
COMPLETE AND SCALABLE MULTI-ROBOT
 
PLANNING IN TUNNEL ENVIRONMENTS
 

Mike Peasgood ∗ John McPhee ∗∗
 

Christopher Clark ∗
 

∗ Lab for Intelligent and Autonomous Robotics,
 
Department of Mechanical Engineering,
 

University of Waterloo
 
Waterloo, Ontario, Canada, N2L 3G1
 
{mike, chris}@lair.uwaterloo.ca
 

∗∗ Motion Research Group,
 
Department of Systems Design Engineering,
 

University of Waterloo
 
Waterloo, Ontario, Canada, N2L 3G1
 

mcphee@real.uwaterloo.ca
 

Abstract: This paper addresses the challenging problem of finding collision-
free trajectories for many robots moving to individual goals within a common 
environment. Most popular algorithms for multi-robot planning manage the 
complexity of the problem by planning trajectories for robots sequentially; such 
decoupled methods may fail to find a solution even if one exists. In contrast, this 
paper describes a multi-phase approach to the planning problem that guarantees a 
solution by creating and maintaining obstacle-free paths through the environment 
as required for each robot to reach its goal. Using a topological graph and spanning 
tree representation of a tunnel or corridor environment, the multi-phase planner is 
capable of planning trajectories for up to r = L−1 robots, where the spanning tree 
includes L leaves. Monte Carlo simulations in a large environment with varying 
number of robots demonstrate that the algorithm can solve planning problems 
requiring complex coordination of many robots that cannot be solved with a 
decoupled approach, and is scalable with complexity linear in the number of robots. 

Keywords: mobile robots, efficient algorithms, path planning, trajectory planning 

1. INTRODUCTION collision-free paths for many vehicles in environ­
ments composed of tunnels or corridors, as may 

The use of multiple mobile robots in a common en- be found in these applications. The problem ad­
vironment is required for the automation of many dressed by this research is demonstrated by the 
operations, such as underground mining and ware- multi-robot planning task pictured in Figure 1(a). 
house management. In such applications, multi-

In this scenario, the environment is constructed ple vehicles are required to drive autonomously 
of corridors or tunnels that are wide enough for between different locations, preferably taking the 
only a single robot to travel, and we assumeshortest possible route while avoiding collisions 
differential drive robots that can rotate in place. with static objects and other vehicles. This paper 
The objective in this example is to shift the presents an algorithm for efficiently determining 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DigitalCommons@CalPoly

https://core.ac.uk/display/19136153?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:mcphee@real.uwaterloo.ca
mailto:chris}@lair.uwaterloo.ca


positions of each robot, such that robot R1 moves 
to the initial position of R3, R3 to the position 
of R2, and R2 to the position of R1. Our goal 
is to find an algorithm that can solve the simple 
problem shown in Figure 1(a), yet is scalable to a 
large number of robots (> 100) densely situated 
in a large environment. 

Many methods have been proposed for plan­
ning the motion of one or more robots; refer to 
(Latombe, 1991) and (LaValle, 2006) for detailed 
reviews. Planning algorithms can be evaluated in 
terms of completeness (whether they are guaran­
teed to find a solution if one exists), complexity, 
and optimality. 

Most multi-robot planning algorithms fall into 
one of two categories, coupled and decoupled. 
Coupled algorithms, such as (Svestka and Over-
mars, 1998), plan the trajectories of all robots in 
the environment concurrently. By combining the 
states (poses) of the individual robots together 
into a system state representation, a sequence of 
state transitions can be found that will move all 
robots to their respective goals. Using complete 
search methods, such as A*, coupled algorithms 
can achieve completeness and optimality, and can 
solve the problem shown in Figure 1(a). Their 
limitation is in searching the large configuration 
space that grows in dimension as each additional 
robot is added to the environment. One approach 
to reducing the size of the search space is to create 
probabilistic roadmaps (PRMs) through the envi­
ronment; this method was shown in (Svestka and 
Overmars, 1998) to be probabilistically complete 
and demonstrated in simulation for up to 5 robots. 

