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ABSTRACT 

Sex And Microhabitat Influence The Allocation Of Mycosporine 

-Like Amino Acids To Tissues In The Purple Sea Urchin,  

Strongylocentrotus Purpuratus 

Sarah A. Gravem 

 

 Field surveys of Strongylocentrotus purpuratus demonstrated that concentrations 

of natural sunscreens, mycosporine-like amino acids (MAAs), were higher in females than 

males for both gonadal and epidermal tissues, increased in ovaries as spawning season 

approached, and were influenced by the sea urchins’ microhabitat. Sea urchins occupying 

burrows, or “pits”, had lower concentrations of MAAs than those outside pits, suggesting 

a trade-off between physical and UV protection. Overall, UV irradiance did not influence 

MAA accumulation in gonadal tissues. However, males increased their allocation of 

MAAs to epidermal tissues in the microhabitat with the highest irradiance. Relative 

concentrations of individual MAAs were similar for epidermal tissues from both sexes and 

ovaries, providing broadband UVA/UVB absorbance, but testes contained principally one 

MAA, palythine. This is the first study to demonstrate that S. purpuratus and eight species 

of macroalgae in California have MAAs, and that the concentrations can be influenced by 

microhabitat. 
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CHAPTER 1.  INTRODUCTION TO THE THESIS 

Despite efforts to reduce emissions of ozone-depleting substances, the penetration 

of harmful ultraviolet radiation (UVR), specifically UVB (280- 320 nm) through the 

thinned ozone layer is predicted to continue above pre-1970’s levels for several decades 

(McKenzie et al. 2007). UVR levels reaching Earth’s surface may also be increased by 



 2 

global climate change through alteration of cloudiness and albedo, and through continued 

polar stratospheric cooling, which reduces ozone and may hinder ozone-recovery at mid-

latitudes (McKenzie et al. 2007). In the ocean, UVB penetrates to several meters depth in 

temperate coastal waters, with UVA (320-400 nm) penetrating meters deeper than UVB 

(Franklin and Forster 1997; Banaszak et al. 1998; Tedetti and Sempere 2006). Increasing 

UVR levels can also cause photobleaching in chromophoric dissolved organic matter 

(CDOM), further increasing UVR penetration (Anderson et al. 2001). Therefore, marine 

organisms inhabiting shallow waters, such as macroalgae and invertebrates, are at 

particular risk. Further, intertidal organisms that are emersed during daytime low tides are 

exposed to unfiltered UVR.  

UVR, particularly UVB, is detrimental to many marine organisms, including 

benthic macroalgae, pelagic invertebrate larvae (Adams and Shick 1996; 2001), and adult 

invertebrates (Dey et al. 1988; Gleason 1993). The direct effects of UVB include damage 

to DNA and RNA through formation of pyrimidine dimers (Buma et al. 1995; van de Poll 

et al. 2002), and protein damage (Bischof et al. 2000; Sinha et al. 2005). UVA can 

indirectly damage cells by creating reactive oxygen species (ROS), which can damage 

DNA, proteins, lipids and cause apoptosis (Tyrrell 1991; Pourzand and Tyrrell 1999; 

Lesser 2006). In benthic macroalgae, exposure to UVR reduces growth and 

photosynthesis and cause decreased offspring survival (Wood 1987; Wiencke et al. 

2000). In sea urchins, which are classic model organisms for studies of UV-effects on 

marine invertebrates, solar UVR can cause cyclobutane pyrimidine dimers, 

developmental delays, abnormalities and death in larvae (Adams and Shick 1996; 2001; 

Lesser et al. 2004; Lamare et al. 2007) and is behaviorally avoided by adults (Sharp and 
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Gray 1962; Adams 2001).  At the community level, UVR can reduce biomass, 

productivity and diversity and alter marine community composition (Worrest et al. 1978; 

Bothwell et al. 1994; Lotze et al. 2002). 

Many organisms contain defenses against UVR. For example, many organisms 

mitigate DNA damage using the enzyme photolyase, which monomerizes pyrimidine 

dimers (Eker et al. 1990; van de Poll et al. 2002). In addition, algae and invertebrates 

contain many molecules with antioxidant capabilities, some of which are upregulated in 

response to UVR (Lesser 1996; Lesser et al. 2003). While important, repair mechanisms 

are likely energetically costly; energy may be better spent in preventing, rather than 

repairing, damage using UVR-absorbing sunscreens. 

A preventative defense against UVR-induced damage that is ubiquitous in marine 

organisms, including macroalgae and invertebrates, is the presence of mycosporine-like 

amino acids (MAAs).  MAAs are a suite of water-soluble compounds that absorb light in 

the UVA and UVB range (310-360 nm) and may dissipate its energy harmlessly (Conde 

et al. 2000; Shick et al. 2000).  They are stable over long periods of time in vivo (Adams 

and Shick 2001; Adams et al. 2001) and have overlapping absorption ranges, which in 

concert cover much of the harmful natural UVR spectrum (Dunlap and Shick 1998). 

Synthesis of MAAs occurs through the shikimic acid pathway (Favre-Bonvin et al. 1987), 

which appears to be absent in animals (Shick et al. 1999). MAAs are produced by 

shallow-water red macroalgae from the phylum Rhodophyta, and also by some species of 

brown and green macroalgae, various phytoplankters, and fungi (Shick and Dunlap 

2002). They have also been found in many marine invertebrate species and some fishes 

(Shick and Dunlap 2002), and experimental evidence shows that these organisms obtain 
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MAAs through their diet or symbioses with MAA-producing organisms (Carroll and 

Shick 1996; Shick et al. 1999; Newman et al. 2000).  

Multiple studies have shown a correlation between exposure to UV and the 

concentration of MAAs within organisms. Natural and artificial UVR can stimulate MAA 

production in algae and MAA accumulation in invertebrates with photosynthetic 

symbionts (Dunlap et al. 1986; Franklin et al. 1999; Shick et al. 1999; Hoyer et al. 2002; 

Shick and Dunlap 2002). The concentration of MAAs decreases with increasing depth in 

macroalgae and sea urchins (Karentz et al. 1997; Karsten et al. 1999; Karsten and 

Wiencke 1999) and upregulation of MAAs often occurs when transplanting macroalgae 

to shallower waters, especially in treatments using unfiltered sunlight (i.e. with UVR; 

Wood 1989). Increased concentrations of MAAs in macroalgae have also been found in 

lower latitude compared to higher latitude species (Karsten et al. 1998a; 1998b), during 

the summer months (Wood 1987; Karsten et al. 1999; Aguilera et al. 2002) and in 

conspecifics in sun-exposed compared to shaded microhabitats (Karsten et al. 1999; 

Figueroa et al. 2003). Both algae and invertebrates show increased concentrations of 

MAAs in reproductive tissues and gametes (Adams and Shick 1996; Carroll and Shick 

1996; Carefoot et al. 2000; Karsten et al. 2000) as well as in epidermal tissues in 

invertebrates and growing tissues in algae (Shick et al. 1992; Carroll and Shick 1996; 

Bandaranayake and Des Rocher 1999; Karsten et al. 1999; Karsten et al. 2000).  The 

correlation of MAA concentration with these factors further implicates MAAs as 

protective UVR sunscreens.  

Other studies have demonstrated that MAAs serve at least in part as sunscreens 

against UV- induced damage. MAAs protect sea urchin embryos from UVR-induced 
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delay of the first cell division and developmental abnormalities (Adams and Shick 1996; 

2001). The concentration of MAAs also correlates positively with the ability of algae to 

resist inhibition of photosynthesis in the presence of UVR (Neale et al. 1998; Karsten et 

al. 1999).  

Sea urchins, especially their larvae, have served as good model organisms for 

testing model of accumulation and the protective role of MAAs (Adams and Shick 1996; 

2001; Lesser et al. 2004; 2006). However, at present there is only one published account 

of the widely studied California purple sea urchin, Strongylocentrotus purpuratus 

(Stimpson), being tested for MAAs (Lamare and Hoffman 2004). The concentration of 

MAAs found in the individual S. purpuratus was extremely low (0.004 and 0.022 nmol 

mg-1 dry wt. for ovaries and eggs, respectively), and spectrophotometric scans showed 

little light absorbance in the UV range (Lamare and Hoffman 2004; Sinha et al. 2007).  

S. purpuratus was the first invertebrate deuterostome to have its genome sequenced 

(Sodergren et al. 2006), and is important for structuring ecologically and economically 

valuable kelp forest and rocky intertidal ecosystems (Dayton 1975; Pearse 2006). It has 

long been a model organism for developmental biology (Jasny and Purnell 2006), 

including numerous studies on the effects of UV radiation on development (Wells and 

Giese 1950; Giese 1964; Zeitz et al. 1968; Lamare and Hoffman 2004). Thus, an 

understanding of the presence, distribution and functions of MAAs in adult and larval 

S. purpuratus is imperative to understand the physiology of this model organism. 

The ecology of S. purpuratus makes it likely that they contain MAAs. Larvae of 

S. purpuratus, like other pelagic larvae, seem especially vulnerable to UVR because of 

their small size, lack of protective covering, and rapid rates of cell division. Though 
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echinoderm larvae have been found to sink in response to solar UVR and are negatively 

geotropic (Pennington and Emlet 1986), they are likely advected into shallow parts of the 

water column (Denny and Shibata 1989), where they would be exposed to UV irradiance. 

Adult intertidal S. purpuratus are also frequently exposed to UVR, and the majority of 

their diet consists of macroalgae, including MAA-rich Rhodophytes. Purple sea urchins 

exhibit two feeding modes. When grazing, they scrape benthic algae from the substrate. 

In addition, they use their tube feet to catch floating drift algae for consumption (Ebert 

1968; Dayton 1975). A similar species, S. droebachiensis, has the ability to acquire 

dietary MAAs in various body tissues (Carroll and Shick 1996) and their embryos are 

protected from UVR by MAAs (Adams and Shick 1996; 2001). The exposure of purple 

sea urchins to UVR as larvae and as adults in the intertidal, the fact that they consume a 

diet potentially rich in MAAs, and that tissues of congenerics contain MAAs, makes it 

likely that purple sea urchins can acquire MAAs from their diets.  

A preliminary study on S. purpuratus collected on California’s Central Coast, 

confirmed the presence of MAAs in methanolic extracts of mature gonadal tissues 

(Chang and Adams, unpublished data). In the study, adult S. purpuratus were collected 

from each of four sites on the Californian Central Coast. Sites included three rocky 

intertidal locations: Hazards Beach at Montaña de Oro State Park, the jetty at Port San 

Luis in Avila Beach, and the University of California Kenneth S. Norris Rancho Marino 

Reserve in Cambria; the fourth site was a subtidal rocky reef in Goleta, California. The 

results of this study showed some differences between sites, with intertidal sea urchins 

from Avila having higher concentrations of MAAs than subtidal sea urchins from Santa 

Barbara (P = 0.031), but in general the variation within the sites was extremely high 
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(Hazards: 0.12 ± 0.28, Avila: 0.54 ± 0.62, Rancho Marino: 1.64 ± 3.05, Santa Barbara: 

0.02 ± 0.03 mean nmol mg-1 dry wt. ± S.D.). Further, there was no significant difference 

in concentrations of MAAs between the sexes (P = 0.349), as has been found in other 

Strongylocentrotus species (Carroll and Shick 1996). This was because the 

concentrations of MAAs were extremely variable (ovaries: 0.58 ± 1.6, testes: 0.19 ± 0.14 

mean nmol mg-1 dry wt. ± S.D.), especially for ovaries, which ranged in MAAs from 0.00 

nmol mg-1 dry wt. to 7.09 nmol mg-1 dry wt. Because the sea urchins used in this study 

were collected without regard for microhabitat conditions (e.g. tidal height, degree of 

shading or burrowing behavior), the large variation observed in this study may have been 

due to fine-scale microhabitat variation affecting the availability or uptake of MAAs in 

purple sea urchins.  

