
On-Line Stability Detectors for Sequential Circuit Elements

Adam Jacobvitz

<ajacobvi@calpoly.edu>

Senior Project

ELECTRICAL ENGINEERING DEPARTMENT

California Polytechnic State University

San Luis Obispo

2009

Contents

1 Introduction 1

2 Background 2

2.1 Off-line Testing . 2

2.2 On-line Testing . 3

3 Requirements 4

4 Design 5

4.1 Franco and McCluskey’s Stability Checker 5

4.2 Modified Stability Checker . 7

5 Development and Construction 10

5.1 Franco and McCluskey’s Stability Checker 10

5.2 Modified Stability Checker . 16

5.3 Electric Layouts . 19

6 Integration and Test Results 23

6.1 Franco and McCluskey’s Stability Detector 23

6.1.1 Optimizing Setup Time . 23

6.1.2 Optimizing Error Detection . 24

6.2 Modified Stability Checker . 25

6.3 Circuit Sizing . 25

6.4 Electric Simulation Results . 27

7 Conclusion 30

Bibliography 30

8 Appendices 32

Inverter Characterization Script . 32

Franco and McCluskey Batch Script . 36

Franco and McCluskey Setup Time Calculator Script 39

Modified Stability Checker Batch Script 43

Modified Stability Checker Setup Time Calculator Script 47

i

List of Tables

I Off-Line vs On-Line Stability Detectors 3

II MSC Cell Possible Error Codes . 9

ii

List of Figures

4.1 Franco and McCluskey’s Stability Checker 6

4.2 McCluskey Stability Detector Hold Time Violation 7

4.3 Modified Stability Detector Cell . 8

4.4 Modified Stability Detector Cell Output (Hold Violation) 8

5.1 VLSI Design of a Standard Master-Slave Latch 20

5.2 VLSI Design of the Master Portion of Franco’s Stability Checker 21

5.3 Full VLSI Design of Franco’s Stability Checker 21

5.4 4-Bit Up Counter Based on Franco’s Latch 22

5.5	 VLSI Layout of Yada’s Modified Stability Checker 22

6.1	 32nm Transistor Process Setup Times at Varying Temperatures 24

6.2	 Setup Time at 20 Deg C as a Function of Error Transistor Sizing and

Transistor Feature Size . 25

6.3	 Franco Detector Error Rate as Dependent on Error Transistor Sizing . . 26

6.4	 Franco Detector Error Rate and Setup Time as Dependent on Error Tran­

sistor Sizing . 27

6.5	 MSC Cell Error Detection Rate as Pulldown Circuit Size Increases . . . 28

6.6	 Franco Stability Detector Setup Time as a Function of Feature Size . . . 29

Acknowledgments

I would like to thank Dr. John Oliver for guiding me through the process of this study

so I could learn not just about detectors, but also how to create reports such as this

one. He has been a huge help in guiding me to where I am today.

Abstract

I conducted this study of on-line stability detectors to learn more about stability check­

ing in VLSI circuitry and how I varied the conditions in order to try to find trends on

iii

how well the stability detectors work each set of conditions. I varied the clock speed,

temperature, transistor feature size, and sizing of the transistors in both Franco’s Stabil­

ity Checker and Yada’s MSC Cell from papers [3] and [5] respectively. I found that the

sizing has the greatest impact on both test stability detectors and that both stability

detectors can work under a variety of conditions with little to no loss in functional­

ity. I did notice, however, that in general lower temperatures and smaller feature sizes

produce better performance under most conditions. For Franco’s detector, a smaller

error pullup transistor results in better error detection while a larger pullup transistor

allows for better setup times. For the MSC Cell, smaller transistors resulted in better

performance.

iv

Chapter 1

Introduction

Stability detectors are used in digital VLSI circuits in order to detect what are known

as faults. A fault in this context is defined as any result obtained from an element

that is different from the result desired when given specified inputs. In other words if

we had a two-bit adder, we would expect 00 + 01 = 01. Any result other than 01 is

a fault. There are multiple ways in which faults are created. For my senior project I

looked at stability detectors designed to detect delay faults. The cause of delay faults

will be explained in more depth later in the report. Also of note is that these stability

detectors are on-line, which means they function during normal operation of the VLSI

circuit and do not require a special testing mode for operation.

1

Chapter 2

Background

Computer engineering is based on the premise of using transistors chained together to

implement certain logical processes. In order to do this, all of the transistors must be

working properly. Designing circuits properly can eliminate most errors, but there are

still problems that occur due to manufacturing variation and general wear and tear on

the circuitry. Since most modern processes create circuity that cannot be seen by the

naked eye, we must find more creative ways of detecting and dealing with these errors.

To do this requires circuitry known as Built-in Self Test (BIST). BIST circuits are those

that are built into systems for the sole purpose of testing. This can be split into two

general types of tests, On-Line Tests and Off-Line Tests.

2.1 Off-line Testing

Off-line testing involves taking a circuit and putting it through a series of test vectors

designed to test as many states as possible for each transistor to maximize the chances

of detecting an error. One such method of applying random test vectors is described

in [4]. Off-line testing is primarily to test for intermittent faults and to verify correct

circuit operation before shipping off to consumers.

2

On-Line Detector Off-Line Detector
States Tested Only those possible dur­ Random assortment,

ing normal circuit oper­ ideally all states are
ation tested

Types of Errors Detected Errors due to aging Intermittent Failures,
equipment, errors due Errors due to design
to bad operating condi­ faults
tions, other errors dur­
ing operation

Major Drawbacks Requires extra circuitry, Only can be used in
theres a chance of faulty a special testing mode,
error detection during circuits are too large
operation now to exhaustively test

all cases. A special test­
ing mode is required.

Benefits Extra logic can com­ More variations of in­
pensate for runtime er­ puts can be tested, re­
rors, old circuits can sults can be processed
last longer. outside of the circuit,

faults can be detected
in a shorter period of
time due to the exten­
sive variation in inputs.

Table I: Off-Line vs On-Line Stability Detectors

2.2 On-line Testing

Detecting errors in real time requires on-line error detection. On-line error detector

circuits are designed to detect errors that occur during operation such as crosstalk and

delay errors. In particular, input stability checkers are designed to detect bad inputs

into sequential circuitry such as flip-flops and latches. These are the kinds of circuits

that I analyzed in my report.

3

Chapter 3

Requirements

The requirements for a stability detector are twofold: A stability detector needs to be

able to detect the late arrival of an input from a set of combinational logic to a sequential

element. Also it needs to be able to detect changes in the input during the setup and

hold time since any changes during these times would result in a metastability condition.

If both of these conditions are met, then the circuit fulfills its role as a stability detector.