Decoupled methods plan for the motion of individ­
ual robots, rather than planning the motion of all 
robots simultaneously. Such methods may use a 
decentralized architecture, allowing independent 
planning based methods such as maze-searching 
(Lumelsky and Harinarayan, 1997) or potential 
fields (Ge and Cui, 1997), or they may use a 
centralized architecture planning for all robots 
with a single processor, allowing for coordination 
of collision-free plans for all robots. Centralized 
decoupled planners typically determine individual 
trajectories sequentially and combine the plans of 
all robots to avoid collisions, as in (Erdmann and 
Lozano-Perez, 1987), (Bennewitz et al., 2001) and 
(Guo and Parker, 2002). By planning the motion 
of robots sequentially, decoupled methods have 
lower complexity and greater scalability than a 
coupled planner; however, this comes at the cost 
of completeness and optimality. The problem in 
Figure 1(a) for example cannot be solved by a 
sequential planner. By selecting the optimal plan 
for any robot independently, an obstacle is created 
in the space-time map that cannot be avoided by 
the other two robots. 

(a) A planning problem (b) Graph-based map 

Fig. 1. A multi-robot planning problem requiring 
coordination of 3 robots, and a graph-based 
representation of the environment. 

This paper presents an alternative multi-phase 
planning method that can solve these coordinated 
planning problems, and is scalable to a large num­
ber of robots in a large environment. A graph 
representation of the environment is first created, 
and a spanning tree through the graph is selected. 
For the tunnel and corridor environments consid­
ered here the segments are only one lane wide, 
reducing the complexity of a suitable topological 
map generation process compared to the general 
case. A multi-phase planning approach then takes 
advantage of the properties of the graph and 
spanning tree to create and maintain obstacle-free 
paths while robots move to their respective goals. 

2. MAP REPRESENTATION 

Occupancy grids are a common map representa­
tion for robot navigation, and are easily derived 
from range sensor measurements. However, for 
motion planning problems, graph representations 
such as topological maps and roadmaps are often 
more efficient. 

For the simple example of Figure 1(a), a topologi­
cal graph G can be constructed as shown in Figure 
1(b), consisting of N = 6 nodes and E = 6 edges. 
We assume that the initial and goal positions of 
all robots lie on the nodes of the graph; in this 
representation, the goal positions of robots R1, 
R2, and R3 are nodes A, C, and B respectively. 

Given the graph representation, we can also select 
a spanning tree T ∗ in the graph, that is, a subset 
of edges connecting all nodes without forming any 
loops. A given spanning tree has L leaf nodes, and 
N − L interior nodes. A suitable spanning tree 
for the example is shown in Figure 2 where node 
C, closest to the geographic center of the map, 
is selected as the root. Selecting all edges except 
for E − F into the spanning tree as shown gives 



∗Fig. 2. A spanning tree T for the graph represen­
tation of the environment rooted at node C, 
and a subtree TB rooted at node B. 

L = 4 leaf nodes, A, D, E, and F , and two interior 
nodes, B and C. 

In general the spanning tree is not unique, and 
a heuristic approach for tree selection is required 
that tends to maximizes the number of leaves and 
minimize the distance between leaves. We have 
found an effective approach is to iteratively add 
edges to the tree that lead to the nodes with the 
maximum number of branches. 

3. MULTI-PHASE PLANNING ALGORITHM 

The multi-phase algorithm finds a feasible solu­
tion to the trajectory planning problem by break­
ing the problem into a sequence of four sub­
problems, each of which can be solved in time 
proportional to the number of robots by taking 
advantage of the graph and spanning tree struc­
ture developed above. 

First, the robots move to the leaves of the span­
ning tree. We then use the following observations 
to plan a sequence of paths to drive each robot to 
its goal. For a system with r < L robots: 

Lemma 1: When all robots occupy leaf nodes, 
any robot can move to any interior node in the 
graph G. 

Lemma 2: When all robots occupy leaf nodes, 
any two robots can swap positions. 

Lemma 1 is clear since an obstacle-free path 
can be found between any two nodes through 
the spanning tree T ∗, and no robots remain as 
obstacles on the interior nodes of the tree. Lemma 
2 follows, since with r < L robots, there is always 
one unoccupied leaf Ntmp in the spanning tree. 
Robots Ri and Rj at nodes Ni and Nj can swap 
positions by moving Ri to Ntmp, Rj to Ni, and 
Ri to Nj . 

Note that these lemmas guarantee that one path 
can be found using the spanning tree through 
the graph under certain conditions. However, a 
shorter path may exist using graph edges that are 
not in the tree. Where an A* search is used in the 
following steps, the entire graph is searched, and 
the shortest paths will be selected. 