Because intertidal purple sea urchins are fairly sedentary (Grupe 2006, personal 

observation), it is likely that their local environmental conditions, their microhabitat, will 

affect their exposure to UVR and their algal intake. Microhabitat factors, including 

exposure to UVR and diet, could affect MAA uptake and allocation to sea urchin tissues, 

which should affect the health of adult urchins, as well as offspring survival (Adams and 

Shick 1996; 2001) and ultimately fitness. While exposure to UVR triggers increased 

uptake of MAAs in algae and symbiotic invertebrates (Franklin et al. 1999; Shick et al. 

1999; Hoyer et al. 2002), it has been shown to be ineffective in increasing the 

concentration of MAAs in the green sea urchin S. droebachiensis (Adams et al. 2001). 

However, Adams et al. (2001) only sampled ovarian tissue, which is shielded from UVR 

by the test. Further, Strongylocentrotus species are broadcast spawners with pelagic 

larval phases lasting weeks to months (Strathmann 1987), so it would likely be 
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maladaptive for an adult sea urchin to allocate MAAs to its offspring based on its own 

immediate irradiance condition. Conversely, microhabitat variation in UVR exposure 

may cause changes in the uptake or allocation of MAAs to other tissues, such as the 

epidermis, or cause changes in the relative concentrations of individual MAAs among 

various tissues, as has been suggested for tropical sea cucumbers (Shick et al. 1992). 

For this study, we identified microhabitat conditions that may affect intertidal 

purple sea urchin exposure to UVR and MAA accumulation from algal diets. The first is 

rock surface orientation to the sun and the other is the occurrence of sea urchins in “pits”. 

Intertidal S. purpuratus exhibit burrowing behavior, where they slowly excavate pits in 

the substratum (Morris et al. 1980), which may serve to protect them from predation 

(Grupe 2006) and from waves easily capable of dislodging sea urchins (Denny and 

Gaylord 1996). Sea urchins living inside pits (hereafter “Pit urchins”) may also 

experience decreased desiccation, temperature stress, and exposure to UVR, all of which 

would likely be advantageous. However, the potential advantages of burrowing behavior 

may also reduce the ability of S. purpuratus to graze and to catch drift algae, and Pit 

urchins have been shown to experience lower growth rates, likely due to reduced feeding, 

compared to nearby sea urchins living outside of pits (hereafter "Non-pit urchins" after 

Grupe 2006). This probable reduction in feeding in Pit urchins compared to Non-pit 

urchins could affect not only MAA intake, but also total reproductive output, because 

gonad size and the abundance of nutritive cells is associated with increased nutrition 

(Minor and Scheibling 1997).  

To further understand how microhabitat, algal availability, season and sex affect 

MAA concentrations in intertidal purple sea urchin tissues, S. purpuratus and ten 



 9 

common species of red macroalgae were collected from a rocky intertidal zone and the 

concentrations of MAAs were measured. Algae and sea urchins were taken from tide 

pools representing four microhabitats. To determine the effect of sea urchin burrowing 

behavior on MAA content in sea urchins, the first two microhabitats contained sea 

urchins inside and outside of pits on horizontally oriented rock surfaces (Pit and Non-pit 

urchins, respectively). To determine the effects of differential UV irradiance on MAA 

content in sea urchins and algae, the other two microhabitats were vertical surfaces 

oriented Southward (increased irradiance) or Northward (decreased irradiance), and sea 

urchins were not in pits. The concentration of MAAs in sea urchins was measured for 

both gonadal and epidermal tissues to determine whether microhabitat affected 

preferential allocation of MAAs to different tissues. Both male and female urchins were 

collected and analyzed to investigate whether any patterns in uptake and allocation were 

sex-specific. Algal and sea urchins collections were done during the season when sea 

urchins were accumulating gonadal tissue and gametes were developing, and sea urchins 

were collected again just before spawning to track changes in the concentration of MAAs 

as gametes approached maturity.  

Based on previous studies, we predicted that intertidal S. purpuratus gonads and 

epidermis would contain MAAs. We hypothesized that all the species of red macroalgae 

sampled would contain MAAs, and their concentrations of MAAs would be increased in 

higher irradiance microhabitats. We also expected Pit urchins to have lower total 

concentrations of MAAs than Non-pit urchins, and that epidermal, but not gonadal, 

concentrations of MAAs would be increased in higher irradiance microhabitats. In 

addition, we predicted that epidermal concentrations of MAAs should be similar among 
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the sexes, but that concentrations of MAAs in ovaries would be higher than those in 

testes, as was found in S. droebachiensis (Carroll and Shick 1996). 
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CHAPTER 2. MANUSCRIPT 

Introduction to the Manuscript 

Despite efforts to reduce emissions of ozone-depleting substances, the penetration 

of harmful ultraviolet radiation (UVR), specifically UVB (280-320 nm) through the 

thinned ozone layer is predicted to continue above pre-1970’s levels for several decades 

(Madronich et al. 1998; McKenzie et al. 2007). Levels of UVR reaching Earth’s surface 

may also be increased by global climate change through continued polar stratospheric 

cooling, which may hinder ozone-recovery at mid-latitudes (McKenzie et al. 2007). In 

temperate coastal waters, UVB penetrates to several meters depth, with UVA (320-400 

nm) penetrating meters deeper than UVB (Franklin and Forster 1997; Banaszak et al. 

1998; Tedetti and Sempere 2006). Therefore, marine organisms inhabiting shallow waters 

or exposed during low tides, such as macroalgae and invertebrates, are at particular risk 

for UVR damage.  

UVR is detrimental to many marine organisms, including macroalgae and adult 

and larval invertebrates (Dey et al. 1988; Gleason 1993; Franklin and Forster 1997; 

Adams and Shick 2001). UVR can directly damage DNA, RNA and proteins as well as 

promote the formation of reactive oxygen species, which can also damage cellular 

components (Tyrrell 1991; Buma et al. 1995; Pourzand and Tyrrell 1999; van de Poll et 

al. 2002; Lesser 2006). Many organisms have defenses that mitigate UVR damage 

including photorepair and antioxidative enzymes (Eker et al. 1990; Lesser 1996; van de 

Poll et al. 2002; Lesser and Barry 2003). While important, repair mechanisms are likely 

energetically costly; energy may be better spent in preventing, rather than repairing, 

damage using UVR-absorbing sunscreens.  
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One such preventative defense against UVR-induced damage that is ubiquitous in 

marine organisms is the presence of mycosporine-like amino acids (MAAs).  MAAs are a 

suite of water-soluble compounds that absorb UVR in the UVA and UVB range (309-360 

nm) (reveiwed by Shick et al. 2000).  MAAs are stable over long periods of time in vivo 

(Adams and Shick 2001; Adams et al. 2001) and their overlapping absorption ranges 

cover much of the UVR spectrum (Dunlap and Shick 1998). MAAs are synthesized using 

the shikimic pathway (Favre-Bonvin et al. 1987) by red macroalgae (Phylum 

Rhodophyta), some species of brown and green macroalgae, various phytoplankters, 

symbiotic zooxanthellae and fungi (reveiwed by Shick and Dunlap 2002). In addition, 

many marine invertebrate species and some fishes contain MAAs (reveiwed by Shick and 

Dunlap 2002; Sinha et al. 2007), and appear to obtain the MAAs through their diet or 

symbioses (Carroll and Shick 1996; Shick et al. 1999; Carefoot et al. 2000; Newman et 

al. 2000). MAAs have been shown to protect Strongylocentrotus droebachiensis sea 

urchin embryos from UVR-induced damage (Adams and Shick 1996; 2001) and 

phytoplankton against photoinhibition caused by UVR (Neale et al. 1998; Karsten et al. 

1999). The findings of these studies implicate MAAs as protective UVR sunscreens.  

Sea urchins, especially their embryos, have served as model organisms for 

examining the negative effects of UVR on development and the protective role of MAAs 

(Adams and Shick 1996; 2001; Lesser et al. 2004; 2006). Although much work has been 

performed on the role of MAAs in the green sea urchin, Strongylocentrotus 

droebachiensis, little work has been done on the California purple sea urchin 

Strongylocentrotus purpuratus (Stimson). The purple sea urchin stands out as a widely-

studied model organism in molecular biology, and was the first invertebrate deuterostome 
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to have its genome sequenced (Sodergren et al. 2006). However, to our knowledge there 

is only one published account of MAAs in the widely studied California purple sea 

urchin, S. purpuratus (Lamare and Hoffman 2004).  In their study, Lamare and Hoffman 

(2004) found extremely low concentrations of MAAs in gonadal extracts of a single S. 

purpuratus individual from Washington State.  

The above result seems unusual because the ecology of purple sea urchins makes 

it likely that they can contain MAAs. Transparent, developing larvae of S. purpuratus are 

especially vulnerable to UVR and they are likely advected into shallow waters (Denny 

and Shibata 1989) during the weeks to months they develop in the water column 

(Strathmann 1987). Adult intertidal S. purpuratus are also frequently exposed to UVR, 

and a large proportion of their diet consists of MAA-producing Rhodophyte macroalgae, 

which they either graze from the substrate or catch with their tube feet from the water 

column (Ebert 1968; Dayton 1975). 

Moreover, a preliminary study in our laboratory on S. purpuratus collected from 

four sites along California’s Central Coast confirmed the presence of MAAs in mature 

gonadal tissues (Chang and Adams, unpublished data). Some ovary samples of S. 

purpuratus collected in this study had higher concentrations of MAAs (0.08 – 7.09 nmol 

mg-1 dry wt.) than testes (0.02 – 0.44 mg-1 dry wt.), but in general the variation was 

extremely high within sexes and sites. Because the sea urchins used in this study were 

collected without regard for microhabitat conditions (e.g. tidal height, degree of shading 

or burrowing behavior), the large variation observed may have been due to fine-scale 

variation in microhabitat, affecting the availability or uptake of MAAs by sea urchins.  
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Intertidal purple sea urchins are fairly sedentary (Grupe 2006; personal 

observation), so it is likely that their local environmental conditions, their microhabitat, 

will affect their exposure to UVR and their algal intake over time. These could affect 

MAA uptake and allocation to tissues, which should affect the health of adult urchins as 

well as offspring survival (Adams and Shick 1996; 2001) and ultimately fitness. While 

exposure to UVR triggers increased uptake of MAAs in algae and symbiotic invertebrates 

(Franklin et al. 1999; Karsten et al. 1999; Shick et al. 1999; Hoyer et al. 2002), it was 

ineffective in increasing the concentration of MAAs in the gonads of adult green sea 

urchins (S. droebachiensis) (Adams et al. 2001). However, Adams et al. (2001) only 

examined ovaries, and increased UVR exposure may cause an increase in the uptake or 

allocation of MAAs to other tissues, such as the epidermis or testes. 

