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Abstract: The warming resulting from increasing anthropogenic carbon dioxide 
and other greenhouse gasses is expected to be most prominent in the subarctic-boreal 
region of the Northern Hemisphere. With the objective of setting up a baseline to 
monitor possible vegetation change in this region, a continuous vegetation profile 
extending 600 km from Edmonton, Alberta to Cluff Lake, Saskatchewan, Canada was 
measured using an airborne infrared laser altimeter mounted on a helicopter. Then 
the distribution of leaf area index over the same 600 km long transect was estimated 
from this vegetation profile based on a series of plot surveys on the ground to correlate 
the vegetation profile with leaf area index via standing stock. The distribution of leaf 
area index not only corresponded well with biome type, but also showed characteristic 
change in accordance with environmental gradient within a given biome, thus confirm- 
ing that airborne laser altimetry is a powerful tool for measuring and monitoring such 
important vegetation characteristics as standing volume, leaf area index, etc. over an 
extensive area. 

key words: leaf area index (LAI)', airborne laser altimetry (ALA), vegetation profile, 
vegetation change, boreal forest 

Introduction 

Climate warming due to increasing atmospheric carbon dioxide and other 
anthropogenic greenhouse gasses is expected to cause vegetation change (Emanuel et 
al., 1985; Sweda et al., 1995). This can take place anywhere on the globe, but is 
projected to be most conspicuous in higher latitudes of the Northern Hemisphere, where 
warming is considered most prominent (Houghton et al., 1990). In view of the rise in 
observed and proxy-reconstructed temperature amounting to 1 C  or more since the 
early 1800s (Jones, 1988; Sweda, 1996), the vegetation change may already be taking 
place. It may not yet be in such explicit forms as drastic shift in biome boundaries or 
definite change in species composition as is generally envisaged, but possibly be proceed- 
ing as a subtle and rather quantitative change in vegetation structure, which may well 
precede qualitative changes. Such minute changes are difficult to capture by ordinary 
vegetation survey conducted on a sample plot basis since other local environmental 
changes than climate warming may also affect vegetation structure and composition, and 
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Fig. 1 .  Study site with airborne laser profiling course and sample plots. 
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most of the boreal forest in the region is still rather intact. The past industrial efforts 
in the region have been focused on mining, leaving forests relatively unscathed until a 
decade or so ago. Although recent technological innovation has made once dis-
regarded trembling aspen superb material for pulp, and has given rise to its industrial 
exploitation. This is just starting, and most of the boreal forest is still intact (Sweda, 
1995). 

The airborne laser altimetry system employed in the present study consists of an 
infrared laser altimeter (ILA), a differential global positioning system (GPS) and a 
video tape recorder (VTR). The ILA emits laser pulses and measures the clearance 
between the aircraft and the object reflecting the laser beam from directly below, be it 
forest canopy or the ground. According to the catalogue specification, the ranging 
precision of the laser profiler is k 2 0  cm. In comparison with the precision of k5 cm 
or so in direct measurement of height on felled trees, laser profiling is less accurate, but 
its precision of k 2 0  cm is similar to that of trigonometric measurement of tree height 
on the ground with a Blume-Leiss hypsometer, or better. Thus, as far as tree height is 
concerned, we can expect a similar degree of precision as is obtained by conventional 
timber cruising on the ground. 

The laser profiling was conducted at a frequency of 2000 Hz. With the aircraft 
(helicopter) flown at a mean ground speed of 140 km/hr in this mission, this frequency 
translates to a nominal horizontal measurement interval or spatial resolution of 2 cm 
along the flight track. However, to cope with the limitation in data storage, only one 
measurement in every 25 was recorded, resulting in an average measurement interval or 
spatial resolution of 50 cm along the flight track. Again, according to the catalogue 
specification, the precision of the GPS horizontal positioning is k 2 0  cm within a 10 km 
range of the ground control station. On the actual mission, the ground control was 
more sparse at an interval of approximately 200 km, and thus the positioning precision 
should be worse than the catalogue value but is expected to be a couple of meters or so. 

By subtracting the laser-measured clearance from the GPS-monitored navigation 
altitude of the aircraft, a surface profile was obtained, which consists partly of vegeta- 
tion canopy and partly of topographic surface. A continuous topographic profile was 
obtained, first by picking up patchy reflections from the ground alone, and then 
interpolating them into a smooth curve using spline fitting. Finally the vegetation 
profile was generated by subtracting the topographic profile from the original surface 
profile, and shown in Fig. 9a for the entire 600 km transect. 

