Figure 26. (Top) Comparison between experimental angular velocity and 

integrated angular velocity from experimental angular acceleration. (Bottom) 



ix 

 

Comparison between experimental angular acceleration and derived angular 

acceleration using experimental angular velocity. ...................................................................... 43 

Figure 27. FBD and MAD of catapult arm................................................................................. 44 

Figure 28. ―Full‖ Wheatstone bridge configuration for strain gages. For axial 

strain: (1) and (3) represent mounted gages, while (2) and (4) represent external 

precision resistors. For bending strain: (1) and (4) represent mounted gages, while 

(2) and (3) represent internal precision resistors. ....................................................................... 45 

Figure 29. Strain gages curing under pressure from c-clamps. ................................................... 46 

Figure 30. Illustration of catapult with associated instrumentation. Strain gage 3 

(not visible) is mounted directly opposite of strain gage 1. Strain gage 4 (not 

visible) is mounted directly opposite of strain gage 2................................................................. 46 

Figure 31. Catapult with mounted strain gages. ......................................................................... 47 

Figure 32. Static loading of catapult arm to determine modulus of elasticity. ............................. 48 

Figure 33. Stress - strain relationship for catapult arm under axial loading................................. 49 

Figure 34. LabView VI for obtaining signals in producer-consumer format. .............................. 50 

Figure 35. MatLab output for raw voltages obtained from LabView. ......................................... 51 

Figure 36. MatLab output of tangential acceleration, normal acceleration, angular 

velocity, and angular acceleration with corresponding theoretical results for a 

catapult pullback angle of 180° and stopper angle of 125°. ........................................................ 52 

Figure 37. Diagram of unstretching and unchanged portions of rubber band during 

catapult motion. ........................................................................................................................ 53 

Figure 38. Residual axial strain study for catapult arm for five catapult launches. ...................... 54 

Figure 39. MatLab output of axial strain and moment strain with corresponding 

theoretical results for a catapult pullback angle of 180° and stopper angle of 125°. .................... 55 

Figure 40. MatLab output of axial strain, moment strain, angular acceleration, and 

angular velocity magnitude during the impact, with catapult pullback angle of 

180° and stopper angle of 125°. ................................................................................................. 56 

Figure 41. Student responses for the MEA projects for Spring quarter. ...................................... 60 

Figure 42. Student responses for HW assignments for Spring quarter. ....................................... 61 

Figure 43. Responses to the survey question ―What did you like about the [VAR] 

Project and why?‖ ..................................................................................................................... 62 

Figure 44. Responses to the survey question ―What didn‘t you like about the 

[VAR] Project and why?‖ ......................................................................................................... 63 

Figure 45. MatLab GUI at startup. ........................................................................................... F-1 

Figure 46. Angle dimension for vehicle traveling in southwest direction. The 

arrow shown in blue represents the direction vector of the vehicle. The red 

dimension indicates the corresponding angle. .......................................................................... F-3 

Figure 47. User-input syntax for VAR GUI. ............................................................................ F-4 

Figure 48. Convention for entering pre-collision velocity. ....................................................... F-5 

Figure 49. Convention for entering a pre-collision increase in height. ...................................... F-5 



x 

 

Figure 50. Convention for entering a pre-collision decrease in height. ..................................... F-5 

Figure 51. Convention for entering post-collision velocity. ..................................................... F-6 

Figure 52. Convention for entering a post-collision change in height. (same as 

pre-collision) ........................................................................................................................... F-6 

Figure 53. Input window prior to running. ............................................................................... F-7 

Figure 54. Input window with calculated results. ..................................................................... F-8 



xi 

 

List of Tables 

Table 1. Roster of MEA team. ..................................................................................................... 7 

Table 2. Total pre and post DCI scores for all MEA and non-MEA participants. ....................... 17 

Table 3. Pre and post DCI scores for MEA and non-MEA participants considering 

only the DCI questions directly related to MEA topic (questions 18 and 20).............................. 18 

Table 4. Cases for 2 vehicle collisions where vehicles do not stick together post-

impact. ...................................................................................................................................... 24 

Table 5. Cases for 2 vehicle collisions where vehicles stick together post-impact. ..................... 24 

Table 6. Summary of 12 repeatability tests for pullback angle of 72°......................................... 39 

Table 7. Comparison of experimental published value for catapult arm and 

published elastic modulus for oak. ............................................................................................. 48 

Table 8. Supported cases for 2 vehicle collisions where vehicles do not stick 

together post-impact. ............................................................................................................... F-2 

Table 9. Supported cases for 2 vehicle collisions where vehicles stick together 

post-impact. ............................................................................................................................ F-2 

  



xii 

 

Nomenclature 

α angular acceleration 

an normal acceleration 

at tangential acceleration 

ε strain 

E elastic modulus 

µF capacitance (micro-Farad) 

F force 

H angular momentum 

I second moment of inertia 

m mass 

M moment 

σ stress 

r radius 

Sg gage factor 

t time 

v velocity 

V voltage 

ω angular velocity 

 



1 

 

Introduction 

The problem solving aspect of engineering classes has always been an emphasis at Cal 

Poly. With Cal Poly‘s ―Learn by Doing‖ philosophy, students are expected to possess 

fundamental engineering knowledge and design intuition. However, the current coursework 

assigned to students often omits exercises that nurture real-world analysis. Most textbooks 

require students to have only a superficial understanding of equations and symbols – without a 

deep conceptual understanding. By implementing Model Eliciting Activities (MEA) into the 

Dynamics curriculum, we hoped to enhance student learning and overall student performance.  

A Model Eliciting Activity aims to build solid engineering fundamentals for students by 

requiring them to analyze open-ended scenarios and apply appropriate analysis. Every MEA 

follows six principles: model construction, reality, generalizablility, self-assessment, model-

documentation, and effective prototype. By following these principles during problem 

development, we ensure that students are presented with a realistic client-driven problem which 

solidifies engineering principles and is applicable towards other situations. Cal Poly is currently 

responsible for the development of Mechanical Engineering MEAs in NSF CCLI Grant 

#0717595: Collaborative Research: Improving Engineering Students’ Learning Strategies 

through Models and Modeling. The overall goals of this grant include expanding MEA usage 

into more universities and disciplines as well as analyzing the effect of MEAs on student 

learning. At Cal Poly, we have been working primarily on developing MEAs for use in 

sophomore and junior level Mechanical Engineering courses. These activities are currently being 

implemented into some sections of Engineering Dynamics (ME212), Thermodynamics I 

(ME302), and Thermal System Design (ME440). 



2 

 

In this paper, I will focus primarily on the Dynamics MEA development within the 

Mechanical Engineering Department at Cal Poly. In particular, the vehicle accident 

reconstruction (VAR) and catapult MEAs will be covered in extensive detail. The development 

of these MEAs constituted a large portion of my work in the MEA research team. This work 

includes the instrumentation and interface of the catapult, as well as programming of a MatLab 

GUI (graphical user interface) for the vehicle accident reconstruction MEA.  

We propose that adding MEAs to the Cal Poly curriculum does in fact boost student 

understanding of engineering fundamentals. The MEAs have been evaluated every quarter 

through student surveys and exam performance. Exam scores indicate a possible increase in 

student performance in the conceptual areas reinforced with MEAs. Surveys indicate that despite 

the increased workload, students did in fact enjoy these projects. Because of this positive 

response, we have been encouraged to further develop the MEAs that will be discussed in this 

paper.  



3 

 

Model Eliciting Activities and Cal Poly 

What is an MEA? 

Model Eliciting Activities, which were first started in the mathematics community, are 

team-based activities which require students to analyze real-world, open-ended problems. Figure 

1 highlights the difference between traditional word problems and Model Eliciting Activities. 

Traditionally, students are asked to solve problems mathematically and apply their solution to the 

real world.  In contrast, MEAs require students to derive mathematical models from realistic 

situations. 

 

Figure 1. Difference between traditional word problems and Model Eliciting Activities. (Lesh, Beyond Constructivism: 
Models and Modeling Perspectives on Mathematics 2004, 4)  

 

In a report from the Carnegie Foundation, ―Reinventing Undergraduate Education: A 

Blueprint for American‘s Research Universities,‖ an academic bill of rights for students is 

presented. Some of these rights include:  ―(1) Providing opportunities to learn throughout inquiry 

rather than simple transmission of knowledge, (2) Training in the skills necessary for oral and 

written communication, and (3) Preparing students carefully and comprehensively for whatever 

may lie beyond graduation‖ (Boyer Commission on Education Undergraduates in the Research 

University 1998, 12). The goals of MEAs are closely aligned with these rights, and are reflected 

in its six principles. 



4 

 

The following are those six principles that every MEA should follow, which provides an 

instructor‘s guideline for problem development (Self 2007). Each one of these principles serves 

to promote a more applicable type of learning for students. These six principles are summarized 

below: 

1. The Model-Construction Principle requires students to develop a mathematical system as 

a deliverable to an indicated client. 

2. The Reality Principle requires the activity to be set in a realistic engineering setting, and 

allows students to connect their real-world experience to the problem. Students should be 

allowed and encouraged to make realistic assumptions based on their existing knowledge. 

3. The Self-Assessment Principle allows students to evaluate their own work and revise 

their models accordingly. Students should be encouraged to test their models and 

improve them for their client. They should also be able to assess when their work is 

complete. 

4. The Model Documentation Principle requires students to carefully detail their process in 

developing the model. Typically this includes a memo to their client describing a 

walkthrough of their analysis. This allows both instructors and students alike to see a 

logical progression of the model, and to see the thought process behind it. From this, 

instructors can more easily identify any areas of difficulty students have. 

5. The Generalizability Principle requires students to develop models that have a value 

outside of a specific scenario. These models should be easily modified and applicable to 

similar scenarios outside of the ones that were assigned. 



5 

 

6. The Effective Prototype Principle requires that the developed models have an intellectual 

significance and impact on the future professional lives of students. The models should 

provide for a useful mental foundation to interpret similar situations in the future. 

 

MEAs go beyond the commonly requested numerical answers that are so commonly 

asked from students. For most problems or exercises that are presented in textbooks, the student 

is merely required to reproduce a brief answer to a question that was formulated by others (Lesh, 

Handbook of Research Design in Mathematics and Science Education 2000, 594). This results in 

only a superficial understanding of the material – the student disregards his process and focuses 

instead on if his answer was correct.   

Difference between MEAs and Traditional Assignments 

Instead of basing learning on the ―correctness‖ of the final answer, MEAs require 

students to focus on the method that they use to arrive at their solution. The description, 

explanations, and constructions are not simply processes that students go through in order to 

produce final answer – they are the most important aspect of their analysis (Lesh, Beyond 

Constructivism: Models and Modeling Perspectives on Mathematics 2004). Since these activities 

are also team based, students are also exposed to working in small groups. In this team 

environment, students are expected to eloquently share their ideas with other members, and work 

cohesively to produce a working model. 

As will be discussed in further detail later in the paper, the VAR and catapult MEAs were 

evaluated not primarily on correctness of a student team‘s final answer, but on the thought 

process that they carefully documented through the project. By requiring careful model 

documentation, we were able to more easily identify student misconceptions – allowing 

instructors to allocate more time to areas of student difficulty.   



6 

 

History of MEAs 

The concept of Model Eliciting Activities is not a new one – problem based learning 

(PBL) has existed since the 1960s, and has garnered much support from educators. A PBL is 

defined as ―an instructional learner-centered approach that empowers learners to conduct 

research, integrate theory and practice, and apply knowledge and skills to develop a viable 

solution to a defined problem‖ (Savery 2006). Problem based learning shares a great number of 

similarities with MEAs. These similarities include realistic problems, open-ended tasks, higher 

order thinking, self-directed learning, self-assessment, group work, and structure of the problems 

(Chamberlin 2008). 

Because of these similarities, several parallels can be drawn from PBL to MEAs. 

Although the large variations in the practicing of PBLs make the analysis of its effectiveness 

difficult, one of the most widely accepted findings is that PBL promotes positive student 

attitudes (Prince 2004). In our own experience, we have found that student attitudes and 

performance have been improved by implementing MEAs at Cal Poly. In addition to this 

positive benefit on students, MEAs set forth a solid structural framework, which is used as 

criteria for instructors to develop new MEAs. Although not much data on MEA effectiveness is 

currently available, this framework provides a unified guideline so that MEAs across universities 

can be compared. In this manner, correlations between student performance and MEA 

implementation can be more easily drawn.  

 

  



7 

 

Research Team 

The Cal Poly MEA research team is part of a four-year effort by a team of researchers 

from seven universities. These researchers utilize previous mathematics MEA development as a 

foundation for undergraduate STEM curriculum and assessment for engineering (Self 2007). At 

Cal Poly, the goal is to develop new Mechanical Engineering MEAs for implementation into 

either laboratory activities or in-class projects. 

The MEA research team at Cal Poly currently consists of a combination of professors and 

students.  The past and current participants are listed in the following table. Every week the 

MEA team met to discuss future and present MEAs. This entailed discussing the implementation 

of current projects, student difficulties, and potential future projects. 

Table 1. Roster of MEA team. 

  Academic Year 

Name Position 2007-2008 2008-2009 

Brian Self Professor Fall, Winter, Spring Fall, Winter, Spring 

Andrew Kean Professor Fall, Winter, Spring Fall, Winter, Spring 

Jim Widmann Professor  Fall, Winter 

Lawrence Fong Graduate Student  Fall, Winter, Spring, 

Summer 

Teresa Ogletree Undergraduate Student Summer Fall, Winter 

Lora Powers Undergraduate Student  Fall, Winter 

Frank Schreiber Undergraduate Student Spring Fall, Winter, Spring 

Annamarie Usher Undergraduate Student  Spring 

Rosalie Mangione Undergraduate Student  Spring 

 

  



8 

 

Cal Poly and MEAs 

 NSF CCLI Grant #0717595 lists Cal Poly as the prime on developing Model Eliciting 

Activities for Mechanical Engineering. This entails developing MEAs in common disciplinary 

topics such as fluids, thermodynamics, energy conversion, heat and mass transfer, mechanics, 

and structural analysis, in addition to machine design (Self 2007).  Of these possible topics, we 

chose to start with ME212, because it has a very broad engineering student population and is also 

a very problematic class in terms of fail rate.  

It is also one of the most demanded classes – up to 9 sections of over 30 students each are 

taught each quarter. Nearly all engineering majors are required to take ME212 during their career 

at Cal Poly, resulting in a very diverse group of students within each class. Future MEA 

developments are also targeted at these sophomore-level courses because they have a broad 

audience and can be easily distributed to other engineering universities for use in their 

curriculum. At Cal Poly, the MEAs we have generated have followed this basic structure: 

Instructor Provides: 

 Some background information is provided using a current news excerpt or headline. This 

makes students understand the significance of their efforts and allows them to put their 

analysis into a real-world context. 

 A client requests the students to develop a procedure for solving a particular engineering 

issue. This is typically set in a professional tone – using a company memo.  

Student Provides: 

 Detailed methodology to solve the engineering problem. 

 Supporting calculations to demonstrate the application of their engineering process.  

 Summary in memo format.  



9 

 

MEAs in Cal Poly Dynamics Courses 

 Cal Poly lists ME212, ―Engineering Dynamics‖, as a course which focuses on the 

concepts of velocity, acceleration, relative motion, work, energy, impulse, and momentum. As 

mentioned previously, MEAs were first implemented in this class because of its high failure rate 

and broad student population. In Cal Poly‘s quarter system of 10 weeks, students often struggle 

to fully understand each of these concepts – resulting in poor performance. Some professors 

indicate failure rates of approximately 15-30%. 

 Instructors from other universities also observed this problem and attempted to combat it 

in different ways. For example, in Worchester Polytechnic Institute in Massachusetts, instructors 

integrated the use of LEGO
®

 kits into an introductory Dynamics course. Students were required 

to develop models to describe the kinematics and kinetics of a linkage. Since a major difficulty 

of learning Dynamics is caused by the lack of a physical model, this hands-on approach was seen 

as a great tool for learning (Jolley 2003). 

 Another example is Grand Valley State University‘s catapult-design contest. Here, 

students were required to design and build a catapult to clear a vertical height and hit a target at a 

specified distance (Reffeor 2002). This required selection of materials, springs, and associated 

calculations. Shown in Figure 2 is a student-built catapult from the competition.  

 



10 

 

 

Figure 2. Catapult built by Grand Valley State University students. 

Students at Grand Valley were critiqued on the correlation between their theoretical 

predictions and the actual results. As will be discussed in the Catapult section, the Catapult MEA 

at Cal Poly was similar to this project. However instead of requiring students to actually build 

the catapult, we instead focused on the development of the theoretical model and the comparison 

to the physical results. We have found that MEAs can be very time intensive, so simpler MEAs 

that convey the same idea can be beneficial to students and teachers alike. In this manner, more 

subject matter can be taught with a wider variety of projects. 

 Our overall goal was to motivate students by providing a realistic project with the VAR 

MEA and a very hands-on project with the Catapult MEA. By doing so, we hoped to see 

increased student performance and willingness to learn.  



11 

 

Vehicle Accident Reconstruction 

Application of momentum principles is one of the fundamental concepts introduced in 

early physics courses, and solidified in ME212. Because of students‘ previous exposure to the 

topic of momentum, and its direct applicability toward real-world scenarios, we developed an 

MEA to further solidify this concept with students.  

The vehicle accident reconstruction project (VAR) was the first MEA that was developed 

by the research team at Cal Poly. During the fall quarter of 2008, with the newly assembled 

team, the VAR MEA was refined and assigned to the first dynamics class. The client of this 

MEA was a Sri Lanka police station which was developing an investigation protocol to 

determine fault in vehicular collisions. We chose this particular context in the hopes that it would 

capture the interest of students by including engineering analysis with a meaningful social 

impact.  

Listed in the following figures are the background information and memorandum 

handouts given to students. The background information serves to provide students with 

preliminary information, pertinence to current events, and importance of their analysis. The 

memorandum presents a client-driven problem in a professional tone – setting up students to 

appropriately develop their model. 



12 

 

 

Figure 3. Background information provided for VAR MEA. 



13 

 

 

Figure 4. Memorandum provided for VAR MEA. 

 

The main deliverable from the VAR project was a tool for police officers to determine if 

vehicles were violating posted speed limits prior to collisions. With the help of Teresa Ogletree‘s 

father, who was a police officer, we were able to provide problem statements in the form of 



14 

 

actual police reports.  Students were first presented with two out of the four cases. With these 

two cases, they developed a generalizable model to determine which vehicle was ―at fault‖ for 

each collision. Students then applied their model to two more scenarios. They could then refine 

their models to adequately represent the new cases if anything was previously lacking. This 

resulted in a model that was not only applicable to certain cases, but to crashes in general.  

Figure 5 shows an example of one of the cases, while all of the cases are attached in Appendix A 

through Appendix E  

While applying their models to each case, students were required to provide a detailed 

explanation of all equations, assumptions, and procedures used. This allowed the MEA team to 

easily follow their thought processes, and to identify any common mistakes. 

Most students provided a typed sheet with a method to determine pre-crash velocities. 

However, some students decided to use MatLab scripts or Excel spreadsheets. 

  



15 

 

 

 

Figure 5. One of the cases assigned for the VAR MEA. 

 

 

The main purpose of the VAR project was to provide a meaningful exercise for students 

to use impulse-momentum and work-energy principles. One of the most common student 

misconceptions is applying the conservation of mechanical energy through an impact. Through 

the VAR project, we hoped that students would recognize that they should instead apply 

momentum principles to find initial velocities. As will be discussed, they seemed to have a better 

understanding of momentum and impact principles after completing the MEA. 

Changing student misconceptions 

In order to gage the effectiveness of the VAR project, we compared the Dynamics 

Concepts Inventory (DCI) scores from classes that used the project versus classes that did not. 

The Dynamics Concepts Inventory is a set of 29 conceptual multiple choice questions related to 



16 

 

the fundamental concepts presented in the Dynamics course (Gray 2005). The following 

statistics are taken from ―Is There a Correlation between Conceptual Understanding and 

Procedural Knowledge in Introductory Dynamics.‖ Lora Goodwin, a member of our research 

team, submitted this paper to the 2009 ASEE PSW conference (Goodwin 2009). The following 

table displays the DCI performance of students that have been exposed to MEAs in their 

coursework along with those who had not. 

  



17 

 

Table 2. Total pre and post DCI scores for all MEA and non-MEA participants. 

 N                                  Value 

Pre DCI 

Results     

[%] 

Post 

DCI 

Results    

[%]  

Overall 

Average 

Normalized 

Gain 

[%] 

Overall 

Average 

Percent 

Improvement 

[%] 

MEA in 

Coursework 
149 

Mean 29.85 49.97 

29.6 20.11 Median 27.59 48.28 

Standard Deviation 14.55 17.20 

No MEA's in 

Coursework 
80 

Mean 32.97 46.64 

21.1 13.66 Median 31.03 44.83 

Standard Deviation 14.19 18.33 

 

As shown in Table 2, a higher normalized gain is present for students that had been 

assigned MEAs in their coursework. However, to highlight the effect of the VAR MEA itself, the 

two questions from the DCI relating to impact and momentum were studied. The questions are 

shown in the following figures. 