To further understand how microhabitat, algal availability, season and sex affect 

MAA concentrations in intertidal purple sea urchin tissues, concentrations of MAAs were 

measured in adult S. purpuratus and ten common species of red macroalgae collected 

from the intertidal zone. Sea urchins and algae were collected from microhabitats which 

may affect intertidal purple sea urchins’ exposure to UVR or MAA acquisition from algal 

diets, including those with sea urchins on rock surfaces facing Northward (more shaded) 

and Southward (less shaded) as well as those with sea urchins in and out of “pits,” which 

they excavate and inhabit in the substratum (Morris et al. 1980). The concentrations of 

MAAs in sea urchins were measured for both gonadal and epidermal tissues, and 

collections were performed two times, before and at the start of peak reproductive season 

for sea urchins; algal collections were performed in the fall before sea urchin 

reproductive season. 
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We predicted that intertidal S. purpuratus gonads and epidermis would contain 

MAAs and that all the species of red macroalgae sampled would contain MAAs. We also 

expected sea urchins in pits to have lower total concentrations of MAAs than those out of 

pits because of less access to algal resources, and that epidermal, but not gonadal, 

concentrations of MAAs would be increased in higher irradiance microhabitats. We also 

predicted that epidermal concentrations of MAAs should be similar among the sexes, but 

that concentrations of MAAs in ovaries would be higher than those in testes, similar to 

patterns observed in S. droebachiensis (Carroll and Shick 1996). 
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Methods 

Adult S. purpuratus and ten species of macroalgae from the phylum Rhodophyta 

were collected from a rocky intertidal bench on the jetty at Port San Luis in Avila Beach, 

California (35˚09’N, 120˚45’W). Sea urchins and macroalgae were collected from four 

microhabitats including: 1) horizontally-oriented surfaces in tide pools where sea urchins 

were not burrowed into pits (hereafter the “Non-pit” microhabitat), 2) horizontally-

oriented surfaces in tide pools where sea urchins were burrowed into pits (hereafter the 

“Pit” microhabitat), 3) South facing vertical surfaces in tide pools with sea urchins 

outside of pits (hereafter the “South facing” microhabitat) and 4) North facing surfaces 

walls in tide pools with sea urchins outside of pits (hereafter the “North facing” 

microhabitat).  Inhabiting a pit may decrease S. purpuratus’ algal intake because of 

reduced mobility as well as decrease irradiance levels experienced, and inhabiting a 

vertical wall should decrease the irradiance levels experienced by sea urchins, more so in 

the North facing than South facing microhabitat. For each microhabitat, three 

representative tide pool stations were chosen, and all stations were within 50 meters of 

one another. 

Station Measurements 

In order to ensure that the microhabitats’ orientation to the sun (i.e. South facing 

vs. flat vs. North facing) was related to actual irradiance level, a Solar Pathfinder 

(Perusion) was used to obtain monthly average irradiance measurements for each station 

based on the angle of the sun and the amount of shading from nearby rocks. August 

through January measurements were used in analyses to coincide with algal and sea 
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urchin collections as well as the gametogenic cycle of S. purpuratus (Pearse et al. 1970; 

Giese et al. 1991).  

Because temperature may affect algal and sea urchin physiology, the average 

temperature for each station was determined from November 2006 to January 2007 using 

HOBO pendant temperature recorders. Tidal height was also measured for each station, 

and all stations were between 0.8 and 1.4m above mean lower low water (MLLW). This 

small (< 1m) range in intertidal height helped validate the comparison of the irradiance 

measurements above, because variation among stations in attenuation of solar irradiance 

by water was likely low. Prior to collections, sea urchin density for each station was 

measured to enable testing for any effects of herbivory on algae or competition in sea 

urchins on the concentration of MAAs. 

In order to characterize the availability of MAAs to sea urchins among the 

microhabitats, both attached and drift algal availability were sampled monthly from 

October 2006 to May 2007 in each station. Attached algal availability was sampled by 

measuring attached algal cover for each species within 0.50 m2 random quadrats in each 

station over time. Drift algal availability to sea urchins was measured monthly at each 

station by collecting and weighing macroalgae stuck to the tube feet of fifty random sea 

urchins.  

 

Collection and Preparation of Specimens 

Algae. Twelve specimens of each of ten common algal species were collected in 

the early afternoon on October 7, 2006 and included Calliarthron tuberculosum (Postels 

and Ruprecht) Dawson, Corallina chilensis (Decaisne), Corallina vancouveriensis 
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(Yendo), Endocladia muricata, Mastocarpus jardinii (J. Agardh) J.A.West, Mastocarpus 

papillatus, Mazzaella flaccida (Setchell and N.L. Gardner) Fredericq, Osmundea 

spectabilis (Postels and Ruprecht) Nam, Prionitis lanceolata and Pterocladia capillacea 

(Gmelin) Santelices and Hommersand. In order to characterize MAAs in the species, one 

healthy, whole algal specimen from each species was collected from each station when 

available. Because each station did not contain every algal species, some specimens were 

collected within the same station to bring the total to twelve specimens. Algae were 

transported to Cal Poly within a few hours of collection and frozen at -80°C. Algae were 

identified using guides and dichotomous keys (Abbott and Hollenberg 1993; Mondragon 

and Mondragon 2003) as well as the assistance of Dr. Kathy Ann Miller from the 

University of California, Berkeley. Whole algal specimens were thawed and cleaned of 

epibiota using forceps, then frozen in liquid nitrogen and pulverized. Samples were then 

re-frozen, lyophilized and stored at -80˚C for later extraction and analysis of MAAs.  

Drift algal samples were separated into phyla, and Rhodophytes were treated in the same 

way as attached samples detailed above. Samples from the November 2006 collection 

served as representative drift algal specimens for MAA analysis. These samples were 

frozen in liquid nitrogen and pulverized before extraction and analysis of MAAs. 

Sea Urchins. Adult S. purpuratus were collected in November 2006 before sea 

urchins were fully gravid, and again in January 2007 just before the spawning season 

when sea urchins were gravid. Five female and five male sea urchins, at least 30mm in 

diameter to ensure sexual maturity (Giese et al. 1991), were collected from each station in 

both November and January for analyses. Sea urchins were kept in seawater-filled 
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coolers for an hour during transport before being transferred to enclosed seawater aquaria 

for no more than four days before dissection.  

Whole wet weight, test diameter and gonad wet weight were recorded for each sea 

urchin and gonadal index (GI), a measure of fecundity (Giese et al. 1991), was calculated 

for each sea urchin as: 100 x (wet weight of gonad / wet weight of whole urchin). 

Epidermal tissue was collected by trimming off the spines and sampling the ambulacral 

sections of the test. Gonadal and epidermal tissues were frozen, lyophilized, and stored at 

-80°C for later extraction and analysis of MAAs. 

 

Mycosporine-Like Amino Acid (MAA) analysis 

A fixed dry weight of each tissue type (0.200g gonads, 1.000g epidermis and 

0.200g algae) was extracted for MAAs using three serial 60-minute extractions in HPLC-

grade methanol at room temperature, and the three extracts were pooled. During the first 

extraction the samples were sonicated for approximately 20 seconds using a Branson 

Sonifier 250. The pooled extracts for algal specimens were filtered through a Waters Sep 

Pack Plus C-18 column to remove chlorophyll and other pigments as per Adams et al.  

(2001). Presented absorption spectra (290-700 nm) were measured for representative 

tissue samples with equal total MAA concentrations using a Jasco Model V550 UV/Vis 

spectrophotometer. Extracts were analyzed for MAAs using Hewlett Packard 1100 Series 

reverse-phase high performance liquid chromatography (HPLC) with a Phenomenex 

Phenosphere C-8 column at a flow rate of 0.8 ml min-1.  

MAAs were identified by comparing peak absorbance and retention times with 

known MAAs, and identification of representative peaks were confirmed by 
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cochromatography using quantified standards provided by Dr. W.C. Dunlap of the 

Australian Institute of Marine Science in Townsville, Australia. No standard was 

available for the MAA usujirene, so its identity was inferred by elution time, peak 

absorption at 357 nm, and co-chromatography with a methanolic extract of Palmaria 

palmata, an algal species known to contain usujirene (Sekikawa et al. 1986). The peak 

areas of the MAAs mycosporine-glycine, shinorine, porphyra-334, and mycosporine-2-

glycine were calculated using a 55% methanol and 0.1% acetic acid mobile phase and the 

MAAs palythine, asterina-330, palythinol and usujirene were calculated using a 25% 

methanol and 0.1% acetic acid mobile phase. MAA concentrations in nmol mg-1 dry 

weight were calculated from HPLC peak areas using peak area integration of MAA 

standards calibrated in this system, then adjusted for extraction efficiency for each tissue 

as per Dunlap and Chalker (1986). The MAA concentration of usujirene was calculated 

using a calibrated standard for palythene, its trans isomer. 

 

Unknown MAAs 

HPLC chromatograms of the sea urchin tissue MAA extracts repeatedly showed 

four unknown peaks absorbing in the UV range. Two of the peaks were occasionally 

present in ovary tissue and absorbed at 322 and 324 nm. They eluted before 

mycosporine-glycine, in the range where we have never previously observed MAAs. 

Another peak eluted directly after mycosporine-2-glycine and was common in epidermal 

but not gonadal tissue, but the maximal absorbance could not be determined. The final 

peak eluted before palythine, had a maximum absorption of 338 nm and was common in 

ovarian and epidermal tissue. Karsten et al. (2000) and Karsten et al. (2005) documented 
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novel UV-absorbing compounds using HPLC that absorbed at 334 nm from red algae and 

324 nm from green algae, respectively. Both these compounds eluted early in the HPLC 

chromatogram and could be the same as the 332 nm and 324 nm found here, though 

standards were not available for these possible MAAs and more testing is needed. In this 

study, the occurrences of these unknown peaks were rare, and when present, were 

drastically smaller (and hence less concentrated) than other MAAs peaks (such as 

shinorine and palythine) in the chromatogram. No standards were available for these 

peaks, so non of them are included in calculations of total concentrations of MAAs for 

any sample. While their presence is intriguing, they did not likely contribute drastically to 

the UV-absorbance of the extracts or the total MAA concentrations of the tissues. 

 

Attached Algal MAA Availability to Sea Urchins 

In October 2006, when the algae were collected for MAA analysis, ten 5 cm2 or 

2.5 cm2 plots for each of the ten algal species identified above were scraped from the 

substrate, lyophilized and weighed to determine the approximate dry weight per unit area 

for each species. For each algal species, this measurement of biomass per unit area was 

multiplied by the average MAA concentration per unit biomass and the measurement of 

average monthly cover for the species per station, giving the average monthly MAA 

availability to sea urchins in each station per unit area using the equation below. We then 

summed this value for all the species found at each station each month, and were able to 

compare the MAA availability to sea urchins among stations and microhabitats. This 

metric is a better indication of attached algal MAA availability to sea urchins in each 

station than simple algal percent cover measurements, because it incorporates MAA 
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concentrations of individual algal species as well as the biomass per unit area of cover for 

each algal species. Species other than those analyzed for MAAs were not included in 

these conversions, but were only occasionally identified in attached algal cover 

measurements, so MAA availability to sea urchins from those species was likely 

negligible. 

 

 

Statistical Analyses 

Graphical results are presented using untransformed data and are given as means 

± one standard error unless otherwise indicated. All data were analyzed using General 

Linear Models (similar to multi-factor ANOVA) on Minitab software using sequential 

sums of squares. Significant terms (P < 0.05) in all models were further analyzed using 

Tukey’s post-hoc analyses. Square root, natural log, negative inverse or arcsine 

transformations were applied to the data to best achieve linearity, homogeneity of 

variance and normal distribution of residuals for statistical analyses. 

To analyze microhabitat variation in concentrations of total MAAs in algal 

specimens, we used species and microhabitat as predictor variables and included station 

nested within microhabitat to control for among-station variation within each 

microhabitat in concentration of MAAs. Because wet to dry weight ratios varied greatly 

among algal species, species comparisons of total concentration of total MAAs per unit 

dry weight were not accurate. However, we were able to compare the species in the 

relative concentration of shinorine (concentration of shinorine / concentration of total 

MAAs) found in algal tissues because this metric was a relative rather than an absolute 
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concentration of MAAs. In this model we also used species and microhabitat as predictor 

variables included station nested within microhabitat to control for among-station 

variation within the microhabitats. Other individual MAAs were similarly tested, but 

were either not significant or did not meet general linear model assumptions. For drift 

algal analyses, we tested microhabitat variation in MAAs using microhabitat as a 

predictor and concentration of MAAs in homogenized drift algal collections as the 

response variable for the November 2006 collection of drift algae.  

