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Abstract
The genus Leptosphaeria contains numerous fungi that cause the symptoms of asthma and also parasitize wild and crop plants. In
search of a robust and universal forecast model, the ascospore concentration in air was measured and weather data recorded from
1 March to 31 October between 2006 and 2012. The experiment was conducted in three European countries of the temperate
climate, i.e., Ukraine, Poland, and the UK. Out of over 150 forecast models produced using artificial neural networks (ANNs) and
multivariate regression trees (MRTs), we selected the best model for each site, as well as for joint two-site combinations. The
performance of all computedmodels was tested against records from 1 year which had not been used for model construction. The
statistical analysis of the fungal spore data was supported by a comprehensive study of both climate and land cover within a 30-
km radius from the air sampler location. High-performance forecasting models were obtained for individual sites, showing that
the local micro-climate plays a decisive role in biology of the fungi. Based on the previous epidemiological studies, we
hypothesized that dew point temperature (DPT) would be a critical factor in the models. The impact of DPT was confirmed
only by one of the final best neural models, but the MRTanalyses, similarly to the Spearman’s rank test, indicated the importance
of DPT in all but one of the studied cases and in half of them ranked it as a fundamental factor. This work applies artificial neural
modeling to predict the Leptosphaeria airborne spore concentration in urban areas for the first time.

Keywords Species-environmentrelationship .Diseaseforecasting .Bio-climate .Dewpoint temperature .Multivariate regression
trees . Artificial neural networks

Introduction

Pollen and molds are the most commonly identified and de-
scribed aeroallergens which constitute aeroplankton and may
cause respiratory problems in immune sensitive individuals.
Among molds, the best known allergens are in the genera
Alternaria, Cladosporium, Aspergillus, Penicillium and to a
lesser extent Ganoderma (O’Connor et al. 2014; Jedryczka
et al. 2015). Thus far, no research on potential allergens has
been conducted in other types of fungi. However, many med-
ical papers suggest that additional fungal species may contrib-
ute to allergies and asthma (see, for example, Tilak 1991;
Green et al. 2005).

Fungi of the genus Leptosphaeria are well-known plant
pathogens (see, for example, West et al. 2001; Fitt et al.
2006), and there is recent evidence that ascospores of
Leptosphaeria species can also contribute to the symptoms
of inhalatory allergies (Jedryczka et al. 2016). Authors found
that Leptosphaeria spp. produce allergenic proteins highly
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similar to those commonly known in the genera Alternaria,
Cladosporium, Curvularia, Penicillium, and Aspergillus and
concluded that Leptosphaeria spp. spores played an important
role in autumn asthma (Jedryczka et al. 2016).

The release and subsequent spread of spores is influenced
by many environmental factors. Release of spores depends,
among other factors, on the type of release mechanism. The
fruiting bodies of the ascomycetes protect the spores and asci
during dry periods, preparing them for release during times of
high moisture; the most common source of which is dew and
rain (Ingold 1985). In Ascomycota, the division of fungi con-
taining the genus Leptosphaeria, several mechanisms for the
opening of asci and liberation of ascospores have been de-
scribed (Ingold 1985; Trail 2007). The Leptosphaeria genus
has an ostiolate ascocarp type. When the ascus becomes tur-
gid, the outer wall ruptures at the apex and extends consider-
ably, at least two or three times its length. The endoascus
comes out of the ostiole and explodes to release the spores
(Deacon 2003).

Leptosphaeria spp. are common pathogens of brassica
crops, including oilseed rape and, owing to the prevalence of
this crop, they are often present in air samples (Huang et al.
2005; Jedryczka et al. 2016). When sexual reproduction of
Leptosphaeria spp. takes place , f ru i t ing bodies
(pseudothecia) are formed on the stubble of oilseed rape orig-
inating from previous growing seasons (West and Fitt 2005),
with the spores released from the most recent (Hall 1992), as
well as previous crops (Khangura et al. 2007). The release of
ascospores requires the production of fully developed
pseudothecia (Kaczmarek and Jedryczka 2011). The matura-
tion rate of the fruiting bodies of Leptosphaeria spp. (hereafter
Leptosphaeria) and subsequent spore release depend on
weather conditions (Savage et al. 2012), mainly moisture
and air temperature (Salam et al. 2003; Huang et al. 2005).
Studies by Toscano-Underwood et al. (2003) indicated that
the influence of moisture (rain or heavy dew) is more crucial
than air temperature. Therefore, it could be hypothesized that
dew point temperature is a good parameter for forecasting the
occurrence of Leptosphaeria spores in the air from nearby
affected crops.