 

 

Figure 6. Question 18 of the DCI testing students’ understanding of an impact. 

 



18 

 

 

Figure 7. Question 20 of the DCI testing students’ understanding of an impact. 

 

Table 3 highlights the performance on DCI questions 18 and 20. Students who had MEAs 

in their coursework had an average normalized gain of 41.1%, compared to 14.8% for students 

with no MEAs in their coursework. One can conclude that the MEAs did, in fact, have a 

significant performance on the topic covered. 

Table 3. Pre and post DCI scores for MEA and non-MEA participants considering only the DCI questions directly related 
to MEA topic (questions 18 and 20). 

 

DCI 

Question 

Number 

Mean 

DCI Pre   

Score   

[%] 

Mean 

DCI Post 

Score    

[%] 

Normalized 

Gain  
[%] 

Average 

Normalized 

Gain      
[%] 

MEA in Coursework 
Q 18 26.7 45.6 25.74 

41.1 
Q 20 47.6 77.2 56.48 

No MEA's in 

Coursework 

Q 18 19.1 32.2 16.18 
14.8 

Q 20 50.9 57.5 13.37 

  

  



19 

 

 

 Table 2 shows overall student performance on the entire DCI. Students with MEAs in 

coursework still had a higher overall average normalized gain than those without MEAs in 

coursework. However, when compared to the normalized gain only for questions 18 and 20 

shown in Table 3, the gain is much smaller. This shows that students performed much better on 

the concepts that did have MEA reinforcement. 

VAR Time Commitment 

One of the greatest challenges for implementing the VAR project was the time involved 

for both the teachers and the students in the MEA team. Developing the problem cases required 

producing a new solution for every new case. Because the assignments were modified for each 

quarterly ME212 class, this required making a new solution set every time the VAR was 

assigned.  

Contrary to Scott Chamberlin‘s ―How Does the Problem Based Learning Approach 

Compare to the Model-Eliciting Activity Approach in Mathematics?‖ we found that the 

implementation time of the VAR MEA took significantly longer than his stated ―1-2 hours 

required‖. However, Chamberlin‘s interpretation of the time allotted for MEAs may not be 

applicable to the engineering environment since engineering MEAs that we have developed were 

much more complex. For example, some MEAs that require only a basic statistical analysis can 

be conducted in less than a single class period. However, in our case, students and instructors 

must dedicate much more time deriving and interpreting these models. For the VAR MEA, 

students worked several hours outside of the allotted lecture period, and the research team spent 

over twenty hours grading approximately forty turn-ins. 



20 

 

VAR MatLab Development 

In order to reduce some of this workload for instructors, I developed a MatLab code that 

would automatically solve for pre-collision velocities. By having this program available, we 

could easily change the parameters of our VAR cases and instantly have a supporting solution. It 

also greatly aided in the development of new cases - we could check and modify values to yield 

realistic solutions. The MatLab program and supporting user guide are shown in Appendix F and 

Appendix G .  The overall goal was to have an easy-to-use program for the VAR MEA 

development, which could be distributed to universities that were interested in using our MEAs. 

Because of this, the program was revised and rewritten several times to promote ease of use.  

The first version of the VAR MatLab program was a line-by-line user input script. The 

input-window version is shown in Figure 8 below. Although functional, this line-by-line script 

lacked the amount of functionality I wanted for a program that would be distributed to a range of 

universities. It proved very cumbersome for the team when we attempted to use it to solve our 

own cases. Another large issue we encountered was that when we made any error in typing 

values in, we were unable to correct our changes – instead we had to terminate the program and 

reenter all the parameters again. 



21 

 

 

Figure 8. Input-window for VAR development program. 

 

Because of these issues, I decided to reprogram the script into a GUI format. Although 

the code itself became a bit more cluttered, a GUI was far more intuitive to use.  Revision 5 of 

the MatLab GUI is shown in Figure 9. This program allowed testing of VAR cases much more 

quickly – errors could be corrected easily, and all parameters could be inputted before the 

calculation code executed. 

 



22 

 

 

Figure 9. MatLab GUI for VAR MEA development. 

 

 Figure 10 shows the output of the GUI program when the velocity vector plot is 

requested as an output. This vector plot indicates the instantaneous velocities immediately before 

and after an impact. In the case shown in the figure, vehicle 1 is traveling northbound, while 

vehicle 2 is traveling eastbound. The two vehicles collide and stick together, resulting in a post-

collision velocity in the northeast direction. 



23 

 

 

Figure 10. Velocity vector plot for instantaneous pre and post collision velocities, generated with the GUI. 

 

VAR Cases 

The VAR cases were broken down into several cases for MatLab to properly solve. 

MatLab has the capability of solving systems of equations using an add-in called ―Symbolic 

Toolbox‖. However, I tried to avoid using any plug-ins when programming these cases so that all 

universities with a normal version of MatLab could use this program. 

The crash scenarios were broken down into the cases shown in Table 4 and Table 5. Note 

that whenever possible, cases were consolidated for both post collision stick and non-stick 

conditions. A ―stick‖ scenario is defined as two vehicles joining together post-collision to form a 

single mass – an inelastic collision. A ―non-stick‖ scenario is defined as the two vehicles having 

independent masses and velocities post-collision. The equations used for solving the ―stick‖ and 

―non-stick‖ collisions are shown in equations (1) and (2), respectively. 

  0.5
  1

  1.5

30

210

60

240

90270

120

300

150

330

180

0Instantaneous pre/post collision velocity vectors

 

 

Vehicle 1 Initial Velocity

Vehicle 2 Initial Velocity

Vehicle12 Final Velocity



24 

 

Table 4. Cases for 2 vehicle collisions where vehicles do not stick together post-impact. 

 
Pre-Collision Post-Collision 

  V1 V2 V1 V2 

Case Mag Dir Mag Dir Mag Dir Mag Dir 

A 1 1 0 0 1 1 1 1 

G 1 1 0 1 1 1 1 0 

D 1 1 0 1 1 1 0 1 

F 1 0 0 1 1 1 1 1 

C 0 1 0 1 1 1 1 1 

E 1 1 0 1 1 1 1 1 
 

Table 5. Cases for 2 vehicle collisions where vehicles stick together post-impact. 

 
Pre-Collision Post-Collision 

 
V1 V2 V12 

Case Mag Dir Mag Dir Mag Dir 

A 1 1 0 0 1 1 

B 1 1 0 1 0 1 

G 1 1 0 1 1 0 

F 1 0 0 1 1 1 

C 0 1 0 1 1 1 

E 1 1 0 1 1 1 
 

𝑚1𝑣1𝑖    +  𝑚2𝑣2𝑖    =  𝑚12𝑣12𝑓       (1) 

𝑚1𝑣1𝑖    + 𝑚2𝑣2𝑖    =  𝑚1𝑣1𝑓    + 𝑚2𝑣2𝑓      (2) 

 

For all the cases, one of the unknowns was an initial velocity magnitude – as this was the 

most important criteria for students to determine fault in the accident scenarios. Except for case 

E, which has 1 unknown, every case has 2 unknowns to avoid overdefining the problem. Case E 

is a head-on collision, therefore only 1 unknown is allowed. Table 4 and Table 5 illustrate the 

known and unknown parameters of the problem indicated by ―1‖ and ―0‖, respectively. For 

example Case A, shown in Figure 11 and Figure 12, would be a crash scenario where magnitude 



25 

 

and direction of one vehicle‘s initial velocity are unknown, while all the other pre and post 

collision velocities are known. 

 

Figure 11. Case A for stick collision. 

 

Figure 12. Case A for non-stick collision. 

 

 

 All of the cases, except for G and F, were solved analytically, which produced an exact 

result. Case A and Case E were easily solved algebraically, using equations (1) and (2). 



26 

 

However, cases B, C, and D were more calculation intensive, although they were still solved in 

algebraic form. While attempting to solve by hand, I obtained results that were algebraically 

correct, but had divide-by-zero errors when implementing them into the MatLab code. This 

could have been due to the equations not being in the most simplified form. Therefore, I utilized 

the symbolic toolbox to solve for the corresponding equations for these cases, in their simplest 

form. These equations were then implemented into the MatLab program. Note that although 

symbolic toolbox was used to solve for the equations, it was not used in the GUI program itself – 

the symbolic toolbox add-in is not required to run the program. The supported MatLab 

derivations are shown in Appendix H . 

Cases G and F, highlighted in blue in Table 4 and Table 5, had to be solved iteratively 

since the unknown variable could not be isolated by itself. This iteration was done by guessing 

for the unknown direction, solving for the velocities, and checking conservation of momentum 

within a certain percent error. Because of this, the produced solution was an approximate answer. 

The initial convergence criteria for initial and final momentum convergence in the x and y 

direction was 0.01%. However, if the solution did not properly converge, the iteration code 

relaxed the criteria in two stages. The first stage ―relaxed‖ convergence criteria used 1% between 

the final and initial momentum, in both directions. The second stage used 2%. If neither of these 

criteria were met, the code exited out, producing an error.  



27 

 

 

Figure 13. VAR GUI iteration for Case F. convY and convX indicate the percent difference between initial and final 
momentum magnitudes, in the Y and X direction. 

 

  



28 

 

VAR GUI Summary and Recommendations 

The VAR GUI was used to solve many test cases as well as various momentum problems 

from the ME212 textbook. So far, it has properly solved for all supported cases, however as with 

all software, some bugs will likely be discovered when it is put to repeated use. The GUI 

performs all necessary calculations, and does a final check for conservation of momentum in the 

x and y directions. If conservation of momentum is not passed, the code will error out with an 

appropriate message, which will greatly speed up troubleshooting in the future. 

In retrospect, the code could be greatly simplified if all the cases were solved iteratively. 

However, this would result in a much greater computation time, and all the solutions would be 

only approximate answers, rather than analytical solutions. Overall, the GUI is a convenient tool 

to develop and check VAR scenarios. We intend to distribute it to other universities that are 

using our VAR MEAs, so that they can also reduce the workload on their instructors. 

 

  



29 

 

Catapult 

The Catapult MEA was introduced in some sections of ME212, ‗Dynamics‘ after the 

concepts of work-energy and angular velocity/acceleration were introduced in lecture. It was also 

implemented in some sections of ME326, ―Intermediate Dynamics‖, although not yet formulated 

into an appropriate MEA format. Professors Dr. Brian Self, Dr. Jim Widmann, and Dr. Peter 

Schuster have successfully implemented this project into ME212, and Dr. Self has used this 

project in ME326. 

Once again, the MEA was placed in a professional client-driven setting. The memo that 

was presented to students in ME212 is shown in Figure 14. The ―client‖ for this MEA was the 

Petersborough Museum, who needed a set of guidelines for predicting the range of projectiles 

fired from simple catapults. Students were then supplied with a ―scaled-model‖ of the catapult, 

shown in Figure 15, in order to assist with their analysis. 

 



30 

 

 

Figure 14. Catapult MEA assigned to ME212 classes. 



31 

 

 

Figure 15. Catapult provided to students for analysis. 

 

 Along with the supplied scaled catapult, they were also given rubber bands, rulers, 

weights, and a scale. With these tools, they were expected to determine all the parameters 

necessary to model the catapult. In contrast to a typical textbook problem, where all the required 

values are already explicitly stated, this MEA required students to apply their analytical skills to 

actually determine what information was needed. Some of these parameters included the 

dimensions of the catapult arm, dimension from pivot to ammo cup, and the height of the rubber 

band pin. With these parameters, they had to determine the moment of inertia of the catapult 

arm, inclusive of the ammo cup and egg. Based on their engineering knowledge, some students 

made assumptions of point-masses for the egg and cup, and slender rod behavior for the catapult 

arm. Another important aspect was the behavior of the rubber band. Some students assumed 

linear behavior, using an average spring constant for their theoretical model. Other students used 

a curve-fit to the force-displacement data to account for any nonlinearities in rubber band 



32 

 

stiffness, as shown in Figure 16.  We wanted this open-ended aspect to stimulate the kind of 

critical thinking lacking in many textbook problems. 

 

Figure 16. Force versus displacement curve for rubber band. 

As their deliverables, students provided a model to predict the range of catapults in 

general, as well as applying their model specifically to the scaled catapult that was provided. 

They were required to develop a model using hand calculations that would be applicable to 

conditions that would be specified later - during launch day. These conditions were: stopper pin 

angle and pull-back angle, illustrated in Figure 17. Students should have realized that both the 

trajectory and distance traveled were a function of these two variables. 



33 

 

 

Figure 17. Diagram of catapult locations. 

A target was placed in front of the catapult during launch day, and a required pin stopper 

angle was specified. Students then adjusted the pullback angle of the catapult - based on their 

model - in order to hit the target. They were able to choose their own rubber band attachment and 

rubber band pin locations. Judging from where their egg landed, they were able to see where 

their calculations may have gone awry, which was a significant application of the self-

assessment principle. They could then go back and rework their calculations to match up with the 

physical results. In addition to using their model on launch day, students completed a follow-up 

homework assignment which also utilized their model. This homework assignment involved 

finding the force on the stopper pin using impulse-momentum, as well as the force on the pivot 

pin using the sum of forces and moments.  This allowed students to connect an additional 

concept from lecture to their model.  



34 

 

Instrumentation 

Although launching the catapult was already a great way of providing validation to 

students‘ analysis, we wanted to provide further experimental data. In order to expand upon the 

―reality‖ and ―self-assessment‖ principles of this MEA, we outlined parameters that we wanted 

to measure using instrumentation. By providing students with experimental data, they would be 

able to validate their theoretical results with physical data. This real-time data would ideally be 

taken by the students during launch day, where they could visually see the trajectory of the egg. 

Students could then compare the visual results, the experimental data, and their theoretical 

results. The parameters that we wanted to measure are: 

 Angular Velocity 

 Angular Position 

 Angular Acceleration 

 Axial Stress 

 Force at Stopper Pin 

To obtain this experimental data, we used a two-axis accelerometer and four strain gages, 

in conjunction with a data acquisition system. The final equipment list (after several design 

iterations) is listed below: 

 1x ADXL-278 ±50g Dual-Axis iMEMS Accelerometer 

 1x 5V Voltage Supply (inclusive of hardware noise filtering) 

o 1x 5V Voltage Regulator 

o 2x 10µF capacitor 

o 1x 0.1µF capacitor 

o 1x 0.01µF capacitor 

 4x CEA-06-240UZ-120 Vishay Strain Gages 



35 

 

 1x NI-cRIO-9014  Real-Time Controller 

 1x NI-cRIO-9101 4-Slot, 1M Gate CompactRIO Embedded Chassis 

 1x NI-9237 Simultaneous Bridge Module 

 1x NI-9205 Analog Input Module 

 1x NI-9949 NI 9949 RJ-50 to Screw Terminal Adaptor (Strain Bridge) 

 2x 120 Ω Vishay 5-120-01 Precision Resistors 

 

One of the most critical design considerations was the required setup time for gathering 

data. While proctoring ME212 students during launch day, I was barely able to squeeze all of the 

student teams‘ launches into the 50 minute period. I realized that essentially no time would be 

allotted to set up the instrumentation. Therefore, all of the following instrumentation is designed 

to record the data with a click of a button in LabView, with no setup time in between. Students 

can then use the post-processing code to analyze their results. 

 All of the testing in this section was conducted with one rubber band on the catapult, and 

no attached egg or other projectile. The reason for this was because many trials were to be 

conducted in the graduate lab. Launching projectiles could damage other equipment in the lab, 

and based on my previous experience, two rubber bands could damage the catapult arm, as 

shown in Figure 18. 



36 

 

 

Figure 18. Broken catapult arm after some initial trials with two rubber bands. 

Angular Position, Velocity, and Acceleration 

Several techniques to measure angular velocity and acceleration were considered before 

ultimately arriving at a dual-axis accelerometer. We considered using either a rotary encoder or 

rotary potentiometer to measure the position of the arm as a function of time. These, however, 

would require a rigid attachment to both the catapult arm as well as the base. This would require 

significant machining and would be potentially expensive. 

Our solution to measure both angular velocity and acceleration was to use an ADXL-278 

accelerometer. This accelerometer was low-cost, measured acceleration in two axes, and required 

a rigid attachment to only the catapult arm. The full specifications of the accelerometer are 

provided in Appendix L . The ADXL-278 was oriented to measure both normal acceleration and 

tangential acceleration of the catapult arm, as shown in Figure 19. From these two accelerations, 

we could then directly calculate the angular velocity and acceleration of the catapult using the 

following relations. 

at= α x r 

 

(3) 

an= ω
 
x (ω

 
x r) (4) 



37 

 

 

 

 

 

Figure 19.  Catapult with accelerometer. The accelerometer is highlighted in yellow. The blue and red arrows represent 
the directions of tangential and normal acceleration, respectively. 

 

 

Figure 20. Close-up of accelerometer on catapult arm. 

 For noise reduction in the power supply, we utilized the circuit shown in Figure 21 to 

power the accelerometer and for some hardware signal conditioning. The circuit is a combination 



38 

 

of a 5V voltage regulator (with capacitors for noise reduction) and a grounded 0.01μF capacitor 

at each of the two outputs of the accelerometer. The outputs of both axes are then read into a data 

acquisition unit. 

 

 

Figure 21. Circuit diagram for 5V voltage regulator & hardware accelerometer signal filtering. 

 

 

Figure 22. Voltage regulator internals and packaging. 

In order to read the analog signal from the accelerometer into the computer, we needed a 

data acquisition system with an appropriate sample rate. Our first iteration utilized a NI USB-

6008. This DAQ had a maximum sampling rate of 5000Hz, which was more than fast enough for 

our catapult duration of less than 60 milliseconds. The accelerometer was then tested for 

repeatability, shown in Figure 23.  

Accelerometer

ADXL278

0.01 μF0.01 μF

Vaxis1

Vaxis2

Voltage Regulator

9V   5V

0.1 μF10 μF

Battery

9V



39 

 

 

Figure 23. Angular velocity data for multiple runs, using NI-6008. 

One of the major drawbacks of using an accelerometer versus an encoder was that the 

position of the catapult arm had to be calculated by integrating the angular velocity. While this 

was initially a concern, Figure 24 shows the results of a numerical integration of the angular 

velocity to yield the corresponding position. A summary of these results is provided in Table 6. 

 

Table 6. Summary of 12 repeatability tests for pullback angle of 72° 

 Experimental 

Parameter 

Average Numerical 

Integration Output 

Percent Difference Standard 

Deviation 

Pullback angle – 

stopper angle 

72° 71.2° 1 % 1.025° 

 

 

 

0 0.01 0.02 0.03 0.04 0.05 0.06
0

5

10

15

20

25

30

35

40

45

Time(s)

A
n
g
u
la

r 
V

e
lo

c
it
y
 (

ra
d
/s

)



40 

 

 

Figure 24. Experimental results for angular velocity and position. Position was calculated from numerical integration of 
velocity. 

Switching to CompactRIO 

 Although the USB-NI-6008 was adequate for accelerometer measurements alone, a 

problem arose when we tried to interface it with a strain measurement. Since the output voltage 

from any strain gage measurement was well under the minimum voltage that could be read by 

the USB-NI-6008, a separate module had to be used for the strain voltage. We had originally 

planned to purchase a USB adapter for the C-Series NI-9237 strain module – in that manner we 

could hook up both the NI-6008 and the NI-9237 via USB ports, and sample from each in 

LabView. However, a ―lag time‖ would be present between readings of the two USB devices, 

which would cause trouble in synchronizing the two signals. This would be less of a problem if 

0 0.01 0.02 0.03 0.04 0.05 0.06
0

10

20

30

40

50

Time, s

A
n

g
u

la
r 

V
e

lo
c

it
y

, 
ra

d
/s

0 0.01 0.02 0.03 0.04 0.05 0.06
0

10

20

30

40

50

60

70

80

Time, s

P
o

s
it

io
n

, 
d

e
g

re
e

s



41 

 

the event time was long – however since the catapult motion occurs in less than 60 milliseconds, 

this became a concern. 

 Rather than purchasing an adapter that may not have worked, we instead turned our 

attention to a CompactRIO (National Instruments, Austin, TX), which was readily available for 

me to use. Typically, the CompactRIO modules are used to record data without the need to be 

hooked up to a computer. However, in our case, we wanted the data to be displayed on the 

computer screen as the event was occurring. This required the usage of ―scan mode‖ on the 

CompactRIO, which omits the requirement of any FPGA programming. The configuration of the 

CompactRIO required us to use the ―Using CompactRIO Scan Mode with Unsupported 

Backplanes‖, stated on the NI website.  