For analyses on sea urchins, models analyzing concentrations of MAAs in 

gonadal and epidermal tissues were performed separately because epidermal samples 

contained spine and test tissues, so standardizing measurements by dry weight rendered 

the two tissue measurements incomparable. In order to examine variation in the 

allocation of MAAs within each sea urchin to the separate tissues, the proportion of total 

MAAs per sea urchin that was detected in the epidermal tissue (versus the gonadal tissue, 

i.e. concentration of epidermal MAAs/ [concentration of epidermal + gonadal MAAs]) 

was used as a response variable for the analysis. For the three response variables outlined 

above (gonadal and epidermal concentrations of MAAs and the proportion of MAAs in 

the epidermis) as well as for gonadal index, we ran models using microhabitat, month, 

sex and their interactions as predictors, and again included station nested within 

microhabitat to control for among-station variation within microhabitats.  

In order to compare variation among sea urchins in the relative concentrations of 

individual MAAs, the relative concentrations of the two most concentrated MAAs, 

shinorine and palythine (i.e. concentration of shinorine or palythine / concentration of 

total MAAs), were used as response variables in separate models, each with microhabitat, 
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sex, tissue and their interactions as predictors; month was removed because no terms 

including month were significant. For each model, sea urchin number (nested within 

microhabitat and sex) was included to control for the non-independence of tissue 

measurements within sea urchins. Because shinorine and palythine were calculated as 

relative proportions of gonadal and epidermal MAA concentrations rather than absolute 

concentrations, these metrics were comparable between gonadal and epidermal tissues, 

and tissue type was included in these models rather than analyzing trends in epidermis 

and gonad tissues separately. 

Having included the “microhabitat” predictor term in all above the models (but 

after removing the station nested within microhabitat term) we included the various 

environmental parameters (irradiance, tidal height, temperature, sea urchin density, 

attached algal cover, drift algal availability and attached algal MAA availability) and sea 

urchin attributes (size, gonadal index) in each model, but none proved significant. 

However, after removing the “microhabitat” term from the above models, and re-running 

the models including environmental variables and sea urchins attributes as predictors in 

each model, the environmental parameters and sea urchin attributes often became 

significant. Because were especially interested in retaining the microhabitat term in these 

models, we performed separate analyses for these environmental and sea urchin attribute 

variables to examine among-microhabitat patterns. For each of these “microhabitat 

characterization” analyses, date and algal species (where applicable) and microhabitat 

were treated as predictor variables, with station nested within microhabitat was included 

to control for among-station variation within microhabitats (except when testing tidal 

height and sea urchin density, where there was only one measurement per station).  
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Results 

Microhabitat Characterizations 

Irradiance. Mean irradiance levels varied significantly among the microhabitats 

(Fig. 1a; P < 0.000, R2 = 0.72) with the North facing microhabitat (2.54 ± 0.22 kW hr-1 

m-2) having lower irradiance than the other microhabitats, as expected  (P < 0.001). 

Because of afternoon shading, the South facing microhabitat had a moderately lower 

mean irradiance (3.29 ± 0.19 kW hr-1 m-2) than both the horizontally oriented Pit (3.67 ± 

0.01 kW hr-1 m-2) and Non-pit (3.66 ± 0.02 kW hr-1 m-2) microhabitats, (P = 0.031 and P 

= 0.049, respectively). Though the mean irradiance levels for the Pit and Non-pit 

microhabitats were not different (P = 0.996), the irradiance measurements for the Pit 

microhabitat were taken on the rock surfaces and not inside the pits; therefore it can be 

assumed that portions of the epidermis of Pit urchins are substantially more shaded by the 

walls of their pits than irradiance measurements indicate. 

Height above MLLW. Even within the small range in vertical height (< 1m) 

among the stations, there were significant differences in height above MLLW among the 

microhabitats (Fig. 1b; P = 0.007, R2 = 0.77). On average, stations in the Non-pit 

microhabitat were at a higher tidal height level than the other three microhabitats (P < 

0.031; 1.34 ± 0.04 m), which did not differ from one another (P > 0.688; 0.91 ± 0.11, 

0.96 ± 0.03 and 0.84 ± 0.09 m above MLLW for South facing, North facing and Pit 

microhabitats, respectively). 
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Figure 1. Measurements of mean (± S.E.) a) irradiance (n=9), b) intertidal height above 
MLLW (n=3), c) temperature (n=3), d) adult S. purpuratus density (n=3), e) attached 
algal cover (n=15) and f) drift algal availability (n=15) among the microhabitats. 
Matching letters above bars represent means that were not significantly different from 
one another. Irradiance in Pits (1a) may have been lower than the figure indicates because 
irradiance measurements were taken outside of pits.  
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Temperature. Average monthly temperature was highest the Non-pit microhabitat 

(13.49 ± 0.28 °C) followed by the South facing, Pit and North facing microhabitats 

(13.21 ± 0.30, 12.63 ± 0.23 and 12.81 ± 0.26 °C, respectively), all of which differed 

significantly from one another (Fig. 1c; P < 0.003 for all comparisons, R2 = 0.99). The 

mean monthly temperature was coldest in January compared to November and December 

(P < 0.001 for both comparisons), but November and December did not differ from one 

another (P = 0.402). The above trend in mean monthly temperature among microhabitats 

was affected by the month (Month x Microhabitat: P = 0.002); however, the above order 

among microhabitats in mean monthly temperature was consistent each month, though 

the microhabitats were not always significantly different from one another each month. 

Adult Sea Urchin Density. There was no significant variation in starting adult sea 

urchin density among the microhabitats (Fig. 1d; P = 0.100, R2 = 0.52). The Pit 

microhabitat was most densely populated with sea urchins (183.1 ± 42.8 sea urchins m-2), 

followed by the Non-pit (152.7 ± 11.1 sea urchins m-2), South facing (111.5 ± 45.5 sea 

urchins m-2) and North facing (54.7 ± 14.1 sea urchins m-2) microhabitats. 

Attached Algal Cover. Attached algal cover is used here as a proxy for the amount 

of algae available to grazing sea urchins in each microhabitat (Fig. 1e). Algal cover was 

lowest in the Non-pit microhabitat (70.0 ± 15.5 cm2 m-2) compared to the other 

microhabitats (P < 0.007 for all comparisons, R2 = 0.24), which did not significantly 

differ from one another (P > 0.711 for all comparisons, 345.8 ± 66.0, 292.6 ± 55.4 and 

275.6 ± 49.0 cm2 m-2, for South facing, North facing and Pit microhabitats, respectively). 

Attached algal cover did not vary among the sampling dates (P = 0.380).  
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Drift Algal Availability The dry weight of Rhodophyte drift algae that was held on 

the tube feet of sea urchins was used as an estimate of drift algal availability to sea 

urchins (Fig. 1f). In general, the mean abundance of drift algae was lowest in the Non-pit 

microhabitat (P < 0.008, R2 = 0.81; 57.0 ± 14.7 mg dry wt. sea urchin-1) than the other 

three microhabitats, which did not differ from one another (P > 0.844; 116.8 ± 30.6, 

131.5 ± 44.7 and 101.7 ± 19.6 mg dry wt. sea urchin-1 for South facing, North facing and 

Pit microhabitats, respectively). The average dry weight of drift algae also varied among 

sample dates (P < 0.001), and this trend was dependent upon microhabitat (Microhabitat 

x Date, P= 0.009). The abundance of drift algae was highest in the fall collection 

(November 2006), intermediate in the three winter collections (December 2006 and 

January 2007) and was lowest in the spring collection (March 2007). Among 

microhabitats, the trend of low drift algal abundance in the Non-pit microhabitat was 

consistent among months, though this was not always significant. Sea urchins at this 

collection site were observed to eat a variety of the attached fleshy Rhodophyte species 

examined as well as fleshy drift algae.  

Sea Urchin Size and Gonadal Index. Sea urchin size (diameter and whole wet 

weight) showed no significant correlation with MAA concentration in sea urchin gonadal 

or epidermal tissues, the proportion of MAAs detected in the epidermal tissue, or with the 

relative concentrations of shinorine and palythine. Similarly, gonadal index showed no 

correlation with MAA concentration in sea urchin gonadal and epidermal tissues, the 

proportion of MAAs detected in the epidermal tissue or the relative concentrations of 

shinorine and palythine in the tissues. 
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In general, males had a higher mean GI than females (P = 0.012, R2 = 0.33) and 

mean GI decreased from November to January (P < 0.000). However, the observed 

decrease in mean GI over time was dependent upon the sex of the sea urchins (Sex x 

Month: P = 0.004). From November to January, mean GI for females decreased 

significantly (P < 0.000; 12.86 ± 0.45 and 9.33 ± 0.49 for November and January, 

respectively) while mean GI for males did not change (P = 0.371; 12.69 ± 0.42 and 11.68 

± 0.54 for November and January, respectively). Non-pit, North facing and Pit urchins 

had significantly higher mean GIs (11.76 ± 0.44, 12.83 ± 0.59 and 12.02 ± 0.47, 

respectively) than the South facing urchins (9.96 ± 0.47; P = 0.012, P < 0.001 and P = 

0.004, respectively), but were not significantly different from one another (P > 0.314 for 

all comparisons). Gonad weight was positively correlated with test diameter (P < 0.000, 

R2 = 0.295, Gonad wet wt. (g) = - 7.81 + 0.278* Test Diameter (mm)).  

In summary, sea urchins in the Non-pit microhabitat were at higher intertidal 

heights and probably experienced higher irradiance levels than sea urchins in the other 

three microhabitats. They also had less attached and drift algal food available compared 

to sea urchins in the other microhabitats, assuming that all urchins eat algae at the same 

rate. Sea urchins and algae in the South facing microhabitat were likely exposed to higher 

irradiances than those in the North facing microhabitat, but slightly lower levels than 

those in the Non-pit microhabitat. Sea urchins in pits appeared to experience lower 

irradiance levels than Non-pit urchins, at least on portions of their test, due to constant 

shading by the pit walls, while algae in the Pit microhabitat likely experienced similar 

irradiance levels to algae in the Non-pit microhabitat (Fig. 1a), because they were not 

located inside pits. Mean monthly temperature (Fig. 1c) was different among 
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microhabitats, but the range in mean temperatures among microhabitats was small (< 0.9 

°C among microhabitats). 

Regression analyses among the stations of all the above variables against one 

another revealed that attached algal availability decreased significantly with tidal height 

(P = 0.002, R2 = 0.640, attached algal cover = 1239 cm2 m-2 – 936 cm2 m-2  * m above 

MLLW). No other significant correlations among the other microhabitat characteristics 

were observed.  

 

Concentration of Total MAAs in Algae 

Attached Algae. At least one MAA was present in every algal species and 

specimen tested (Table 1). Species varied in their mean concentration of MAAs (P < 

0.000, R2 = 0.89), though the magnitudes and significance tests of the differences are 

likely inaccurate due to standardization by dry weight. Having controlled for species 

differences, there was variation among microhabitats in the concentration of MAAs in 

algae (P < 0.001), with algae in the Non-pit microhabitat containing a higher mean 

concentration of MAAs than algae from the Pit microhabitat (P = 0.003). The mean 

concentration of MAAs in algae from the South facing and North facing microhabitats 

was not significantly different from the other two microhabitats or from one another (P > 

0.067 for all comparisons).  

Attached Algal MAA Availability. Because the MAA content of algae in the 

stations as well as algal cover should affect the amount of MAAs consumed by sea 

urchins, we translated the measurements for attached algal cover per station to a 

measurement of the attached algal MAA availability to sea urchins in each station (see 
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equation in methods). There was significant variation in attached algal MAA availability 

among microhabitats (Fig. 2; P < 0.001, R2 = 0.77), with the Non-pit microhabitat having 

lower mean attached algal MAA availability (16 ± 5 nmol m-2), compared to the other 

three microhabitats (P < 0.001 for all comparisons), which did not differ from one 

another (P < 0.514 for all comparisons; 93 ± 18, 103 ± 17, 90 ± 18 nmol m-2 for South 

facing, North facing, and Pit microhabitats respectively). 