Once a stability detector detects a bad state, it needs to be able to generate an error

signal so that the rest of the circuit can execute logic to compensate. Since all of this

needs to happen in real time, the stability detector must be on-line and ideally not take

much extra circuitry on top of what is already there. A successful implementation of

a stability detector will allow the circuit to deal with bad states gracefully instead of

entering a bad state and forcing the operator to either reset or throw the hardware away

completely if the error is permanent.

4

Chapter 4

Design

The circuits I am analyzing have already been theorized and simulated by researchers in

papers [3] and [5]. This paper will take the existing circuits and test different parameters

including, but not limited to, variation under temperature, transistor feature size and

clock speed. To begin I’ll briefly summarize the operation and sizing of the stability

detector described in [3].

4.1 Franco and McCluskey’s Stability Checker

The Stability Checker design in Figure 4.1 is based off a standard master-slave latch.

The major difference between this M-S latch and a normal one is that no changes are

allowed to the input of the flip-flop while the clock is high. Any change during this time

is detected by the error output. This is done by removing the extra transmission gate

that normally blocks inputs into the master stage while the clock is high and adding a

single transistor between the power connections of the master inverters and that of the

system power. This change makes it so that the circuit is sensitive to inputs while the

clock is high. The reason we want to do this is that delay errors can only happen in

sequential elements due to the nature of the error (signal propagation after the clock

goes high). A MS Latch is an ideal element to have stability detection because storage

5

Figure 4.1: Franco and McCluskey’s Stability Checker

elements are critical to keeping state between clock cycles, and an MS Latch can be

used instead of a flip-flop easily if need be. Also the MS Latch design allows for easy

integration of stability detection.

The reason for adding the extra transistor, referred to as the error pullup transistor in

the rest of the report, is so that a signal can be generated if the combinational output

(or sequential input) changes at any time while the clock is high. If the input changes,

then an error signal is generated. The process for the error signal generation is that

the error line as labeled in Figure 4.1 will lose charge if any of the inverters below it

pull any switching current. If it does, then some circuitry can be added to detect that

drop and signify that an error has been detected. A sample hold violation is shown in

Figure 4.2.

6

Figure 4.2: McCluskey Stability Detector Hold Time Violation

4.2 Modified Stability Checker

Another method for on-line stability detection involves the creation of an error code.

This error code is generated when the combinational output and output of a sequential

circuit are different. One generated, additional circuitry can be used to act when an

error is detected. One method of generating error codes is proposed in [5].

Error detection is accomplished through the pulldown circuitry. When the clock is

high and an error is detected, the pulldown circuit seen in Figure 4.3 will activate

and pulldown the sense line. Since the dummy line cannot be pulled down due to the

NMOS transistor Mdd being tied to ground, the two lines will differ. An example of a

hold violation is show in Figure 4.4. The exact magnitude of the difference between the

lines depends on the circuit parameters. The sense and dummy lines are then connected

to a sense amplifier, which can then detect differences between the two lines and cause

an error signal to be generated. The reason this is called sending an error code is that

each line can be assigned a logical 1 or 0 depending on the state of the line (high or

low) and a table of possible states can be generated as seen in Table II.

Unlike Franco’s stability checker, a MSC Cell could be attached to any sequential circuit

7

Figure 4.3: Modified Stability Detector Cell

Figure 4.4: Modified Stability Detector Cell Output (Hold Violation)

8

dummy sense error output
0 0 0
0 1 1
1 0 1
1 1 0

Table II: MSC Cell Possible Error Codes

element, making it much more versatile. Unfortunately, it is also much bigger since it

is self contained. The cell itself contains 12 transistors, and a sense amplifier could

contain much more. This means that implementing a MSC Cell system into a circuit

would take a lot of overhead. Also, since the easiest way to implement such a system is

to attach multiple cells to the same dummy and sense line, routing and loading issues

come into play requiring even more work. Finally, since the cell acts as a load on the

sequential circuit element and the combinational output, the sizing for the circuits have

to be adjusted to compensate most likely requiring more space. All of these sacrifices

are much greater compared to that of Franco’s latch, but if you need the versatility, it

may be worth it.

9

Chapter 5

Development and Construction

To actually create these circuits would take an amount of time, effort, and funding

that is outside the scope of this project. I was, however, able to create VLSI designs

in a tool known as Electric (http://www.staticfreesoft.com/) as well as do LTSpice

(http://www.linear.com/designtools/software/) simulations. These designs could be

sent off to a fabrication facility such as ones provided by MOSIS (http://www.mosis.com/).

All transistor models used in this report came from the Predictive Technology Models

developed by the Nanoscale Integration and Modeling Group at Arizona State Univer­

sity (http://www.eas.asu.edu/ ptm/) and was developed from [1], [6], and [2].

5.1 Franco and McCluskey’s Stability Checker

During this test the voltage input was changed from a logical high to a logical low while

the clock was high. During this time the error transistor is off, and the voltage signal

on the error line is discharged through the switching current of the flip-flop inverters

indicating that the input has changed. This is considered normal operation. Due to

the transparent nature of the error detection, this circuit could replace a normal M-S

Latch so long as the circuit is designed to not change any combinational outputs while

the clock is high.

10

The first optimization criterion I used was to try and get the fastest setup time possible.

The setup time is the minimum time the signal needs to remain stable before the rising

clock edge in order to successfully latch the logic state into the flip-flop. If the setup

time is violated, the latch has what is called a metastable input, this means the input

could be latched as high or low or the circuit may be performing some operation that

is not intended.

To measure the setup time, I needed to know how long it would take for an input signal

to propagate through the master portion of the M-S latch and reach a level such that it

would trigger the slave portion properly when the rising edge hits. This qualifies as the

setup time in this circuit. To do this, I executed variations on the following Spice code:

*Stability FF
.INCLUDE 32nm_bulk.model1
Vclk clk 0 DC 0V
Vcc Vcc 0 DC 1V
Vin 1 0 PWL(0ns 1V 1ps 1V 1.00001ps 0V)
*error transistor
M1 5 11 Vcc Vcc pmos L=32nm W=192nm
*inverters
X_inv1 5 0 1 2 Vcc 0 Inverter
X_inv2 5 0 2 3 Vcc 0 Inverter
X_inv3 5 0 3 4 Vcc 0 Inverter
X_tgate1 4 2 8 11 Vcc 0 TGate
X_clkinv1 Vcc 0 clk 8 Vcc 0 Inverter
X_clkinv2 Vcc 0 8 11 Vcc 0 Inverter
* TGate Input Output P_gate N_gate Pwr Gnd
.SUBCKT TGate 1 3 2 4 vcc gnd P=96nm N=48nm
M1 3 2 1 vcc pmos L=32nm W=’P’
M2 1 4 3 gnd nmos L=32nm W=’N’
.ENDS
* Inverter Vdd Vss Input Output Pwr Gnd
.SUBCKT Inverter 1 4 2 3 vcc gnd P=96nm N=48nm
M1 3 2 1 vcc pmos L=32nm W=’P’
M2 3 2 4 gnd nmos L=32nm W=’N’
.ENDS
.options TNOM=100 TEMP=100
.print tran V(4)
.tran .01ps 2ns
.END