 Switching to this CompactRIO required changing the voltage module used to read 

acceleration from the USB-NI-6008 to the NI-9205 Analog Input Module. This was not a 

problem, however, the maximum sampling rate was reduced from 5000Hz to 1000Hz. Even so, 

as shown in Figure 25, an adequate amount of samples was obtained using this reduced sampling 

rate. 



42 

 

 

Figure 25. Trial for testing reduced sampling rate of 1000Hz, using CompactRIO and NI-9205. 

 

 The top plot of Figure 26 compares the values of experimental angular velocity with the 

angular velocity obtained by a rectangular numerical integration of the experimental angular 

acceleration. The offset between the two values was most likely caused by the orientation of the 

accelerometer. The bottom plot of Figure 26 compares the values of experimental angular 

acceleration with the angular acceleration obtained by deriving the experimental angular 

velocity. Because of the noise in the normal acceleration direction, from which the angular 

velocity was calculated, calculating the angular acceleration using the two-point backwards 

difference and four-point central difference methods of numerical differentiation were also noisy. 

However, the derived results fluctuated about the experimentally obtained value. Therefore, this 

could potentially be a good method of checking the orientation of the accelerometer. 

0 0.01 0.02 0.03 0.04 0.05 0.06
0

5

10

15

20

25

30

35

40

Time, s

M
a

g
n

it
u

d
e

, 
g

 

 

Tangential Acceleration

Normal Acceleration



43 

 

 

Figure 26. (Top) Comparison between experimental angular velocity and integrated angular velocity from experimental 

angular acceleration. (Bottom) Comparison between experimental angular acceleration and derived angular acceleration 
using experimental angular velocity. 

 

Axial Stress and Force at Stopper Pin 

In order to capture the force at the stopper pin and the axial stress, we used strain gages to 

measure the bending and axial strain of a catapult arm location during launch. The bending strain 

was caused by the tangential force from the rubber band, which in turn accelerated the catapult 

arm. A large bending strain was also present during the impact time of the catapult arm with the 

stopper pin. The axial strain was caused by a combination of the axial force from the catapult 

0 0.01 0.02 0.03 0.04 0.05 0.06
0

5

10

15

20

25

30

Rescaled Time, sA
n

g
u

la
r 

V
e

lo
c

it
y

 M
a

g
n

it
u

d
e

 (
ra

d
/s

)

 

 

0 0.01 0.02 0.03 0.04 0.05 0.06
-4000

-2000

0

2000

4000

6000

Rescaled Time, s

A
n

g
u

la
r 

A
c

c
e

le
ra

ti
o

n
 (

ra
d

/s
)

 

 

Derived Angular Velocity

Experimental Angular Velocity

Derived Angular Acceleration [Four-point central difference]

Derived Angular Acceleration [Two-point backward difference]

Experimental Angular Acceleration



44 

 

arm as well as the normal acceleration of the effective center of mass above the mounted gage. 

An FBD and MAD of the catapult arm are shown in Figure 27. 

 

 

Figure 27. FBD and MAD of catapult arm. 

 

 The strain gages were assembled into a ―full‖ Wheatstone bridge as shown in Figure 28. 

For axial strain, we positioned strain gages at (1) and (3), and placed precision resistors at (2) 

and (4). This configuration resulted in measuring axial strain only – bending effects were 

cancelled out. For bending strain, we positioned strain gages at (1) and (4), and used the internal 

completion NI-9949 resistors at (2) and (3). This configuration resulted in measuring bending 

strain only – axial effects were cancelled out. The bridge setup and associated equations were 

taken from James W. Dally‘s Instrumentation for Engineering Measurements, 2
nd

 edition. During 



45 

 

any applied load, the resultant axial strain and moment strain could be determined by the 

following reduced equation: 

𝑉𝑜
𝑉𝑒𝑥

=
𝑆𝑔 ∈

2
 

(5) 

 

   

 

Figure 28. “Full” Wheatstone bridge configuration for strain gages. For axial strain: (1) and (3) represent mounted gages, 

while (2) and (4) represent external precision resistors. For bending strain: (1) and (4) represent mounted gages, while (2) 
and (3) represent internal precision resistors. 

 

 The strain gages were mounted using m-line AE10 epoxy, as per the instructions in the 

Vishay manual (Vishay Micro-Measurements 2005). Figure 29 shows the overnight curing of the 

strain gages under pressure from clamps. An illustration of the strain gage locations is provided 

in Figure 30 and the actual strain gages are shown in Figure 31.  



46 

 

 

Figure 29. Strain gages curing under pressure from c-clamps. 

 

 

Figure 30. Illustration of catapult with associated instrumentation. Strain gage 3 (not visible) is mounted directly opposite 
of strain gage 1. Strain gage 4 (not visible) is mounted directly opposite of strain gage 2. 

 

Strain Gage 1

Accelerometer

Strain Gage 2



47 

 

 

Figure 31. Catapult with mounted strain gages. 

Because we were utilizing the strain gages as force/stress transducers, we needed to find 

the modulus of elasticity of the wood. By experimentally determining this modulus of elasticity, 

we could then relate the recorded strain to stress using Hooke‘s Law: 

𝜎 = 𝐸 ∈ (6) 

 The modulus of elasticity was found by loading the catapult arm axially, and recording 

resultant strains caused by static loading of weights. This was accomplished by hanging the 

catapult arm from a ladder, and hanging combinations of 2lb and 10lb weights, as shown in 

Figure 33. The associated strains were measured using a P3 Strain Indicator and Recorder 

(Vishay). 



48 

 

 

Figure 32. Static loading of catapult arm to determine modulus of elasticity. 

The results from the modulus of elasticity test are shown in and Table 7. Wood typically 

has a nonlinear behavior when not in the direction of the grain structure, but fortunately the 

grains were oriented in the direction of our applied force. The experimental value for the elastic 

modulus of the catapult arm were very close to the published value for oak wood of 1.49 Msi 

(Smithsonian Institution 1969, 246), along the direction of the grain. 

 

Table 7. Comparison of experimental published value for catapult arm and published elastic modulus for oak. 

 Experimental Published % Difference 

Elastic Modulus (Msi) 1.53 1.49 -2.0% 

 



49 

 

 

Figure 33. Stress - strain relationship for catapult arm under axial loading. 

 

Data From the CompactRIO 

 The LabView program Virtual Instrument (VI) was structured in a producer-consumer 

loop as shown in Figure 34. The purpose of this structure was to take readings at a very fast 

sampling rate while writing the data to a text file. We had initially attempted to use just a timed 

loop structure, however writing to the data file and displaying the measurement on the front 

panel sometimes interfered with the scan rate. A producer-consumer loop has all time-critical 

data occurring in the producer loop, which queues up data in memory for the consumer loop. The 

consumer loop then executes when adequate processing power is present – which doesn‘t 

interfere with the sampling rate. In our case, the data sampling occurred in the producer loop, 

while the data writing and waveform display occurred in the consumer loop.  



50 

 

 

Figure 34. LabView VI for obtaining signals in producer-consumer format. 

 

MatLab, Post-processing, and Results 

 After the data were recorded using this producer-consumer structure, a post-processing 

MatLab code was used to interpret the results. Shown in Figure 35, the actual catapult motion 

time was only a very small portion of the entire sampling time. This was because each trial was 

initiated by pressing run, releasing the catapult, and allowing adequate time for the program to 

write the data. However, we needed a way to easily identify the duration of the catapult motion. 



51 

 

 

Figure 35. MatLab output for raw voltages obtained from LabView. 

 We accomplished this by programming the MatLab code attached in Appendix I , which 

searched for trigger values of normal and tangential acceleration. When both readings for 

acceleration surpassed their trigger values, the beginning of catapult motion was indicated. When 

the trigger value for tangential acceleration became negative, this indicated the end of the 

catapult motion – hitting the stopper pin. The first plot of Figure 36 illustrates the entire 

recording of catapult acceleration data, from the time the time the LabView recording is started 

to when it is stopped. This data include the period of no movement, the catapult motion, and the 

oscillations after the arm has hit the stopper pin. However in this case, the catapult motion itself 



52 

 

occurs between approximately 1.25 and 1.3 seconds. Using the aforementioned trigger values, 

the second two plots of Figure 36 show a rescaled time, which highlights the catapult motion by 

itself, and rescales the time to zero. The experimental angular velocity and angular acceleration 

were calculated from the experimental tangential and normal accelerations using Equations (3) 

and (4).  

 

Figure 36. MatLab output of tangential acceleration, normal acceleration, angular velocity, and angular acceleration with 
corresponding theoretical results for a catapult pullback angle of 180° and stopper angle of 125°. 

As seen in the figure, the experimental angular velocity matches very closely to the 

theoretical angular velocity obtained using the code in Appendix J . However, both the maximum 

angular velocity and acceleration are somewhat overestimated by the theoretical model. I believe 

that this is because during the final part of the catapult motion, a part of the rubber band remains 

0 0.5 1 1.5 2 2.5
-4

-2

0

2

Time, s

M
a
g

n
it

u
d

e
, 

V
o

lt
s

 

 

Tangential Acceleration

Normal Acceleration

0 0.01 0.02 0.03 0.04 0.05 0.06
0

10

20

30

40

Rescaled Time, s

A
n

g
u

la
r 

V
e
lo

c
it

y
 (

ra
d

/s
)

 

 

Experimental Angular Velocity

Theoretical Angular Velocity

0 0.01 0.02 0.03 0.04 0.05 0.06
0

200

400

600

800

Rescaled Time, sA
n

g
u

la
r 

A
c
c
e
le

ra
ti

o
n

 (
ra

d
/s

2
)

 

 

Experimental Angular Acceleration

Theoretical Angular Angular Acceleration



53 

 

in its ―stretched‖ state due to the friction from the rubber band pin, shown in Figure 37. The 

theoretical model, in contrast, assumes that the entire rubber band unstretches evenly. After 

analyzing some high-speed catapult footage, it appeared that a section of the rubber band did in 

fact remain stretched during the catapult motion. Because of this, it is possible that not all the 

potential energy stored in the entire rubber band length is converted to kinetic angular velocity.  

 

Figure 37. Diagram of unstretching and unchanged portions of rubber band during catapult motion. 

 

 After analyzing some initial strain gage results, we realized that the strain measurement 

for a no-load condition changed every time. There appeared to be an offset after every trial; 

therefore a study was conducted to see if any residual strain was present after each catapult 

launch. Shown in Figure 38 is the axial strain study for the catapult arm, using the P3 Strain 

Indicator and Recorder. We can see a linear strain increase of about 0.5 με per trial. Ideally, we 



54 

 

would want to re-zero the catapult every time to the no-load state. However, since many students 

could potentially be taking the data during launch day, we needed a more efficient way of re-

zeroing the strains. This could potentially be accomplished by simply matching the initial strain 

magnitudes of the theoretical and experimental strains. 

 

Figure 38. Residual axial strain study for catapult arm for five catapult launches. 

 

 Shown in Figure 39 is the MatLab output for the results of the axial and moment strains 

for a single trial. The first plot in the figure shows the raw voltage in mVoutput/Vexcitation for each 

of the Wheatstone bridges. Shown in the second two plots are the axial strain and moment strain, 

rescaled as mentioned previously, and calculated using the below equation (National Instruments 

2009). 

𝑉𝑜
𝑉𝑒𝑥𝑐𝑖𝑡𝑎𝑡𝑖𝑜𝑛

=
𝑆𝑔𝜖

2
 

(7) 



55 

 

From the first two plots of Figure 39, it can be seen that strain gages did pick up the 

impact and the resultant oscillations afterwards. However, as shown in the third and fourth plots, 

it appeared that the actual axial and moment strain of the catapult arm was much smaller than the 

theoretical model. Also, a lot of noise was present in the signal, due to the measured strain being 

so small. Because of this, not very much useful strain data could be obtained from the duration of 

free catapult motion. 

 

 

Figure 39. MatLab output of axial strain and moment strain with corresponding theoretical results for a catapult 
pullback angle of 180° and stopper angle of 125°. 

0 0.5 1 1.5 2 2.5
1.05

1.1

1.15

1.2
x 10

-3

Time, sS
tr

a
in

 V
o

lt
a

g
e

, 
m

V
/V

 

 

Axial Strain Voltage

0 0.5 1 1.5 2 2.5
0

2

4
x 10

-3

Time, sS
tr

a
in

 V
o

lt
a

g
e

, 
m

V
/V

 

 

Bending Strain Voltage

0 0.01 0.02 0.03 0.04 0.05 0.06
1.06

1.07

1.08

1.09

1.1
x 10

-6

Rescaled Time, s

S
tr

a
in

 f
t/

ft

 

 

0 0.01 0.02 0.03 0.04 0.05 0.06
-1

-0.5

0

0.5

1
x 10

-5

Theoretical Axial Strain

Experimental Axial Strain

0 0.01 0.02 0.03 0.04 0.05 0.06
-5
-4
-3
-2
-1
0
1
2
3
4
5

x 10
-8

Rescaled Time, s

S
tr

a
in

 f
t/

ft

 

 

0 0.01 0.02 0.03 0.04 0.05 0.06
-2
-1.95
-1.9
-1.85
-1.8
-1.75
-1.7
-1.65
-1.6
-1.55
-1.5
x 10

-5

Theoretical Axial Strain

Experimental Axial Strain



56 

 

Even so, the strain profiles in the third and fourth plots of Figure 39 show a resemblance 

with the theoretical model, although they are both noisy and off by orders of magnitude. This 

means that the strain could have been be performing as expected, however the strain gage was 

not sensitive enough to make a precise measurement. The strains however, despite having an 

unexpected magnitude, were used to determine useful information about the impact time. Shown 

in Figure 40 is the estimated duration of impact, using the moment strain output. The start of the 

plot was obtained by finding the time where the angular acceleration became negative, and ended 

when the moment strain returned to its pre-impact state. 

 

Figure 40. MatLab output of axial strain, moment strain, angular acceleration, and angular velocity magnitude during 
the impact, with catapult pullback angle of 180° and stopper angle of 125°. 



57 

 

 

The experimental results for angular acceleration were much lower than expected during 

the impact, shown in the first plot of Figure 40. Theoretically, integrating the angular 

acceleration from zero to the time it takes for the catapult arm to approach a zero velocity should 

equal the angular velocity just before the impact. However, since our ADXL-278 is only rated 

for ±50g, our angular acceleration is actually outside the maximum range that can be measured 

by the accelerometer. For example, a linear change from =35rad/s to 0rad/s in 0.003 seconds 

would correspond to an constant angular acceleration of  3920rad/s
2
. Based on the positioning of 

the accelerometer, this angular acceleration corresponds to a linear tangential acceleration of 

nearly 400g‘s. Also, we see that the final angular velocity magnitude is higher than the initial 

angular velocity magnitude during the impact, which is impossible. This was likely due to the 

extreme spike in acceleration, which caused the accelerometer to operate outside of its intended 

rated range. The vibration that occurred during the impact also could have caused incorrect 

readings. 

Because of these incorrect readings of angular acceleration and angular velocity, the time 

of impact determined from the moment strain profile was used to roughly estimate the force on 

the stopper pin. Ideally, we would have used the change in the experimentally measured velocity 

with respect to time. However as we mentioned previously, these values were ultimately 

incorrect. Instead, using impulse momentum principles, we estimated the impact force by 

simplifying equation (8) to equation (9). This simplification was done by assuming that the force 

was constant during impact and that the collision was perfectly elastic, setting 

 ωimpact_final = - ωimpact_initial. The case shown in Figure 30 would correspond with an average 

stopper pin force of approximately 250 lbs.  



58 

 

  𝑀𝑂𝑑𝑡 = ∆𝐻
𝑡2

𝑡1

 
(8) 

𝐹𝑎𝑣𝑔 =
2𝐼𝜔𝑖𝑚𝑝𝑎𝑐𝑡 _𝑖𝑛𝑖𝑡𝑖𝑎𝑙

𝑡 ∗ 𝐿𝑠𝑡𝑜𝑝𝑝𝑒 𝑟
 

(9) 

 

Catapult Instrument Summary and Recommendations 

 Overall, we accomplished the goals of the instrumentation that we initially set out to 

complete. Although some equipment, such as the strain gages, did not function as we intended, 

all of the instruments provided meaningful data that were used to quantify the physical catapult. 

However, there are several recommendations that can be made after my experience with this first 

attempt. First, another data acquisition system should be used. The task of acquiring the signals 

could have been more easily done with a CompactDAQ, which is both cheaper and can scan 

more quickly in real-time mode. An increased scan rate would result in a better position 

calculation, and could possibly better capture the data during impact time. Second, the strain 

gages should be set up to measure a larger magnitude of strain, by either hallowing out some 

material to increase stress and strain, or by using a different strain gage. This would allow for a 

much better signal-to-noise ratio, which was very high during our trials. In addition to increasing 

the strain magnitude, some filtering technique could also be investigated. However at the 

moment, the strain magnitude is too small for any kind of filtering. 

 We also attempted to compensate for the effect of the nonuniform unstretching of the 

rubber band by modeling a percentage of energy that was dissipated, as well as changing the 

theoretical stretch distance. Both methods had a worse result than the original model. For future 

runs, the rubber band should be pinned at the point of rotation and a force-displacement curve 

measured. 



59 

 

 The current LabView Virtual Instrument could also be set up for an external trigger if 

desired. This way of acquiring the data could have LabView constantly taking readings, with an 

external trigger signaling to write the next few seconds of measurements to a file. This method 

could become useful if the current system is too slow for students to use during launch day. 

 The instrumentation should be effective in providing students for an additional means of 

self-assessment. By furthering the principles of self-assessment and reality, it has the potential to 

make the catapult project a better and more effective MEA. In addition, we now know the time 

of impact of the catapult arm, which was previously just assumed.  



60 

 

Overall Response to MEAs 

The student responses to VAR and Catapult MEAs were assessed by a post-course 

evaluation survey of 23 questions. The questions asked in Figure 41 and Figure 42 simply asked 

if a student agreed with the statement shown.  As shown in Figure 41, the overall response was 

positive, with most students agreeing that the MEAs were motivational learning tools. However, 

when we examined the responses to traditional assignments, students felt that the individual 

homework assignments helped them learn the material better, shown in Figure 42. We believe 

that this was because some students were accustomed to a more traditional type of learning, 

which focused on individual textbook problem solving. Figure 42 also shows some student 

resistance to team-type assignments, which could have influenced their opinion on MEAs. 

 

Figure 41. Student responses for the MEA projects for Spring quarter. 



61 

 

 

Figure 42. Student responses for HW assignments for Spring quarter. 

 

 The post-course survey question ―Some students seemed to lack motivation for the class. 

We tried to do the real world projects and show different applications of the material. What else 

should we do to increase student motivation?‖ required a written-response, and generated some 

very interesting responses. There were three typical student responses to this question. The first 

was very positive, indicating that the student had benefitted greatly from the projects, and was 

grateful for the class experience. Several students recognized that those projects required heavy 

instructor time commitment, and explicitly thanked the professor. The second response was 

neutral, saying that the projects neither helped nor hindered their learning. Some stated that 

nothing could motivate them because they were not interested in subject matter at all. The third 

student response was negative, saying that the project was ―too much work‖ and irrelevant to 

what he was learning. 

 Focusing specifically on the VAR MEA, a thematic analysis was conducted for two 

survey questions. These questions asked for written responses from 258 students in two quarters 

of Dynamics courses. The first question asked, ―What did you like about the [VAR] Project and 

why?‖ Shown in Figure 43 are the comments sorted into six major categories. Fifty percent of 



62 

 

the responses indicated that students enjoyed having a realistic context. Seventeen percent stated 

specifically that students liked either the case report format, the client setting, or the overall 

assignment structure.  Another seventeen percent of the comments stated that the project helped 

students learn the principles of work-energy and momentum. The final fifteen percent of the 

comments stated that students enjoyed the group aspect of the project. 

 

Figure 43. Responses to the survey question “What did you like about the [VAR] Project and why?” 

 

 The next question asked, ―What didn‘t you like about the [VAR] Project and why?‖ 

These comments were also broken down into six major categories, as shown in Figure 44. 

Thirty-four percent of the comments were critical of the overall vagueness of the problem 

statements and the information provided. Twenty-five percent of the comments were complaints 

of the heavy time commitment or the difficulty of the project. Twenty percent were complaints 

of the team aspect, with students indicating that they had difficulty working with their groups. 

The remaining six and seven percent of the comments were critical of the grading criteria and the 

increased writing efforts of the memo, respectively. 

17%

50%

17%

15%

1%

Reinforced Concepts

Realistic Problems

Assignment Structure

Group

Other

Positive Comments



63 

 

 

Figure 44. Responses to the survey question “What didn’t you like about the [VAR] Project and why?” 