Table 1. Maximal UV absorption wavelengths (max) and mean concentrations of 
individual and total MAAs (nmol mg-1 dry weight ± S.D.) for the ten species of red algae 
collected among the stations. Asterisks indicate coralline species with calcium carbonate 
skeletons. Trace amounts of mycosporine-2-glycine were detected in O. spectabilis, but 
none in other species. Shin: shinorine, P-334: porphyra 334, PT: palythine, A-330: 
asterina 330, PL: palythinol, Usu: usujirene, tr.: trace MAAs detected, n.d.: MAAs not 
detected.  

Concentration of MAAs (nmol mg-1 dry weight) 
Species  N 

max 

(nm) Shin P-334 PT A-330 PL Usu Total 

Calliarthron 

tuberculosum*        
12 329 

0.50 ± 
0.30 

tr. 
0.24 ± 
0.18 

0.02 ± 
0.02 

n.d. 
0.03 ± 
0.03 

0.79 ± 
0.52 

Corallina chilensis*       12 320 
0.28 ± 
0.12 

tr. 
0.24 ± 
0.21 

0.02 ± 
0.03 

n.d. 
0.03 ± 
0.02 

0.57 ± 
0.31 

Corallina 

vancouveriensis*     
12 321 

0.35 ± 
0.18 

tr. 
0.19 ± 
0.10 

0.02 ± 
0.01 

n.d. 
0.01 ± 
0.01 

0.57 ± 
0.30 

Endocladia muricata           12 335 
8.16 ± 
2.17 

0.01 ± 
0.02 

0.24 ± 
0.83 

n.d. n.d. n.d. 
8.41 ± 
2.63 

Mastocarpus jardinii            12 335 
9.60 ± 
3.01 

0.09 ± 
0.08 

n.d. n.d. n.d. n.d. 
9.69 ± 
3.01 

Mastocarpus 

papillatus          
12 335 

11.41 
± 3.32 

0.05 ± 
0.05 

n.d. n.d. n.d. n.d. 
11.46 ± 

3.34 

Mazzaella flaccida          12 327 
1.38 ± 
0.63 

tr. 
3.63 ± 
1.30 

0.32 ± 
0.14 

n.d. 
0.47 ± 
0.26 

5.81 ± 
2.16 

Osmundea spectabilis       11 327 
0.12 ± 
0.06 

0.38 ± 
0.13 

0.60 ± 
0.17 

1.87 ± 
0.63 

0.23 ± 
0.07 

n.d. 
3.20 ± 
0.99 

Prionitis lanceolata          12 326 
4.78 ± 
1.84 

0.01 ± 
0.02 

6.21 ± 
2.56 

0.41 ± 
0.18 

n.d. 
0.28 ± 
0.18 

11.69 ± 
4.34 

Pterocladia 

capillacea          
12 330 

3.09 ± 
1.85 

0.02 ± 
0.02 

1.77 ± 
0.99 

 0.25 ± 
0.16 

n.d. 
0.22 

± 0.12 
5.34 ± 
3.02 
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Figure 2. The availability of MAAs to S. purpuratus from all species of attached algae by 
microhabitat (nmols of MAAs/m-2 (±S.E.), n = 18 for each microhabitat). See methods 
for calculation of attached algal availability. 

 

Drift Algae. MAAs were detected in all samples from the November 2006 

collection of drift algae. Drift algal samples were primarily composed of fleshy algae, 

and the mean concentration of MAAs in the fleshy attached algal species was much 

higher (7.34 ± 0.50 nmol mg-1 dry wt.) than that of drift algal samples (1.54 ± 0.37 nmol 

mg-1 dry wt.), suggesting drift algae lost MAAs after detachment and may not provide sea 

urchins with as many MAAs as attached algae per unit biomass, though sample size was 

small (N = 12). MAA concentration in our small subset of drift algae (N = 3 samples per 

microhabitat) did not differ among microhabitats (P = 0.221). 

  

Concentration of Shinorine in Algae 



 33 

Shinorine was the most abundant specific MAA detected in most algal species, 

followed by palythine (Table 1). As expected, the relative concentration of shinorine to 

total MAAs was different among algal species (Table 1, P < 0.001). When having 

considered the variation among species, there was a difference among microhabitats in 

the relative concentration shinorine in algae, which seemed to decrease with decreasing 

irradiance levels, though this trend was not significant (Fig. 3; P = 0.067, R2 = 0.98). The 

relative concentration of shinorine in all algal specimens was highest in the South facing 

(70.6 ± 4.9%) and Non-pit microhabitats (69.9 ± 5.1%), followed by the North facing 

(59.7 ± 4.5%), and Pit (45.7 ± 6.5%) microhabitats.  

 

Figure 3. The mean (± S.E.) relative concentration of shinorine to total MAAs in algal 
samples ([shinorine]/[total MAAs]). The relative concentration of shinorine was not 
significantly different among the microhabitats, but there was a trend of decreasing 
relative concentration of shinorine with decreasing irradiance in the microhabitats (n = 35 
for the Non-pit, n =25 for the South and North facing, and n = 33 for the Pit 
microhabitats). 
 

Concentration of Total MAAs in Sea Urchins 
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 Microhabitat. The mean concentration of MAAs for both gonadal and epidermal 

sea urchin tissues was dependent on microhabitat (Figs. 4 and 5; P = 0.001, R2 = 0.22 and 

P < 0.001, R2 = 0.26 for gonadal and epidermal tissues, respectively). Pit urchins had 

lower mean concentrations of MAAs in both gonadal (Fig. 4; 0.41 ± 0.08 nmol mg-1 dry 

wt.) and epidermal (Fig. 5; 0.08 ± 0.01 nmol mg-1 dry wt.) tissues than sea urchins in the 

other three microhabitats (P < 0.045 and P < 0.005 for all comparisons for gonads and 

epidermis, respectively), and this was found in both the November and January 

collections (Figs. 4 and 5; Microhabitat x Month: P = 0.281 and P = 0.302, for gonadal 

and epidermal tissues, respectively). Gonadal concentrations of MAAs were not 

significantly different in sea urchins from the South facing, North facing or Non-pit 

microhabitats (P > 0.721 for all comparisons; 0.75 ± 0.12, 1.07 ± 0.25 and 0.84 ± 0.20 

nmol mg-1 dry wt., respectively). Epidermal concentrations of MAAs were nearly 

significantly higher in the Non-pit microhabitat (compared to the South facing 

microhabitat (P = 0.051), but no other differences were observed among the Non-pit, 

South facing and North facing microhabitats for epidermal tissues (P > 0.331 for all 

comparisons; 0.28 ± 0.03, 0.18 ± 0.02 and 0.17 ± 0.02 nmol mg-1 dry wt., respectively).   
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Figure 4. Variation in the mean (± S.E.) concentration of MAAs (nmol mg-1 dry wt.) in S. 

purpuratus gonadal tissues among microhabitats for each sex for a) November 2006 and 
b) January 2007 (n = 15 for each bar except for South facing females in January, where n 
=14).  

 

 

Figure 5. Variation in the mean (± S.E.) concentration of MAAs (nmol mg-1 dry wt.) in S. 

purpuratus epidermal tissues among microhabitats for each sex for a) November 2006 
and b) January 2007 (n= 15 for each bar except for South facing females in January, 
where n =14). 

 

In gonadal tissues, the trend of low concentrations of gonadal MAAs in Pit 

urchins was dependent upon the sex of the sea urchins, though this trend was not 
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significant (Fig. 4; Microhabitat x Sex: P = 0.051). In male sea urchins, concentration of 

MAAs in testes did not vary among microhabitats (Fig. 4; P > 0.50; 0.42 ± 0.05, 0.29 ± 

0.03, 0.28 ± 0.05 and 0.24 ± 0.02 nmol mg-1 dry wt. for North facing, South facing, Pit 

and Non-pit urchins, respectively). However, female Pit urchins had lower concentrations 

of MAAs in their ovaries (0.54 ± 0.15 nmol mg-1 dry wt.) compared to females in the 

other microhabitats (Fig. 4; P < 0.031 for all comparisons; 1.44 ± 0.37, 1.22 ± 0.21 1.72 ± 

0.47 and nmol mg-1 dry wt. for Non-pit, South facing and North facing urchins, 

respectively). These sex-dependent trends among microhabitats were not affected by 

collection month (Microhabitat x Sex x Month: P = 0.887). For epidermal tissues, low 

concentrations of MAAs in Pit urchins were not significantly affected by the sex of the 

sea urchins (Fig. 5; Microhabitat x Sex: P = 0.071), or by the collection month (Fig. 5; 

Microhabitat x Month: P = 0.302). 

The mean proportion of total MAAs allocated to the epidermal tissue for each sea urchin 

(i.e. epidermal MAAs/[epidermal + gonadal MAAs]) was influenced by sea urchins’ 

microhabitat (P = 0.006, R2 =0.184), and this was variable between the sexes (Fig. 6; 

Microhabitat x Sex: P = 0.031). Female sea urchins showed no differences in the mean 

proportion of MAAs in epidermal tissue among the four microhabitats, (Fig. 6; P > 0.998; 

0.33 ± 0.06, 0.28 ± 0.05, 0.34 ± 0.06 and 0.30 ± 0.05 for Non-pit, South facing, North 

facing and Pit urchins, respectively), while male Non-pit urchins had a significantly 

higher proportion of MAAs in their epidermis (0.47 ± 0.05) than male sea urchins from 

the other three microhabitats (Fig. 6; P < 0.012; 0.26 ± 0.04, 0.25 ± 0.03 and 0.21 ± 0.03 

for South facing, North facing and Pit urchins, respectively), which did not differ 

significantly from one another (P > 0.998). These trends were not affected by collection 
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month (Microhabitat x Month: P = 0.528; Microhabitat x Sex x Month: P = 0.078). 

 

Figure 6. The mean  (± S.E.) proportion of MAAs detected in S. purpuratus epidermal 
tissues ([epidermal MAAs]/[gonadal + epidermal MAAs]) in the microhabitats for each 
sex (n = 30, except South facing female sea urchins, where n = 29). The asterisk (*) 
indicates there was a significantly higher mean proportion of MAAs in the epidermis for 
the males in the Non-pits microhabitat compared to the other three microhabitats. 

 

Collection Month. The concentration of MAAs in sea urchin gonadal tissues 

increased significantly between the November 2006 and the January 2007 collections 

(Fig. 4; P = 0.009). The increase in the concentration of MAAs from November to 

January was much stronger in females (from 0.74 ± 0.10 to 1.57 ± 0.28 nmol mg-1 dry wt. 

from November to January) than in males (from 0.27 ± 0.03 to 0.34 ± 0.03 nmol mg-1 dry 

wt. from November to January), though neither sex increased significantly when 

considered separately (P = 0.054 and P = 0.6129 for females and males, respectively). 

There was no difference in MAA concentrations in epidermal tissues between months 
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(Fig. 5; P = 0.734; 0.17 ± 0.01 and 0.19 ± 0.02 nmol mg-1 dry wt. for November and 

January, respectively), for either sex (Month x Sex: P = 0.127). The mean proportion of 

MAAs found in epidermal tissues also did not vary between the collection months (P = 

0.165), for either sex (Month x Sex: P = 0.069).  

Sex. Female sea urchins had a higher concentration of MAAs than male sea 

urchins in both gonadal (Fig. 4; P = 0.005) and epidermal (Fig. 5; P = 0.020) tissues (1.15 

± 0.15, 0.31 ± 0.02, 0.19 ± 0.02, and 0.17 ± 0.02 nmol mg-1 dry wt. for ovaries, testes and 

female and males epidermal tissues, respectively). These trends were consistent among 

months (Sex x Month: P = 0.345 and P = 0.127, for gonadal and epidermal tissues, 

respectively). There was no difference in the proportion of MAAs in the epidermal 

tissues between the sexes (Fig. 6; P = 0.896). However, there were interactive effects of 

sex and microhabitat on the gonadal MAA concentration (Fig. 4; P = 0.051) and the 

proportion of MAAs detected in the epidermis (Fig. 6; P = 0.031) as discussed above. 