The patterns of ascospore release and weather data differ
between countries (Huang et al. 2005; Lob et al. 2013) and
sites under study (Oliveira et al. 2009). Therefore, it is highly
desirable to find out which meteorological factors would most
accurately allow forecast of the timing of appearance of this
phytopathogens and aeroallergens in a particular season and
region. Artificial neural modeling is a method which can pre-
dict further values based on an analysis of data series
(Tadeusiewicz and Lula 2001). Neural networks have already
been successfully applied in the analysis and forecasting of
allergenic fungal spores, such as Alternaria spp. (Grinn-
Gofroń and Strzelczak 2008a; Astray et al. 2010; Kumar
et al. 2013), Cladosporium spp. (Grinn-Gofroń and

Strzelczak 2008b), and to some extent also for Ganoderma
spp. (Kasprzyk et al. 2011; Sadyś et al. 2016). However, as
this technique has not been yet used in modeling concentra-
tion of Leptosphaeria ascospores, the aim of this study was to
use artificial neural network modeling for the first time in this
genus. Moreover, as prediction of these spores could greatly
help allergologists and plant pathologists in understanding
ascospore outbreaks, an additional aim was to identify the
weather parameters that allow the creation of robust and uni-
versal forecast models for Leptosphaeria ascospores. The
studies were undertaken at four locations throughout Europe
(Poland, the UK, and two sites in Ukraine), which substantial-
ly differ in weather conditions.

Materials and methods

Study sites

The concentration of airborne Leptosphaeria ascospores was
measured for several consecutive years between 2006 and
2012 using four air samplers of the Hirst design (Hirst
1952). The spore traps were located on the rooftop of univer-
sity buildings, i.e., University of Szczecin, Poland (53° 26’ N,
14° 32′ E), University of Worcester, UK (52° 11’ N, 2° 14’
W), NationalMedical University, Vinnytsya, Ukraine (49° 22’
N, 28° 44′ E), and Zaporizhia State Medical University,
Ukraine (47° 83’ N, 35° 11’W) at 21, 10, 25, and 20 m above
ground level, respectively (Fig. 1) (Table 1).

Ascospore sampling and identification

The method followed was as described by the British
Aerobiology Federation (1995). Identif ication of
Leptosphaeria spores was based on the morphological char-
acteristics of the spores; ascospores are fusoid, ellipsoid, or
cylindrical and their size is 18–120 μm× 4–15 μm (Dennis
1978). Color of the spores is yellowish or yellowish-brown to
olivaceous and the cell wall surface is smooth. From two to
several, cross septa may be present (Williams and Fitt, 1999),
with one cell frequently enlarged (Dennis 1978). A typical
ascospore of Leptosphaeria species contains six cells
(Kaczmarek and Jedryczka 2011). Selected microscope slides
were re-examined microscopically and tested for the presence
of LeptosphaeriaDNA, which confirmed accuracy of the data
analysis (Jedryczka et al. 2016).

Weather data

The weather data were recorded using weather stations, which
were co-located with spore traps. The weather parameters in-
cluded in this study were mean air temperature, maximum air
temperature, minimum air temperature, dew point
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temperature, relative humidity, precipitation, and mean wind
speed. The maps of the selected bioclimatic indices in Europe
with marked study sites are presented in Fig. 2.

Statistical analyses

Since most of the typical statistical methods like multiple re-
gression require normality of the variables and linearity of
dependences between them, the first step was to check if the
parameters followed normal distribution. Normality of vari-
ables was tested using the Kolmogorov-Smirnov, Lilliefors,
and chi-square tests under p = 0.05. The next step was the
assessment of linearity of relationships between spore abun-
dance and meteorological factors with the help of scatter plots

and the normality of residues from linear regression. Since
neither normality nor linearity were fulfilled, the artificial neu-
ral networks (ANN) and multivariate regression trees (MRT)
were applied. These methods were chosen because they do not
require any assumptions about variables’ distribution or the
form of relationships between them. They are applicable to
data with high-order interactions, imbalance, and non-linear
dependences. ANN and MRT models were created for data
recorded in (a) Szczecin, Worcester, and jointly for Szczecin+
Worcester using the data collected in 2006–2009 (1 Mar–31
Oct), (b) Vinnytsya, Zaporizhia, and jointly for Vinnytsya+
Zaporizhia using the data collected in 2009–2012 (1 Mar–31
Oct). Two types of models were computed: (1) with dew point
temperature and (2) without dew point temperature. We

a

b

Fig. 1 Distribution of land cover
classes shows a the dominance of
the agricultural areas in Europe,
while b simultaneously the
density between cultivated crops
vary significantly between
countries. Location of study sites
in Poland, the UK, and Ukraine
were marked with an asterisk
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used 67% of data records to train the neural networks and 33%
of the input to validate them. The quality of predictions of
spore concentration based on meteorological factors was test-
ed on data recorded at each site in 2009 (1 Mar–31 Oct).