To correlate this vegetation profile with actual standing stock and LAI, a series of 
ground surveys was conducted along the flight track. A total of 14 sample plots, each 
representing either one or two of young, mid-aged and mature stands of jack pine, white 
spruce, black spruce and trembling aspen, were located along the flight track. The plots 
were square with side length approximately equal to the mean tree height so that the plot 
area would be roughly proportional to the standing stock and leaf area of the plot. 

Standing stock of stem volume within the plot was obtained from the stem diameter 
at breast height (dbh) using the correlation between the stem volume and dbh of 
individual trees. Thus, in the plot survey dbh was censused, while the volume equation 
was constructed for each species from the aggregate of sample trees consisting of four 
samples, i.e. one large, two mid-sized and one small stems from each plot surveyed. 
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Then, the individual stem volume was summed up for the standing stock of each plot. 
In this process, the stem volume of the sample trees was evaluated by dissecting each 
trunk into 7 to 23 logs depending upon the tree size, and log volume was evaluated 
according to the Smalian formula except for the apex where the conic formula was used 
(Tsuzuki et al . ,  1998). 

The plot leaf area was obtained on the basis of direct measurement of the same 
sample trees felled for volume measurement. As shown in Fig. 2, the leaf area was 
obtained using its regression upon leaf weight. In small sample trees, all the leaves were 
detached from the twig, and weighed. In large sample trees, it was estimated by branch 
using correlation between the leaf weight and base area of sample branches, and then 
summed up for the entire tree. Leaf area itself was measured first by scanning the 
leaves with a scanner as graphic images, and then by analyzing their area on a Power 
Macintosh 9600/233 using a public domain program "NIH Image" from the U.S. 
National Institute of Health. As will be naturally envisaged from this method of 
measurement, the leaf area in this paper is one-sided area for broadleaved trees, and 
projected area for conifers. Once the leaf areas for individual sample trees were thus 
obtained, the correlation was established with dbh to estimate leaf area for every tree in 
the plot, which sums up to the plot leaf area. The LA1 was then obtained as the ratio 
of the total leaf area in the plot to the plot area itself. 

Apart from this direct measurement, LA1 was also estimated with two other 
methods for comparison. One is with the Plant Canopy Analyzer from LI-COR, which 
converts the light intensity on the forest floor relative to that in an open area nearby into 

Sample plot 

dbh 

Fig. 2. Flow leading to estimates of sample plot LAI. 
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Fig. 3. Flow leading to LA1 estimate over entire flight course, 

LAI. Another uses a hemispherical photograph of the canopy taken upward from the 
forest floor with a fisheye lens, from which LA1 was calculated according to the gap 
fraction method developed by Hashimoto (1997) based on the Markovian theory of leaf 
shading by another. Both methods are much less time-consuming than the direct 
measurement, and thus should be useful to cover more control points on the ground 
once their bias and correction are established. 

These LA1 measurements were related with the laser-based vegetation profile 
through standing stock to estimate the distribution of LA1 all along the entire length of 
the 600 km transect. The procedure to find functional relationships of standing stock 
with vegetation profile area and LAI, and to combine them for a LA1 estimator as a 
function of laser-based vegetation profile, is shown in Fig. 3. 

Result and discussion 

A total of 50 sample trees were felled, and their mensurational characteristics such 
as dbh, height, stem volume, leaf weight and leaf area are given in Table 1. For 
broadleaved trees, leaves were weighed green out in the field since they can be easily 
detached from the twig on the spot. For conifers, however, leaf detachment needs 
meticulous fingertip work, and thus the detachment and weight measurement were done 
in the laboratory after the sample leaves were air-dried. 

Air-dried leaf weight and leaf area in conifers revealed a linear relationship as 
shown in Fig. 4. A similar straight-line relationship was also found for broadleaved 
trees. In the present analysis, a distinction was made only between broadleaved trees 
and conifers, with the former represented by trembling aspen alone and the latter by jack 
pine, white spruce and black spruce. With more samples it will be possible to establish 
the relationship on an individual species basis. 

Figure 5 shows a straight-line relationship between branch base area and leaf 
weight in conifers on a log-log scale, which translates to a power function as given in the 
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Table 1. Characteristics o f  sample tree. 