 

 

 

  

25%

7%

20%6%

34%

8%

Time/Difficulty

Writing

Group

Grading

Vagueness

Other

Negative Comments



64 

 

Conclusion 

 The development of the Catapult and VAR MEAs have been a significant task for the 

research team over the course of the past year. Over the past three quarters, we have been able to 

refine the projects, making them better teaching tools, and better MEAs. The VAR GUI was 

intended to reduce instructor time commitment, while facilitating the use of the VAR MEA for 

other universities. The Catapult instrumentation was intended to expand upon the reality and 

self-assessment principles of the MEA by allowing students to connect their physical project 

with experimental data. While we initially thought that VAR GUI and the Catapult 

instrumentation would be relatively simple, once we began, we quickly realized that they would 

require some serious time commitment. 

 Students who were exposed to the VAR MEA scored noticeably higher in the Dynamics 

Concept Inventory exam than students who were not. Because of this, we were encouraged to 

develop the VAR GUI to help cut down the instructor and teaching assistant development time. 

Currently, since we are operating on the CCLI grant, we are able to dedicate several people to 

developing and assessing the MEA. However, we wanted this project to carry on long after our 

grant was finished. When only a single instructor is responsible for developing new VAR cases 

and grading them, the GUI will greatly reduce the amount of time he will have to commit. The 

GUI can help develop new case scenarios, and check the validity of student models. 

 The Catapult instrumentation was, by far, one of the most time consuming developments 

in the MEA program. We were glad to see that we could capture some valid data for the angular 

acceleration and velocity, despite the strain gages not functioning as we intended. Even so, we 

believe that it will provide for great self-assessment tool for students to check their theoretical 

models. Some of the development time could have been reduced by acquiring some new 



65 

 

equipment. For example, using a simple USB-based multi-channel data acquisition system would 

have eliminated programming of a relatively complex LabView instrument. However to keep 

costs down, we utilized what was available. Since the catapult instrumentation has yet to be 

tested in a classroom, no student responses are available for the instrumentation itself. However, 

we are confident that students will appreciate being able to validate their own theoretical model 

with the actual data of their launch. All of the hardware and software has been designed to 

operate very simply. Ideally, each student team will be able to take an individual set of data for 

each launch. Using their experimental data, they will be able to validate and refine their model 

accordingly. 

 We believe that the MEAs that we have implemented have improved the student 

experience at Cal Poly. As stated previously, the overall student response to the MEAs have been 

positive. However, when students are exposed to a different kind of teaching than they are 

traditionally accustomed to, some resistance to the change is to be expected. Even so, we hope 

that more students will learn to accept that these MEAs really do have a positive impact on their 

learning, and better prepare them to their future professions in industry.  

  



66 

 

Works Cited 

Boyer Commission on Education Undergraduates in the Research University. Reinventing 

Undergraduate Education: A Blueprint for America's Research Universities. Stony Brook, NY: 

State University of New York at Stony Brook for the Carnegie Foundation for the Advancement 

of Teaching, 1998. 

Chamberlin, Scott A. "How does the Problem-Based Learning Approach Compare to the Model-

Eliciting Activity Approach in Mathematics Instruction?" International Journal of Mathematics 

Teaching and Learning, 2008. 

Goodwin, Lora. "Is There a Correlation Between Conceptual Understanding and Procedural 

Knowledge in Introductory Dynamics?" ASEE PSW Conference. San Diego, CA: ASEE, 2009. 

Gray, Gary L. "The Dynamics Concept Inventory Assessment Test: A Progress Report and Some 

Results." American Society for Engineering Education Annual Conference & Exposition. 

Portland, Oregon: American Society for Engineering Education, 2005. 1. 

J.L. Meriam, L.G. Kraige. Engineering Mechanics Dynamics. New York, NY: John Wiley & 

Sons, Inc., 2002. 

Jolley, William O. "A Fun and Challenging Engineering Dynamics Project Using a Lego 

Construction Set." American Society for Engineering Education Annual. Nashville, Tennessee: 

American Society for Engineering Education, 2003. 1. 

Lesh, Richard. Beyond Constructivism: Models and Modeling Perspectives on Mathematics. 

Mahwah, NJ: Lawrence Erlbaum Associates, 2004. 

—. Handbook of Research Design in Mathematics and Science Education. Mahwah, NJ: 

Lawrence Erlbaum Associates, 2000. 

National Instruments. Measuring Strain with Strain Gages. June 26, 2009. 

http://zone.ni.com/devzone/cda/tut/p/id/3642 (accessed August 18, 2009). 

—. Using CompactRIO Scan Mode with Unsupported Backplanes. November 13, 2008. 

http://digital.ni.com/public.nsf/allkb/122E971F52FD081A86257500007A046C (accessed 

August 16, 2009). 

Prince, Michael. "Does Active Learning Work? A Review of the Research." Journal of 

Engineering Education, 2004. 

Reffeor, Wendy. "Incorporating Design in an Introduction to Dynamics Course." ASEE Annual 

Conference and Exposition. Montréal, Quebec, Canada: ASEE, 2002. 



67 

 

Savery, John R. "Overview of Problem-based Learning: Definitions and Distinctions." 

Interdisciplinary Journal of Problem-based Learning: Vol. 1: Issue 1, Article 3, 2006. 

Self, Brian. National Science Foundation: Collaborative Research: Improving Engineering 

Students' Learning Strategies through Models and Modeling. August 31, 2007. 

http://www.nsf.gov/awardsearch/showAward.do?AwardNumber=0717595 (accessed August 18, 

2009). 

Smithsonian Institution. Smithsonian Physical Tables. Washington, D.C.: Smithsonian 

Institution Press, 1969. 

Vishay Micro-Measurements. Instruction Bulletin B-137-16: Strain Gage Applications with M-

Bond AE-10, AE-15, and GA-2 Adhesive Systems. Don Mills, ON, February 4, 2005. 

 



A-1 

 

Appendix A  VAR Case 1 

 



A-2 

 

 

 



B-1 

 

Appendix B  VAR Case 2 

 



B-2 

 



C-1 

 

Appendix C  VAR Case 3 

 



C-2 

 

 



C-3 

 



D-1 

 

Appendix D  VAR Case 4 
 



D-2 

 

 



E-1 

 

Appendix E  VAR Case 5 

 



E-2 

 

 



E-3 

 



F-1 

 

Appendix F  MatLab GUI User Guide 
 

This guide serves as an overview on how to use the VAR GUI to solve for two vehicle impacts. 

Figure 45 below shows the input window of the MatLab GUI upon startup.  

 

Figure 45. MatLab GUI at startup. 

  



F-2 

 

Currently Supported Scenarios 

The MatLab code will automatically calculate for parameters left as ―unknown‖, for the 

supported scenarios shown in Table 8 and Table 9. These tables illustrate the known and 

unknown parameters of the problem indicated by ―1‖ and ―0‖, respectively. V1, V2, and V12 

indicate velocities of vehicle 1, vehicle 2, and vehicle 1&2 stuck, respectively. 

Table 8. Supported cases for 2 vehicle collisions where vehicles do not stick together post-impact. 

 
Pre-Collision Post-Collision 

  V1 V2 V1 V2 

Case Mag Dir Mag Dir Mag Dir Mag Dir 

A 1 1 0 0 1 1 1 1 

G 1 1 0 1 1 1 1 0 

D 1 1 0 1 1 1 0 1 

F 1 0 0 1 1 1 1 1 

C 0 1 0 1 1 1 1 1 

E 1 1 0 1 1 1 1 1 
 

Table 9. Supported cases for 2 vehicle collisions where vehicles stick together post-impact. 

 
Pre-Collision Post-Collision 

 
V1 V2 V12 

Case Mag Dir Mag Dir Mag Dir 

A 1 1 0 0 1 1 

B 1 1 0 1 0 1 

G 1 1 0 1 1 0 

F 1 0 0 1 1 1 

C 0 1 0 1 1 1 

E 1 1 0 1 1 1 
 

  



F-3 

 

Entering Known Parameters 

Syntax 

Angle Convention 

All angles should be inputted with North as the zero angle reference point, east as 90°, south as 

180°, and west as 270°. For example, a vehicle traveling southwest would correspond to a 

direction of 225°, shown below. 

 

Figure 46. Angle dimension for vehicle traveling in southwest direction. The arrow shown in blue represents the direction 
vector of the vehicle. The red dimension indicates the corresponding angle. 

 

  



F-4 

 

Entering Known Parameters 

The program is set up to accept all user inputs as summarized in the figure below. This section 

will provide a quick overview on the sign convention and entry of the parameters. 

 

Figure 47. User-input syntax for VAR GUI. 

 

Pre-Collision Velocity and Changes in Height 

The MatLab program refers to all entered initial velocities as pre-skid and pre-change-in-height 

velocities. That is, it assumes all pre-collision velocities are stated before any skidding or change 

in height has occurred. When the user inputs a pre-skid initial velocity, skid distance, and change 

in height, MatLab will calculate the post-skid and post-change-in-height initial velocity as an 

intermediate step. If the post-skid/post-change-in-height initial velocity is known, simply input 

zero for skid distance and zero for height. A positive change in height indicates a vehicle has 

increased in elevation before impact, a negative implies it has descended. 



F-5 

 

 

Figure 48. Convention for entering pre-collision velocity. 

 

Figure 49. Convention for entering a pre-collision increase in height. 

 

Figure 50. Convention for entering a pre-collision decrease in height. 

 

Post-Collision Velocity 

The program refers to all entered final velocities as post-skid velocities. That is, it assumes all 

user-entered post-collision velocities are stated after any skidding or change in height has 



F-6 

 

occurred. If the pre-skid/pre-change-in-height final velocity is known, simply input zero for skid 

distance and height. 

 

Figure 51. Convention for entering post-collision velocity. 

 

Figure 52. Convention for entering a post-collision change in height. (same as pre-collision) 

 

 

Reasoning 

In order to apply momentum laws for our collision, we need to know the instantaneous velocities 

of the vehicles right before and right after the impact. These velocities correspond to the post-

skid and post-change-in-height initial velocities and the pre-skid and pre-change-in-height final 

velocities. By setting up the inputs as shown, the code can automatically take into account skid 

distances when solving for unknown velocities. Essentially, this allows us to account for any 

energy loss/gain between the inputted velocities and the instantaneous velocities before or after 

impact.  

  



F-7 

 

Example 

Shown in Figure 53 is the MatLab GUI window with all user-inputs entered. The variables to be 

solved are left as ―unknowns‖ and will be automatically solved for. 

 

Figure 53. Input window prior to running. 

 



F-8 

 

Shown in Figure 54 is the MatLab GUI window right after ―Calculate!‖ is pressed. Highlighted 

in green are the solved variables. Highlighted in blue are the variables just before and after the 

collision occurs, as explained in Figure 47. 

 

Figure 54. Input window with calculated results. 



G-1 

 

Appendix G  VAR MatLab GUI 
 

   



G-2 

 

%VAR MEA 2-Vehicle Collision Solver 
%Cal Poly State University, San Luis Obispo 
%Lawrence Fong (lhfong@calpoly.edu) 

 
 

function varargout = VAR_GUI_R7(varargin) 

% VAR_GUI_R7 M-file for VAR_GUI_R7.fig 
%      VAR_GUI_R7, by itself, creates a new VAR_GUI_R7 or raises the existing 
%      singleton*. 
% 
%      H = VAR_GUI_R7 returns the handle to a new VAR_GUI_R7 or the handle to 
%      the existing singleton*. 
% 
%      VAR_GUI_R7('CALLBACK',hObject,eventData,handles,...) calls the local 
%      function named CALLBACK in VAR_GUI_R7.M with the given input 
%      arguments. 
% 
%      VAR_GUI_R7('Property','Value',...) creates a new VAR_GUI_R7 or 
%      raises the 
%      existing singleton*.  Starting from the left, property value pairs 
%      are 
%      applied to the GUI before VAR_GUI_R7_OpeningFcn gets called.  An 
%      unrecognized property name or invalid value makes property 
%      application 
%      stop.  All inputs are passed to VAR_GUI_R7_OpeningFcn via varargin. 
% 
%      *See GUI Options on GUIDE's Tools menu.  Choose "GUI allows only one 
%      instance to run (singleton)". 
% 
% See also: GUIDE, GUIDATA, GUIHANDLES 

  
% Edit the above text to modify the response to help VAR_GUI_R7 

  
% Last Modified by GUIDE v2.5 09-Aug-2009 15:10:28 

  
% Begin initialization code - DO NOT EDIT 
gui_Singleton = 1; 
gui_State = struct('gui_Name',       mfilename, ... 
                   'gui_Singleton',  gui_Singleton, ... 
                   'gui_OpeningFcn', @VAR_GUI_R7_OpeningFcn, ... 
                   'gui_OutputFcn',  @VAR_GUI_R7_OutputFcn, ... 
                   'gui_LayoutFcn',  [] , ... 
                   'gui_Callback',   []); 
if nargin && ischar(varargin{1}) 
    gui_State.gui_Callback = str2func(varargin{1}); 
end 

  
if nargout 
    [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:}); 
else 
    gui_mainfcn(gui_State, varargin{:}); 
end 
% End initialization code - DO NOT EDIT 

  

  



G-3 

 

% --- Executes just before VAR_GUI_R7 is made visible. 
function VAR_GUI_R7_OpeningFcn(hObject, eventdata, handles, varargin) 
% This function has no output args, see OutputFcn. 
% hObject    handle to figure 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
% varargin   command line arguments to VAR_GUI_R7 (see VARARGIN) 

  
% Choose default command line output for VAR_GUI_R7 
handles.output = hObject; 

  
% Update handles structure 
    set(handles.V_f12, 'Enable', 'off'); 
    set(handles.V_f12D, 'Enable', 'off'); 
guidata(hObject, handles); 

  
% UIWAIT makes VAR_GUI_R7 wait for user response (see UIRESUME) 
% uiwait(handles.figure1); 

  

  
% --- Outputs from this function are returned to the command line. 
function varargout = VAR_GUI_R7_OutputFcn(hObject, eventdata, handles)  
% varargout  cell array for returning output args (see VARARGOUT); 
% hObject    handle to figure 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 

  
% Get default command line output from handles structure 
varargout{1} = handles.output; 

  

  

  
function V_f1_Callback(hObject, eventdata, handles) 
% hObject    handle to V_f1 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 

  
% Hints: get(hObject,'String') returns contents of V_f1 as text 
%        str2double(get(hObject,'String')) returns contents of V_f1 as a 
%        double 

  
%Following code checks to make sure the input is a number 
input = str2num(get(hObject,'String')); 
if (isempty(input)) 
     set(hObject,'String','Unknown') 
end 
%------------ 

  

  

  
% --- Executes during object creation, after setting all properties. 
function V_f1_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to V_f1 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 



G-4 

 

% handles    empty - handles not created until after all CreateFcns called 

  
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 

  

  

  

function V_f1D_Callback(hObject, eventdata, handles) 
% hObject    handle to V_f1D (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 

  
% Hints: get(hObject,'String') returns contents of V_f1D as text 
%        str2double(get(hObject,'String')) returns contents of V_f1D as a 

double 
%Following code checks to make sure the input is a number 
input = str2num(get(hObject,'String')); 
if (isempty(input)) 
     set(hObject,'String','Unknown') 
end 
%------------ 

  

  
% --- Executes during object creation, after setting all properties. 
function V_f1D_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to V_f1D (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 

  

% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 

  

  

  
function V_f2_Callback(hObject, eventdata, handles) 
% hObject    handle to V_f2 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 

  

% Hints: get(hObject,'String') returns contents of V_f2 as text 
%        str2double(get(hObject,'String')) returns contents of V_f2 as a 

double 
%Following code checks to make sure the input is a number 
input = str2num(get(hObject,'String')); 
if (isempty(input)) 
     set(hObject,'String','Unknown') 



G-5 

 

end 
%------------ 

  

  

% --- Executes during object creation, after setting all properties. 
function V_f2_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to V_f2 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 

  
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 

  

  

  
function V_f2D_Callback(hObject, eventdata, handles) 
% hObject    handle to V_f2D (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 

  
% Hints: get(hObject,'String') returns contents of V_f2D as text 
%        str2double(get(hObject,'String')) returns contents of V_f2D as a 

double 
%Following code checks to make sure the input is a number 
input = str2num(get(hObject,'String')); 
if (isempty(input)) 
     set(hObject,'String','Unknown') 
end 
%------------ 

  

  
% --- Executes during object creation, after setting all properties. 
function V_f2D_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to V_f2D (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 

  
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 

  

  

  
function V_o1_Callback(hObject, eventdata, handles) 
% hObject    handle to V_o1 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 



G-6 

 

  
% Hints: get(hObject,'String') returns contents of V_o1 as text 
%        str2double(get(hObject,'String')) returns contents of V_o1 as a 

double 
%Following code checks to make sure the input is a number 
input = str2num(get(hObject,'String')); 
if (isempty(input)) 
     set(hObject,'String','Unknown') 
end 

  
%------------ 

  

  
% --- Executes during object creation, after setting all properties. 
function V_o1_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to V_o1 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 

  
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 

  

  

  
function V_o1D_Callback(hObject, eventdata, handles) 
% hObject    handle to V_o1D (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 

  
% Hints: get(hObject,'String') returns contents of V_o1D as text 
%        str2double(get(hObject,'String')) returns contents of V_o1D as a 

double 
%Following code checks to make sure the input is a number 
input = str2num(get(hObject,'String')); 
if (isempty(input)) 
     set(hObject,'String','Unknown') 
end 
%------------ 

  

  
% --- Executes during object creation, after setting all properties. 
function V_o1D_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to V_o1D (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 

  
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 



G-7 

 

    set(hObject,'BackgroundColor','white'); 
end 

  

  

  
function V_o2_Callback(hObject, eventdata, handles) 
% hObject    handle to V_o2 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 

  
% Hints: get(hObject,'String') returns contents of V_o2 as text 
%        str2double(get(hObject,'String')) returns contents of V_o2 as a 

double 
%Following code checks to make sure the input is a number 
input = str2num(get(hObject,'String')); 
if (isempty(input)) 
     set(hObject,'String','Unknown') 
end 
%------------ 

  

  
% --- Executes during object creation, after setting all properties. 
function V_o2_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to V_o2 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 

  
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 

  

  

  
function V_o2D_Callback(hObject, eventdata, handles) 
% hObject    handle to V_o2D (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 

  
% Hints: get(hObject,'String') returns contents of V_o2D as text 
%        str2double(get(hObject,'String')) returns contents of V_o2D as a 

double 
%Following code checks to make sure the input is a number 
input = str2num(get(hObject,'String')); 
if (isempty(input)) 
     set(hObject,'String','Unknown') 
end 
%------------ 

  

  
% --- Executes during object creation, after setting all properties. 
function V_o2D_CreateFcn(hObject, eventdata, handles) 



G-8 

 

% hObject    handle to V_o2D (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 

  
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 

  

  

  
function friction_Callback(hObject, eventdata, handles) 
% hObject    handle to friction (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 

  

% Hints: get(hObject,'String') returns contents of friction as text 
%        str2double(get(hObject,'String')) returns contents of friction as a 

double 
%Following code checks to make sure the input is a number 
input = str2num(get(hObject,'String')); 
if (isempty(input)) 
     set(hObject,'String','0') 
end 
%------------ 

  

  
% --- Executes during object creation, after setting all properties. 
function friction_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to friction (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 

  
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 

  

  

  
function gravity_Callback(hObject, eventdata, handles) 
% hObject    handle to gravity (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 

  
% Hints: get(hObject,'String') returns contents of gravity as text 
%        str2double(get(hObject,'String')) returns contents of gravity as a 

double 
%Following code checks to make sure the input is a number 
input = str2num(get(hObject,'String')); 



G-9 

 

if (isempty(input)) 
     set(hObject,'String','9.81') 
end 
%------------ 

  

  
% --- Executes during object creation, after setting all properties. 
function gravity_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to gravity (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 

  
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 

  

% --- Executes on button press in stickYes. 
function stickYes_Callback(hObject, eventdata, handles) 
% hObject    handle to stickYes (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
% Hint: get(hObject,'Value') returns toggle state of stickYes 
if get(hObject,'Value')==1 
    set(handles.V_f1,'String','Unknown'); 
    set(handles.V_f1D,'String','Unknown');     
    set(handles.V_f2,'String','Unknown'); 
    set(handles.V_f2D,'String','Unknown');   
    set(handles.V_f12,'String','Unknown'); 
    set(handles.V_f12D,'String','Unknown');   

  

     
    set(handles.V_f12, 'Enable', 'on'); 
    set(handles.V_f12D, 'Enable', 'on'); 
    set(handles.V_f1, 'Enable', 'off'); 
    set(handles.V_f1D, 'Enable', 'off'); 
    set(handles.V_f2, 'Enable', 'off'); 
    set(handles.V_f2D, 'Enable', 'off'); 