For the sake of this study, multi-layer perceptrons (MLP)
were applied since they mathematically perform a stochastic
approximation of multivariate functions (Carling 1992; Lek
and Guegan 1999; Osowski 1996). Consecutive neural net-
work models were created and trained with the help of
Automated Network Search (ANS), which tries a set of

networks of various complexity and different activation func-
tions (Statsoft 2011). Several thousand ANN models were
tested. The number of hidden neurons ranged from 3 to 50
and seven different activation functions were used—linear,
logistic, hyperbolic tangent, negative exponential, and sine.
Finally, the top ten models were examined in each category.
Neural networks were trained with the recommended tech-
nique, i.e., Broyden-Fletcher-Goldfarb-Shanno algorithm
(BFGS), while the sum of squares was used as the error func-
tion (Battiti and Massuli 1990).

a b

c d

Fig. 2 Selected bioclimatic indices were chosen: a annual mean temperature, b average air temperature of warmest quarter, c annual precipitation, d
precipitation of warmest quarter. Location of study sites in Poland, the UK, and Ukraine were marked with an asterisk

Table 1 Characteristic of study sites, climate and weather data in Poland (PL), the United Kingdom (UK), and Ukraine (UA)

Site Szczecin PL Worcester UK Vinnytsya UA Zaporizhia UA

Geographic parameters 53° 26’ N 14° 32′ E 52° 11’ N 2° 13’ W 49° 14’ N 28° 29′ E 47° 50’ N 35° 10′ E

Location North-west part
of Poland

West Midlands
in England

Central-west Ukraine South-east Ukraine

% of forests 33 5 15 4

Other fractions Non-irrigated arable
land (31%), pastures
(17%)

Non-irrigated arable
land (41%),
pastures (24%).

Farmlands (80%) Farmlands (90%)

Climate Temperate transitional Temperate marine Temperate continental Moderate-continental

Annual mean temperature 9.6 ° C 9.5 °C 8.4 °C 5.1 °C

No. of days with snow cover 50–80 17 29–59 58

Sum of annual precipitation 550–700 mm 669 mm 594–638 mm 448 mm

Dominant wind Western and south-western South western Western and south-western South-western
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The performance of ANN models was assessed with the
Spearman’s rank correlation coefficient calculated between
experimental and predicted data, separately for the training
and verification subsets which was done automatically. The
same was calculated for the best performing models where the
correlation between real and predicted data for each site was
examined. Additionally, the root mean squared error (RMSE)
for each model was calculated. Next, sensitivity analysis was
performed in order to rank input variables based on the model
error calculated when a given input variable is removed from
the network. The ratio of the error for the complete model to
the error for a model with one variable subtracted indicated the
relative importance of the variables. Statistical analyses were
performed using StatSoft software Statistica 9.0 and Statistica
12.0 Trial (Lula 2000; StatSoft 2011; Tadeusiewicz and Lula
2001).

MRT models were computed using the R (v. 2.9.2) statis-
tical environment to detect threshold values above which
Leptosphaeria ascospore concentration significantly in-
creased in the air of study sites using the mvpart
(Multivariate Partitioning) package (De’Ath 2002). Repeated
splitting of data along the axes of explanatory variables
allowed forming clusters and each split was chosen to maxi-
mize the similarity within tree nodes. Two thousand multiple
cross-validations were computed in order to stabilize the
cross-validated relative error (CV error). The final MRT
models were chosen based on the lowest value of the CVerror
and standard error (SE).

Bioclimatic and vegetation spatial analyses

The Global Land Cover Share Database v. 1.0 (FAO/Land and
Water Division 2014) was employed to yield a group of maps
showing the distribution of (a) dominant land cover type, (b)
crops, and (c) grasslands, which constitutes source areas of
Leptosphaeria species. All maps were gridded with a resolu-
tion equal to 250 m2. More detailed, Corine Land Cover 2006
could not be used in this study since it does not include the
relevant information for the territory of Ukraine. However, the
GLC-SHARE database is a greatly improved version of the
previously released Global Land Cover 2000 database (2003)
since it now contains more detailed information at regional
and country levels and has been harmonized using internation-
ally accepted standards and definitions.