The proceeding Spice code is for a 32nm transistor process at 100 degrees centigrade.
I ran this code for 32,45,65,90,130nm processes, 20,60,100,140 and 180 degrees C, and

varying the error transistor to be 1λ, 2λ, 3λ, 4λ, 5λ, 10λ, 20λ, 50λ. For each run I took

a number of sample points and checked to see when the node between the master and

slave latches reached a voltage considered to be stable enough to propagate to the next

11

stage. I did this twice, once for a high-to-low transition, and once for a low-to-high

transition and then took the longer of the two as the setup time for that particular run.
The results of this are discussed in the Integration and Test Results section.
Once I had the setup time, assuming that the hold time is always shorter than that of
the setup time, which is true in a M-S latch, I could calculate the maximum clock

speeds for this particular latch. For setting the clock speeds, I used the equation
1 and then rounded down to a more round number. In prac­(worst case setup time)∗2

tice this clock speed would be absurd as pretty much any input time would be a setup

violation in the worst case, but it gives a rough estimate of the order of speed for the

maximum clock. It just so happened that I also made numerous mistakes at this part
involving using the wrong sizing method and not setting the temperature properly in

the model file requiring me to start over multiple times until I ended up creating a script
that would work and accepted appropriate sizing.
To actually test the latch to check for valid error detection required writing a script with

two sections: the first section would be a series of loops in which the model parameters
were varied according to the test parameters. For example, here is the script portion

for modeling Franco’s latch. Essentially it is just LTSpice code, except that instead of
hard coding the parameters to test, they are variables that are changed as each loop

is executed. The way execution is done is that a spice file is written out to disk, then

LTSpice is called in batch mode to generate a raw file. I used a .print tran V(5) state­
ment so only the voltage at node 5 (error line) is written to the raw file. The raw file is
then processed by another program called ltsputil.exe, which converts the raw file from

a binary format to a human readable CSV format.

path = "I:\spice\SeniorProject\CircuitRuns\McCluskeyRuns\"

temperature = Array(20,60,100,140,180)

models = Array(32,45,65,90,130)

’Max speed 10GHz (approx. double longest setup time), Slowest 130nm at 180 deg C

’1x minimum size

’clockspeed = Array(10000000000,5000000000,1000000000)

’1/8x minimum size

clockspeed = Array(375000000,187500000,37500000)

’set the input signal time offset in pico-seconds from when the clock triggers

inputtimeoffset = Array(-1330)

Set fso = CreateObject("Scripting.FileSystemObject")

Set ErrorFile = fso.CreateTextFile("ErrorFile.csv",True)

ErrorFile.WriteLine("Transistor Feature Size,Clock Speed,

Temperature,Setup or Hold Violation (0 = Setup 1 = Hold),Error Detected? (0 = yes 1 = no)")

For l = 0 to UBound(models)

For m = 0 to UBound(clockspeed)

For h = 0 to UBound(temperature)

For n = 0 to UBound(inputtimeoffset)

’clock period in pico-seconds

clockperiod = (1 / clockspeed(m))*1000000000000

tempfile = path & "test.cir"

Set fso = CreateObject("Scripting.FileSystemObject")

Set GuyFile = fso.CreateTextFile(tempfile, True)

GuyFile.WriteLine("*Stability FF")

GuyFile.WriteLine(".INCLUDE " & models(l) & "nm_bulk.model1")

12

GuyFile.WriteLine("Vclk clk 0 PULSE(1 0 0ns .1ps .1ps " & 0.5*clockperiod & "ps " & clockperiod & "ps)")

GuyFile.WriteLine("Vcc Vcc 0 DC 1V")

triggertime = 0.5*clockperiod + inputtimeoffset(n)

temp = triggertime + 0.000001

’Test During the Setup and Hold Times (hold times being defined as the time right after the clock goes high)

GuyFile.WriteLine("Vin 1 0 PWL(0ps 0V " & triggertime & "ps 0V " & temp & "ps 1V)")

GuyFile.WriteLine("*error transistor")

GuyFile.WriteLine("M1 5 11 Vcc Vcc pmos L=" & models(l) * 2 & "nm W=" & models(l)/2*3 & "nm")

GuyFile.WriteLine("*inverters")

GuyFile.WriteLine("X_inv1 5 0 1 2 Vcc 0 Inverter")

GuyFile.WriteLine("X_inv2 5 0 2 3 Vcc 0 Inverter")

GuyFile.WriteLine("X_inv3 5 0 3 4 Vcc 0 Inverter")

GuyFile.WriteLine("X_tgate1 4 2 8 11 Vcc 0 TGate")

GuyFile.WriteLine("X_clkinv1 Vcc 0 clk 8 Vcc 0 Inverter")

GuyFile.WriteLine("X_clkinv2 Vcc 0 8 11 Vcc 0 Inverter")

GuyFile.WriteLine("* TGate Input Output P_gate N_gate Pwr Gnd")

GuyFile.WriteLine(".SUBCKT TGate 1 3 2 4 vcc gnd P=" & models(l)/2*6 & "nm N=" & models(l)/2*3 & "nm")

GuyFile.WriteLine(" M1 3 2 1 vcc pmos L=" & models(l) & "nm W=’P’")

GuyFile.WriteLine(" M2 1 4 3 gnd nmos L=" & models(l) & "nm W=’N’")

GuyFile.WriteLine(".ENDS")

GuyFile.WriteLine("* Inverter Vdd Vss Input Output Pwr Gnd")

GuyFile.WriteLine(".SUBCKT Inverter 1 4 2 3 vcc gnd P=" & models(l)/2*6 & "nm N=" & models(l)/2*3 & "nm")

GuyFile.WriteLine(" M1 3 2 1 vcc pmos L=" & models(l) & "nm W=’P’")

GuyFile.WriteLine(" M2 3 2 4 gnd nmos L=" & models(l) & "nm W=’N’")

GuyFile.WriteLine(".ENDS")

GuyFile.WriteLine(".options TNOM=" & temperature(h) & " TEMP=" & temperature(h))

GuyFile.WriteLine(".print tran V(5)")

If clockspeed(m) = 37500000 Then

GuyFile.WriteLine(".tran 1ps 60ns")

Else

GuyFile.WriteLine(".tran .1ps 10000ps")

End If

GuyFile.WriteLine(".END")

GuyFile.Close

csvfile = path & "" & temperature(h) & ".csv"

Set Command = WScript.CreateObject("WScript.Shell")

cmd = "%comspec% /c sed s/" & chr(34) & "tnom = 27" & chr(34) & "/tnom=" &

temperature(h) & "/ " & models(l) & "nm_bulk.model > " & models(l) & "nm_bulk.model1"