     

     
else 
    set(handles.V_f1,'String','Unknown'); 
    set(handles.V_f1D,'String','Unknown'); 
    set(handles.V_f2,'String','Unknown'); 
    set(handles.V_f2D,'String','Unknown'); 

     
    set(handles.V_f12,'String','Unknown'); 
    set(handles.V_f12D,'String','Unknown');      

     
    set(handles.V_f12, 'Enable', 'off'); 
    set(handles.V_f12D, 'Enable', 'off'); 
    set(handles.V_f1, 'Enable', 'on'); 
    set(handles.V_f1D, 'Enable', 'on'); 



G-10 

 

    set(handles.V_f2, 'Enable', 'on'); 
    set(handles.V_f2D, 'Enable', 'on'); 
end 

  

  
function mass_1_Callback(hObject, eventdata, handles) 
% hObject    handle to mass_1 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 

  
% Hints: get(hObject,'String') returns contents of mass_1 as text 
%        str2double(get(hObject,'String')) returns contents of mass_1 as a 

double 
input = str2num(get(hObject,'String')); 
if (isempty(input)) 
     set(hObject,'String','0') 
end 

  

  
% --- Executes during object creation, after setting all properties. 
function mass_1_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to mass_1 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 

  
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 

  

  

  
function mass_2_Callback(hObject, eventdata, handles) 
% hObject    handle to mass_2 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 

  
% Hints: get(hObject,'String') returns contents of mass_2 as text 
%        str2double(get(hObject,'String')) returns contents of mass_2 as a 

double 
%Following code checks to make sure the input is a number 
input = str2num(get(hObject,'String')); 
if (isempty(input)) 
     set(hObject,'String','0') 
end 
%------------ 

  

  
% --- Executes during object creation, after setting all properties. 
function mass_2_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to mass_2 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 



G-11 

 

% handles    empty - handles not created until after all CreateFcns called 

  
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 

  

  

  

function V_f12_Callback(hObject, eventdata, handles) 
% hObject    handle to V_f12 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 

  
% Hints: get(hObject,'String') returns contents of V_f12 as text 
%        str2double(get(hObject,'String')) returns contents of V_f12 as a 
%        double 
%Following code checks to make sure the input is a number 
input = str2num(get(hObject,'String')); 
if (isempty(input)) 
     set(hObject,'String','Unknown') 
end 
%------------ 

  

  
% --- Executes during object creation, after setting all properties. 
function V_f12_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to V_f12 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 

  

% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 

  

  

  
function V_f12D_Callback(hObject, eventdata, handles) 
% hObject    handle to V_f12D (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 

  

% Hints: get(hObject,'String') returns contents of V_f12D as text 
%        str2double(get(hObject,'String')) returns contents of V_f12D as a 

double 
%Following code checks to make sure the input is a number 
input = str2num(get(hObject,'String')); 
if (isempty(input)) 
     set(hObject,'String','Unknown') 



G-12 

 

end 
%------------ 

  

  

% --- Executes during object creation, after setting all properties. 
function V_f12D_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to V_f12D (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 

  
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 

  
function height1_f_Callback(hObject, eventdata, handles) 
% hObject    handle to height1_f (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 

  
% Hints: get(hObject,'String') returns contents of height1_f as text 
%        str2double(get(hObject,'String')) returns contents of height1_f as a 

double 
input = str2num(get(hObject,'String')); 
if (isempty(input)) 
     set(hObject,'String','0') 
end 

  

  
% --- Executes during object creation, after setting all properties. 
function height1_f_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to height1_f (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 

  
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 

  

  

  
function skid1_f_Callback(hObject, eventdata, handles) 
% hObject    handle to skid1_f (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 

  
% Hints: get(hObject,'String') returns contents of skid1_f as text 
%        str2double(get(hObject,'String')) returns contents of skid1_f as a 

double 



G-13 

 

input = str2num(get(hObject,'String')); 
if (isempty(input)) 
     set(hObject,'String','0') 
end 

  

  
% --- Executes during object creation, after setting all properties. 
function skid1_f_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to skid1_f (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 

  
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 

  

  

  
function height2_f_Callback(hObject, eventdata, handles) 
% hObject    handle to height2_f (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 

  
% Hints: get(hObject,'String') returns contents of height2_f as text 
%        str2double(get(hObject,'String')) returns contents of height2_f as a 

double 
input = str2num(get(hObject,'String')); 
if (isempty(input)) 
     set(hObject,'String','0') 
end 

  

  
% --- Executes during object creation, after setting all properties. 
function height2_f_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to height2_f (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 

  
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 

  

  

  
function skid2_f_Callback(hObject, eventdata, handles) 
% hObject    handle to skid2_f (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 



G-14 

 

  
% Hints: get(hObject,'String') returns contents of skid2_f as text 
%        str2double(get(hObject,'String')) returns contents of skid2_f as a 

double 
input = str2num(get(hObject,'String')); 
if (isempty(input)) 
     set(hObject,'String','0') 
end 

  

  
% --- Executes during object creation, after setting all properties. 
function skid2_f_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to skid2_f (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 

  
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 

  

  

  

function height12_f_Callback(hObject, eventdata, handles) 
% hObject    handle to height12_f (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 

  
% Hints: get(hObject,'String') returns contents of height12_f as text 
%        str2double(get(hObject,'String')) returns contents of height12_f as 

a double 
input = str2num(get(hObject,'String')); 
if (isempty(input)) 
     set(hObject,'String','0') 
end 

  

  
% --- Executes during object creation, after setting all properties. 
function height12_f_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to height12_f (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 

  
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 

  

  

  



G-15 

 

function skid12_f_Callback(hObject, eventdata, handles) 
% hObject    handle to skid12_f (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 

  
% Hints: get(hObject,'String') returns contents of skid12_f as text 
%        str2double(get(hObject,'String')) returns contents of skid12_f as a 

double 
input = str2num(get(hObject,'String')); 
if (isempty(input)) 
     set(hObject,'String','0') 
end 

  

  
% --- Executes during object creation, after setting all properties. 
function skid12_f_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to skid12_f (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 

  
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 

  

  

  
function height1_o_Callback(hObject, eventdata, handles) 
% hObject    handle to height1_o (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 

  
% Hints: get(hObject,'String') returns contents of height1_o as text 
%        str2double(get(hObject,'String')) returns contents of height1_o as a 

double 
input = str2num(get(hObject,'String')); 
if (isempty(input)) 
     set(hObject,'String','0') 
end 

  

  
% --- Executes during object creation, after setting all properties. 
function height1_o_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to height1_o (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 

  
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 



G-16 

 

  

  

  
function skid1_o_Callback(hObject, eventdata, handles) 
% hObject    handle to skid1_o (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 

  
% Hints: get(hObject,'String') returns contents of skid1_o as text 
%        str2double(get(hObject,'String')) returns contents of skid1_o as a 

double 
input = str2num(get(hObject,'String')); 
if (isempty(input)) 
     set(hObject,'String','0') 
end 

  

  
% --- Executes during object creation, after setting all properties. 
function skid1_o_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to skid1_o (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 

  
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 

  

  

  

function height2_o_Callback(hObject, eventdata, handles) 
% hObject    handle to height2_o (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 

  
% Hints: get(hObject,'String') returns contents of height2_o as text 
%        str2double(get(hObject,'String')) returns contents of height2_o as a 

double 
input = str2num(get(hObject,'String')); 
if (isempty(input)) 
     set(hObject,'String','0') 
end 

  

  

% --- Executes during object creation, after setting all properties. 
function height2_o_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to height2_o (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 

  
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 



G-17 

 

if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 

  

  

  
function skid2_o_Callback(hObject, eventdata, handles) 
% hObject    handle to skid2_o (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 

  
% Hints: get(hObject,'String') returns contents of skid2_o as text 
%        str2double(get(hObject,'String')) returns contents of skid2_o as a 

double 
input = str2num(get(hObject,'String')); 
if (isempty(input)) 
     set(hObject,'String','0') 
end 

  

  
% --- Executes during object creation, after setting all properties. 
function skid2_o_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to skid2_o (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 

  
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER 

  
if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 

  
% --- Executes on button press in velocityPlot. 
function velocityPlot_Callback(hObject, eventdata, handles) 
% hObject    handle to velocityPlot (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 

  

  
% Hint: get(hObject,'Value') returns toggle state of velocityPlot 
% --- Executes on button press in clearSolution. 
function clearSolution_Callback(hObject, eventdata, handles) 
% hObject    handle to clearSolution (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 

  
if isequal(get(handles.V_o2,'BackgroundColor'),[1 1 1]) 
else 
    set(handles.V_o2,'BackgroundColor','white') 
    set(handles.V_o2,'String','Unknown') 
end 



G-18 

 

  
if isequal(get(handles.V_o1,'BackgroundColor'),[1 1 1]) 
else 
    set(handles.V_o1,'BackgroundColor','white') 
    set(handles.V_o1,'String','Unknown') 
end 

  
if isequal(get(handles.V_o1D,'BackgroundColor'),[1 1 1]) 
else 
    set(handles.V_o1D,'BackgroundColor','white') 
    set(handles.V_o1D,'String','Unknown') 
end 

  
if isequal(get(handles.V_o2,'BackgroundColor'),[1 1 1]) 
else 
    set(handles.V_o2,'String','Unknown') 
    set(handles.V_o2,'BackgroundColor','white') 
end 

  

if isequal(get(handles.V_o2D,'BackgroundColor'),[1 1 1]) 
else 
set(handles.V_o2D,'String','Unknown') 
set(handles.V_o2D,'BackgroundColor','white') 
end 

  
if isequal(get(handles.V_f1,'BackgroundColor'),[1 1 1]) 
else 
set(handles.V_f1,'String','Unknown') 
set(handles.V_f1,'BackgroundColor','white') 
end 

  
if isequal(get(handles.V_f1D,'BackgroundColor'),[1 1 1]) 
else 
set(handles.V_f1D,'String','Unknown') 
set(handles.V_f1D,'BackgroundColor','white') 
end 

  
if isequal(get(handles.V_f2,'BackgroundColor'),[1 1 1]) 
else 
set(handles.V_f2,'String','Unknown') 
set(handles.V_f2,'BackgroundColor','white') 
end 

  
if isequal(get(handles.V_f2D,'BackgroundColor'),[1 1 1]) 
else 
set(handles.V_f2D,'String','Unknown') 
set(handles.V_f2D,'BackgroundColor','white') 
end 

  
if isequal(get(handles.V_f12,'BackgroundColor'),[1 1 1]) 
else 
set(handles.V_f12,'String','Unknown') 
set(handles.V_f12,'BackgroundColor','white') 
end 

  



G-19 

 

if isequal(get(handles.V_f12D,'BackgroundColor'),[1 1 1]) 
else 
set(handles.V_f12D,'String','Unknown') 
set(handles.V_f12D,'BackgroundColor','white') 
end 

  
set(handles.V_o1_c,'String','xx') 
set(handles.V_o2_c,'String','xx') 
set(handles.V_f1_c,'String','xx') 
set(handles.V_f2_c,'String','xx') 
set(handles.V_f12_c,'String','xx') 

  

  

  

  

  
% --- Executes on button press in clearAll. 
function clearAll_Callback(hObject, eventdata, handles) 
% hObject    handle to clearAll (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
set(handles.V_o1,'BackgroundColor','white') 
set(handles.V_o1,'String','Unknown') 

  
set(handles.V_o1D,'BackgroundColor','white') 
set(handles.V_o1D,'String','Unknown') 

  
set(handles.V_o2,'String','Unknown') 
set(handles.V_o2,'BackgroundColor','white') 

  
set(handles.V_o2D,'String','Unknown') 
set(handles.V_o2D,'BackgroundColor','white') 

  
set(handles.V_f1,'String','Unknown') 
set(handles.V_f1,'BackgroundColor','white') 

  
set(handles.V_f1D,'String','Unknown') 
set(handles.V_f1D,'BackgroundColor','white') 

  

set(handles.V_f2,'String','Unknown') 
set(handles.V_f2,'BackgroundColor','white') 

  
set(handles.V_f2D,'String','Unknown') 
set(handles.V_f2D,'BackgroundColor','white') 

  

  

set(handles.V_f12,'String','Unknown') 
set(handles.V_f12,'BackgroundColor','white') 

  
set(handles.V_f12D,'String','Unknown') 
set(handles.V_f12D,'BackgroundColor','white') 

  
set(handles.height1_o,'String','0') 



G-20 

 

set(handles.height2_o,'String','0') 
set(handles.height1_f,'String','0') 
set(handles.height2_f,'String','0') 
set(handles.height12_f,'String','0') 

  
set(handles.skid1_f,'String','0') 

  

  

  
% --- THIS PART IS THE PROGRAM ---------- 
function pushbutton_calc_Callback(hObject, eventdata, handles) 
% hObject    handle to pushbutton_calc (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 

  
%Reset all values in GUI 
clc 

  
stick = get(handles.stickYes,'Value'); 

  

  
set(handles.V_o1,'BackgroundColor','white') 
set(handles.V_o1D,'BackgroundColor','white') 
set(handles.V_o2,'BackgroundColor','white') 
set(handles.V_o2D,'BackgroundColor','white') 

  
if stick == 0 
    set(handles.V_f1,'BackgroundColor','white') 
    set(handles.V_f1D,'BackgroundColor','white') 
    set(handles.V_f2,'BackgroundColor','white') 
    set(handles.V_f2D,'BackgroundColor','white') 
elseif stick ==1 
    set(handles.V_f12,'BackgroundColor','white') 
    set(handles.V_f12D,'BackgroundColor','white') 
end 

     
%Resets fields 
set(handles.V_o1_c,'String','xx') 
set(handles.V_o2_c,'String','xx') 
set(handles.V_f1_c,'String','xx') 
set(handles.V_f2_c,'String','xx') 
set(handles.V_f12_c,'String','xx') 

  

  

  
%% ********************** 
%Variable Initializations 
%------------------------ 
%-------(DO NOT MODIFY)------------- 
v1i_ask = 0;           %is magnitude of initial velocity1 known? (0 || 1) 
theta1i_ask = 0;        %is direction of initial velocity1 known? (0 || 1) 
v2i_ask = 0;           %is magnitude of initial velocity2 known? (0 || 1) 
theta2i_ask = 0;        %is direction of initial velocity2 known? (0 || 1) 
v12f_ask = 0;           %is magnitude of final velocity12 known? (0 || 1) 



G-21 

 

theta12f_ask = 0;        %is direction of final velocity12 known? (0 || 1) 
v1f_ask = 0;            %is magnitude of final velocity1 known? (0 || 1) 
theta1f_ask = 0;         %is direction of final velocity1 known? (0 || 1) 
v2f_ask = 0;            %is magnitude of final velocity2 known? (0 || 1) 
theta2f_ask = 0;         %is direction of final velocity2 known? (0 || 1) 
height1=0;                         %What is the pre-collision change in 

height of vehicle 1 
v1i = 0;              %What is the pre-collision velocity magnitude for 

vehicle 1 
theta1i = 0;           %What is the pre-collision velocity direction for 

vehicle 1 
height2=0;                         %What is the pre-collision change in 

height of vehicle 2 
v2i = 0;              %What is the pre-collision velocity magnitude for 

vehicle 2 
theta2i = 0;           %What is the pre-collision velocity direction for 

vehicle 2 
height12=0;                        %What is the post-collision change in 

height of vehicle 1&2 (Stuck together) 
v12f = 0;               %What is the post-collision velocity magnitude for 

vehicle 1&2 (Stuck together) 
theta12f = 0;            %What is the post-collision velocity direction for 

vehicle 1&2 (Stuck together) 
heightFinal1=0;                    %What is the post-collision change in 

height of vehicle 1 
v1f = 0;                %What is the post-collision velocity magnitude for 

vehicle 1 
theta1f = 0;             %What is the post-collision velocity direction for 

vehicle 1 
heightFinal2=0;                    %What is the post-collision change in 

height of vehicle 2 
v2f = 0;                %What is the post-collision velocity magnitude for 

vehicle 2 
theta2f = 0;             %What is the post-collision velocity direction for 

vehicle 2 
changeHeight = 0;                   %is there a change in height of the 

vehicles? 
P1_i = 0;                           %Pre-collision Momentum for vehicle 1 
P2_i = 0;                           %Pre-collision Momentum for vehicle 2 
P12_f = 0;                          %Post-collision Momentum for vehicle 1&2 

(stuck together) 
P1_f = 0;                           %Post-collision Momentum for vehicle 1 

(stuck together) 
P2_f = 0;                           %Post-collision Momentum for vehicle 2 

(stuck together) 
validCase = 0;  %Checks to see if this is a supported scenario 
%Instanteous pre/post collision velocities 
v1i_c=0;      
v2i_c=0; 
v1f_c=0; 
v2f_c=0; 
v12f_c=0; 

  
converged = 0; %Sets up variable for iteration cases 
%END (DO NOT MODIFY) 

  



G-22 

 

  
oneVehicle = 0; %Temporary holder for test cases 
headOn = 0; 

  

  
g = str2num(get(handles.gravity,'String'));  %gravity (m/s^2) 
u_k= str2num(get(handles.friction,'String')); %coefficient of friction for 

tires 
m1 = str2num(get(handles.mass_1,'String'));  %mass of vehicle 1 
m2 = str2num(get(handles.mass_2,'String'));  %mass of vehicle 2 
m12=m1+m2;                          %mass of vehicle 1 + mass of vehicle 2 

(for stuck collisions) 

  
if m1==0 || m2==0 
    error('No masses inputted') 
end 

  

  
unknownCount = 0; 
%--Retrieves Entered information about Vehicle 1 Velocity-- 
input = str2num(get(handles.V_o1,'String')); 
if (isempty(input)) 
    v1i_ask = 0; 
    unknownCount = unknownCount + 1; 
else 
    v1i_ask = 1; 
    v1i = str2num(get(handles.V_o1,'String')); 
end 

  
input = str2num(get(handles.V_o1D,'String')); 
if (isempty(input)) 
    theta1i_ask = 0; 
    unknownCount = unknownCount + 1; 
else 
    theta1i_ask = 1; 
    theta1i = str2num(get(handles.V_o1D,'String')); 
end 

  
if stick == 0 
    input = str2num(get(handles.V_f1,'String')); 
    if (isempty(input)) 
        v1f_ask = 0; 
        unknownCount = unknownCount + 1; 
    else 
        v1f_ask = 1; 
        v1f = str2num(get(handles.V_f1,'String')); 
    end 

  
    input = str2num(get(handles.V_f1D,'String')); 
    if (isempty(input)) 
        theta1f_ask = 0; 
        unknownCount = unknownCount + 1; 
    else 
        theta1f_ask = 1; 
        theta1f = str2num(get(handles.V_f1D,'String')); 



G-23 

 

    end 
end 

  
%Retrieves Entered information about Vehicle 2 Velocity 
input = str2num(get(handles.V_o2,'String')); 
if (isempty(input)) 
    v2i_ask = 0; 
    unknownCount = unknownCount + 1; 
else 
    v2i_ask = 1; 
    v2i = str2num(get(handles.V_o2,'String')); 
end 

  
input = str2num(get(handles.V_o2D,'String')); 
if (isempty(input)) 
    theta2i_ask = 0; 
    unknownCount = unknownCount + 1; 
else 
    theta2i_ask = 1; 
    theta2i = str2num(get(handles.V_o2D,'String')); 
end 

  
if stick == 0 
    input = str2num(get(handles.V_f2,'String')); 
    if (isempty(input)) 
        v2f_ask = 0; 
        unknownCount = unknownCount + 1; 
    else 
        v2f_ask = 1; 
        v2f = str2num(get(handles.V_f2,'String')); 
    end 

  
    input = str2num(get(handles.V_f2D,'String')); 
    if (isempty(input)) 
        theta2f_ask = 0; 
        unknownCount = unknownCount + 1; 
    else 
        theta2f_ask = 1; 
        theta2f = str2num(get(handles.V_f2D,'String')); 
    end 
else 

     
end 

  
if stick == 1 
    input = str2num(get(handles.V_f12,'String')); 
    if (isempty(input)) 
        v12f_ask = 0; 
        unknownCount = unknownCount + 1; 
    else 
        v12f_ask = 1; 
        v12f = str2num(get(handles.V_f12,'String')); 
    end 

  
    input = str2num(get(handles.V_f12D,'String')); 



G-24 

 

    if (isempty(input)) 
        theta12f_ask = 0; 
        unknownCount = unknownCount + 1; 
    else 
        theta12f_ask = 1; 
        theta12f = str2num(get(handles.V_f12D,'String')); 
    end 
end 

  
set(handles.numberUnknowns,'String',unknownCount); 
%***************************************** 

  
if (theta1i_ask == 1 && theta2i_ask == 1) && (theta1i == (theta2i + 180) || 

theta2i == (theta1i+180)) 
    headOn = 1; 
    if unknownCount > 1 
        error('Head-On Collision case, too many unknowns (Max 1 unknown)') 
    end 
else 
    if unknownCount > 2 
        error('Too many unknowns, exiting out') 
    elseif unknownCount < 2 
        error('Overdefined problem, exiting out') 
    end 
end 