Tree 
ID Species dbh 

(cm)  
Height 

( m )  
Volume 

(m3)  

Leaf weight* 

Dry Green 
(kg)  (kg)  

Leaf 

area 

(m2)  

Remarks 

Plot Canopy 
no. layer 

0.187 4.45 
0.072 1.88 
0.042 1.33 
0.020 0.69 
0.339 4.23 
0.226 2.90 
0.137 1.75 
0.015 0.19 

37.2 28.10 1.530 
pOpu'ustremuloides 29.0 

23.5 
29.05 
29.00 

0 9 1 3  
0.573 

17.3 25.00 0.313 1.83 7.71 
9.1 9.73 0.026 1.05 4.43 
4.0 7.23 0.006 0.42 1.77 9 lower 
2.7 5.23 0.002 0.21 0.89 
5.2 6.59 0.009 0.76 3.21 
3.3 5.27 0.003 0.22 0.91 l3  
1.2 2.59 0.0004 0.13 0.54 
2.1 4.75 0.001 0.05 0.23 

10.8 10.10 0.052 2.46 10.41 
6 .5  6.90 0.014 0.53 2.24 
7.8 7.30 0.019 0.67 2.84 
3.7 4.72 0.004 0.06 0.27 

21.3 10.55 0.209 8.32 35.17 
13.1 10.00 0.074 2.09 8.83 

Pin us 18.7 14.55 0.181 6.35 26.84 
banksiana 14.0 13.10 0.108 3.13 13.22 

16.5 13.00 0.133 3.55 15.00 
9.0 10.75 0.038 0.26 1.11 
3.0 3.66 0.002 0.19 0.82 
2.5 3.22 0.001 0.17 0.71 l2  
1.7 2.85 0.001 0.09 0.39 
1.3 2.53 0.0004 0.04 0.16 

13.1 11.89 0.088 6.37 19.20 
10.4 10.21 0.047 3.34 10.07 
3.5 4.44 0.003 0.56 1.69 

Picea 
mariana 

0.8 
4.6 
2.4 

1.62 
4.00 
2.78 

0.0003 
0.005 
0.002 

0.14 
1.87 
0.67 

0.43 
5.64 
2.01 

8.9 
5.4 

9.47 
5.18 

0.032 
0.009 

1.57 
0.78 

5.41 
2.70 

lower 

Picea 1.7 2.33 0.001 0.20 0.67 
glauca 37.5 26.60 1.399 39.39 135.63 

27.5 23.74 0.626 13.70 47.19 lo 
22.0 23.26 0.422 8.88 30.58 

- 10.7 10.84 0.056 0.74 2.56 

*Broadleaf (Populus) was measured green out in the field, while conifers (Pinus & Picea) 
were air-dried and measured back in laboratory. 
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Fig. 4. Relationship between dry leaf 
Fig. 5. 	 Relationship between branch base 

weight and leaf area in conifers. 
area and dry leaf weight in 
conifers. 

Fig. 6. 	 Relationship between dbh and 0 10 20 30 40 
leaf area in conifers. dbh ( cm ) 

same figure. The relationship was judged to be reasonably linear, making it useful to 
estimate leaf weight from cross section of the branches at their base. 

Figure 6 shows the power relationship between the leaf area and dbh in individual 
trees, according to which individual leaf area for every tree in the plot was estimated. 
A mechanical analogy of tree leaves as an evaporator and stem as a pipe to pass water 
to the foliage, requires that the cross section of the pipe, i.e. the basal area S of the stem, 
be proportional to the total leaf area AL of the tree. This in turn requires that (dbh)2 
be proportional to the leaf area since the basal area is related to dbh by S = ~ ( d b h ) ~ / 4 .  
This suggests that the power in the leaf area equation in Fig. 6 theoretically be 2 rather 
than 2.493 as obtained through least squares fitting of the equation. As a matter of 
fact, two outliers in Fig. 6 i.e. the largest and the third largest in leaf area seem to be 
bringing the curve up to the effect of making the power of the best-fit curve greater than 
theoretically expected. There is a good possibility that the power may tend to 2 as more 
sample trees are incorporated. In the present paper, however, the parameters were 
used as they had been determined through the least squares fitting and are given in Fig. 
6.  Though omitted here, a similar well-defined relationship was found in the 
broadleaved trees. 

The results from the plot survey on the ground are summarized in Table 2. There 
are 14 plots involved altogether. The standard method of plot survey for standing 
stock and LA1 explained in the Materials and Methods Section was employed in 11 of 
them. In the rest, i.e. in plots 6, 11 and 14, however, a more expedient method of 
Bitterlich sampling was employed. In this method, the standing stock is obtained as a 
product of mean tree height and basal area (sum of stem cross sections at breast height) 
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with the latter directly measured with a Spiegel Relaskop rather than measuring 
individual trees and summing them up (Philip, 1994). As a matter of fact, the 
Bitterlich estimates were made simultaneously with the standard plot survey in the 
majority of the plots to correlate them and correct the former. As naturally envisaged 
from the nature of direct measurement of basal area in this method, neither dbh nor 
stem density is available as indicated in Table 2. 