 

MAA Absorption Spectra in Sea Urchins 

Absorption maxima of ovaries and female and male epidermal tissues were 

similar and in the low UVA range (Fig 7; max= 331 nm, 330 nm and 331 nm, 

respectively), while the absorption maximum for testes was at a shorter, higher energy 

wavelength (max= 322 nm), near the UVA/UVB cusp. Ovaries showed the widest range 

of absorption, spanning the UVA and some of the UVB ranges. Within the UVB range 

(280-320 nm), ovaries and testes showed similar absorbances, while both epidermal 

tissues absorbed less UVB (Fig. 7).  
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Figure 7. Absorption spectra of representative MAA extracts of gonadal and epidermal 
tissues of each sex. All extracts had the same concentration of total MAAs. The 
maximum absorbances of ovaries, female and male epidermal tissues were similar and in 

the UVA range (max= 331 nm, 330 nm and 331 nm, respectively). The maximum 

absorbance for testes was at a shorter, higher energy wavelength (max= 322 nm) near the 
UVA/UVB cusp. 

 

Concentrations of Individual MAAs in Sea Urchins 

Seven MAAs were identified in the gonadal and epidermal tissues of S. 

purpuratus and included shinorine, palythine, porphyra-334, asterina-330, mycosporine 

glycine, mycosporine 2-glycine and usujirene (Fig. 8). Most MAAs were identified in all 

tissue types, except no mycosporine 2-glycine was detected in the testes and no usujirene 

was detected in epidermal tissues. In general, the relative concentrations of MAAs in the 

sea urchin tissue types were very consistent, with the standard error about the mean 
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percentages of each MAA at < ± 2.8% for shinorine and palythine and < ± 0.7% for all 

other MAAs. Sea urchin testes showed a very different MAA signature than ovaries and 

epidermal tissues, and contained principally palythine, and some shinorine (Fig. 8). 

Testes had lower mean relative concentrations of many MAAs when compared to ovaries 

and epidermal tissues (shinorine: P < 0.000 mycosporine-glycine: P < 0.032, porphyra-

334: P < 0.000 and asterina-330: P < 0.000), but had a higher relative concentration of 

palythine (P < 0.000). The relative concentrations of individual MAAs in the ovaries and 

epidermal tissues for both sexes were similar, but ovaries had a higher concentration of 

mycosporine-glycine than the epidermal tissues (P < 0.000). 

 

Figure 8. The relative concentrations of individual MAAs in the gonadal and epidermal 
tissues for each sex of S. purpuratus (n = 119 for female tissues and n = 120 for male 

tissue).  Error bars are not shown, but were < ± 2.8% for shinorine and palythine and < ± 
0.7% for all other MAAs. 
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Shinorine and palythine were the dominant MAAs detected in all sea urchin 

tissues (Fig. 8) and other individual MAAs tended to follow a similar pattern to either 

shinorine or palythine. For example, porphyra-334 and mycosporine-2-glycine were 

similar in variation among sexes and tissues to shinorine, and asterina-330 was similar in 

variation to palythine. Nevertheless, the absence of the five MAAs besides shinorine and 

palythine in many samples prevented their inclusion in statistical analyses. The relative 

concentrations of shinorine and palythine were not affected by collection month (P = 

0.586 and P = 0.184 for mean relative concentrations of shinorine and palythine, 

respectively) nor were any of the trends in the other variables different between the 

months (P > 0.05 for all interactions of month with microhabitat, sex and/or tissue for 

both relative concentrations of shinorine and palythine analyses).  

Microhabitat. In general, the relative concentration of shinorine ([shinorine]/[total 

MAAs]) was highest in sea urchins in the Non-pit microhabitat, followed by those in the 

South facing, North facing and Pit microhabitats, all of which differed significantly from 

one another (Fig. 9; P < 0.003 for all comparisons, R2 = 0.87). This pattern was affected 

by the sex of the sea urchins, (Microhabitat x Sex: P = 0.002). However, the above order 

among microhabitats in relative concentration of shinorine was consistent for both sexes, 

though the relative concentration ofs of shinorine were not always significantly different 

among microhabitats. 

Among microhabitats, the trend for the relative concentration of palythine 

([palythine]/[total MAAs]) in sea urchin tissues was opposite that of shinorine (above): 

the highest relative concentration of palythine was in sea urchins from the Pit 

microhabitat, followed by those in the North facing, South facing then Non-pit 
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microhabitats, all of which differed significantly from one another (data not displayed; P 

< 0.008 for all comparisons, R2 = 0.87). This trend varied between the sexes 

(Microhabitat x Sex: P = 0.004). Nevertheless, the relative order of relative 

concentrations of palythine for females was consistent with the trend described above, 

but were not always significantly different among microhabitats.  

 

Figure 9. The mean (± S.E.) relative concentration of shinorine compared to the total 
concentration of MAAs ([shinorine]/[total MAAs]) among the microhabitats for the 
separate tissue types of S. purpuratus (n = 29 for females tissues and n = 30 for male 
tissues for each microhabitat).  

 

Among microhabitats, the trends in both relative concentrations of shinorine and 

palythine were similar in the gonadal and epidermal tissues (Tissue x Microhabitat: P = 

0.371 and P = 0.902 for relative concentrations of shinorine and palythine, respectively). 

These trends were also consistent between sexes (Tissue x Microhabitat x Sex: P = 0.842 

and P = 0.516 for relative concentrations of shinorine and palythine, respectively). 
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Therefore, although tissue (gonads and epidermis) was included in statistical models, 

microhabitat trends in relative concentrations of shinorine and palythine are presented 

above without distinction between gonadal and epidermal tissues. 

The relative concentrations of shinorine and palythine in sea urchins were 

dependent on the sex of the sea urchins and the tissue examined (Tissue x Sex: P < 0.001 

for both relative concentrations of shinorine and palythine). The relative concentration of 

shinorine was highest in female epidermal tissue, followed by male epidermal tissue, 

ovaries then testes, all of which were significantly different from one another (Fig. 9; P < 

0.001 for all comparisons). Palythine showed the opposite trend, with the highest relative 

concentration of palythine in the testes, followed by the ovaries, female epidermis then 

male epidermis, all of which were significantly different from one another (P < 0.003 for 

all comparisons). These trends were not affected by microhabitat (Tissue x Sex x 

Microhabitat: P = 0.842 and P = 0.516 for relative concentrations of shinorine and 

palythine, respectively).



 44 

Discussion 

To our knowledge, our study is the first to identify ecologically-relevant 

concentrations of MAAs in the tissues of the widely studied purple sea urchin, 

Strongylocentrotus purpuratus, as well as nine species of Rhodophyte macroalgae on 

California’s central coast. The concentrations of these MAAs in sea urchins appears to be 

influenced primarily by the tissue type examined and the sex of the sea urchin (Figs. 4, 5 

and 8), as well as the specific microhabitat inhabited by the sea urchin (Figs. 4 and 5). 

Microhabitat variation in concentrations of MAAs in total MAAs in sea urchins appears 

to be influenced by diet, while the allocation of MAAs to the epidermis and gonads may 

be influenced by irradiance levels in males, but not in females. Multiple trade-offs 

concerning the uptake and allocation of MAAs to sea urchins tissues were detected. The 

first was detected in sea urchins inhabiting pits, which may confer more physical 

protection, but was associated with low concentrations of MAAs. The second trade-off 

was found in males only, and it appeared that they allocated more MAAs to their 

epidermis in the sunny Non-pit microhabitat compared to the other microhabitats. Lastly, 

many types of MAAs were detected in ovaries and epidermis of both sexes, but males 

had primarily one MAA in their testes. This seemed to be related to shift in absorbance of 

testes to higher energy wavelengths of UV and suggests a sex and tissue-dependent trade 

off in breadth of absorbance versus the wavelength of peak absorbance. These findings 

are important for understanding how organisms adapt to changing environments. 

 

Microhabitat Variation in Total MAAs in Sea Urchins 

The variation in total concentration of MAAs in sea urchin tissues among 

microhabitats suggests that both the ability to acquire MAAs and physiological trade-offs 
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between adult and larval protection may be dictated by the adult’s microhabitat. Sea 

urchins inhabiting pits showed lower total concentrations of epidermal MAAs in both 

sexes compared to sea urchins from the other three microhabitats, regardless of the month 

collected (Fig. 5). This trend of low concentrations of MAAs Pit urchins was also 

detected in female sea urchins’ ovaries, but not in male sea urchins’ testes; testes showed 

low concentrations of MAA in all microhabitats (Fig. 4).  

The generally reduced concentration of MAAs epidermal tissues of both sexes 

and in ovary tissues in Pit urchins may have been caused by reduced food intake, lower 

uptake of dietary MAAs, or lower MAA concentrations in algal diets compared to sea 

urchins in the Non-pit, South facing and North facing microhabitats. Increased gonad 

index is associated with increased food intake (Vadas 1968; Himmelman 1978) and the 

gonadal index of Pit urchins was not reduced compared to the other microhabitats. 

Therefore, it appears that Pit urchins did not have a lower food intake than sea urchins in 

other microhabitats, and decreased nutrition is not likely responsible for low 

concentrations of MAAs in Pit urchins.  

In contrast, it is possible that Pit urchins did not absorb the MAAs from their food 

as readily as sea urchins in other microhabitats. Residing in pits may have reduced their 

overall exposure to UVR and potentially reduced the need for sunscreens, which may 

have caused the uptake of MAAs to be downregulated accordingly. However, this is 

unlikely, and although two studies indicate there is a decrease in the concentration of 

MAAs in sea urchin gonads with depth (Karentz et al. 1997; Lamare et al. 2004), they 

indicate it is due to algal MAA concentrations.  Moreover, previous results with a 

congeneric sea urchin, S. droebachiensis, indicate that moderate UV levels do not affect 
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the accumulation of MAAs in sea urchin ovary tissues (Adams et al. 2001). In addition, a 

recent long-term study examining whether natural solar UV-irradiation of S. purpuratus 

adults affects MAA accumulation in ovaries by Adams et al. (unpublished data) indicates 

that S. purpuratus do not alter their MAA accumulation in eggs in response to UVR. It is 

unclear whether it is ecologically advantageous for adult female sea urchins to increase 

their accumulation of MAAs to their ovaries depending on their own irradiance 

condition, because the larvae do not develop in the same habitat as the adults.  

The aforementioned study only examined the effect of UVR on ovary tissues 

(Adams et al. 2001), and it is possible that UV stimulates the uptake of MAAs into 

epidermal tissues. This could explain the reduction of MAAs in the epidermal tissues of 

the shaded Pit urchins of both sexes. However, when comparing the concentrations of 

MAAs in epidermal tissues in this study among the Non-pit, South facing and North 

facing microhabitats we did not see any differences (Fig 5), even though those three 

microhabitats had differing irradiance levels (Fig 1a). Because the microhabitat trend 

existed in both gonads and epidermis, our data suggest that the same mechanism was 

responsible for the lower MAA concentration in both tissues for Pit urchins. A reduced 

concentration of MAAs in the algae eaten by Pit urchins is the most likely explanation for 

the low concentration of MAAs in Pit urchins.  

The concentration of MAAs in algae, and not the biomass of algae, has previously 

been shown to affect the concentration of MAAs in sea urchin ovaries (Adams et al. 