Command.Run(cmd)

circuit = path & "test.cir"

output = path & "test.out"

raw = path & "test.raw"

cmd = path & "scad3.exe -b " & circuit

Command.Run (cmd)

WScript.Sleep(5000)

’Convert raw to txt

cmd = "ltsputil.exe -x0 test.raw test.out " & chr(34) & "%15.7e" & chr(34) &

" " & chr(34) & "," & chr(34) & " " & chr(34) & "Time,Voltage" & chr(34) & " *"

Command.Run (cmd)

The second section of the script consists of test parameters. The data from the runs

is extracted from the CSV file and then put into the array MyArray. In this script, I

am testing to see if the error line ever goes below 0.7V and if the latch ever recovers

from an error. Depending on the results of the tests, different things are written into a

CSV file as my results file. At the very end I have a section with code for debugging

purposes, basically it saves each CSV generated with the waveforms and organizes them

13

into a directory hierarchy so that they can be easily located based on the stimuli being

tested. This way if there was a problem with the output data I could easily find the

test and view the waveform generated without having to rerun LTSpice. The code for

this is shown below:

’Open Output File
WScript.Sleep(200)
Set GuyFile = fso.OpenTextFile(output,1)
’Read in file into arrFileLines
i = 0
Do Until GuyFile.AtEndOfStream
Redim Preserve arrFileLines(i)
arrFileLines(i) = GuyFile.ReadLine
i = i + 1
Loop
GuyFile.Close

j = i - 1
k = 0
temp = 0
valid = 0
For i = 0 to j
’get rid of excess spaces
arrFileLines(i) = Trim(arrFileLines(i))
Redim Preserve arrValidLines(k)
arrValidLines(k) = arrFileLines(i)
k = k + 1
Next
’FOR DEBUGGING PURPOSES, PRINT OUT arrVALIDLINES
’Set GuyFile = fso.CreateTextFile("temp.txt", True)
’j = k - 1
’for i = 0 to j
’myArray = Split(arrValidLines(i),",")
’myArray(1) = Trim(myArray(1))
’GuyFile.WriteLine(myArray(0) & "," & myArray(1))
’next
’GuyFile.Close
’END DEBUG

’Check to see if it detected the error properly
j = k - 1
k = 0
errordetect = 0
For k = 0 to j
myArray = Split(arrValidLines(k),",")
myArray(1) = Trim(MyArray(1))
If k > 50 Then
’are we below threshold?
If myArray(1) < 0.7 Then
If errordetect = 0 Then
errortime = myArray(0)
errordetect = 1
End If
End If
’Does it reset after finding an error?
If (errordetect = 1) Then
If myArray(1) > 0.5 Then
errordetect = 2

14

End If
End If
End If
Next
If errordetect <> 2 Then
’Error not detected
’Lets export all our information to an error file
’Transistor Feature Size,Clock Speed,Temperature,Setup or Hold Violation,Error Detected?
’n = 0 is setup, n = 1 is hold
’Error Detected? 0 is yes, 1 is no
ErrorFile.WriteLine(models(l) & "," & clockspeed(m) & "," & temperature(h) & "," & n & ",1")

Else
’Error detected
ErrorFile.WriteLine(models(l) & "," & clockspeed(m) & "," & temperature(h) & "," & n & ",0")
End If
’Export to a CSV
k = 0
Set GuyFile = fso.CreateTextFile(csvfile, True)
For k = 0 to j
myArray = Split(arrValidLines(k),",")
myArray(1) = Trim(myArray(1))
GuyFile.WriteLine(myArray(0) & "," & myArray(1))
Next
GuyFile.Close
Set GuyFile = Nothing
’make the directory heirarchy
’Feature Size
directory = path & models(l) & "nm_bulk\"
MD(directory)
’Clock Speed
directory = path & models(l) & "nm_bulk\" & clockspeed(m) & "Hz\"
MD(directory)
’Setup or Hold Time Violation
If CDbl(triggertime) > 0.5*clockperiod Then
’Hold Time Violation
directory = path & models(l) & "nm_bulk\" & clockspeed(m) & "Hz\" & "Hold_Violation\"
Else
directory = path & models(l) & "nm_bulk\" & clockspeed(m) & "Hz\" & "Setup_Violation\"
End If
MD(directory)
fso.MoveFile csvfile, directory
fso.DeleteFile(output)
fso.DeleteFile(circuit)
fso.DeleteFile(raw)
fso.DeleteFile(models(l) & "nm_bulk.model1")
Set fso = Nothing
Next
Next
Next
Next
ErrorFile.Close
Set ErrorFile = Nothing

Function MD(strDirName)
Dim lFSObj
MD = False
’ First See if it already exists
set lFSObj = Wscript.CreateObject("Scripting.FileSystemObject")

If lFSObj.FolderExists(strDirName) Then
MD = True
Else
lFSObj.CreateFolder(strDirName)

15

MD = True
End If

Set lFSObj = Nothing
End Function

The following criteria were tested for Franco’s Latch:

1• Clock Speeds: Max Clock Possible, 1 of Max Clock, of Max Clock 2 10

• Temperature: 20 - 180 Degrees Centigrade in steps of 40 degrees

• Bulk PTR Models 32nm, 45nm, 65nm, 90nm, 130nm

• Setup Time Violations and Hold Time Violations

• Error Transistor Widths (Length 1λ): 1λ, 2λ, 3λ, 4λ, 5λ

• Error Transistor Lengths (Width 2to1 PtoN Ratio): 1λ, 2λ, 4λ

The reason I only varied the error transistor and not the rest of the circuit’s size will

also be discussed in the results section. The total number of runs for this circuit was

1200. The actual detection of an error is based off of the discharging of the error line

as discussed earlier. Because of this, the threshold that can be considered an error is

inherently arbitrary. I chose 0.7 because I found in my runs that it gave a good balance

that it was high enough such that given a sufficiently high clock speed, the error line

would not drop below this value, and it was high enough such that when an error did

occur the line dropped sharply below 0.7. Also 0.7 is a common threshold voltage for

transistors, so by putting the gate of a transistor on this line a drop below 0.7 could

easily be detected.

5.2 Modified Stability Checker

Where Franco’s stability detector is built into the M-S latch itself, Yada took a different

approach. Instead of integrating the error detection, he instead opted to attach the error

16

detection circuit externally. One advantage to this is that the error detection circuitry is

completely independent of the actual latch, so that any clocked element could be used.