(a) Phase 1 (b) Phase 2 

(c) Phase 3 (d) Phase 4 

Fig. 3. A multi-phase solution to the planning 
problem of Figure 1(a). Refer to text for 
details of each step. 

3.1 Phase 1: Reaching Leaf Nodes 

In Phase 1, we develop a plan that will move all 
robots to leaf nodes of the spanning tree. This is 
accomplished by repeatedly selecting a robot Ri 

that is not currently on a leaf node, and selecting 
an unoccupied leaf node Li. This is guaranteed to 
succeed, since there are L leaf nodes, and r < L 
robots to occupy them. In the example in Figure 
1(a), node D may be selected as the leaf node for 
robot R1. 

An A* search is then used to find a path (sequence 
of nodes) Pi, from the initial position of robot Ri 

to the target leaf node Li, ignoring all other robots 
in the system. If any robots are found on a node 
of the path Pi, let Rj be the robot on a node of 
Pi that is closest to Li. In this case, we plan for 
Rj to move to Li instead, using the obstacle-free 
subpath of Pi that connects Rj to Li. 

In Figure 3(a), since robot R2 is an obstacle 
between the selected robot R1 and leaf node D, 
a path P1 moving R2 from node C to D is added 
instead. Continuing the process, R1 remains to be 
moved to a leaf node, and either node E or F may 
be selected, indicated by path P2. 



3.2 Phase 2: Filling Leaf Node Goals 

In Phase 2, we require that all robots with goal 
positions located on leaf nodes fill those goals. 
Since Phase 1 has moved all robots to leaf nodes, 
referring to lemma 2, we can move any robot to 
any leaf goal node and maintain an obstacle-free 
path through the spanning tree. 

For the example scenario, R1 is the only robot 
with a leaf node goal at node A, and that node is 
occupied by robot R3. The obstacle R3 is therefore 
first moved to the unoccupied leaf node F , after 
which a plan for R1 to its goal node is added, as 
indicated by paths P3 and P4 in Figure 3(b). The 
final step of the swap is not required in this phase; 
R3 may remain at node F leaving the interior 
nodes unoccupied. 

3.3 Phase 3: Robots with Interior Node Goals 

In Phase 3, we move all robots with goals on 
interior nodes into positions where they can reach 
those goals without creating an obstruction for 
another robot. The need for this arrangement step 
can be seen in 3(b): robots R2 and R3 have goals 
on the interior nodes C and B respectively, and if 
either moves directly to its goal, it will create an 
obstacle for the other. 

For a general algorithm to resolve this potential 
deadlock, we consider the problem in terms of 
robot positions relative to their goals within the 
spanning tree structure. Let TGi be a subtree of 
the spanning tree with root at the goal node Gi 

of robot Ri. The deadlock condition occurs only 
if another robot Rj is in the subtree TGi , and 
is blocked from reaching its goal outside of the 
subtree when Ri occupies its goal node Gi. We 
can prevent this condition by: 

(1) moving robots to nodes within the subtree of 
their goal nodes, and 

(2) ordering the depth of the robots within the 
subtree based on the depth of their goals. 

To accomplish this task, we process robots in the 
order of the depth of their goals, that is, the 
distance from the goal node to the root of the 
spanning tree. For each robot Ri, we determine 
whether it is already in TGi . If not, we test 
whether filling the goal Gi will create an obstacle 
for any robots in the subtree TGi . In so, we 
select the deepest positioned such robot Rj within 
TGi , and swap the positions of Ri and Rj , as 
described in lemma 2. If no robots will be blocked 
into the subtree, Ri can be moved Gi directly. 
This method achieves the two conditions required 
above to avoid deadlock conditions when filling 
interior node goals. 

The total path length can be reduced by only 
partially completing the swap in some cases: 

•	 If the temporary unoccupied leaf used for 
swapping is not in TGi , robot Rj may remain 
at that leaf rather than completing the swap 
to the previous position of Ri. 

•	 If Rj is the only robot that would be blocked 
into the subtree, robot Ri can fill its goal 
node immediately after robot Rj has been 
moved. 