By appearance the boreal forest seems to be a mosaic of single-species, even-aged 
stands. But frequently under the canopy of what seem to be aspen stands, another 
canopy mainly consisting of white spruce exists. In such cases, the two different 
canopy layers were distinguished, and accordingly the stand characteristics are given 
separately in Table 2. Three different estimates of LA1 obtained by the direct measure- 
ment, Plant Canopy Analyzer and gap fraction methods are also given. 

The last column in Table 2 is the area under the vegetation profile obtained by 
airborne laser altimetry. As shown in Fig. 7, this vegetation profile area is well 
correlated with standing stock, and the latter should theoretically be expressed as a 
function of the former raised to the power of 1.5 as reasoned below. The standing 
stock can be expressed as a product of the mean individual stem volume and stem 
density, in which the former can be represented by the stand height. On the other 
hand, from the laser profiling point of view, the vegetation profile area is also propor- 
tional to tree height and stem density. Taller trees bring the profile high and the higher 
stem density keeps it level and high, resulting in a larger vegetation profile area. Since 

Table 2. Stand characteristics of sample plots. 

Standing Vegetation
Survey Mean Stem Mean Basal stock L A I ~  profile 


Plot Canopy Stand method dbh density Iree area

Species *' height (m3ha) D.M. C.A. G.F. area 

no. layer age 

(trees (mz/
Plot Bit (cm) By Plot By Plot Plot Plot 
h a )  (m) h a )  layer layer loom) 

47 0 0 6.3 2244 

106 0 0 12.5 936 

upper 36 0 0 10.3 1844 

lower 39 0 0 6.9 1721 

55 0 0 13.2 1161 

64 0 0 4.5 8843 

110 - 0 -

40 0 0 11.6 3140 

30 0 0 - 22752 

F'l upper 78 0 0 24.5 1066 25.2 51.43 606.5 3.12
9 622.3 3.27 2.36 3.00 2569.8 

Pi lower - 0 0 2.9 3751 - 3.22 15.8 0.15 

Pi upper - - 0 - - 23.0 36.00 416.1 2.28 
14 423.9 2.53 2.68 3.34 2273.7 

Pg lower 53 - 0 - - 9.9 1.33 7.8 0.25 

*' Pb: Pinus banhian *' Plot: Sample plot *' D.M.: Direct measurement *' ktimated from LAI-standing stock 
Pi: Populus rem mu lo ides Bit: Bitterlich C.A.: Plant canopy analyzer relationship in sample plots 
Pg: Picea glauca G.F.: Gap fraction model 
PIX Picea mariana 



- - 

142 T. Kusakabe, H. Tsuzuki, G . Hughes and T. Sweda 

-

Conifers 

LAI = 0.0428 v0672 

.f @(x)dx), Vegetation profile area V , Standing stock (rn3/ha) 
(m2/lO O ~ )  

Fig. 8. Relationship between standing stock 
Fig. 7. Relationship between vegetation profile and LAI. 

area and standing stock. 

the volume of the standing stock has the dimension of length cubed while the profile area 
is length squared* the former has to be a function of the latter raised to the power of 312. 
In the figure, the standing stock is given on a per-hectare basis, and the vegetation profile 
area on per 100 m of flight passage. 

Figure 8 shows the relationship between standing stock and LA1 separately for 
conifers and broadleaved trees. In both cases, the graphs show that the foliage 
increases with standing volume of the stem. Conifers have nearly twice as much LA1 as 
do broadleaved trees for a given value of standing stock. While the amount of foliage 
a stand can hold should have a certain limit due to self-shading* stem wood can be 
accumulated more or less indefinitely as long as trees are alive, with the former 
approaching an asymptote as the latter increase as seen in Fig. 8, where the relationship 
is expressed by a power function of experimental nature. 

It has been explained that the vegetation profile area can be related to LA1 either 
directly or indirectly via standing stock. The present analysis revealed a better corre- 
lation by the latter method, so the distribution of the LA1 along the entire course of the 
laser profiling flight was estimated using the indirect relationship between vegetation 
profile area and LA1 via the standing stock. The result is given in Fig. 9b along with 
the original vegetation profile in Fig. 9a. 

To show the validity of the above results* the estimated LA1 was plotted against the 
actually measured LA1 for all the sample plots, as shown in Fig. 10. The solid diagonal 
represents a regression line which is constrained to pass through the origin, while the 
broken one is the best-fit regression without any constraints. Against the theoretical 
expectation of unity, the slope of the regression line is slightly less in both cases. This 
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Fig. 9. a. Vegetation profile of the entire flight course. 
b. Estimated LA1 over the entire flight course. 