Because of this, I had to construct a M-S latch independently of the error detector in

Spice using the following code:

*MS Latch
*MSLatch Input Output invOutput Clk Vcc Gnd
.SUBCKT MSLatch 1 7 13 clk Vcc Gnd
X_inv1 Vcc Gnd 1 2 Inverter
X_inv2 Vcc Gnd 3 4 Inverter
X_inv3 Vcc Gnd 5 6 Inverter
X_inv4 Vcc Gnd 6 7 Inverter
X_inv5 Vcc Gnd 4 9 Inverter
X_inv6 Vcc Gnd 6 12 Inverter
X_inv7 Vcc Gnd clk 8 Inverter
X_inv8 Vcc Gnd 8 11 Inverter
X_inv9 Vcc Gnd 12 13 Inverter
X_tgate1 2 3 11 8 TGate
X_tgate2 4 5 8 11 TGate
X_tgate3 9 3 8 11 TGate
X_tgate4 12 5 11 8 TGate
.ends
* Inverter Vcc Gnd Input Output
* TGate Input Output P_gate N_gate
.SUBCKT TGate 1 3 2 4
M1 3 2 1 1 pmos
M2 1 4 3 3 nmos
.ENDS
* Inverter5 Vcc Gnd Input Output
.SUBCKT Inverter 1 4 2 3
M1 3 2 1 1 pmos
M2 3 2 4 4 nmos
.ENDS

I then attached a MSC Cell to the end of it and ran all my tests on the complete circuit.

The rest of the Spice code in order to accomplish this is shown below:

Vcc vcc 0 DC 1V
Vclk clk 0 PULSE(1 0 0ns .1fs .1fs 200ps 400ps)
Vclkd clkd 0 PULSE(1 0 0ns .1fs .1fs 240ps 400ps)
Vco co 0 PWL(0ns 0V 610ps 0V 610.0001ps 1V)
X_mslatch co ffo 1 clk Vcc 0 MSLatch
X_msccell clkd vcc co ffo sense dummy MSCCell
.options TNOM=20 TEMP=20
.op
.probe
.print tran V(dummy) V(sense)
.tran 1ps 1.2ns
.SUBCKT MSCCell clkd vcc co ffo sense dummy
*Dummy Pullup
Mud dummy clkd vcc vcc pmos L=32nm W=48nm
*Sense Pullup
Mus sense clkd vcc vcc pmos L=32nm W=48nm
*Sense Pulldown

17

Mds 1 clkd 0 0 nmos L=32nm W=96nm
*Dummy Pulldown
Mdd 4 0 0 0 nmos L=32nm W=96nm

*Sense Cell
M1 2 ffo sense sense pmos L=32nm W=96nm
M2 2 co 1 0 nmos L=32nm W=48nm
M3 3 co sense vcc pmos L=32nm W=96nm
M4 3 ffo 1 0 nmos L=32nm W=48nm
*Dummy Cell
M5 6 ffo dummy vcc pmos L=32nm W=96nm
M6 6 co 4 0 nmos L=32nm W=48nm
M7 5 co dummy vcc pmos L=32nm W=96nm
M8 5 ffo 4 0 nmos L=32nm W=48nm
.ends

The first step, like that of in Franco’s stability checker, was to calculate the appropriate

setup time. Since the MSC cell requires both a synchronous and an asynchronous input,

the time it takes to get a valid input is based off of the delayed clock clkd instead of

the system clock clk. To measure this time I measured the time it took after a rising

edge for a signal to propagate through the slave portion of the latch. Since this is the

segment with the larger load (the MSC cell is a larger load than the slave portion) I

doubled this time in order to get a rough estimate for the setup time for the delayed

clock.

1Using the formula I was then able to get a rough estimate for (worst case setup time)∗2

the maximum clock speed of the delayed clock. To figure out the maximum speed of

the system clock I used the formula with the original measurement (1 of the delayed 2

clock setup time) since the latch is approximately symmetric.

To test the MSC Cell’s viability I used the same sensitivity analysis parameters as the

Franco checker resulting in another 1200 runs. I also devised my script to run in the

same way: I had one section for the spice code, and the other to detect certain events.

In this case since the detector works by sensing an error as a divergence in the voltage

between the dummy and sense lines, I detected the maximum error between those

sense−dummylines. For error I used and then rounded to two decimal places. In some sense

situations due to overshoot, the error between the lines actually exceeded 100% so I

set a hard cap of a maximum error of 100% on all of my results since any divergence

between the lines of more than 100% should in theory be a detected error. In addition

18

to this, I also set the script to ignore divergences in the two lines due to capacitance

since these kinds of errors shouldshould not be detected by a sense amplifier anyway.

5.3 Electric Layouts

In addition to creating Spice simulation files to test the circuits, I also created metal

level layouts in a tool known as Electric in order to provide a more accurate simula­

tion to compare against the purely Spice one. Since Franco and McCluskey’s stability

checker are based off of a standard Master-Slave latch the first element I created was

a Master-Slave Latch in Electric to use as a baseline model. This latch can be seen in

Figure 5.1. All of the transistors are minimum sized, so at the moment it is not designed

to handle larger loads. This could be changed by scaling the output inverters or adding

some buffer inverters to the end.

After creating the baseline M-S Latch, I went on to make Franco’s Stability Checker in

VLSI. The first step was to make the master portion of the latch since it is what makes

his latch unique. A layout for it can be seen in Figure 5.2. To get it to fit better I had

to rotate it, so the output is on the top and the input d on the bottom.

After creating the master I created a slave portion with both an output Q and an

inverted output Q. The only transistors not minimum sized in this design are the in

the clock driving circuit due to the large number of loads. The full layout is shown in

Figure 5.3.

To test the functionality of Franco’s detector in a circuit, I made a simple 4-bit up

counter by stamping out four detectors and connecting the output of each to the clk

input of the next one. An example of this is shown in Figure 5.4.

In addition to creating Franco’s Latch in Electric, I also created the Modified Stability

Checker by Yada as can be seen in Figure 5.5.

19

Figure 5.1: VLSI Design of a Standard Master-Slave Latch

20

Figure 5.2: VLSI Design of the Master Portion of Franco’s Stability Checker

Figure 5.3: Full VLSI Design of Franco’s Stability Checker

21

Figure 5.4: 4-Bit Up Counter Based on Franco’s Latch

Figure 5.5: VLSI Layout of Yada’s Modified Stability Checker

22

Chapter 6

Integration and Test Results

6.1 Franco and McCluskey’s Stability Detector

The first thing I noticed is that the stability detector propagates the signal fastest when

all of the inverters in it are minimum sized. This is probably due to the fact that a

larger inverter is a larger load, so by keeping the inverters all minimum sized the load

sizes stay small. Because of this, I decided to keep the inverter and transmission gate

sizes fixed throughout all my runs. The error pullup transistor, on the other hand, had

no one best size, and depending on the criteria, it may be better to keep the transistor

small, or make it very large.

6.1.1 Optimizing Setup Time

The setup time of the McCluskey circuit depends on how fast the signal can propa­

gate through the master section of the latch as mentioned before. The speed of the

propagation in turn depends on how fast the inverters can charge their output nodes.

Because the error transistor is the only source of current for all three inverters in the

master section of the latch, the larger the error pullup transistor, the faster the signal

propagates through the latch. This is shown experimentally in Figure 6.1. After a while

the setup time reaches a maximum, most likely due to the inverters themselves.