In the example, the goals of robots R2 and R3 are 
interior nodes C and B, with C being the root 
of the spanning tree T ∗ . R3 has the deepest goal 
node B, so is processed first. Node B is the root of 
the subtree containing nodes A and D, as shown in 
Figure 2, so we must check for robots that would 
be blocked into the subtree. Referring to Figure 
3(b), R2 at node D is such a robot. We therefore 
move R2 to an unoccupied leaf node, then plan 
robot R3 to its goal node, indicated by paths P5 

and P6. This leaves R2 and R3 in subtrees of their 
goal nodes, and in the same depth order as their 
goals, as required. 

3.4 Phase 4: Filling Interior Node Goals 

In Phase 4, we fill the remaining goals on interior 
nodes. If we plan for robots with goals closest 
to the top of the tree first, an obstacle-free path 
for each robot is guaranteed by the arrangement 
determined in Phase 3, where the robots are 
sorted in order of the depth of their goals. For the 
example scenario, this requires planning robot R2 

to its goal at node C, resulting in the desired goal 
configuration shown in Figure 3(d). 

3.5 Complexity Analysis 

The plan completed at the end of Phase 4 will 
move all robots to their respective goals, as re­
quired for a complete planner. In each of the 4 
phases, we iterate once over the set of r robots, 
and required at most 3 (in the case of swapping) 
A* plans for each. Each A* search has a fixed com­
plexity C that depends on the size of the graph 
and the heuristic used, but remains independent 
of the number of robots in the environment. The 
total complexity of the 4-phase planning method 
is therefore O(r · C) for r robots. 

3.6 Building a concurrent plan 

The plan segments Pi determined in phases 1­
4 are collision-free with only one robot moving 
at any time. A plan of shorter duration can be 
created by overlapping the individual segments 



Fig. 4. Example simulation environment 

in time as much as possible without introducing 
any collisions. Each successive segment of the 
original plan is added to a concurrent plan by 
first considering it appended to the end of the 
plan. The start position of the segment is then 
moved earlier in time until the motion in the new 
segment would create a collision between robots 
in the concurrent plan. The motion of the robot 
in the new segment is then incorporated into the 
concurrent plan. 

4. SIMULATION RESULTS 

The planner described above was implemented 
and evaluated in Monte-Carlo simulations in the 
underground mine map shown in Figure 4, using 
between 3 and 60 robots. A topological map 
was generated from an occupancy grid by finding 
adjacent circular regions of open space (nodes) 
and connecting all adjacent nodes by edges. The 
spanning tree selected for the graph contains 63 
leaf nodes, allowing for motion planning of up 
to 62 robots in the environment. Random initial 
and goal positions are selected for each robot. 
As expected from the analysis above, the multi-
phase planner finds a collision-free plan for every 
configuration. 

For comparison, a Decoupled Planner using a 
sequential A* planning approach for each robot 
was also implemented, which randomly selects 
a priority sequence of robots. This sequential 
planner finds the shortest collision-free path for 
each robot through the space-time map, avoiding 
obstacles including the trajectories all previously 
planned robots. The results of such a planner are 
dependent on the priority sequence selected, so 
up to 250 randomly selected priority sequences 
were selected for each case in an attempt to find 
a sequence for which a plan could be found. The 
plots in the following sections show the results of 
applying the two different algorithms to the same 
randomly-generated problems in the mine map. 

Fig. 5. Average robot path length generated by 
each planner 

4.1 Planning Success Rate 

The first measure of the algorithm performance 
is the success rate of finding a feasible solution. 
As expected for a complete algorithm, the success 
rate of the multi-phase planner is 100% for up 
to 62 robots given a spanning tree with 63 leaves. 
However, the sequential planner failed to find solu­
tions for 10% of the randomly generated problems 
with 22 robots, and failed to find solutions for all 
problems with 34 or more robots. 

4.2 Average Robot Path Length 

The average distance required for each robot to 
travel to reach its goal is plotted in Figure 5. 
The results indicate that the multi-phase planner 
consistently generates longer paths for each robot, 
particularly as the number of robots increases. 
This is not unexpected, since the planner first 
directs robots to positions other than their goals 
in order to create an obstacle-free path for the 
final phases of the process. For 22 or more robots, 
where the sequential planner begins to fail for 
some problems, the average path length is com­
puted only for those scenarios where a solution 
was found. 