2001), and we believe that a reduced concentration of MAAs in the algae eaten by Pit 

urchins is the reason for the reduced concentration of MAAs in their tissues. Though our 

measurements of attached algal cover, attached algal MAA availability and drift algal 
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availability do not suggest that Pit urchins had lower food availability than the other three 

microhabitats (Figs. 1e, 1f, and 2), we suspect that Pit urchins had different constraints on 

their diets than sea urchins living in the other microhabitats, and that this may have 

created the pattern seen here. Sea urchins in pits probably have limited access to algae 

growing near them because they seem to stay within the pits (Grupe 2006), so the 

attached MAA availability to Pit urchins was probably lower than our measurements 

indicate (Fig. 2). We often observed macroalgae growing very near sea urchins in pits, 

without evidence of herbivory. Moreover, our analysis of both attached algae and sea 

urchins among the microhabitats indicated there are lower relative concentrations of 

shinorine, the primary MAA accumulated by sea urchin tissues (Fig. 8), in both algae and 

sea urchins in the Pit microhabitat (Figs. 3 and 9). This suggests a dietary transfer from 

algae to sea urchins of the relative concentrations of shinorine, and that the trend of 

lowered relative concentrations of shinorine in Pit urchins was due to lowered 

concentrations in their diets. 

Conversely, inhabitating pits did not seem to lower sea urchins’ abilities to catch 

drift algae (Fig. 1f). The lower concentration of MAAs in the tissues of Pit urchins may 

be caused by Pit urchins consuming a higher proportion of drift algae, which (in our 

study) had a lower average concentration of MAAs per unit dry weight than all of the 

species of attached algae collected (excluding coralline algae). Further, brown algae, 

which do not contain high amounts of MAAs (Shick and Dunlap 2002), were much more 

common in drift samples than in attached algal samples, and may constitute a large 

portion of Pit urchins’ diets. 
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Regardless of the mechanism creating the reduced concentration of MAAs in Pit 

urchins, there seems to be a trade-off involved for sea urchins living in versus out of pits. 

Pit urchins are probably more protected from predators (Grupe 2006), desiccation, and 

dislodgement by waves (Denny and Gaylord 1996).  However, Pit urchins may have 

decreased offspring survival due to the lower concentrations of MAAs in their ovaries 

(Adams and Shick 1996, 2001), and adult survival may be reduced due to lower 

concentrations of MAAs in the epidermis. A study on S. purpuratus in Oregon found that 

Pit urchins have slower growth rates and smaller test diameters than Non-pit urchins 

(Grupe 2006). These factors combine to suggest there is a trade-off between adult sea 

urchin survival, which is likely higher inside pits, and fitness and growth, which is likely 

higher outside of pits.   

Initially, the importance of food availability in controlling MAA concentrations in 

sea urchin tissues seems to conflict with the data for Non-pit urchins; Non-pit urchins had 

concentrations of MAAs in both gonadal and epidermal tissues that were similar to sea 

urchins in the South and North facing microhabitats (Figs. 4 and 5), but attached algal 

MAA availability, algal cover and drift algal availability (Figs. 2, 1e, 1f) were lowest in 

the Non-pit microhabitat, suggesting they did not have high food availability. However, 

gonadal indices for Non-pit urchins were not smaller than sea urchins in the other 

microhabitats, suggesting that their algal intake was not actually low. How are Non-pit 

sea urchins getting food and consequently MAAs when there was little attached or drift 

algae observed to be available to them? Non-pit urchins may eat available attached and 

drift algae faster than sea urchins in other microhabitats, or they may supplement their 

diets with microalgae, including benthic diatoms and periphyton. Further studies on 
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dietary differences in sea urchins among these microhabitats may clarify the patterns in 

concentrations of MAAs seen here. 

An alternative explanation is that the concentrations of MAAs are higher in algae 

consumed by sea urchins in the Non-pit microhabitat. Even when having considered 

species-specific differences in algal specimens in concentrations of total MAAs, we 

detected high concentrations of total MAAs as well as high relative concentrations of the 

important MAA shinorine (Fig. 3) in algal specimens from the Non-pit microhabitat, 

though these differences were not always significant compared to the other microhabitats. 

Further, algal species that were common along the edges of Non-pit tidepools included P. 

capillacea, E. muricata, and M. papillatus, which had medium to high concentrations of 

MAAs (Table 1), while coralline algae tended to be common in pools in the other 

microhabitats, and are low in concentration of MAAs per unit dry weight (Table 1). It is 

possible that high concentrations of shinorine in algae from the Non-pit microhabitat was 

transferred up the food chain to sea urchins, as discussed above for Pit urchins and as has 

been noted between trophic levels for MAAs in several other studies (Carroll and Shick 

1996; Carefoot et al. 2000; Newman et al. 2000). 

 

Microhabitat Variation in Allocation of MAAs Between Tissues 

 Males had a higher proportion of MAAs in their epidermal tissues in the Non-pit 

microhabitat compared to those in the other three microhabitats, while the proportion of 

MAAs in females’ epidermal tissues was the same in all of the microhabitats (Fig. 6). 

The Non-pit microhabitat had higher irradiance levels than the other microhabitats (Fig. 

1a), and was also higher in the intertidal zone (Fig. 1b) meaning there was less shade and 
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that less water filtered the incoming UVR. These data suggest that males trade-off 

allocation of MAA resources to epidermal versus gonadal tissue depending on abiotic 

conditions.  Though the survival of offspring and thus fitness of the adult males may be 

decreased by having reduced MAAs in the gametes, this preferential allocation of 

sunscreens to epidermal tissues could indirectly positively affect fitness by increasing the 

growth or survival of adult male sea urchins, allowing increased reproductive output over 

time. In contrast, our data suggest females did not change the percentage of MAA 

resources allocated to adult versus reproductive tissue depending on the microhabitats 

and the environmental factors associated with them (Figs. 1 and 2). A females’ fitness 

may not benefit from reducing resources to eggs in favor of transferring them to her 

epidermis, because the survival of her offspring and consequently her own fitness may be 

reduced (Adams and Shick 1996; 2001).  

 

Microhabitat Variation in Gonadal Indices 

 Lowered food availability did not seem to be limiting to sea urchins in the South 

facing microhabitat (Figs. 1e, 1f and 2), yet they exhibited a lowered mean gonadal index 

compared to sea urchins in the other three microhabitats. It could be that sea urchins in 

the South facing microhabitat had spawned previous to our collections. However, the 

above pattern was detected in November, before the spawning season had commenced, as 

well as in January when spawning season had begun (Giese et al. 1991), suggesting that 

early spawning was not the source of this pattern. Further investigation will need to be 

performed concerning the lowered gonadal indices in sea urchins in South facing 

microhabitat compared to sea urchins in the other microhabitats at this and other sites.  
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The pattern of low gonadal indices in sea urchins in the South facing microhabitat 

was not accompanied by a concurrent reduction of gonadal concentration of MAAs, 

suggesting that concentrations of MAAs are not tightly linked with gonad maturation. 

Indeed, when including data from all microhabitats, neither gonadal index nor sea urchin 

size showed a correlation with concentrations of MAAs, which suggests that neither the 

number of gametes nor the size of a sea urchin affects its ability to sequester MAAs. 

 

Sex and Tissue-Specific Differences in Concentrations of MAAs 

The different trends in concentrations of MAAs in the gonadal and epidermal 

tissues between the sexes suggest that female S. purpuratus utilize MAAs differently than 

males, which is consistent with other studies that observed sex-specific differences in 

concentration of MAAs in corals (Michalek-Wagner 2001), holothuroids (Karentz et al. 

1991) and sea urchins (Bosch et al. 1994; Carroll and Shick 1996; Karentz et al. 1997; 

McClintock and Karentz 1997). MAAs were more highly concentrated in ovaries than in 

testes, and in female epidermis than in male epidermis (Figs. 4 and 5). Because males and 

females live interspersed, it is likely that these differences are not caused by sex-specific 

differences in diet or abiotic conditions, but are physiological differences between then 

sexes.  

The higher concentration of MAAs in ovaries compared to testes may simply be a 

physical limitation set by gamete size. The volume of an S. purpuratus egg is over 34,000 

times larger than a sperm (Levitan 1993) so eggs can acquire a higher amount of MAAs 

in the cytoplasm and adult female sea urchins may allocate a greater percentage of MAA 

resources to their gonads simply because that resource is more easily utilized by the 
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gametes. Adams and Shick (1996) calculated the optical radius for S. droebachiensis eggs 

and sperm and hypothesized that eggs can use MAAs to absorb up to 86% of UVR 

reaching the nucleus, but that it is physiologically impossible for sperm (due to their 

small size) to sequester enough MAAs to obtain protection against UVR. Indeed, the 

male with the highest concentration of MAA in its testes (1.646 nmol mg-1 dry wt.) had a 

much lower concentration of MAAs than the female with the highest (9.465 nmol mg-1 

dry wt.), suggesting that the physical maximum MAA concentration for testes is much 

lower than that of ovaries. Further, the lowered concentration of MAAs in testes 

compared to ovaries was not associated with a concurrent increase in males’ (compared 

to females’) epidermal MAAs (Figs. 4 and 5). This suggests that MAA concentrations in 

males were not limited by the amount of MAAs in their diets, but that testes were limited 

in their ability to accumulate MAAs physiologically. However, upon examining the rank-

order concentrations of MAAs in testes, our data do not indicate that concentrations of 

MAA in the testes reached some threshold where no further MAAs could be allocated to 

the testes.  

Regardless, it is possible that MAAs could still function to protect sperm even if 

they are not highly concentrated within sperm cytoplasm. During spawning, MAAs could 

be present in the fluid surrounding the sperm, which could shade sperm from UV 

radiation. Further, high densities of sperm would result in some sperm cells being 

protected by MAAs present in other sperm, even at low concentrations of MAAs. A 

similar phenomenon, where MAA-containing cells surround gonadal tissue and protect 

embryos, has been demonstrated in tunicates (Epel et al. 1999). 



 53 

The presence of MAAs in eggs may have larger implications for the fitness of 

females than the presence of MAAs in sperm could have for the fitness of males. In 

female green sea urchins (S. droebachiensis) MAAs are transferred from the diet into the 

eggs, are retained in the cytoplasm at least through the early pluteus stages, and confer 

protection from cleavage delay and fatal developmental abnormalities when embryos are 

exposed to UVR (Adams and Shick 1996, 2001). However, any MAAs in sperm would 

not be transferred to the offspring and could serve only to protect the sperm for the short 

~20 minute period (Pennington 1985) that the sperm is viable. Therefore, any MAAs 

contained in the testes may confer a small increase the male sea urchin’s individual 

fitness through increased sperm survival, but are not likely to affect offspring survival.  

Similar to the pattern seen in gonadal tissues, females had a higher mean 

concentration of MAAs in epidermal tissues than males. We expected a similar 

concentration of MAAs in epidermal tissues between the sexes, because UV-exposure 

and diet probably does not differ. It is possible that the increased concentration of MAAs 

in female epidermal tissues is a by-product of the higher uptake and allocation of MAAs 

to gonadal tissues in females; an increased uptake of MAAs from female’s diets may 

result in the increased concentrations in the epidermal tissues. Though the mean 

differences between the sexes were significant, the magnitude of the differences was 

small, (0.19 ± 0.01 and 0.017 ± 0.02 nmol mg-1 dry wt. for mean female and male 

epidermal concentrations, respectively) and not likely to be ecologically relevant. 

The ranges in concentrations of MAAs detected in this study encompassed the 

ranges found in intertidal field-collected intertidal green sea urchins, S. droebachiensis, 

form Maine (Carroll and Shick 1996). We observed much higher and much lower 
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concentrations for each tissue than those found in S. droebachiensis, and this was 

probably due to the larger number of sea urchins tested, though it may indicate that S. 

purpuratus have more variability in concentrations of MAA than S. droebachiensis (for 

S. purpuratus and S. droebachiensis, respectively: Ovaries: 0.02-9.47 and 1.630-3.101 

nmol mg-1 dry wt., Testes: 0.05-1.65 and 0.167-1.173 nmol mg-1 dry wt., Combined 

Epidermis: 0.00-1.28 and 0.135-0.183 nmol mg-1 dry wt.). However, the mean ovary 

concentration in females collected in January from our study (1.57 ± 0.28 nmol mg-1 dry 

wt.) was lower than the mean concentrations of MAAs found in five S. droebachiensis 

(7.57 ± 0.66 nmol mg-1 dry wt.) also collected intertidally during the spawning season in 

Maine (Adams et al. 2001). This suggests that S. purpuratus may have lower average 

concentrations of MAAs in their ripe ovaries and eggs compared to their congeneric S. 

droebachiensis, but more studies are needed to conclude whether this is consistent over 

the ranges of both species and whether it is consistent for other tissues. 