23

Figure 6.1: 32nm Transistor Process Setup Times at Varying Temperatures

You can also see in Figure 6.1, the overall trend of the setup time is temperature

independent. This means that for optimizing setup time, I can completely eliminate the

temperature parameter resulting in Figure 6.2. For optimizing setup time, the stronger

the pullup transistor the better. The absolute fastest setup time measured was with a

100x error transistor and resulted in a setup time of 50.36ps.

6.1.2 Optimizing Error Detection

During my testing of the setup time, I found that as the pull up transistor increases

in size, the error detection rate falls sharply. This is most likely due to the increased

capacitance on the drain node as the error transistor increases in size. This increased

capacitance is a double edged sword: it takes longer for the charge to leak through the

inverters therefore allowing this circuit to be used with a slower clock, but it also takes

much longer for the node to discharge. Logically this would mean that a smaller error

transistor would allow a faster clock.

In fact, as the error transistor shrinks, the error detection rate improves. Unfortunately,

as the transistors shrink, the number of false positives increase as seen in Figure 6.3.

A false positive is when the error line dips below the error detection threshold during

normal operation. A faster clock may be able to compensate for these kinds of errors

24

Figure 6.2: Setup Time at 20 Deg C as a Function of Error Transistor Sizing and
Transistor Feature Size

so long as the clock is slow enough to compensate for the increased setup time.

6.2 Modified Stability Checker

6.3 Circuit Sizing

To size this circuit I used standard λ sizing rules for the transistor widths. Since the

pull up transistors Mud and Mus are there to precharge the dummy and sense lines, I

made them both minimum sized. The pull down chain on the other hand needs to pull

the sense line down as quick as possible. To do this I made the PMOS transistors 18λ

and the NMOS transistors 9λ. To insure that the sense line would be pulled down as

quick as possible, I also sized the inverter chain in the M-S latch slave portion I was

using so that the MSC Cell was a 1x load.

Unlike Franco’s Detector, I was unable to find any clear cut trends or patterns in the

25

Figure 6.3: Franco Detector Error Rate as Dependent on Error Transistor Sizing

sizing of the MSC Cells in so far as error detection. It appeared the actual difference

between the dummy and sense lines tended to get worse at higher temperatures, but

there was no pattern that guaranteed this. Also the clock speed and the transistor

feature size did not seem to indicate any pattern in error detection rates. Error detection

did, however, get worse as the MSC Cell became larger without changing the M-S Latch

sizing. Using a threshold of 30% difference to indicate an error was detected, I found

that past a 10λ increase in size for the pulldown portion of the MSC Cell, the number

of missed errors became very large as can be seen in Figure 6.5. Also at very small λ

there was bad error detection, most likely due to the inability of the pulldown circuit

to yank the sense line fast enough. As you can see in Figure 6.5 there is a local minima

at around 2 − 5λ in which the pulldown is balanced enough to detect errors and not too

big that the MS Latch cannot drive the circuit well.

My guess is that this is just because as the pulldown circuit increases in size, it just

becomes too large of a load for the M-S Latch to turn on in a reasonable time. If the

pulldown circuit does not turn on, there is little to no difference in the sense and dummy

lines regardless if an error is detected.

26

Figure 6.4: Franco Detector Error Rate and Setup Time as Dependent on Error Tran­
sistor Sizing

I confirmed this by looking at the setup times required for the MSC Cell. As the cell

pulldown circuit reached 100λ, the setup time reached 500ps, a very high figure. The

absolute longest setup time occurred at 130nm, 180 degrees C, and 100λ pulldown size.

This means that a much longer time is required for a 100λ cell than a 1λ cell to pull

down.

6.4 Electric Simulation Results

After creating the circuit layouts in Electric, I exported them to Spice files in order to

get a more accurate simulation of the circuit. In the following sections I compare the

results of the hand done Spice simulations versus those created in spice using Electric.

The setup time of Franco’s Checker in Electric exhibits a reverse trend then that of

the pure Spice files in regards to the feature size. As the feature size increases, the

setup time decreases. The setup time also appears to be independent of temperature.

The minimum setup time is at 32nm and is 300pS. This is much larger than that of

the simulation files I created, but this is due to the extra lump sum capacitances and

27

Figure 6.5: MSC Cell Error Detection Rate as Pulldown Circuit Size Increases

resistances on the wires that are ignored in the simulations. A graph depicting this is

shown in Figure 6.6.

28

Figure 6.6: Franco Stability Detector Setup Time as a Function of Feature Size

29

Chapter 7

Conclusion

Fault tolerance is an unfortunately neccesity in modern day circuits. When there are

over 200 million transistors in a circuit, it is a near certainty that one or more of the

elements in the circuit will fail, and more will fail in the future. To deal with this problem

requires the research and development of circuits such as those presented in this report.

These stability checkers are very good at finding delay errors. With additional circuitry,

they can even be used to correct problems in real time. As presented, Franco’s detector

is able to handle error detection while the clock is high and actually saves a transistor.

Franco’s detector also works under a number of temperatures and clock speeds, but

when using said detector, it should be sized for worst case as there is a large variation

in setup time and error detection as the stimuli change. Yada’s MSC Cell is better,

exhibiting little to no variation under multiple stimuli in performance, so long as it is

sized correctly for the latch.

It is good to remember that error detection does not come free. These detectors take

a good deal of routing, for example, the MSC Cell requires a dummy and sense line

to each cell and a sense amplifier at the end while Franco’s latch requires some sort

of threshold detector and a priority encoder. While stability detectors are not ideal

solutions to the problem of delay detection, they are functional circuit blocks and can

be dropped in easily to any circuit in which unchecked delays are unacceptable.

30

Bibliography

[1] A. Balijepalli, S. Sinha, and Y. Cao, “Compact modeling of carbon nanotube tran­

sistor for early stage process-design exploration,” in ISLPED ’07: Proceedings of the

2007 international symposium on Low power electronics and design. New York,

NY, USA: ACM, 2007, pp. 2–7.

[2] Y. Cao, T. Sato, M. Orshansky, D. Sylvester, and C. Hu, “New paradigm of pre­

dictive mosfet and interconnect modeling for early circuit simulation,” 2000, pp.

201–204.

[3] P. Franco and E. McCluskey, “On-line delay testing of digital circuits,” Apr 1994,

pp. 167–173.

[4] A. Virupakshia and V. Pratapa Reddy, “A simple random test procedure for de­

tection of single intermittent fault in combinational circuits,” Computers, IEEE

Transactions on, vol. C-32, no. 6, pp. 594–597, June 1983.

[5] S. Yada, B. Amrutur, and R. A. Parekhji, “Modified stability checking for on-line

error detection,” Jan. 2007, pp. 787–792.