4.3 Search Cost 

The search cost is a measure of the complexity of 
the planning algorithm, or the time required to 
complete the search for a feasible solution. Figure 
6 shows the CPU time required by each algorithm; 
the processing time has been normalized by the 
number of robots in the plan, and plotted on a 
logarithmic scale to show the exponential growth 
in complexity of the decoupled planning method. 
The values indicate the time required to find a 
feasible solution given the graph representation, 
and not the (one-time) cost of generating the map. 



Fig. 6. Average CPU time used by each planner 

These results demonstrate that while a decoupled 
approach can find shorter paths for simpler plan­
ning problems, the multi-phase planner involves 
much less computational cost. The cost of the 
sequential planner grows exponentially, since it 
requires many attempts with different random 
priority sequences to find a solution. The cost 
of the multi-phase planning algorithm, however, 
increases linearly with the increase in number of 
robots. For 60 robots, feasible plans were com­
puted in less than 2 seconds (< 30 ms per robot) 
using a 1.5 GHz Pentium M processor. 

5. DISCUSSION 

In this paper, maps of tunnels and corridors were 
considered specifically, since they have a relatively 
simple topological representation and present a 
challenging environment for the coordination of 
a large number of robots. For more general cases, 
including arbitrary obstacles and non-holonomic 
motion constraints, the generation of a suitable 
roadmap or graph representation can be a chal­
lenging problem in itself. However, once a suitable 
graph is created, the multi-phase algorithm can be 
applied directly. 

Considering the performance comparison between 
the sequential planner and the multi-phase plan­
ner, it may be advantageous to consider a hybrid 
approach, taking advantage of the features of both 
algorithms. By first generating a plan using the 
multi-phase planner, a feasible solution can be 
generated very efficiently. To search for a more 
optimal plan, a sequential planner could then be 
applied to the same problem, and permitted to 
run within the time bounds of the application. 

The algorithm as presented here assumes a cen­
tralized planning architecture, where all infor­
mation and resources are available at a single 
processing point. Incorporating this centralized 
planner into a distributed planning architecture, 
as proposed in (Clark et al., 2003), will be another 
subject of future work. 

6. CONCLUSIONS 

This paper presented a multi-robot planning algo­
rithm for tunnel and corridor environments that 
is based on a topological graph and spanning tree 
representation. By breaking the planning algo­
rithm into several different phases, it was shown 
that the algorithm guarantees a solution to the 
planning problem, and is scalable with linear in­
crease in complexity for up to r < L robots 
given a spanning tree with L leaves. In compari­
son to a decoupled sequential planning algorithm, 
the multi-phase planner typically produces longer 
paths, but at a much reduced computational cost 
when planning for many robots. 

7. ACKNOWLEDGEMENTS 

We would like to thank Sebastian Thrun of the 
Stanford Artificial Intelligence Lab for the use of 
the robot-generated maps of underground mines. 

This work is funded in part by NSERC. 

REFERENCES 

Bennewitz, M., W. Burgard and S. Thrun (2001). 
Optimizing schedules for prioritized path 
planning of multi-robot systems. In: Proc. 
IEEE Int. Conf. on Robotics and Automa­
tion. pp. 271–276. 

Clark, C., S. Rock and J.C. Latombe (2003). Mo­
tion planning for multi-robot systems using 
dynamic robot networks. In: Proc. IEEE Int. 
Conf. on Robotics and Automation. pp. 4222 
– 4227. 

Erdmann, Michael and Tomas Lozano-Perez 
(1987). On multiple moving objects. Algorith­
mica 2, 477–521. 

Ge, S.S. and Y.J. Cui (1997). Dynamic motion 
planning for mobile robots using potential 
field method. Autonomous Robots 13(3), 207– 
222. 

Guo, Y. and L. Parker (2002). A distributed 
and optimal motion planning approach for 
multiple mobile robots. In: Proc. IEEE Int. 
Conf. on Robotics and Automation. pp. 2612– 
2619. 

Latombe, J.C. (1991). Robot Motion Planning. 
Kluwer Academic Publishers. 

LaValle, S. M. (2006). Planning Algorithms. Cam­
bridge University Press. 

Lumelsky, V.J. and K.R. Harinarayan (1997). De­
centralized motion planning for multiple mo­
bile robots: The cocktail party model. Au­
tonomous Robots 4(1), 121–135. 

Svestka, P. and M. Overmars (1998). Coordinated 
path planning for multiple robots. Robotics 
and Autonomous Systems 23, 125–152. 