WorldClim—Global Climate Data (v. 1.4, release 3) was
used in order to examine the bioclimatic conditions, specific
for each of the studied site (Hijmans et al. 2005). This data set
contains an average of real data points measured throughout a
50-year period (~ 1950–2000). The applied grid was equal to
1 km2. The following maps were produced using this data-
base: (a) annual mean temperature, (b) mean temperature of
warmest quarter, (c) annual precipitation, (d) precipitation of
warmest quarter.

All maps were produced and analyzed using ArcGIS
(ArcMap v. 10.0).

Results

Vegetation and bio-climate

An analysis of the GLC-SHARE data showed that the most
dominant land cover class was the cropland areas in Europe,
although the intensity of agriculture varied greatly between
countries. All study sites were located in the vicinity of large
agricultural complexes while Szczecin was also surrounded
by large woodland areas. These results were investigated fur-
ther, and overall croplands covered from 81 to 100% territory
near Worcester and Szczecin. Lower values were found for
Vinnytsya and Zaporizhia, where agriculture utilizes between
61 and 80% of the land. Similarly, grasslands covered less
area in Vinnytsya and Zaporizhia (< 20%) than at Szczecin
(< 40%) or Worcester (< 60%).

The bioclimatic data, made available by the FAO/Land and
Water Division (2014), showed that all study sites experienced
annual mean temperature within the range of 5–10 °C while
the clearest differences arose during the warmest quarter of the
year. The mean temperatures within a given range were as
follows: the lowest was found atWorcester (10–15 °C), higher
at Szczecin and Vinnytsya (15–20 °C), and the highest at
Zaporizhia (20–25 °C). With regard to the annual sum of
precipitation, then the lowest amount of rainfall was recorded
at Zaporizhia (250–500 mm) while double this amount was
observed at the other locations. During the warmest quarter of
the year, Vinnytsya received up to 400 mm of rain, which was
the highest value.

Seasonality in ascospore dissemination

Although the maximum concentration was recorded in
Vinnytsya in 2009, where ascospores peaked reaching a value
of 1826 s m−3, overall the highest levels of Leptosphaeria
ascospores were observed in Worcester (Table 2). The lowest
concentrations were recorded at Zaporizhia. On average, daily
concentrations were found to be 8 s m−3 (Zaporizhia),
79 s m−3 (Vinnytsya), 88 s m−3 (Szczecin), and 177 s m−3

(Worcester).
Results of Spearman’s rank test for correlation between

ascospore concentration and meteorological measurements
are given in Table 3. In Szczecin, Worcester, and Vinnytsya,
all correlations between Leptosphaeria ascospore concentra-
tion and meteorological parameters exceeded the level of sta-
tistical significance (p < 0.05), except for average wind speed
at Szczecin. At Zaporizhia, this was true for association with
dew point temperature (DPT) and average wind speed
(Table 3). The strength of statistically significant correlations
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varied greatly while the highest were found with DPT at
Szczecin (rs = 0.61) and Worcester (rs = 0.54).

Multivariate regression trees

An analysis of Leptosphaeria ascospore presence in the air of
studied sites using the multivariate regression trees indicated
the importance of DTP in models computed for Szczecin,
Worcester, Vinnytsya, and Zaporizhia as well as the joint
models for Szczecin+Worcester and Vinnytsya+Zaporizhia.
For these models, DPTwas found to either the first or second
most important parameter for predicting ascospore release
with precipitation and average wind speed being the other
highly ranked parameters (Supplementary materials, Fig. S1-
A – S1-F).DPT reached a value of 8.25 and 8.22 °C at the first
split (Szczecin and Szczecin+Worcester, respectively). At sec-
ondary splits, it was 4.80 and 6.79 °C for Szczecin

and Szczecin+Worcester, while for Worcester the values of
6.79 and 10.42 °C were obtained. The amount of recorded
precipitation was, however, found to be more influential at
Zaporizhia (2.75 mm) and Worcester (0.90 mm) at first tree
splits regardless of the presence or absence of DPT as an
explanatory factor in these models. In case of models obtained
for the Vinnytsya site, the primary explanatory variable was
DPT, at the level of 15.02 °C, followed by minimum air tem-
perature (17.85 °C). The joint model for Vinnytsya and
Zaporizhia showed the influence of average wind speed,
followed by DPT. Various impacts of other, less important
parameters, such as relative humidity at Szczecin (68.69%),
minimum air temperature at Zaporizhia (13.25 °C), average
wind speed at Worcester (9–13 m s−1), and minimum air tem-
perature for Vinnytsya+Zaporizhia (9.75 °C) were also
revealed.