[6] W. Zhao and Y. Cao, “New generation of predictive technology model for sub-45nm

design exploration,” in ISQED ’06: Proceedings of the 7th International Symposium

on Quality Electronic Design. Washington, DC, USA: IEEE Computer Society,

2006, pp. 585–590.

31

Chapter 8

Appendices

Inverter Characterization Script

Option Explicit

DIM fso, GuyFile,TransFile,TransCSVFile

Dim arrFileLines(),temp

Dim Command

Dim circuit,output,cmd,i,j

Dim arrValidLines()

Dim k

Dim myArray

Dim raw

Dim temperature

Dim h, csvfile,tempfile

Dim l

Dim valid

Dim models,directory

Dim ErrorFile

Dim errordetect

Dim path

Dim errortime

Dim maxvolt, minvolt, vtl, vth, vtlout, vthout

path = "I:\spice\SeniorProject\CircuitRuns\"

temperature = Array(20,60,100,140,180)

models = Array(32,45,65,90,130)

Set fso = CreateObject("Scripting.FileSystemObject")

Set ErrorFile = fso.CreateTextFile("ErrorFile.txt",True)

Set TransFile = fso.CreateTextFile("Transistor_Characteristics.txt",True)

Set TransCSVFile = fso.CreateTextFile("Transistor_Characteristics.csv",True)

TransCSVFile.WriteLine("Transistor Feature Size,Temperature,Max Voltage, Min Voltage, High to Low, Low to High")

For l = 0 to UBound(models)

For h = 0 to UBound(temperature)

tempfile = path & "test.cir"

Set fso = CreateObject("Scripting.FileSystemObject")

Set GuyFile = fso.CreateTextFile(tempfile, True)

GuyFile.WriteLine("*Stability FF")

GuyFile.WriteLine("Vin 2 0 DC 1V")

GuyFile.WriteLine("Vcc 1 0 DC 1V")

32

GuyFile.WriteLine("")

GuyFile.WriteLine("M1 3 2 1 1 pmos L=" & models(l) & "nm W=" & models(l)/2*6 & "nm")

GuyFile.WriteLine("M2 3 2 0 0 nmos L=" & models(l) & "nm W=" & models(l)/2*3 & "nm")

GuyFile.WriteLine("C1 3 0 1pF")

GuyFile.WriteLine(".options TNOM=" & temperature(h) & " TEMP=" & temperature(h))

GuyFile.WriteLine(".print dc v(3)")

GuyFile.WriteLine(".dc vin 0 1 0.00001")

GuyFile.WriteLine(".include " & models(l) & "nm_bulk.model1")

GuyFile.WriteLine(".end")

GuyFile.Close

csvfile = path & temperature(h) & ".csv"

Set Command = WScript.CreateObject("WScript.Shell")

cmd = "%comspec% /c sed s/" & chr(34) & "tnom = 27" & chr(34) & "/tnom=" & temperature(h)

& "/ " & models(l) & "nm_bulk.model > " & models(l) & "nm_bulk.model1"

Command.Run(cmd)

circuit = path & "test.cir"

output = path & "test.out"

raw = path & "test.raw"

cmd = path & "scad3.exe -b " & circuit

Command.Run (cmd)

WScript.Sleep(3500)

’Convert raw to txt

cmd = "ltsputil.exe -x0 test.raw test.out " & chr(34) & "%15.7e" & chr(34) &

" " & chr(34) & "," & chr(34) & " " & chr(34) & "Time,Voltage" & chr(34) & " *"

Command.Run (cmd)

’Open Output File

WScript.Sleep(500)

Set GuyFile = fso.OpenTextFile(output,1)

’Read in file into arrFileLines

i = 0

Do Until GuyFile.AtEndOfStream

Redim Preserve arrFileLines(i)

arrFileLines(i) = GuyFile.ReadLine

i = i + 1

Loop

GuyFile.Close

j = i - 1

k = 0

temp = 0

valid = 0

For i = 0 to j

’get rid of excess spaces

arrFileLines(i) = Trim(arrFileLines(i))

Redim Preserve arrValidLines(k)

arrValidLines(k) = arrFileLines(i)

k = k + 1

Next

’FOR DEBUGGING PURPOSES, PRINT OUT arrVALIDLINES

’Set GuyFile = fso.CreateTextFile("temp.txt", True)

’j = k - 1

’for i = 0 to j

’myArray = Split(arrValidLines(i),",")

’myArray(1) = Trim(myArray(1))

’GuyFile.WriteLine(myArray(0) & "," & myArray(1))

’next

’GuyFile.Close

’END DEBUG

’Check to see if it detected the error properly

j = k - 1

k = 0

errordetect = 0

33

For k = 0 to j

myArray = Split(arrValidLines(k),",")

myArray(1) = Trim(MyArray(1))

If k > 50 Then

’are we below threshold?

If myArray(1) < 0.3 Then

If errordetect = 0 Then

errortime = myArray(0)

errordetect = 1

End If

End If

’Does it reset after finding an error?

If (errordetect = 1) Then

If myArray(1) > 0.5 Then

errordetect = 2

End If

End If

End If

Next

If (errordetect = 2) Then

ErrorFile.WriteLine(models(l) & "nm_bulk at " & temperature(h)

& " degrees C Error Detected at " & errortime & " seconds,PASS")

End If

If (errordetect = 0) Then

ErrorFile.WriteLine(models(l) & "nm_bulk at " & temperature(h)

& " degrees C Error Not Detected,FAIL")

End If

If (errordetect = 1) Then

ErrorFile.WriteLine(models(l) & "nm_bulk at "

& temperature(h) & " degrees C Stability Detector Broken,FAIL")

End If

’Export to a CSV

k = 0

Set GuyFile = fso.CreateTextFile(csvfile, True)

For k = 0 to j

myArray = Split(arrValidLines(k),",")

myArray(1) = Trim(myArray(1))

GuyFile.WriteLine(myArray(0) & "," & myArray(1))

Next

’myArray has voltages, 0 = input, 1 = output

’Getting Inverter Characteristics

maxvolt = 0.000

minvolt = 1.000

vtl = 0.000

vth = 0.000

’Casting to Double

maxvolt = CDbl(maxvolt)

minvolt = CDbl(minvolt)

vtl = CDbl(vtl)

vth = CDbl(vth)

’MsgBox IsNumeric(maxvolt)

’MsgBox IsNumeric(minvolt)

’MsgBox IsNumeric(vtl)

’MsgBox IsNumeric(vth)

For k = 0 to j

myArray = Split(arrValidLines(k),",")

myArray(1) = Trim(myArray(1))

myArray(0) = round(myArray(0),3)

myArray(1) = round(myArray(1),3)

’Find the max voltage

34

If myArray(1) > maxvolt Then

maxvolt = myArray(1)

End If

’Find the min voltage

If myArray(1) < minvolt Then

minvolt = myArray(1)