  

  
%% *************************************** 
%This part makes approximations for cases that yield division by zero 
%----------------------------------------- 
    if theta1i == 0 || theta1i==90 ||theta1i==180||theta1i == 270 
        theta1i = theta1i + 0.00001; 
    end 
    if theta2i == 0 ||theta2i==90 ||theta2i==180||theta2i == 270 
        theta2i = theta2i + 0.00001; 
    end 
    if theta1f == 0 ||theta1f==90 ||theta1f==180||theta1f == 270 
        theta1f = theta1f + 0.00001; 
    end 
    if theta2f == 0 ||theta2f==90 ||theta2f==180||theta2f == 270 
        theta2f = theta2f + 0.00001; 
    end 
    if theta12f == 0 ||theta12f==90 ||theta12f==180||theta12f == 270 
        theta12f = theta12f + 0.00001; 
    end 
%End Approximations 

  

  

  

  
%% *************************************** 
%This part adjusts known velocities for: 
% -Change in potential energy 
% -Initial skid distances 
%----------------------------------------- 



G-25 

 

% if(changeHeight ~= 0 || height1~=0 && height2~=0 && height12~=0 && 

heightFinal1~=0 && heightFinal~=0) 
%     display('---Change in energy present; adjusting velocities to represent 

values closest to impact---') 
% end 
height1 = str2num(get(handles.height1_o,'String'));  
height2 = str2num(get(handles.height2_o,'String'));  
heightFinal1 = str2num(get(handles.height1_f,'String'));  
heightFinal2 = str2num(get(handles.height2_f,'String'));  
height12 = str2num(get(handles.height12_f,'String'));  

  
preSkid1 = str2num(get(handles.skid1_o,'String'));  
preSkid2 = str2num(get(handles.skid2_o,'String'));  
postSkid1 = str2num(get(handles.skid1_f,'String'));  
postSkid2 = str2num(get(handles.skid2_f,'String'));  
postSkid12 = str2num(get(handles.skid12_f,'String'));  

  
    if v1i_ask == 1 
        v1i_c = sqrt(v1i^2 - 2*g*height1 -2*u_k*g*preSkid1); 
        if v1i_c <= 0 
            set(handles.V_o1_c,'String','ERROR') 
        else 
        set(handles.V_o1_c,'String',v1i_c); 
        end 
    end 

  

    if v2i_ask == 1 
        v2i_c = sqrt(v2i^2 - 2*g*height2 -2*u_k*g*preSkid2); 
        if v2i_c <= 0 
            set(handles.V_o2_c,'String','ERROR') 
        else 
        set(handles.V_o2_c,'String',v2i_c); 
        end 
    end 

  
    if v12f_ask == 1 
        v12f_c = sqrt(v12f^2 + 2*g*height12 +2*u_k*g*postSkid12);    
        if v12f_c <= 0 
            set(handles.V_f12_c,'String','ERROR') 
        else 
        set(handles.V_f12_c,'String',v12f_c); 
        end 
    end 

  
    if v1f_ask == 1 
        v1f_c = sqrt(v1f^2 + 2*g*heightFinal1 +2*u_k*g*postSkid1);   
        if v1f_c <= 0 
            set(handles.V_f1_c,'String','ERROR') 
        else 
        set(handles.V_f1_c,'String',v1f_c); 
        end 
    end 

  
    if v2f_ask == 1 
        v2f_c = sqrt(v2f^2 + 2*g*heightFinal2 +2*u_k*g*postSkid2); 
        if v2f_c <= 0 



G-26 

 

            set(handles.V_f2_c,'String','ERROR') 
        else 
        set(handles.V_f2_c,'String',v2f_c); 
        end 
    end 

  
%***************************************** 

  

  
%% ********************************************************************** 
%This part classifies which vehicle has known velocity and directions and 
%calculates some preliminary momentum magnitudes. 
%------------------------------------------------------------------------ 
if v1i_ask == 1 && theta1i_ask == 1 
    knownVehicle = 1; 
    unknownVehicle = 2; 
    P1_i=m1*v1i_c;       %initial momentum magnitude of vehicle 1 

     
elseif v2i_ask == 1 && theta2i_ask == 1 
    knownVehicle = 2; 
    unknownVehicle = 1; 
    P2_i=m2*v2i_c;       %initial momentum magnitude of vehicle 2 
end 

  

  
if (stick == 1 && v12f_ask == 1) 
    P12_f=m12*v12f_c;          %final momentum magnitude of vehicles 1&2 

stuck together 
    P1_f=0; 
    P2_f=0; 
    v1f_c = 0; 
    v2f_c = 0; 
    theta1f = 0; 
    theta2f = 0; 
end 

  
if (stick == 0 && v1f_ask == 1 && v2f_ask == 1) 
    P12_f = 0; 
    P1_f=m1*v1f_c; 
    P2_f=m2*v2f_c; 
end 

  

     

  
 %   display(['Initial velocity and direction of vehicle 

',num2str(knownVehicle),' known']) 
 %   display(['Solving for vehicle', num2str(unknownVehicle)]) 
%------------------------------------------------------------------------ 

     

  

  

  

  
%% ************************************************************************ 



G-27 

 

%Case A 
%This part solves for the unknown initial velocity vector of a vehicle when 
%the magnitude and direction of the post-collision vehicle(s) are known, 
%and the initial velocity magnitude and direction of the other vehicle 
%is known. 
% 
%Knowns: 
%-Final Direction and Magnitude of post-collision vehicles 
%-Initial Direction and Magnitude of one vehicle 
%-------------------------------------------------------------------------- 

  
%The following if statement checks to see if the following conditions are 
%true: 
%--> (final velocity vector AND (initial velocity of vehicle 1 OR 2) 
%--> (final velocity vectorS AND (initial velocity of vehicle 1 OR 2) 
if  (headOn == 0)&&((v12f_ask == 1 && theta12f_ask == 1 && stick == 1) ||... 
    (v1f_ask == 1 && theta1f_ask == 1 && v2f_ask == 1 && theta2f_ask ==1 && 

stick == 0))&&... 
    (v1i_ask==1 && theta1i_ask ==1 ||... 
    v2i_ask==1 && theta2i_ask ==1) 
display('Case A') 
validCase = 1; 

  
    if v1i_ask == 0 
        v1i_cx = 1/m1*(m12*v12f_c*sind(theta12f)-m2*v2i_c*sind(theta2i)); 
        v1i_cy = 1/m1*(m12*v12f_c*cosd(theta12f)-m2*v2i_c*cosd(theta2i)); 
        v1i_c  = sqrt(v1i_cx^2 + v1i_cy^2); 
        theta1i = rad2deg(atan2(v1i_cx,v1i_cy)); 
    elseif v2i_ask == 0 
        v2i_cx = 1/m2*(m12*v12f_c*sind(theta12f)-m1*v1i_c*sind(theta1i)); 
        v2i_cy = 1/m2*(m12*v12f_c*cosd(theta12f)-m1*v1i_c*cosd(theta1i)); 
        v2i_c  = sqrt(v2i_cx^2 + v2i_cy^2); 
        theta2i = rad2deg(atan2(v2i_cx,v2i_cy)); 
    end 
end 
%********************************************************************** 

  

  
%% ************************************************************************ 
%Case C 
%This part solves for the unknown initial velocity magnitude of a vehicle  
%when the direction and magnitude of the post-collision vehicle(s) are known, 
%and the initial velocity direction of both vehicles is known. 
% 
%Knowns: 
%-Final Direction and Magnitude of post-collision vehicles 
%-Initial Direction of both vehicles 
%---------------------------------------------------------------------- 
if  ((v12f_ask == 1 && theta12f_ask == 1 && stick == 1)... 
    || (stick == 0 && v1f_ask == 1 && theta1f_ask == 1 && v2f_ask == 1 && 

theta2f_ask == 1))... 
    && ((v1i_ask==0 && theta1i_ask ==1 && v2i_ask==0 && theta2i_ask ==1)) 
display('Case C') 
validCase = 1; 



G-28 

 

    v1i_c = -m12*v12f*(cosd(theta2i)*sind(theta12f)-

cosd(theta12f)*sind(theta2i))/m1/(-

cosd(theta2i)*sind(theta1i)+sind(theta2i)*cosd(theta1i)); 
    v2i_c = m12*v12f*(-

sind(theta1i)*cosd(theta12f)+sind(theta12f)*cosd(theta1i))/m2/(-

cosd(theta2i)*sind(theta1i)+sind(theta2i)*cosd(theta1i)); 
end 

  

  
%% ************************************************************************ 
%Case B & D 
%This part solves for the unknown initial velocity magnitude of a vehicle  
%when the direction of the post-collision vehicle(s) are known, 
%and the initial velocity direction of both vehicles is known and the 
%magnitude of one initial velocity is known 
% 
%Knowns: 
%-Final Direction of post-collision vehicles 
%-Final Magnitude of one post-collision vehicle 
%-Initial Magnitude & Direction of one vehicle 
%-Initial Direction of both vehicles 
%---------------------------------------------------------------------- 

  
if  ((((v1f_ask == 0 && v2f_ask == 1) || (v1f_ask == 1 && v2f_ask == 

0))&&(theta1f_ask==1&&theta2f_ask==1))||... 
        (v12f_ask == 0 && theta12f_ask == 1 && stick == 1))... 
    && ((v1i_ask==1 && theta1i_ask ==1 && v2i_ask==0 && theta2i_ask ==1)||... 
        (v2i_ask==1 && theta2i_ask ==1 && v1i_ask==0 && theta1i_ask ==1)) 

  
    display('Case D') 
    validCase = 1; 
    if v2i_ask==0 && v2f_ask==0 && stick == 0 
        A = sind(theta2i)/sind(theta2f)-cosd(theta2i)/cosd(theta2f); 
        B = sind(theta2f)/sind(theta2f)-cosd(theta1f)/cosd(theta2f); 
        C = sind(theta1i)/sind(theta2f)-cosd(theta1i)/cosd(theta2f); 
        v2i_c = 1/(m2*A)*((m1*v1f_c)*B-m1*v1i_c*C); 
        v2f_c = 

1/(m2*sind(theta2f))*(m1*v1i_c*sind(theta1i)+m2*v2i_c*sind(theta2i)-

m1*v1f_c*sind(theta1f)); 
    end 

  
    if v2i_ask==0 && v1f_ask==0 && stick == 0 
        A = sind(theta2i)/sind(theta1f)-cosd(theta2i)/cosd(theta1f); 
        B = sind(theta2f)/sind(theta1f)-cosd(theta1f)/cosd(theta1f); 
        C = sind(theta1i)/sind(theta1f)-cosd(theta1i)/cosd(theta1f); 
        v2i_c = 1/(m2*A)*((m2*v2f_c)*B-m1*v1i_c*C); 
        v1f_c = 

1/(m1*sind(theta1f))*(m1*v1i_c*sind(theta1i)+m2*v2i_c*sind(theta2i)-

m2*v2f_c*sind(theta2f)); 
    end 

     
    if v1i_ask==0 && v2f_ask==0 && stick == 0 
        A = sind(theta2i)/sind(theta2f)-cosd(theta2i)/cosd(theta2f); 
        B = sind(theta2f)/sind(theta2f)-cosd(theta1f)/cosd(theta2f); 
        C = sind(theta1i)/sind(theta2f)-cosd(theta1i)/cosd(theta2f); 
        v1i_c = 1/(m1*C)*((m1*v1f_c)*B-m2*v2i_c*A);      



G-29 

 

        v2f_c = 

1/(m2*sind(theta2f))*(m1*v1i_c*sind(theta1i)+m2*v2i_c*sind(theta2i)-

m1*v1f_c*sind(theta1f)); 
    end 

     
    if v1i_ask==0 && v1f_ask==0 && stick == 0 
        A = sind(theta2i)/sind(theta1f)-cosd(theta2i)/cosd(theta1f); 
        B = sind(theta2f)/sind(theta1f)-cosd(theta1f)/cosd(theta1f); 
        C = sind(theta1i)/sind(theta1f)-cosd(theta1i)/cosd(theta1f); 
        v1i_c = 1/(m1*C)*((m2*v2f_c)*B-m2*v2i_c*A); 
        v1f_c = 

1/(m1*sind(theta1f))*(m1*v1i_c*sind(theta1i)+m2*v2i_c*sind(theta2i)-

m2*v2f_c*sind(theta2f)); 
    end 

     
    if v2i_ask==0 && v12f_ask==0 && stick == 1 
        A = sind(theta2i)/sind(theta12f)-cosd(theta2i)/cosd(theta12f); 
        B = cosd(theta1i)/cosd(theta12f)-sind(theta1i)/sind(theta12f); 
        v2i_c = 1/(m2*A)*(m1*v1i_c)*B; 
        v12f_cx = 1/(m12)*(m1*v1i_c*sind(theta1i)+m2*v2i_c*sind(theta2i)); 
        v12f_cy = 1/(m12)*(m1*v1i_c*cosd(theta1i)+m2*v2i_c*cosd(theta2i)); 
        v12f_c  = sqrt(v12f_cx^2+v12f_cy^2); 
    end 

     
    if v1i_ask==0 && v12f_ask==0 && stick == 1 
        A = sind(theta1i)/sind(theta12f)-cosd(theta1i)/cosd(theta12f); 
        B = cosd(theta2i)/cosd(theta12f)-sind(theta2i)/sind(theta12f); 
        v1i_c = 1/(m1*A)*(m2*v2i_c)*B; 
        v12f_cx = 1/(m12)*(m1*v1i_c*sind(theta1i)+m2*v2i_c*sind(theta2i)); 
        v12f_cy = 1/(m12)*(m1*v1i_c*cosd(theta1i)+m2*v2i_c*cosd(theta2i)); 
        v12f_c  = sqrt(v12f_cx^2+v12f_cy^2); 
    end 
end 
% ------------------------- 

  
%% ************************************************************************ 
%Case E - Head on collision 
%This part solves for the unknown initial velocity magnitude of a vehicle  
%during a head-on collision. All other parameters must be known. 
% 
%Knowns: 
%-Final Direction of vehicles 
%-Final Magnitude of vehicles 
%-Initial Magnitude & Direction of one vehicle 

  
if (headOn == 1) && ((v1i_ask == 0 && v2i_ask ==1) || (v1i_ask == 1 && 

v2i_ask ==0)) 
    validCase = 1; 
    display('Case E') 
    display(theta2i) 
    if v1i_ask == 0 
        v1i_cx = 

1/m1*(m1*v1f_c*sind(theta1f)+m2*v2f_c*sind(theta2f)+m12*sind(theta12f)-

m2*v2i_c*sind(theta2i)); 



G-30 

 

        v1i_cy = 

1/m1*(m1*v1f_c*cosd(theta1f)+m2*v2f_c*cosd(theta2f)+m12*cosd(theta12f)-

m2*v2i_c*cosd(theta2i)); 
        v1i_c = sqrt(v1i_cx^2+v1i_cy^2); 
    end 

     
    if v2i_ask == 0 
        v2i_cx = 

1/m2*(m1*v1f_c*sind(theta1f)+m2*v2f_c*sind(theta2f)+m12*sind(theta12f)-

m1*v1i_c*sind(theta1i)); 
        v2i_cy = 

1/m2*(m1*v1f_c*cosd(theta1f)+m2*v2f_c*cosd(theta2f)+m12*cosd(theta12f)-

m1*v1i_c*cosd(theta1i)); 
        v2i_c = sqrt(v2i_cx^2+v2i_cy^2); 
    end 

     
    if((theta12f ~= theta1i) && (theta12f ~= theta2i) && stick == 1)||... 
        ((theta1f ~= theta1i) && (theta1f ~= theta2i) && stick == 0)||... 
        ((theta2f ~= theta1i) && (theta2f ~= theta2i) && stick == 0) 
        error('Impossible Scenario for Head On Impacts') 
    end 

     
end 

  

  
%% ************************************************************************ 
%Case F 

  
%Knowns: 
%-Final Direction of post-collision vehicles 
%-Final Magnitude of post-collision vehicles 
%-Initial Magnitude one vehicle 
%-Initial Direction other vehicle 
%---------------------------------------------------------------------- 
if  (v1i_ask == 0 && theta1i_ask == 1 && v2i_ask == 1 && theta2i_ask == 

0)||... 
    (v1i_ask == 1 && theta1i_ask == 0 && v2i_ask == 0 && theta2i_ask == 1) 
    display('Case F') 
    validCase = 1; %Checks to see if it was a valid case 
    loosenConv = 0;%Set variable to loosen convergence criteria 
    converged = 0;       %Set variable to check convergence 
    count = 0;      %Set variable to check count 
    loosenFactor = 1;   %Set variable to 1 as default for convergence 

multiplier 

     
    %Final momentum in both directions are known: 
    

Mfx=(m1*v1f_c*sind(theta1f)+m2*v2f_c*sind(theta2f)+m12*v12f_c*sind(theta12f))

; 
    

Mfy=(m1*v1f_c*cosd(theta1f)+m2*v2f_c*cosd(theta2f)+m12*v12f_c*cosd(theta12f))

; 

  
    %Begin iteration - guess direction, and determine resultant magnitude 
    %Note that all iterations of theta are initialized at 0 



G-31 

 

    while converged ~= 1 
        if v2i_ask == 0 
            v2i_cy = (Mfy - m1*v1i_c*cosd(theta1i))/(m2); 
            v2i_cx = (Mfx - m1*v1i_c*sind(theta1i))/(m2); 
            v2i_c = sqrt(v2i_cy^2+v2i_cx^2); 
        elseif v1i_ask == 0 
            v1i_cy = (Mfy - m1*v2i_c*cosd(theta2i))/(m1); 
            v1i_cx = (Mfx - m1*v2i_c*sind(theta2i))/(m1); 
            v1i_c = sqrt(v1i_cy^2+v1i_cx^2); 
        end 

         
        %-This part checks convergence 
        %Check of Conservation of Momentum 
        Mix=m2*v2i_c*sind(theta2i)+m1*v1i_c*sind(theta1i); 
        Miy=m2*v2i_c*cosd(theta2i)+m1*v1i_c*cosd(theta1i); 

         
        %Convergence criteria (percent difference between initial and final 
        %momentum in both directions 
        convY = abs((Miy-Mfy)/Mfy); 
        convX = abs((Mix-Mfx)/Mfx); 

         
        %Check if converged 
        if convY<0.0001*loosenFactor && convX<.0001*loosenFactor 
            converged = 1; 
        end 
        %-------- 

         
        %If not converged, continue iterating 
        if converged ~= 1 
            if v2i_ask == 0 && v1i_ask == 1 
                fprintf('theta1i = %3.5f convY = %3.6f convX = %3.6f count = 

%3.0f \n',theta1i,convY,convX,count); %Print progress 
                theta1i = theta1i+0.1; %Increment Theta 
                count = count + 1; %Increment Count 
            elseif v1i_ask == 0 && v2i_ask == 1 
                fprintf('theta2i = %3.5f convY = %3.6f convX = %3.6f count = 

%3.0f \n',theta2i,convY,convX,count); %Print progress 
                theta2i = theta2i+0.1; %Increment Theta 
                count = count + 1; %Increment Count 
            end 
        end 

         
        %Relaxes convergence criteria and resets if solution didnt converge 
        if count > 3600 && loosenConv == 0 
            display('=========Did not converge with 0.01% criteria. Switching 

to 1% criteria======') 
            if v2i_ask == 0 && v1i_ask == 1 
                theta1i = 0; %Reset theta back to 0 
            elseif v1i_ask == 0 && v2i_ask == 1 
                theta2i = 0; %Reset theta back to 0 
            end 
            loosenConv = 1; %Convergence Criteria relaxed (1st stage 

relaxation) 
            loosenFactor = 100; 
            count = 0; 
        end 



G-32 

 

         
        %Further Relaxes convergence criteria and resets if solution didnt 
        %converge after 1st stage relaxation 
        if count > 3600 && loosenConv == 1 
            display('=========Did not converge with 1% criteria. Switching to 

2% criteria======') 
            if v2i_ask == 0 && v1i_ask == 1 
                theta1i = 0; %Reset theta back to 0 
            elseif v1i_ask == 0 && v2i_ask == 1 
                theta2i = 0; %Reset theta back to 0 
            end 
            loosenConv = 2; %Convergence Criteria relaxed (2nd stage 

relaxation) 
            loosenFactor = 200; 
            count = 0; 
        end 
        %End reset 

  
        %Exits out if solution did not converge after 2nd stage of 
        %relaxation 
        if count > 3600 && loosenConv == 2 
            converged = 1; 
            error('Did not converge') 
        end 
    end 