Artificial neural networks

Ascospore prediction for single sites

The ANN model for prediction of Leptosphaeria concentra-
tions, computed usingWorcester data (MLP 6-4-1), was found
to be the best predicting model for Szczecin. This model was a
multi-layer perceptron with six input neurons, four hidden
neurons and one output neuron. The performance of this net-
work was good although the ascospore concentrations were
overestimated (Table 4, Fig. 3a). The Spearman’s rank corre-
lation coefficients between the observed and predicted values
were at the level of 0.72 and 0.71 for the training and valida-
tion subsets, respectively. The final model was trained with
714 epochs of the Broyden-Fletcher-Goldfarb-Shanno algo-
rithm. Hidden neurons had logistic activation functions while
the output neuron had an exponential activation function.
Sensitivity analysis revealed that all the variables contributed
to the model. The most important variables turned out to be all
the temperature parameters, in descending order—maximum,

Table 2 Descriptive statistics of Leptosphaeria ascospore concentrations at study sites in Poland, the UK, and Ukraine (2006–2012)

Site Szczecin PL Worcester UK Vinnytsya UA Zaporizhia UA

Year 2006 2007 2008 2009 2006 2007 2008 2009 2009 2010 2011 2012 2009 2010 2011 2012

Mean 75 127 72 77 135 156 237 180 65 151 51 50 23 5 2 2

Median 31 86 23 49 59 90 112 97 22 58 15 7 8 0 0 0

Minimum 0 0 2 0 0 0 2 0 0 0 0 0 0 0 0 0

Maximum 540 648 486 423 983 796 1350 1193 1826 1255 860 660 352 133 72 62

Range 540 648 484 423 983 796 1348 1193 1826 1255 860 660 352 133 72 62

25% 8 15 6 13 13 25 38 22 8 15 4 1 3 0 0 0

75% 107 191 100 118 203 224 332 284 63 171 51 51 20 0 0 0

Standard deviation 97 130 98 82 171 172 286 214 153 239 103 100 47 18 9 9

Variance 9389 16,906 9529 6712 29,201 29,429 81,915 45,835 23,386 57,306 10,544 9986 2215 317 74 77

Table 3 Results of Spearman’s rank test examining the association
between Leptosphaeria ascospore concentration and meteorological
parameters at study sites in Poland, the UK, and Ukraine for a 4-year
period (1 Mar–31 Oct)

Site Szczecina Worcestera Vinnytsyab Zaporizhiab

AVAT 0.478 0.340 0.414 0.031

MAAT 0.414 0.340 0.377 0.030

MIAT 0.528 0.340 0.468 0.028

DPT 0.606 0.544 0.501 0.085

RH 0.095 0.456 0.098 − 0.033

PREC 0.196 0.449 0.149 0.045

AVWS − 0.004 − 0.097 − 0.083 − 0.078

Statistically significant correlations at p < 0.05 were highlighted in italics

AVAT average air temperature, MAAT maximum air temperature, MIAT
minimum air temperature, DPT dew point temperature, RH relative hu-
midity, PREC precipitation, AVWS average wind speed
a 2006-2009
b 2009-2012

984 Int J Biometeorol (2018) 62:979–990



mean, and minimum. Other examined variables also contrib-
uted to the model, but less significantly. Comparison of the
experimental and predicted values of Leptosphaeria spore
concentrations showed good performance (Fig. 3a). The
Spearman’s correlation coefficient between the real data and
model prediction was at the level of rs = 0.61 (p < 0.001).

The ANN model designed for Szczecin (MLP 7-3-1)
provided the best model for Leptosphaeria ascospore con-
centrations in Worcester. This network was built of seven
input neurons, three hidden neurons, and one output neu-
ron. The Spearman’s rank correlation coefficient between
the experimental and estimated spore concentrations was at
the level of 0.61 and 0.53 for the training and validation
subsets, respectively. The selected model was trained with
10,000 epochs of the BFGS algorithm. The sum of squares
was used as the error function. Both hidden and output
neurons had an exponential activation function. The ob-
tained ANN model revealed a good fit to the experimental
data in terms of high-low changes but not in terms of the
actual maximum concentrations (Fig. 3b). Sensitivity anal-
ysis demonstrated that all the explanatory variables were

almost equally important to the model, with DPT ranked
the highest followed by mean air temperature and relative
humidity. The Spearman’s correlation coefficient between
the real data and model prediction was rs = 0.63
(p < 0.001).