 

Concentrations of Individual MAAs and Absorption Spectra of Tissues 

The similarities in the absorption spectra for extracts of ovaries and epidermal 

tissues from both sexes (Fig. 7) are consistent with the similarities seen in the relative 

concentrations of individual MAAs in these tissues (Fig. 8). The various MAAs detected 

absorb maximally at different wavelengths in the UV spectrum, and the spectral analysis 

suggests that the MAAs together in these tissues cover a broad portion of the UV 

spectrum (Fig. 7). Adult epidermis and embryos produced from the ovaries are fairly 

long-lived tissues that may receive prolonged exposure to sunlight, and therefore may 

benefit from broadband absorbance of UV (Fig. 7). Mycosporine-glycine was more 
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concentrated in ovaries than in epidermal tissues (Fig. 8). Though the actual mean 

concentration of mycosporine-glycine was low, its maximal absorbance is at a shorter, 

higher energy UVB wavelength (max= 310 nm) and it may be responsible for the higher 

absorbance seen in ovaries versus epidermal tissues in the UVB range (Fig. 7). Because 

lower wavelengths are more damaging than higher wavelengths, especially to DNA, 

protection in the UVB range may be extremely beneficial to small, transparent, 

developing pelagic larvae. Further, it has been speculated that mycosporine-glycine has 

antioxidant capabilities (Dunlap and Yamamoto 1995), which could further protect eggs 

from the oxidative effects of UVA.  

The shift of the testes absorption signature toward the shorter, higher energy 

wavelengths (max =  322 nm) (Fig. 7) may have been due to the high relative 

concentration of palythine found in testes (Fig. 8), which absorbs maximally at the 

UVA/UVB transition (max =  320 nm). If MAAs in the testes actually protect sperm, a 

shift in absorption toward the UVB part of the spectrum may better protect the valuable 

DNA contained within the sperm, because DNA absorbs UV at higher energy short 

wavelengths (max = 260 nm).  

The preferential allocation of palythine to the testes could represent a trade-off 

between the breadth of MAA absorption and the wavelength of peak MAA absorbance 

depending on sex, and may occur because the small size of sperm limits the number of 

MAA molecules that can be stored in the cytoplasm. The larvae that develop from eggs 

live for months in the water column (Strathmann 1987), so they may benefit from 

broadband protection from both UVA and UVB.  
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Our results concerning the individual MAAs found in S. purpuratus sea urchins 

tissues were very similar to those seen by Adams et al. (2001) and Carroll and Shick 

(1996) for ovary tissues of S. droebachiensis: S. purpuratus also accumulated mostly 

shinorine and small amounts of porphyra-334, mycosporine-2-glycine, palythine, 

asterina-330 to their ovaries. However, we detected the MAA usujirene in the ovaries and 

testes of S. purpuratus (Fig. 8), whereas Adams et. al (2001) did not detect usujirene in S. 

droebachiensis ovaries, even when sea urchins were maintained on a usujirene-rich diet 

of Chondrus crispus. This suggests that there is a difference in uptake of dietary MAAs 

between these two Strongylocentrotus species. Alternatively it may be that that the 

ovaries of S. droebachiensis in their study did contain usujirene, but that the HPLC used 

in the study was not able to detect it because is was less sensitive than the one used here, 

or that usujirene was lost in the algae fed to urchins prior to consumption because algae 

was frozen.  

The mechanism of the higher concentrations of total MAAs in females as well as 

sex and tissue-specific differences may be physiological differences between the sexes, 

especially for gonadal tissue, in the numbers and types of cross-membrane proteins that 

may transfer water-soluble MAAs between cells. It has been suggested that MAAs can be 

structurally altered internally by corals and carnivorous pteropods (Whitehead et al. 2001; 

Shick 2004) as well as by the bacteria Vibrio harveyii in the guts of sea urchins and 

holothuroids (Dunlap and Shick 1998). Further, a diversity of carrier-mediated MAA-

transport mechanisms may exist in the gut and other tissues of organisms (Mason et al. 

1998; Shick et al. 2000), allowing selective uptake of MAAs as well as tissue-specific 

control of MAA transport within a sea urchin. This information suggests that individual 



 57 

MAAs may be selectively acquired or modified by S. purpuratus, and that this 

accumulation or modification is different between the sexes and is tissue-specific. 

 

Concentrations of MAAs Over Time 

The mean concentration of MAAs in ovaries increased in from November to 

January (Fig. 4) suggesting that female sea urchins were “packing” the MAA resource 

into the gonads, and presumably eggs, as the spawning season approached. Conversely, 

the males did not show an increase in the concentration of MAAs in testes over time (Fig. 

5), suggesting that either the testes are constitutively low in MAAs throughout the year, 

or that they had reached a low but maximum concentration early in gonadal ripening (i.e. 

before November). The increase in MAA concentration in ovaries as spawning season 

neared indicates some functional role of MAAs in ovaries, and it been suggested that 

MAAs may play a role in gametogenesis (Bandaranayake et al. 1997; Bandaranayake and 

Des Rocher 1999), though this is subject to debate (Adams et al. 2001). Our data did not 

show a positive correlation between gonadal index and MAAs, and many sea urchins of 

both sexes had extremely low concentrations of MAAs, so it is not clear that MAAs 

necessarily regulate reproduction. It is not surprising that the epidermal MAA 

concentrations did not change in either sex from November to January (Fig. 5), as the 

solar irradiance levels do not differ drastically over that time.  

The decrease in gonadal index for female sea urchins, but not males, from 

November to January indicates that the females may have spawned during that time, 

while the males did not. Though spawning before January is early in the reproductive 

season, the winter of 2006/2007 was exceptionally warm, and it has been documented 
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that sea urchins can spawn in response to increased temperatures (Farmanfarmaian and 

Giese 1963). A high fertilization percentage was observed under the microscope between 

gametes of the dissected sea urchins in January, so egg maturity was likely. Nevertheless, 

ovaries were ripe with eggs and concentrations of MAAs increased in ovaries from 

November to January, so females were still reproducing in January.  

 

Total MAAs in Algae 

To our knowledge, our study is the first to demonstrate the presence of MAAs in 

eight red algae species from California including Calliarthron tuberculosum, Corallina 

vancouveriensis, Endocladia muricata, Mastocarpus jardinii, Mastocarpus papillatus, 

Mazzaella flaccida, Osmundea spectabilis, and Prionitis lanceolata (Sinha et al. 2007). 

Other studies have previously demonstrated the presence of MAAs in Corrallina 

officianalis from Patagonia (Karsten et al. 1998a; Häder et al. 2003) and Pterocladia 

capillacea from Japan (as cited in Sinha et al. 2007).  We detected MAAs in every one of 

the 120 algal specimens collected (Table 1); this further established the ubiquity of 

MAAs in Rhodophytes algae around the world.  These data are especially important for 

establishing that MAAs are available to consumers, such as purple sea urchins, in central 

California’s coastal marine ecosystem. 

 

Mechanisms for Variability in Total MAAs 

 The large number of samples we analyzed allowed us to detect patterns among 

sea urchins in the concentrations of MAAs in their tissues, but we still observed 

extremely high variability in the mean amount of MAAs detected for all tissue types 
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(1.15 ± 1.66, 0.31 ± 0.23, 0.19 ± 0.16 and 0.17 ± 0.21 nmol mg-1 dry wt. (± S.D.) for 

ovaries, testes and female and male epidermis, respectively). There are a few mechanisms 

that could have created this high variability: individual sea urchins could differ in their 

ability to sequester MAAs, there could be short retention times of MAAs in tissues and 

only recently-ingested MAAs are detected, or there could be high variability in the diets 

of individual S. purpuratus. It is improbable that there are short retention times for MAAs 

in sea urchin tissues, because S. droebachiensis held on a MAA-poor diet still contained 

similar concentrations of MAAs months into the experiment (Adams et al. 2001). A 

follow-up feeding experiment in this laboratory will examine whether sequestration of 

MAAs in tissues of S. purpuratus is affected by diet and/or by exposure to natural UVR, 

and examine the level of variability among individuals kept on controlled diets.  
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Conclusion   

This study is the first to identify multiple mycosporine-like amino acids in the 

purple sea urchin, Strongylocentrotus purpuratus, and in eight new species of 

Rhodophyte macroalgae. Further, MAA concentrations in sea urchins were shown to vary 

with the sex, tissue type, time of year and the microhabitat that sea urchins occupied. S. 

purpuratus seems to have similar amounts of MAAs in its tissues as its congeneric S. 

droebaciensis , though with perhaps more variability. Multiple trade-offs concerning 

MAAs in sea urchins tissues were noted, and because MAAs protect sea urchin embryos 

from developmental delay and abnormalities (Adams and Shick 1996; 2001), these trade-

offs have potentially far-reaching fitness consequences. This study is unique because it 

considered fine (microhabitat scale) variation in the field as well as investigated 

differences between sexes and differences in allocation of MAAs between tissues.  

The first apparent trade-off was noted in sea urchins inhabiting pits; pits likely 

provide protection from abiotic and biotic stressors, while living outside of a pit is 

associated with increased size, fecundity and growth (Grupe 2006) and in our study was 

associated with an increased concentration of MAAs in both gonadal and epidermal 

tissues, at least for female sea urchins. This trade-off illustrates the importance that 

microhabitat choice may have for long-term fitness and survival of individual S. 

purpuratus. A second trade-off was detected in males only: in the Non-pit microhabitat, 

which was highest in irradiance as well as highest in the intertidal, male sea urchins 

allocated relatively higher concentrations of MAAs to their epidermal tissues (rather than 

their testes) than did males in the other three microhabitats. This suggests that males 

trade-off resources between somatic and reproductive tissues depending on the abiotic 



 61 

environment. This trend was not observed in females, suggesting that females invest a 

consistently high proportion of their MAA resources to their offspring, regardless of 

abiotic conditions. The trade-off may only be advantageous for males because their short-

lived sperm are not as likely to be affected by UV, so MAA resources may be better 

utilized in the epidermis when irradiance levels are high. Conversely, adjusting MAA 

allocation to eggs depending on a female’s abiotic environment may not be 

advantageous, because UV likely negatively affects embryos and larvae regardless of 

their mothers’ microhabitat.  

Males also principally allocated only two MAAs to their testes, while multiple 

MAAs were detected in ovaries and epidermal tissues for both sexes, suggesting another 

trade-off in MAA allocation that is dependent upon sex. The different concentrations of 

individual MAAs found in testes compared to ovaries and epidermis seemed to be related 

to the wavelengths of absorption of UVR (Fig. 7), which could have implications for the 

level of protection that adult tissues and gametes have against UVR.  

The ability to phenotypically adjust concentrations of sunscreening MAAs 

depending on irradiance levels may be important for S. purpuratus populations in the 

near future, as the penetration of UV into the atmosphere is predicted to continue to be 

above natural levels due to ozone thinning and ozone interactions with climate change 

(McKenzie et al. 2007). Our study suggests that male, but not female, S. purpuratus have 

some ability to adjust epidermal sunscreen levels depending on UV levels, and that 

microhabitat selection may have an impact on sea urchins’ ability to obtain sunscreens. 

Current and future research in our laboratory will address the ability of S. purpuratus to 

adjust the MAA concentrations in their gonads and epidermis in response to UVR.
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