     

display('============') 
    if loosenConv == 0 
        display('Iterative solution found with 0.01% Error between initial 

and final momentums') 
    elseif loosenConv == 1 
        display('Solution did not converge using 0.01% convergence criteria, 

convergence criteria have been relaxed') 
        display('Iterative solution found with 1% Error between initial and 

final momentums') 
    elseif loosenConv == 2 
        display('Solution did not converge using 0.01% convergence criteria, 

convergence criteria have been relaxed') 
        display('Iterative solution found with 2% Error between initial and 

final momentums') 
    end 
display('============') 

  

     
end 

  

     

  
%% ************************************************************************ 
%Case G 

  
%Knowns: 
%-Final Direction of ONE post-collision vehicles 
%-Final Magnitude of post-collision vehicles 
%-Initial Magnitude one vehicle 



G-33 

 

%-Initial Direction other vehicles 
%---------------------------------------------------------------------- 
if  ((v1i_ask == 0 && theta1i_ask == 1 && v2i_ask == 1 && theta2i_ask == 

1)||... 
    (v1i_ask == 1 && theta1i_ask == 1 && v2i_ask == 0 && theta2i_ask == 

1))&&... 
    (((v1f_ask == 1 && theta1f_ask == 0 && v2f_ask == 1 && theta2f_ask == 

1)||... 
    (v1f_ask == 1 && theta1f_ask == 1 && v2f_ask == 1 && theta2f_ask == 

0))||... 
    (v12f_ask ==1 && theta12f_ask ==0)) 

  

    display('Case G') 
    validCase = 1; 

  
    converged = 0; 
    count = 0; 
    loosenFactor = 1; 
    loosenConv = 0; 

  

  
    while converged ~= 1 
        count = count + 1; 
        

Mfx=(m1*v1f_c*sind(theta1f)+m2*v2f_c*sind(theta2f)+m12*v12f_c*sind(theta12f))

; 
        

Mfy=(m1*v1f_c*cosd(theta1f)+m2*v2f_c*cosd(theta2f)+m12*v12f_c*cosd(theta12f))

; 
        if v2i_ask == 0 
            v2i_cy = (Mfy - m1*v1i_c*cosd(theta1i))/(m2); 
            v2i_cx = (Mfx - m1*v1i_c*sind(theta1i))/(m2); 
            v2i_c = sqrt(v2i_cy^2+v2i_cx^2); 
        elseif v1i_ask == 0 
            v1i_cy = (Mfy - m2*v2i_c*cosd(theta2i))/(m1); 
            v1i_cx = (Mfx - m2*v2i_c*sind(theta2i))/(m1); 
            v1i_c = sqrt(v1i_cy^2+v1i_cx^2); 
        end 

    
        %Check of Conservation of Momentum 
        Mix=m2*v2i_c*sind(theta2i)+m1*v1i_c*sind(theta1i); 
        Miy=m2*v2i_c*cosd(theta2i)+m1*v1i_c*cosd(theta1i); 
        

Mfx=(m1*v1f_c*sind(theta1f)+m2*v2f_c*sind(theta2f)+m12*v12f_c*sind(theta12f))

; 
        

Mfy=(m1*v1f_c*cosd(theta1f)+m2*v2f_c*cosd(theta2f)+m12*v12f_c*cosd(theta12f))

; 

  
        convY = abs((Miy-Mfy)/Mfy); 
        convX = abs((Mix-Mfx)/Mfx); 

         

         

         
        if convY<0.0001*loosenFactor && convX<.0001*loosenFactor 



G-34 

 

            converged = 1; 
        end 

         
        if converged ~= 1 
            if theta1f_ask == 0 && stick == 0 
                fprintf('theta1f = %3.5f convY = %3.6f convX = %3.6f count = 

%3.0f \n',theta1f,convY,convX,count); 
                theta1f = theta1f+0.1; 
            elseif theta2f_ask == 0 && stick == 0 
                fprintf('theta2f = %3.5f convY = %3.6f convX = %3.6f count = 

%3.0f \n',theta2f,convY,convX,count); 
                theta2f = theta2f+0.1; 
            elseif theta12f_ask == 0 && stick == 1 
                fprintf('theta12f = %3.5f convY = %3.6f convX = %3.6f count = 

%3.0f \n',theta12f,convY,convX,count); 
                theta12f = theta12f+0.1; 
            end 
        end 

         

        %Relaxes convergence criteria and resets if solution didnt converge 
        if count > 3600 && loosenConv == 0 
            display('=========Did not converge with 0.01% criteria. Switching 

to 1% criteria======') 
            if theta1f_ask == 0 && stick == 0 
                theta1f = 0; 
            elseif theta2f_ask == 0 && stick == 0 
                theta2f = 0; 
            elseif theta12f_ask == 0 && stick == 1 
                theta12f = 0;     
            end 
            loosenConv = 1;  
            loosenFactor = 100; 
            count = 0; 
        end 

         
        if count > 3600 && loosenConv == 1 
            display('=========Did not converge with 1% criteria. Switching to 

2% criteria======') 
            if theta1f_ask == 0 && stick == 0 
                theta1f = 0; 
            elseif theta2f_ask == 0 && stick == 0 
                theta2f = 0; 
            elseif theta12f_ask == 0 && stick == 1 
                theta12f = 0;     
            end 
            loosenConv = 2;  
            loosenFactor = 200; 
            count = 0; 
        end 
        %End reset 

  
        if count > 3600 && loosenConv == 2 
            converged = 1; 
            error('Did not converge') 
        end 

         



G-35 

 

         
    end 
    display('============') 
    if loosenConv == 0 
        display('Iterative solution found with 0.01% Error between initial 

and final momentums') 
    elseif loosenConv == 1 
        display('Solution did not converge using 0.01% convergence criteria, 

convergence criteria have been relaxed') 
        display('Iterative solution found with 1% Error between initial and 

final momentums') 
    elseif loosenConv == 2 
        display('Solution did not converge using 0.01% convergence criteria, 

convergence criteria have been relaxed') 
        display('Iterative solution found with 2% Error between initial and 

final momentums') 
    end 
    display('============') 
end 

  

  

  
%% ******************************************************************** 
%This part checks to see if the case was valid 
%---------------------------------------------------------------------- 
if validCase == 0 
    error('Not a Supported Case, Exiting out. Make sure to have at least 1 

initial velocity unknown') 
end 
%Check of Conservation of Momentum 
if converged ~=1 
    Mix=m1*v1i_c*sind(theta1i)+m2*v2i_c*sind(theta2i); 
    

Mfx=m1*v1f_c*sind(theta1f)+m2*v2f_c*sind(theta2f)+m12*v12f_c*sind(theta12f); 

  
    %Miy=(m1*v1i_c*cosd(theta1i)+m2*v2i_c*cosd(theta2i)) 
    Miy=(m1*v1i_c*cosd(theta1i)+m2*v2i_c*cosd(theta2i)); 
    

Mfy=(m1*v1f_c*cosd(theta1f)+m2*v2f_c*cosd(theta2f)+m12*v12f_c*cosd(theta12f))

; 
end 
    if abs((Mix - Mfx)/Mfx) > 0.02 || abs((Miy - Mfy)/Mfy)> 0.02  
        error('Error in Case, conservation of momentum check failed. May be 

an impossible scenario') 
    else 
        display('Final Conservation of Momentum Check Passed') 
    end 
%---------------------------------------------------------------------- 

  
%% ******************************************************************** 
%This part adjusts for final skid / changes in height, and displays the 
%calculated values. 
%---------------------------------------------------------------------- 

  
if v2i_ask==0 



G-36 

 

    set(handles.V_o2_c,'String',v2i_c); 
    v2i = sqrt(v2i_c^2 + 2*g*height2 + 2*u_k*g*preSkid2); %Adjust for energy 

change 
    set(handles.V_o2,'String',v2i); 
    set(handles.V_o2,'BackgroundColor','green') 
end 

  
if theta2i_ask==0 
    set(handles.V_o2D,'String',theta2i); 
    set(handles.V_o2D,'BackgroundColor','green') 
end 

  
if v1i_ask == 0 
    set(handles.V_o1_c,'String',v1i_c); 
    v1i = sqrt(v1i_c^2 + 2*g*height1 + 2*u_k*g*preSkid1); 
    set(handles.V_o1,'String',v1i); 
    set(handles.V_o1,'BackgroundColor','green') 
end 

  

if theta1i_ask==0 
    set(handles.V_o1D,'String',theta1i); 
    set(handles.V_o1D,'BackgroundColor','green') 
end 

  
if stick ==0 
    if v1f_ask == 0 
        set(handles.V_f1_c,'String',v1f_c); 
        v1f = sqrt(v1f_c^2 - 2*g*heightFinal1 - 2*u_k*g*postSkid1); 
        set(handles.V_f1,'String',v1f); 
        set(handles.V_f1,'BackgroundColor','green') 
    end 

     
    if v2f_ask == 0 
        set(handles.V_f2_c,'String',v2f_c); 
        v2f = sqrt(v2f_c^2 - 2*g*heightFinal2 - 2*u_k*g*postSkid2); 
        set(handles.V_f2,'String',v2f); 
        set(handles.V_f2,'BackgroundColor','green') 
    end 

     

  

    if theta1f_ask==0 
        set(handles.V_f1D,'String',theta1f); 
        set(handles.V_f1D,'BackgroundColor','green') 
    end 

     
    if theta2f_ask==0 
        set(handles.V_f2D,'String',theta2f); 
        set(handles.V_f2D,'BackgroundColor','green') 
    end 

     
elseif stick == 1 
    if v12f_ask == 0 
        set(handles.V_f12_c,'String',v12f_c); 
        v12f = sqrt(v12f_c^2 - 2*g*height12 - 2*u_k*g*postSkid12); 
        set(handles.V_f12,'String',v12f); 



G-37 

 

        set(handles.V_f12,'BackgroundColor','green') 
    end 

         
    if theta12f_ask==0 
        set(handles.V_f12D,'String',theta12f); 
        set(handles.V_f12D,'BackgroundColor','green') 
    end 
end 
%----------------------------------------------------------------------   

  

  

%Updates all fields with changed values 
guidata(hObject, handles); 
%End update 

  
%% ********************************** 
%This part plots the velocity vectors 
%------------------------------------ 
if get(handles.velocityPlot,'Value')==1 
    [initialVelocity1_x, initialVelocity1_y] = pol2cart(deg2rad(theta1i), 

v1i_c); 
    [initialVelocity2_x, initialVelocity2_y] = pol2cart(deg2rad(theta2i), 

v2i_c); 
    [finalVelocity12_x, finalVelocity12_y] = pol2cart(deg2rad(theta12f), 

v12f_c); 
    [finalVelocity1_x, finalVelocity1_y] = pol2cart(deg2rad(theta1f), v1f_c); 
    [finalVelocity2_x, finalVelocity2_y] = pol2cart(deg2rad(theta2f), v2f_c); 

  
    figure %Creates New Figure 
    scale_holder = compass(1.25*max([v1i_c, v2i_c, v12f_c]), 0); 
    title('Instantaneous pre/post collision velocity vectors') 
    set(scale_holder, 'Visible', 'Off'); 
    hold on 
    V1i = compass(initialVelocity1_x, initialVelocity1_y, 'b-'); 
    V2i = compass(initialVelocity2_x, initialVelocity2_y, 'g-'); 
    if stick == 1 
        V12f = compass(finalVelocity12_x, finalVelocity12_y, 'r-.'); 
        legend([V1i, V2i, V12f], 'Vehicle 1 Initial Velocity', 'Vehicle 2 

Initial Velocity', 'Vehicle12 Final Velocity', 'Location', 

'NorthWestOutside') 
    else 
        V1f = compass(finalVelocity1_x, finalVelocity1_y, 'm:'); 
        V2f = compass(finalVelocity2_x, finalVelocity2_y, 'c:'); 
        legend([V1i, V2i, V1f, V2f], 'Vehicle 1 Initial Velocity', 'Vehicle 2 

Initial Velocity', 'Vehicle1 Final Velocity','Vehicle2 Final Velocity', 

'Location', 'NorthWestOutside') 

  
    end 
    view(90,-90) 
end 
%------------------------------------ 

  



H-1 

 

Appendix H  Derivation for VAR Cases  
  

%Matlab Derivation for Cases C, B and D 
%-------------------------------------------------------------------- 
%---This part defines the variables used in the momentum equations--- 
syms m1 v1i theta1i v2i theta2i m2 m12 v12f theta12f 
%-------------------------------------------------------------------- 

  

  

%-------------------------------------------------------------------- 
%---This part defines the momentum equations for 2 vehicle (stick)  
%collisions--- 
eqn1 = 'm1*v1i*cosd(theta1i)+m2*v2i*cosd(theta2i)=m12*v12f*cosd(theta12f)'; 
eqn2 = 'm1*v1i*sind(theta1i)+m2*v2i*sind(theta2i)=m12*v12f*sind(theta12f)'; 
%-------------------------------------------------------------------- 

  

%-------------------------------------------------------------------- 
%---This part solves the momentum equations for initial velocities, in 
%terms of the other stated variables 
[eq1]=solve(eqn1,v1i);   %This is the equation for vli 
[eq2]=solve(eqn2,v2i); %This is the equation for v2i 
%-------------------------------------------------------------------- 

  

  
%==================================================================== 
%Case C Derivation 
%-------------------------------------------------------------------- 

  
%---This part substitutes in equation 2 into the variable "v2i", which 
%yields the equation for v1i without v2i in the equation 
eqn3 = subs(eq1,v2i,eq2); %This is the equation for v1i 

  
%---This part substitutes in equation 1 into the variable "v1i", which 
%yields the equation for v1i without v1iin the equation 
%Case C Derivation 
eqn4 = subs(eq2, v1i, eq1);%This is the equation for v2i 

  
%The outputs of eqn3 and eqn4 yield the following in the matlab window. 
%They are copy and pasted as follows for convenience: 
eqn3 = '(-(-

m1*v1i*sind(theta1i)+m12*v12f*sind(theta12f))/sind(theta2i)*cosd(theta2i)+m12

*v12f*cosd(theta12f))/m1/cosd(theta1i)=v1i'; 
solve(eqn3,v1i) %This is the equation for v1i, without v2i as a contributing 

variable 
%Yields this: 
%v1i=-m12*v12f*(cosd(theta2i)*sind(theta12f)-

cosd(theta12f)*sind(theta2i))/m1/(-

cosd(theta2i)*sind(theta1i)+sind(theta2i)*cosd(theta1i)) 

  
eqn4 = '(-(-

m2*v2i*cosd(theta2i)+m12*v12f*cosd(theta12f))/cosd(theta1i)*sind(theta1i)+m12

*v12f*sind(theta12f))/m2/sind(theta2i)=v2i'; 
%This part solves equation 4 to get v2i 



H-2 

 

solve(eqn4,v2i) %This is the equation for v2i, without v1i as a contributing 

variable 
%Yields this: 
%%v2i=m12*v12f*(-

sind(theta1i)*cosd(theta12f)+sind(theta12f)*cosd(theta1i))/m2/(-

cosd(theta2i)*sind(theta1i)+sind(theta2i)*cosd(theta1i)) 
%==================================================================== 

  

  

  
%==================================================================== 
%Case B and D Derivation 
%-------------------------------------------------------------------- 
%---This part solves the momentum equations for final velocities, in 
%terms of the other stated variables 
[eq3]=solve(eqn1,v12f); %This is the equation for v12f in the y direction 
[eq4]=solve(eqn2,v12f); %This is the equation for v12f in the x direction 
%-------------------------------------------------------------------- 

  

%---This part substitutes in equation 4 into the variable "v12f", which 
%yields the momentum equation without v12f as a variable. 
display('Case B and D') 
eqn5 = subs(eq1,v12f,eq4); %This is the equation for v1i without v12f in the 

equation 
eqn6 = subs(eq2,v12f,eq3); %This is the equation for v2i without v12f in the 

equation 

  
%The outputs of eqn5 and eqn6 yield the following in the matlab window. 
%They are copy and pasted as follows for convenience: 
%eqn5 =(-

m2*v2i*cosd(theta2i)+(m1*v1i*sind(theta1i)+m2*v2i*sind(theta2i))/sind(theta12

f)*cosd(theta12f))/m1/cosd(theta1i) 
%eqn6 
%=(-

m1*v1i*sind(theta1i)+(m1*v1i*cosd(theta1i)+m2*v2i*cosd(theta2i))/cosd(theta12

f)*sind(theta12f))/m2/sind(theta2i) 
eqn5 = '(-

m2*v2i*cosd(theta2i)+(m1*v1i*sind(theta1i)+m2*v2i*sind(theta2i))/sind(theta12

f)*cosd(theta12f))/m1/cosd(theta1i) = v1i'; 
eqn6 = '-(m1*v1i*sind(theta1i)-

(m1*v1i*cosd(theta1i)+m2*v2i*cosd(theta2i))/cosd(theta12f)*sind(theta12f))/m2

/sind(theta2i) = v2i'; 

  
solve(eqn5,v1i) 
%Yields this: 
%v1i = m2*v2i*(-

cosd(theta2i)*sind(theta12f)+cosd(theta12f)*sind(theta2i))/m1/(-

sind(theta1i)*cosd(theta12f)+sind(theta12f)*cosd(theta1i)) 

  
solve(eqn6,v2i) 
%v2i = m1*v1i*(-

sind(theta1i)*cosd(theta12f)+sind(theta12f)*cosd(theta1i))/m2/(-

cosd(theta2i)*sind(theta12f)+cosd(theta12f)*sind(theta2i)) 
%==================================================================== 

 



I-1 

 

Appendix I  Catapult Postprocessing Code 
%Catapult PostProcessing Code 

%Lawrence Fong 
%---------------------------------------------------- 
%Notes: 
%---------------------------------------------------- 
%In matrices A, AA, AA_scaled, AAA:  
%(:,1) is the time 
%(:,2) is the angular acceleration or tangential acceleration 
%(:,3) is the angular velocity or angular acceleration 
%(:,4) is the axial strain 
%(:,5) is the bending strain 
%A is the loaded matrix from LabView 
%---------------------------------------------------- 
%In matrix omega:  
%(:,1) is the time 
%(:,2) is the angular velocity 
%---------------------------------------------------- 
%In matrix theta:  
%(:,1) is the time 
%(:,2) is the angular velocity 
%(:,3) is the angular position 
%---------------------------------------------------- 
%-- 
%AA is the rescaled matrix, correcting for labview scaling / offsets 
%-- 
%AA_scaled is the matrix for free catapult arm motion, with tangential and 

normal accelerations in g's 
%-- 
%AAA is the matrix for free catapult arm motion, with angular acceleration 
%and angular velocity in rad/s, and rad/s^2, respectively 
%-- 
%impactG is the matrix for impact, with acceleration in "g's" 
%-- 
%imapact is the matrix for impact, with acceleration of rad/s^2 and velocity 
%of rad/s 
%-- 
%omega is the matrix that attempts to correct for negative velocities due 
%to noise 
%-- 
%theta is the matrix that is used to find position 
%---------------------------------------------------- 
close all 
clear all 
clc 
fileName=input('Please enter in the file name: ','s'); 
A = load(fileName); 

  

  
gravOffset=0; 

  
%Catapult Values 
r = 0.336; %meters // length from pivot to accelerometer 
g = 9.81;   %m/s^2 //gravity (metric) 



I-2 

 

L_stopper=3/12; %length from stopper pin to pivot in feet 

  
%Nominal Values of Accelerometer 
V_noLoad=2.5; %V when no exication 
sens = 38;      %Sensitivity of accel 

  
%Nominal Values of Strain Gage 
invertStrainAxial = 1; %-1 inverts voltage from axial strain gage  
invertStrainMoment = 1; %-1 inverts voltage from moment strain gage use 
V_strainNoLoad = 100; %V when no load on strain gage 
V_ex=2.5;             %Excitation Voltage 
Sg = 2.075;           %Strain gage 'gage factor' 
Rg = 120;             %Ohms, strain gage resistance 

  
matrixSize = size(A);    %Finds size of output matrix 
nn=matrixSize(1,1);       %Number of Rows 

  

  

  
%Scaling Output to "no load voltage" 
for n=1:nn 
    AA(n,1)=(A(n,1)-A(1,1))*0.001;   %Rescale to time = 0 at beginning 
    AA(n,2)=-(V_noLoad - A(n,2)); %Scaling to noLoad 
    AA(n,3)=V_noLoad - A(n,3); %Scaling to noLoad 
    AA(n,4)=invertStrainAxial*A(n,4)/(1000000); %Adjust for voltage, which 

was multiplied by 1000000 in LabView, and is in 

millivolts_strain/volts_exication 
    AA(n,5)=invertStrainMoment*A(n,5)/(1000000); %Adjust for voltage, which 

was multiplied by 1000000 in LabView, and is in 

millivolts_strain/volts_exication 
end 

  
%===================================== 
%This part finds where the beginning and ending cutoff points should be 
triggerValueNormal=0.03;  %Volts of normal acceleration 
triggerValueTangential=0.1; %Volts of angular acceleration 
startOffset = 20; %Samples 
for n=startOffset:nn 
    if(AA(n,2)>triggerValueTangential && AA(n,3)>triggerValueNormal); 
        timeBeginRow=n-5; 
        break %exit out of for loop 
    end 
end 