The best performing model for Vinnytsya was the one ob-
tained using Szczecin data (MPL 7-4-1) (Table 4). This ANN
network was a multi-layer perceptron comprised of seven in-
put neurons, four hidden neurons and one output neuron
(MLP 7-4-1). The Spearman’s rank correlation coefficients
between the real and calculated values were at the level of
0.63 and 0.53 for the training and validation subsets, respec-
tively. The model was trained with 716 epochs of the BFGS
algorithm. The sum of squares was applied as the error func-
tion. Hidden neurons had logistic activation functions while
the output neuron had a sine activation function. Sensitivity
analysis revealed that all variables contributed significantly to
the model (scores > 1). However, this was the poorest
performing model (Fig. 3d), which was confirmed by the
Spearman’s correlation coefficient between the real data and
model output (rs = 0.31, p < 0.001).

Table 4 Results tests examining the association between observed Leptosphaeria ascospore concentration and predicted concentrations at study sites
in Poland, United Kingdom and Ukraine using data collected in 2009 (1 Mar–31 Oct). The best performing models were presented for each tested
combination

Model Data set used for testing

Szczecin Worcester Szczecin+Worcester Vinnytsya Zaporizhia Vinnytsya+Zaporizhia

(−) Szczecin R = 0.615
RMSE= 47.55

R = −0.181
RMSE = 510.20

R = 0.390
RMSE= 210.45

R = 0.299
RMSE= 315.33

(−) Worcester R = 0.608
RMSE= 56.12

Not found R = 0.209
RMSE= 338.95

R = −0.197
RMSE= 503.12

(−) Szczecin+Worcester R = 0.201
RMSE = 349.50

R = 0.430
RMSE= 215.45

R = −0.239
RMSE= 362.45

(−) Vinnytsya R = 0.589
RMSE= 98.12

R = 0.368
RMSE= 231.12

R = 0.453
RMSE= 201.13

R = 0.212
RMSE= 338.34

(−) Zaporizhia R = 0.563
RMSE= 153.12

R = 0.461
RMSE= 192.18

R = 0.470
RMSE= 189.65

R = −0.241
RMSE = 321.15

(−) Vinnytsya+Zaporizhia R = 0.262
RMSE= 366.6

R = −0.331
RMSE= 251.54

R = −0.310
RMSE= 243.11

(+) Szczecin R = 0.631
RMSE= 35.91

R = 0.305
RMSE = 261.78

R = 0.374
RMSE= 261.82

R = 0.327
RMSE= 259.21

(+) Worcester R = 0.261
RMSE= 345.11

R = −0.278
RMSE = 320.11

R = 0.213
RMSE= 329.66

R = −0.223
RMSE= 358.43

(+) Szczecin+Worcester R = 0.212
RMSE = 333.56

R = 0.368
RMSE =220. 21

R = 0.302
RMSE= 268.62

(+) Vinnytsya R = 0.556
RMSE= 117.18

R = 0.617
RMSE= 46.23

R = 0.564
RMSE= 101.43

R = 0.226
RMSE= 245.67

(+) Zaporizhia R = 0.588
RMSE= 97.15

R = 0.363
RMSE= 220.87

R = 0.418
RMSE= 201.33

R = −0.208
RMSE = 344.22

(+) Vinnytsya+Zaporizhia R = 0.286
RMSE= 333.25

R = 0.363
RMSE= 219.33

R = 0.274
RMSE= 320.73

All presented models were statistically significant (p < 0.05). Models containing dew point temperature were marked (+) and models without this
variable were marked (−)
Not found no statistically significant forecasting model was found, R Spearman’s rank correlation coefficient, RMSE root mean squared error
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Fig. 3 Overall performance of the best forecasting models (highest
correlation coefficient values between observed and predicted spore
concentration calculated for all the subsets together) obtained for a
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Finally, ascospore concentrations for Zaporizhia were the
most accurately forecasted with the aid of an ANN model
(MLP 6-9-1) computed using combined Szczecin and
Worcester data (Table 4). This model was a multi-layer
perceptron with six input neurons, nine hidden neurons, and
one output neuron. The Spearman’s rank correlation coeffi-
cients between the experimental and calculated values were at
the level of 0.73 and 0.69 for the training and validation sub-
sets, respectively. The model was trained with 10,000 epochs
of the Broyden-Fletcher-Goldfarb-Shanno algorithm. The
sum of squares was applied as the error function. Hidden
neurons had tangent activation functions while the output neu-
ron had a linear activation function. Sensitivity analysis re-
vealed that all the variables contributed to the model (scores
> 1); it was found that most important were mean, minimum,
and maximum temperature. Model performance was good
from March to July, and then suddenly decreased resulting
in substantial overestimation of ascospore concentrations
(Fig. 3e). Thus, the Spearman’s correlation coefficient be-
tween the real data and model forecast was equal to rs = 0.43
(p < 0.001).