0 2 4 6 8 
LAIM,Measured LAI 

Fig. 10. 	 Comparison between measured and -LAIE= 0.956LAIM 
estimated LAI. -- - -.LAIE= o.836LAIM+ 0.427 

signifies that the solid line underestimates the actual LAI, while the broken line tends to 
overestimate the LA1 toward the lower end, and underestimate it toward the higher end. 
In the present analysis, it is not clear whether this is due to some inherent deficiency in 
the methodology or simply due to random variation resulting from chance choice of the 
sample plots. 

Figure 9b gives us considerable information about the nature of the boreal forest as 
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well as the possibility of the laser profiling technique. In this figure, LA1 estimates are 
given in two different ways for both conifers and broadleaved trees. In view of the vast 
amount of vegetation profile data, the original estimate of LA1 was made for every 5 m 
along the transect, and then a mean for 20 consecutive estimates representing every 100 
m interval was calculated, and shown as vertical bars in Fig. 9b. To obtain the more 
general trend over the entire transect, these 100-m means were further averaged for 
every 10 km interval, to which a spline curve of stiffness (A)=10000 was fitted, and 
shown as the smooth curves. 

While the relative abundance of broadleaf leaf area decreases, that of conifers 
increases northward, with the latter surpassing the former at somewhere around 140 km 
north of Edmonton. This point corresponds to the boundary between aspen parkland 
and boreal forest, where the total LA1 also changes significantly. In aspen parkland 
LA1 is relatively low since trembling aspen groves are intermixed with grassland, while 
in boreal forest LA1 is relatively high since continuous forest canopy dominates there. 
Figure 9b also shows a continued northward decrease in the proportion of aspen LA1 
into the boreal forest. This result corresponds well with the description by Rowe 
(1972) that the proportion of spruce increases northward at the expense of aspen. 
Within the boreal forest zone, the relative abundance of forest in a given area changes 
with local vegetation and past fire history, resulting in ups and downs in LAI. Where 
wetlands dominate the landscape or the stands regenerating after fire are relatively 
young, LA1 is relatively low, as seen in Fig. 9b. 

Figure 9 also shows that the production center of boreal forest lies rather south 
toward the boundary with aspen parkland at around 250 km from Edmonton. In other 
words, LA1 decreases both toward the north and south from this point. Although not 
given in this paper, a similar trend was observed in latitudinal distribution of standing 
stock. Most probably the northward decrease is due to decreasing temperature, and 
the southward decrease to increasing aridity. 

In spite of the versatility of the airborne laser profiling demonstrated above as a 
powerful tool to overview prevailing trends over an extensive transect, there still remain 
some problems to be solved for more reliable estimates of LAI. In Fig. 11 the LAIs 
indirectly measured with the Plant Canopy Analyzer and gap fraction model are plotted 
against the directly measured counterpart. As obviously seen, the former does not 
increase in proportion to the latter against the logical expectation of linearity. This 
signifies that the indirect measurements underestimate the reality toward the higher 
values of LAI, and consequently the laborious and time-consuming direct measurements 
cannot easily by replaced by indirect methods of measurement. 

Another difficulty is the high variability in LA1 even in direct measurement, which 
in turn affects the LA1 estimate from the vegetation profile. In Fig. 12, LA1 measure- 
ments from five different coniferous stands of boreal Canada (Cannell, 1982) are plotted 
against standing stock along with our own direct and indirect measurements. It has 
already been pointed out that our indirect measurements underestimate LAI, but the 
dotted regression curve based on the data from Cannell is also considerably different 
from that on our own direct measurement. The LA1 estimate to be deduced from the 
vegetation profile differs greatly depending upon the regression curve used. It is not yet 
clear if this difference is inherent to the nature of the leaf area or due more to technical 
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relationship between LA1 and 
standing stock in conifers. 

instability/inconsistency of measurement. This point has to be made clear for more 
reliable and realistic estimates of LA1 over the extensive transect. 

In spite of these difficulties, there is no doubt that airborne laser profiling is a 
powerful method to measure forest stand characteristics over an extensive area in a short 
period of time. Mention should also be made of the possibility of estimating LA1 from 
the vegetation profile by other methods than those used in this paper. One is Fourier 
analysis; the other is mean free path analysis. The power spectrum of the vegetation 
profile obtained by the former should be related to LA1 in one way or another, and the 
mean free path defined as the mean distance a laser beam can travel into the canopy 
without being intercepted by foliage should be directly proportional to the size and 
density of the leaves in the canopy, and thus to LAI. Incorporation of these new 
methodologies should improve the accuracy and reliability of the LA1 estimation with 
the laser profiling. 
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