  
%Finding end of free rotation of catapult arm 
for n=timeBeginRow:nn 
    if(AA(n,2)<-.5); %-.5 simply a experimentally determined "good" trigger 

value 
        timeEndRow=n-1; 
        break %exit out of for loop 
    end 
end 

  
%Find end of impact 
for n=timeEndRow+3:nn 



I-3 

 

    if(abs(AA(n,5))<1.2*abs(AA(1,5))) %1.2 relaxes criteria for ending impact 
        impactEndRow=n; 
        break 
    end 
end 
%====================================== 

  

  
%===================================== 
%This part cuts off irrelevant pre and post collision data, and multiplies 
%it by the accelerometer scaling factor, AA_scaled results in normal and 
%tangential accelerations in values of "g's" 

  
for n=1:(timeEndRow-timeBeginRow) 
    AA_scaled(n,1)=(AA(n+timeBeginRow,1)-AA(timeBeginRow,1));    %Scaling 

time to zero 
    AA_scaled(n,2)=(1000/sens)*(AA(n+timeBeginRow,2));    %Scaling Accel 1 
    AA_scaled(n,3)=(1000/sens)*(AA(n+timeBeginRow,3)+gravOffset);    %Scaling 

Accel 2 
    AA_scaled(n,4)=(2/Sg)*(AA(n+timeBeginRow,4))*(1/1000); %multiply by gage 

factor equation to obtain strain, multiply by 1/1000 to get V/V 
    AA_scaled(n,5)=(2/Sg)*(AA(n+timeBeginRow,5)-AA(timeBeginRow,5))*(1/1000); 

%multiply by gage factor equation to obtain strain, multiply by 1/1000 to get 

V/V 
end 

  

%This part takes the scaled accelerometer values and converts them to 
%angular velocity and acceleration 
for n=1:(timeEndRow-timeBeginRow) 
    AAA(n,1)=AA_scaled(n,1);    %Time Doesnt Change 
    AAA(n,2)=AA_scaled(n,2)*g/r;    %Turning Tangential Accel into angular 

Accel 
    AAA(n,3)=sqrt(AA_scaled(n,3)*g/r);    %Turning Normal Accel into angular 

Velocity 
    AAA(n,4)=AA_scaled(n,4); 
    AAA(n,5)=AA_scaled(n,5); 
end 
%===================================== 

  

  

%===================================== 
%This part captures the data for the IMPACT with the stopper pin, and 

multiplies 
%it by the accelerometer scaling factor. 
for n=1:(impactEndRow-timeEndRow) 
    impactG(n,1)=(AA(n+timeEndRow,1)-AA(timeEndRow,1));    %Scaling time to 

zero 
    impactG(n,2)=(1000/sens)*(AA(n+timeEndRow,2));    %Scaling Accel 1 
    impactG(n,3)=(1000/sens)*(AA(n+timeEndRow,3)+gravOffset);    %Scaling 

Accel 2 
    impactG(n,4)=(2/Sg)*(1/1000)*(AA(n+timeEndRow,4)-AA(timeEndRow,4)); 
    impactG(n,5)=(2/Sg)*(1/1000)*(AA(n+timeEndRow,5)-AA(timeEndRow,5)); 
end 

  

  



I-4 

 

%This part takes the  accelerometer values and converts them to 
%angular velocity and acceleration 
for n=1:(impactEndRow-timeEndRow) 
    impact(n,1)=impactG(n,1);    %Time Doesnt Change 
    impact(n,2)=impactG(n,2)*g/r;    %Turning Tangential Accel into angular 

Accel 
    impact(n,3)=sqrt(impactG(n,3)*g/r);    %Turning Normal Accel into angular 

Velocity 
    impact(n,4)=impactG(n,4); 
    impact(n,5)=impactG(n,5); 
end 
%======================================= 

  

  

  
%===================================== 
%This part takes the angular velocity, and sets the startpoint of nonzero 
%velocity to time = 0 
%This part finds where the the velocity is nonzero 
for n=1:nn 
    if(real(AAA(n,3))>0); 
        timeBeginRowOmega=n-1; 
        break %exit out of for loop 
    end 
end 
%This part rezeroes the matrix to the start of nonzero velocity 
sizeAAA=size(AAA); %Find size of Matrix 
for n=1:(sizeAAA(1,1)-timeBeginRowOmega) 
    omega(n,1)=AAA(n,1);    %Time Doesnt Change 
    omega(n,2)=AAA((timeBeginRowOmega+n),3);    %Scaling Omega 
end 
%===================================== 

  

  

  
%===================================== 
%This part performs a rough numerical integration on the angular velocity 
%in order to find position 
sizeOmega=size(omega); %Find size of velocity matrix 
for n=2:sizeOmega 
    theta(1,1)=0;   %Initial Condition for time (miliseconds) 
    theta(n,1)=omega(n-1,1); 
%    theta(1,2)=deg2rad(pullBack);    %Initial Condition for position 
    theta(1,2)=0;    %Initial Condition for position 
    theta(n,2)=(omega(n,2)+0.5*(omega(n,2)-omega(n-1,2)))*(omega(n,1)-

omega(n-1,1))+theta(n-1,2); %(velocity*change in time) 
end 
thetaTraveled = rad2deg(max(theta(:,2))) 

  

  
%-------------------------------------------------------- 
%Import Theoretical Results 
[t_theo, theta_theo, omega_rod_theo, strain_ax, I_total, I_strain, 

alpha_theo, M_theo, strain_moment] = catapultTheoreticalR2(thetaTraveled); 
%--------------------------------------------------------. 



I-5 

 

  

  
%===================================== 
%This part calculates the force on the stopper pin using the impact data 

array 
timeImpact = max(impact(:,1)); %Find time of impact 
omega_pre_impact = max(AAA(:,3)); %Angular velocity pre-impact 
F_impact = 2*(omega_pre_impact)*I_total/(L_stopper*timeImpact) 
%===================================== 

  

  

%============================================================= 
figure (1) 
%Plots accelerations and angular velocity 
%------------------------------------------------------------- 
subplot(3,1,1),plot(AA(:,1),AA(:,2),AA(:,1),AA(:,3)) 
xlabel('Time, s', 'fontsize', 12, 'fontweight', 'bold') 
ylabel('Magnitude, Volts', 'fontweight', 'bold') 
legend('Tangential Acceleration','Normal 

Acceleration','Location','NorthEast') 

  
% subplot(4,1,2),plot(AA_scaled(:,1),AA_scaled(:,4)) 
% xlabel('Time, s', 'fontsize', 12, 'fontweight', 'bold') 
% ylabel('Magnitude, g', 'fontsize', 12, 'fontweight', 'bold') 
% legend('Tangential Acceleration','Normal 

Acceleration','Location','NorthWest') 

  
subplot(3,1,2),plot(AAA(:,1),AAA(:,3),'o',t_theo,omega_rod_theo) 
xlabel('Rescaled Time, s', 'fontsize', 12, 'fontweight', 'bold') 
ylabel('Angular Velocity (rad/s)',  'fontweight', 'bold') 
legend('Experimental Angular Velocity','Theoretical Angular 

Velocity','Location','NorthWest') 

  

subplot(3,1,3),plot(AAA(:,1),AAA(:,2),'o',t_theo,alpha_theo) 
xlabel('Rescaled Time, s', 'fontsize', 12, 'fontweight', 'bold') 
ylabel('Angular Acceleration (rad/s^2)',  'fontweight', 'bold') 
legend('Experimental Angular Acceleration','Theoretical Angular Angular 

Acceleration','Location','NorthEast') 
%------------------------------------------------------------- 

  

  

  

  
%============================================================= 
figure (2) 
%Plots strain data 
%------------------------------------------------------------- 
subplot(3,1,1),plot(AA(:,1),AA(:,4),AA(:,1),AA(:,5)) 
xlabel('Time, s', 'fontsize', 12, 'fontweight', 'bold') 
legend('Axial Strain Voltage','Moment Strain Voltage','Location','NorthEast') 
ylabel('Strain Voltage, mV/V', 'color', 'black', 'fontsize', 12, 

'fontweight', 'bold') 

  
subplot(3,1,2),plotyy(AA_scaled(:,1),AA_scaled(:,4),t_theo,strain_ax) 



I-6 

 

legend('Theoretical Axial Strain','Experimental Axial 

Strain','Location','NorthWest') 
xlabel('Rescaled Time, s', 'fontsize', 12, 'fontweight', 'bold') 
ylabel('Strain ft/ft', 'color', 'black', 'fontsize', 12, 'fontweight', 

'bold') 

  
subplot(3,1,3),plotyy(AA_scaled(:,1),AA_scaled(:,5),t_theo,strain_moment) 
legend('Theoretical Axial Strain','Experimental Axial 

Strain','Location','NorthWest') 
xlabel('Rescaled Time, s', 'fontsize', 12, 'fontweight', 'bold') 
ylabel('Strain ft/ft', 'color', 'black', 'fontsize', 12, 'fontweight', 

'bold') 
%------------------------------------------------------------- 

  

  

  
%============================================================= 
figure (3) 
%plots impact data 
%------------------------------------------------------------- 
subplot(4,1,1), plot(impact(:,1),impact(:,2),'o',impact(:,1),impact(:,2)) 
xlabel('Impact Time, s', 'fontsize', 12, 'fontweight', 'bold') 
legend('Angular Acceleration','Location','NorthEast') 
ylabel('(rad/s^2)',  'fontweight', 'bold') 

  
subplot(4,1,2), plot(impact(:,1),impact(:,3),'o',impact(:,1),impact(:,3)) 
xlabel('Impact Time, s', 'fontsize', 12, 'fontweight', 'bold') 
legend('Angular Velocity Magnitude','Location','NorthEast') 
ylabel('(rad/s)',  'fontweight', 'bold') 

  
subplot(4,1,3), plot(impact(:,1),impact(:,4),'o',impact(:,1),impact(:,4)) 
xlabel('Impact Time, s', 'fontsize', 12, 'fontweight', 'bold') 
legend('Axial Strain','Location','NorthEast') 
ylabel('Strain (in/in)','fontweight', 'bold') 

  
subplot(4,1,4), plot(impact(:,1),impact(:,5),'o',impact(:,1),impact(:,5)) 
xlabel('Impact Time, s', 'fontsize', 12, 'fontweight', 'bold') 
legend('Moment Strain','Location','NorthEast') 
ylabel('Strain (in/in)','fontweight', 'bold') 
%------------------------------------------------------------- 

  

  
%============================================================= 
figure (4) 
%plots raw readings 
%------------------------------------------------------------- 
subplot(4,1,1), plot(AA(:,1),AA(:,2)) 
xlabel('Total Time, s', 'fontsize', 12, 'fontweight', 'bold') 
legend('Tangential Acceleration Voltage','Location','NorthEast') 
ylabel('Volts',  'fontweight', 'bold') 

  
subplot(4,1,2), plot(AA(:,1),AA(:,3)) 
xlabel('Total Time, s', 'fontsize', 12, 'fontweight', 'bold') 
legend('Normal Acceleration Voltage','Location','NorthEast') 
ylabel('Volts',  'fontweight', 'bold') 



I-7 

 

  
subplot(4,1,3), plot(AA(:,1),AA(:,4)) 
xlabel('Total Time, s', 'fontsize', 12, 'fontweight', 'bold') 
legend('Axial Strain Voltage','Location','NorthEast') 
ylabel('mV/V', 'fontweight', 'bold') 

  
subplot(4,1,4), plot(AA(:,1),AA(:,5)) 
xlabel('Total Time, s', 'fontsize', 12, 'fontweight', 'bold') 
legend('Moment Strain Voltage','Location','NorthEast') 
ylabel('mV/V', 'fontweight', 'bold') 
%------------------------------------------------------------- 

 



J-1 

 

Appendix J  Catapult Theoretical Code 
%Theoretical Catapult Code 

%Lawrence Fong 
%ME599 

  
function [t_theo, theta_theo, omega_rod_theo, strain_ax, I_total, I_strain, 

alpha_theo, M_theo, strain_moment] = catapultTheoreticalR2(thetaTraveled) 

  

  
%------------------- 
%Catapult Parameters 
%------------------- 
theta_stopper = 125; %Location of stopper pin 

  
travel_accept=input(['Accept Numerically Integrated Travel Distance?' 

'(1=yes,0=no):  ']); 
if travel_accept == 1 
    thetaTraveled = round(thetaTraveled); 
elseif travel_accept == 0 
    thetaTraveled = input('Enter in angle between stopper pin and pullback 

angle:  '); 
else 
    error('Incorrect Entry (1 or 0)') 
end 

     

  

  
thetaTraveled = round(thetaTraveled);     %80 degrees corresponds to the 

100deg position on the catapult markings 

  

  
g       = 32.2;      %Gravity in ft/s^2 
qtyBands= 1;         %Number of Rubber Bands Used 
m_arm   = 0.281/g;   %Pounds 
m_cup   = 0.055/g; %Mass of the ammo cup (lbs) 
m_egg   = 0.00/g;    %Mass of the egg (lbs) 
m_total = m_arm+m_cup+m_egg; %Total Mass 
w_arm   = (1/12);    %Dimension of arm cross section, parallel to direction 

of rotation 
t_arm   = (0.75/12);    %Dimension of arm cross section, perpendicular to 

direction of rotation 
A_arm   = (w_arm)*(t_arm); %Cross sectional area of catapult arm 

  
L_strain= 4.75/12;    %Length from catapult arm pivot to mounted strain gages 
L_arm   = 14.25/12;  %Length of catapult arm (feet) 
L_u     = 15/12;  %Unstretched length of rubber band 
AP      = 8.375/12;  %Length from Rubber band attachment on base to rotating 

pin. 
OC      = 13.25/12;  %Length from the pivot point to the ammo cup 
O_x     = 6.5/12;    %X-Length from arm pivot to rubber band attachment on 

base 
O_y     = 0;         %Y-Length from arm pivot to base 
P       = 0;         %Y-Length from base to rubber band attachment on base 



J-2 

 

d_arm   = m_arm/(L_arm*t_arm*w_arm); %density of arm 

  
E_wood  = 1600000;   %Elastic Modulus of Wood in lb/in^2 

  

OH      = 11.75/12;  %Length from pivot pin to eye hook 
thetaInit  = 180-(theta_stopper+thetaTraveled);      %0 degrees corresponds 

to the 180deg position on the catapult markings 
thetaFinal = thetaTraveled + thetaInit; 
thetaStep  = 0.01;   %Unitless 
%------------------- 

  

  
%------------------------------- 
% Creating Array of theta Values 
%------------------------------- 
theta_theo=thetaInit:thetaStep:thetaFinal; 
%------------------------------- 

  

  
%---------------------------------------------------- 
% Finding Effective Center of Mass of Arm + Cup + Egg 
%---------------------------------------------------- 
L_cm=(m_arm*(L_arm/2)+(m_cup+m_egg)*OC)/(m_arm+m_cup+m_egg); %Location of 

catapult arm+cup+egg center of mass 
m_arm_eff = d_arm*(L_arm-L_strain)*w_arm*t_arm; %Effective arm mass above 

mounted gage 
m_tot_eff = m_arm_eff + m_cup + m_egg; %total mass above mounted gage 
L_cm_strain = (m_arm_eff*((L_arm-

L_strain)/2+L_strain)+(m_cup+m_egg)*OC)/(m_arm_eff+m_cup+m_egg); 
r_strain = (L_cm_strain - L_strain); %Distance between strain gage and center 

of mass 
%---------------------------------------------------- 

  

  

  
%------------------------------------------------ 
% Calculating Rubber Band Length and Displacement 
%------------------------------------------------ 
AH_y = (AP + P) - (OH.*sind(theta_theo) + O_y); %x-distance in feet 
AH_x = O_x + OH.*cosd(theta_theo); %y-distance in feet 
AH=sqrt(AH_x.^2+AH_y.^2); %Distance from rubber band attachment on arm to 

pivot pin 

  
theta_band=(atan(AH_y./AH_x)+deg2rad(theta_theo))'; 

  
%Displacement of Rubber band: 
L_s = AH + AP; %Stretched length of rubber band 
dL = L_s - L_u; %Displacement of rubber band (stretch - unstretch) 

  
%Spring Constant of Rubber Band 
E_band=zeros((thetaFinal-thetaInit)/thetaStep+1,1);  %Creates zero matrix to 

perform for loop 
E_pot=zeros((thetaFinal-thetaInit)/thetaStep+1,1);  %Creates zero matrix to 

perform for loop 



J-3 

 

F_band=zeros((thetaFinal-thetaInit)/thetaStep+1,1); %Creates zero matrix to 

perform for loop 

  
%Creates an array of Energy stored in rubber band and magnitude of Force of 

the rubber band for every theta position 
for n=1:(thetaFinal-thetaInit)/thetaStep+1 
     %Taken from experimentally determined equation trendline fit 
     F_band(n)= qtyBands*(3.465*dL(n)^3 - 9.677*dL(n)^2 + 13.55*dL(n) + 

0.091); 
     E_band(n)= qtyBands*(3.465/4*dL(n)^4 - 9.677/3*dL(n)^3 + 13.55/2*dL(n)^2 

+ 0.091*dL(n)); 
    E_pot(n) = m_total*L_cm*sind(theta_theo(n)); 
end 
%------------------------------------------------ 

  

  
%---------------------------------------------------- 
% Applying Energy Principles to find Angular Velocity 
%---------------------------------------------------- 
I_total = (1/3)*m_arm*(L_arm)^2 + (m_cup + m_egg)*(OC)^2; %Inertia of the 

(arm + cup + egg) in ft^2 
I_strain = (1/12)*m_tot_eff*(L_arm-L_strain)^2+m_tot_eff*(L_cm_strain-

r_strain)^2;%in ft^2 

  
omega_rod_theo=zeros((thetaFinal-thetaInit)/thetaStep+1,1); 
for n=1:(thetaFinal-thetaInit)/thetaStep+1 
%The following equation takes the difference in starting ruber band 
%energy E_band(1) and rubber band energy at E_band(n) and uses this to 
%calculate the angular velocity of the system. 
    omega_rod_theo(n)=sqrt(2*(E_band(1)-E_band(n)+E_pot(1)-

E_pot(n))/I_total); %angular velocity of (arm + cup + egg) 
end 
%---------------------------------------------------- 

  
%---------------- 
% Estimating Time 
%---------------- 
t_theo=zeros((thetaFinal-thetaInit)/thetaStep+1,1); %Creates zero matrix to 

perform for loop 
for n=2:(thetaFinal-thetaInit)/thetaStep+1 
    t_theo(n)= t_theo(n-1) + deg2rad(theta_theo(n)-theta_theo(n-

1))/omega_rod_theo(n); %Takes theta/omega to estimate time 
end 
%---------------- 

  

  
%----------------------------------------------- 
% Using Angular Velocity to Calculate for Strain 
%----------------------------------------------- 
%Find Normal Force: 
F_n=m_tot_eff.*omega_rod_theo.^2.*r_strain;    %Finds normal force due to the 

centripetal acceleration of catapult arm 
F_net=F_n-F_band.*cos(theta_band);  %Finds net axial force (F_normal - 

F_band_axial) on catapult arm 
%Find Axial Strain 



J-4 

 

stress_ax = F_net./A_arm;            %Finds axial stress (lb/ft^2) 
strain_ax = stress_ax./(E_wood*12^2);%Finds axial strain, E_wood is given in 

inches 

  

  
%Find Angular Acceleration 
alpha_theo = F_band.*sin(theta_band)*OH/I_total; 

  
%Find Theoretical Moment 
M_theo = I_strain.*alpha_theo-F_band.*sin(theta_band)*(OH-

r_strain)+m_tot_eff.*(alpha_theo.*(L_cm_strain-r_strain).*(L_cm_strain-

r_strain)); 
%Find Theoretical Strain: 
stress_moment = M_theo*(w_arm/2)/(1/12*t_arm*w_arm^3); 
strain_moment = stress_moment/(E_wood*12^2); 
%----------------------------------------------- 

 



K-1 

 

Appendix K  Selected Catapult Hand Calculations 
 

 



K-2 

 



K-3 

 



K-4 

 



L-1 

 

Appendix L  ADXL-278 Specifications 

 



L-2 

 

 



L-3 

 

 



L-4 

 

 



L-5 

 

 



L-6 

 

 



L-7 

 

 



L-8 

 

 



L-9 

 

 