Two-site combined models

Two combined models were produced using joint data, i.e.,
Szczecin+Worcester (West Europe) and Vinnytsya+
Zaporizhia (East Europe). Overall, the performance of
two-site models was lower than those for single sites
(Table 4). The best performing model for Szczecin+
Worcester data was the multi-layer perceptron, which
consisted of seven input neurons, five hidden neurons, and
one output neuron (MLP 7-5-1) produced for Vinnytsya
(Table 4). The Spearman’s rank correlation coefficients be-
tween the experimental and calculated values were at the
level of 0.47 and 0.41 for the training and validation subsets,
respectively. The model was trained with 10,000 epochs of
the Broyden-Fletcher-Goldfarb-Shanno algorithm. The sum
of squares was applied as the error function. Hidden neurons
had exponential activation functions while the output neu-
ron had an exponential activation function. Sensitivity anal-
ysis revealed that all the variables contributed to the model
(scores > 1) with the most important being maximum tem-
perature, followed by mean and minimum temperature.
Model performance was quite low (Fig. 3c); however, the
Spearman’s correlation coefficient between the real data and
model forecast was equal to rs = 0.56 (p < 0.001). The mod-
el overestimated the spore concentrations but accurately
predicted their fluctuations.

The multi-layer perceptron, which consisted of seven input
neurons, four hidden neurons, and one output neuron (MLP 7-
4-1) produced for Szczecin, was the best performing model
for Vinnytsya+Zaporizhia data (Table 4). The Spearman’s
rank correlation coefficients between the experimental and

calculated values were at the level of 0.63 and 0.53 for the
training and validation subsets, respectively. The model was
trained with 716 epochs of the Broyden-Fletcher-Goldfarb-
Shanno algorithm. The sum of squares was applied as the
error function. Hidden neurons had logistic activation func-
tions while the output neuron had a sine activation function.
Sensitivity analysis revealed that all the variables contributed
towards model performance. The highest scoring parameter
was DPT, followed by mean and maximum temperature.
Model performance was very poor (Fig. 3f), as the
Spearman’s correlation coefficient between the real data and
model forecast was equal to rs = 0.33 (p < 0.001).

Discussion

In this study, we proposed an application of artificial neu-
ral modeling in order to predict the concentration of aller-
genic and phytopathogenic Leptosphaeria spores in the
air of urban areas. Out of 120 selected models, the best
performing model was an MLP 7-3-1 neural model using
4 years of data collected in Worcester and examined using
an 8-month period in 2009. The model was most suitable
for both Worcester in the UK and for Szczecin in Poland.
The performance of this model was relatively good, as it
correctly predicted the spore concentration in 63% of
days. Artificial neural networks computed for Szczecin
and tested with Worcester data showed a better perfor-
mance than models produced for Worcester and cross-
checked with Szczecin data. However, a better agreement
was found between the models computed for Szczecin
and Worcester than the models derived and reciprocally
tested for the two cities in Ukraine. Seemingly, the overall
distribution of Leptosphaeria ascospores in the air of
Vinnytsya must be of a greater variation (considerable
fluctuations and higher concentrations in the data over
the sampling period) compared with Zaporizhia and,
hence, more difficult to predict.

Ascospores of some Leptosphaeria species are produced
and released mainly in autumn (West and Fitt 2005;
Kaczmarek and Jedryczka 2011). In a series of studies carried
out by Kaczmarek et al. (2009, 2012, 2014) climatic differ-
ences between the oilseed rape-cultivating ecological zones
significantly affected biological processes influencing the in-
fection cycle of two pathogenic Leptosphaeria species caus-
ing stem canker of oilseed rape.

A reasonably uniform pattern in the distribution of spores is
expectedwhen spore inoculum source is located in the vicinity
of the air sampler and it is independent of the weather.
Jedryczka et al. (2013) and Kaczmarek et al. (2014) postulated
that the irregularity and differences in the dynamic of sporu-
lation of L. maculans and L. biglobosa required constant mon-
itoring of air samples for the benefit of farmers, whose crops
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may be strongly affected by the disease originating from air-
borne inoculum.

Results of studies of Leptosphaeria conducted in Szczecin
(Grinn-Gofroń et al. 2016) showed that spores had a hetero-
geneous origin and occasionally were blown in from crops
located up to 400 km away. Although events of long distance
transport described in that study occurred at the beginning of
July, such events could well occur throughout the year. With
regard to Worcester, the performance of models could stem
from a possible shorter distance between the air sampler and
Leptosphaeria host plants and stable spectrum of winds due to
local topography (Sadyś et al. 2014).

Sensitivity analysis examined the impact of weather pa-
rameters on Leptosphaeria ascospores presence and concen-
tration.Models, which were computed based on continuous 4-
year observations uniformly indicated mostly maximum tem-
perature, mean, and minimum temperature, although the order
of importance varied between models. Out of the top six
models presented in this paper, four of them included DPT
as an explanatory variable. The only two exceptions were the
Worcester (MLP 6-4-1) and Szczecin+Worcester (MLP 6-9-1)
models, which yielded the highest performance without in-
cluding DPT as an input variable. Out of the four locations
studied, Worcester was the wettest site, where DPT was not
found as a good explanatory variable and thus it was removed
from the forecast model. In spite of this, DPT was still indi-
cated as significant by the sensitivity analysis. This calculation
showed DPT in Worcester was still the key factor influencing
ascospore concentrations, which was then confirmed by the
Spearman’s rank test and MRT analysis. The same model is
also influenced by the changes in relative humidity. Our re-
sults were, therefore, similar to those reported elsewhere,
where Spearman’s rank test confirmed positive correlation
between spore concentration and rainfall (Szczecin,
Worcester, Vinnytsya), relative humidity (Szczecin,
Worcester, Vinnytsya), DPT (Szczecin, Worcester,
Zaporizhia), which trigger ascospores release when matured
(Hernández Trejo et al. 2012; Sadyś et al. 2015; Salam et al.
2007). The impact of relative humidity, as well as maximum
wind speed on the presence of Leptosphaeria ascospores, was
also suggested by Grinn-Gofroń and Bosiacka (2015), who
analyzed these relationships with the aid of Canonical
Correspondence Analysis.

Salam et al. (2003) produced a regression model based on
measurements of daily mean temperature and rainfall in order
to predict maturation of fungus pseudothecia and ascospore
discharge. The model generated functioned very well; it ex-
plained from 66 to 93% of the variability in spore fluctuations,
although the performance of the model was a subject of
change with respect to the sampling site and season.
Dawidziuk et al. (2012) computed a stepwise regression mod-
el, based solely on the analysis of precipitation. They found
that 77% of the Leptosphaeria distribution depended on the

amount of rainfall recorded during the first decade of July
together with a cumulative amount of rainfall during the entire
month of July. This resulted in very good performance of the
model, which showed a strong correlation (r = 0.88) between
observed and predicted spore concentration. This correlation
was superior compared to this obtained for our best
performing model (rs = 0.63). Papastamati et al. (2004) pro-
posed a physical model, where they examined the impact of
duration of leaf wetness during the rosette stage of canola
plants; this enabled them to predict 81–97% of blackleg infec-
tions in a season. Although the model worked very well, it
required an interaction with a second model that predicted
production of ascospores and only then could it be applied
to forecasting.

As reviewed byDesprés et al. (2012) numerous approaches
have been used for modeling the transport of different biolog-
ical particles, including Gaussian plume models, Lagrangian
stochastic models, as well as models concerning the effect of
climate and transport at regional or global scale. Most of these
studies focused on the spread of microbes responsible for the
diseases of humans, animals and plants, and most of published
models obviously performed well. However, one has to keep
in mind that good performance of any model is often limited
to the location of sampling (Papastamati et al. 2004). Thus,
testing the model using a data set collected elsewhere may not
result in equally good performance. This finding concerned
not only the geographical coordinate of the sampling site, but
also the height of the sampler; in spore monitoring of
Ganoderma ANN models worked well for samples collected
18 m a.g.l., but they were inaccurate or wrong for spore data
originating from the samplers located on the ground
(Jedryczka et al. 2015). This brings into question the use of
such forecasting models for warning of farmers, foresters as
well as patients with inhalatory spore-related allergies.

Conclusion

This study, successfully applies artificial neural modeling to
predict the concentration of allergenic Leptosphaeria spores in
the air of urban areas for the first time for this genus. The work
demonstrated that local micro-climate plays a key role in for-
mation of teleomorphs and the release of ascospores of
Leptosphaeria spp. Artificial neural network computation
did not produce a universal forecast model that would perform
equally well at sites greatly differing in weather parameters,
but the models produced for individual sites were satisfactory.
Both the multivariate regression tree analysis and Spearman’s
rank test showed a great impact of DPT; MRT analyses indi-
cated its importance in five out of six cases and in three cases
ranked it as a fundamental weather parameter. The findings
are in agreement with the current knowledge on the behavior
of Leptosphaeria spp., as both humidity and temperatures
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were previously indicated as important parameters in
pseudothecia maturation and the release of ascospores. The
elucidation of the crucial role of DPT for the formation of
inoculum, which is allergenic and subsequently damaging to
wild and cultivated agricultural plants, will facilitate the on-
going search for good forecasting models for Leptosphaeria
spp.
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