End If

Next

’Assuming 10% margins

vthout = 0.9*maxvolt

vtlout = 1.1*minvolt

if minvolt = 0 then

vtlout = 0.2

end if

vthout = round(vthout,3)

vtlout = round(vtlout,3)

For k = 0 to j

myArray = Split(arrValidLines(k),",")

myArray(1) = Trim(myArray(1))

myArray(0) = round(myArray(0),3)

myArray(1) = round(myArray(1),3)

’Find Vtl

If myArray(1) < vtlout*1.05 Then

If myArray(1) > 0.95*vtlout Then

vtl = myArray(0)

End If

End If

’Find Vth

If myArray(1) < vthout*1.05 Then

If myArray(1) > 0.95*vthout Then

vth = myArray(0)

End If

End If

Next

maxvolt = round(maxvolt,3)

minvolt = round(minvolt,3)

vtl = round(vtl,3)

vth = round(vth,3)

TransFile.WriteLine("Transistor Size: " & models(l) & "nm")

TransFile.WriteLine("Temperature: " & temperature(h) & " C")

TransFile.WriteLine("Max Inverter Voltage: " & maxvolt)

TransFile.WriteLine("Min Inverter Voltage: " & minvolt)

TransFile.WriteLine("High to Low Transition Voltage: " & vtl)

TransFile.WriteLine("Low to High Transition Voltage: " & vth)

TransFile.WriteLine("")

TransCSVFile.WriteLine(models(l) & "," & temperature(h)

& "," & maxvolt & "," & minvolt & "," & vtl & "," & vth)

’End Transistor Characteristics

GuyFile.Close

Set GuyFile = Nothing

directory = path & models(l) & "nm_bulk\"

MD(directory)

fso.MoveFile csvfile, directory

fso.DeleteFile(output)

fso.DeleteFile(circuit)

fso.DeleteFile(raw)

fso.DeleteFile(models(l) & "nm_bulk.model1")

Set fso = Nothing

35

Next
Next
TransFile.Close
Set TransFile = Nothing
ErrorFile.Close
Set ErrorFile = Nothing
Function MD(strDirName)

Dim lFSObj
MD = False
’ First See if it already exists
set lFSObj = Wscript.CreateObject("Scripting.FileSystemObject")

If lFSObj.FolderExists(strDirName) Then
MD = True
Else
lFSObj.CreateFolder(strDirName)
MD = True
End If

Set lFSObj = Nothing
End Function

Franco and McCluskey Batch Script

Option Explicit
Dim fso, GuyFile
Dim arrFileLines(),temp
Dim Command
Dim circuit,output,cmd,i,j
Dim arrValidLines()
Dim k
Dim myArray
Dim raw
Dim temperature
Dim h, csvfile,tempfile
Dim l,m,n
Dim valid
Dim models,directory
Dim ErrorFile
Dim errordetect
Dim path
Dim errortime
Dim clockspeed,clockperiod,inputtimeoffset
Dim triggertime
path = "I:\spice\SeniorProject\CircuitRuns\McCluskeyRuns\"
temperature = Array(20,60,100,140,180)
models = Array(32,45,65,90,130)
’Max speed 10GHz (approx. double longest setup time), Slowest 130nm at 180 deg C
’1x minimum size
’clockspeed = Array(10000000000,5000000000,1000000000)
’1/8x minimum size
clockspeed = Array(375000000,187500000,37500000)
’set the input signal time offset in pico-seconds from when the clock triggers
inputtimeoffset = Array(-1330)
Set fso = CreateObject("Scripting.FileSystemObject")
Set ErrorFile = fso.CreateTextFile("ErrorFile.csv",True)
ErrorFile.WriteLine("Transistor Feature Size,Clock Speed,Temperature
,Setup or Hold Violation (0 = Setup 1 = Hold),Error Detected? (0 = yes 1 = no)")
For l = 0 to UBound(models)
For m = 0 to UBound(clockspeed)
For h = 0 to UBound(temperature)
For n = 0 to UBound(inputtimeoffset)
’clock period in pico-seconds
clockperiod = (1 / clockspeed(m))*1000000000000

36

tempfile = path & "test.cir"

Set fso = CreateObject("Scripting.FileSystemObject")

Set GuyFile = fso.CreateTextFile(tempfile, True)

GuyFile.WriteLine("*Stability FF")

GuyFile.WriteLine(".INCLUDE " & models(l) & "nm_bulk.model1")

GuyFile.WriteLine("Vclk clk 0 PULSE(1 0 0ns .1ps .1ps " & 0.5*clockperiod & "ps " & clockperiod & "ps)")

GuyFile.WriteLine("Vcc Vcc 0 DC 1V")

triggertime = 0.5*clockperiod + inputtimeoffset(n)

temp = triggertime + 0.000001

’Test During the Setup and Hold Times (hold times being defined as the time right after the clock goes high)

GuyFile.WriteLine("Vin 1 0 PWL(0ps 0V " & triggertime & "ps 0V " & temp & "ps 1V)")

GuyFile.WriteLine("*error transistor")

GuyFile.WriteLine("M1 5 11 Vcc Vcc pmos L=" & models(l) * 2 & "nm W=" & models(l)/2*3 & "nm")

GuyFile.WriteLine("*inverters")

GuyFile.WriteLine("X_inv1 5 0 1 2 Vcc 0 Inverter")

GuyFile.WriteLine("X_inv2 5 0 2 3 Vcc 0 Inverter")

GuyFile.WriteLine("X_inv3 5 0 3 4 Vcc 0 Inverter")

GuyFile.WriteLine("X_tgate1 4 2 8 11 Vcc 0 TGate")

GuyFile.WriteLine("X_clkinv1 Vcc 0 clk 8 Vcc 0 Inverter")

GuyFile.WriteLine("X_clkinv2 Vcc 0 8 11 Vcc 0 Inverter")

GuyFile.WriteLine("* TGate Input Output P_gate N_gate Pwr Gnd")

GuyFile.WriteLine(".SUBCKT TGate 1 3 2 4 vcc gnd P=" & models(l)/2*6 & "nm N=" & models(l)/2*3 & "nm")

GuyFile.WriteLine(" M1 3 2 1 vcc pmos L=" & models(l) & "nm W=’P’")

GuyFile.WriteLine(" M2 1 4 3 gnd nmos L=" & models(l) & "nm W=’N’")

GuyFile.WriteLine(".ENDS")

GuyFile.WriteLine("* Inverter Vdd Vss Input Output Pwr Gnd")

GuyFile.WriteLine(".SUBCKT Inverter 1 4 2 3 vcc gnd P=" & models(l)/2*6 & "nm N=" & models(l)/2*3 & "nm")

GuyFile.WriteLine(" M1 3 2 1 vcc pmos L=" & models(l) & "nm W=’P’")

GuyFile.WriteLine(" M2 3 2 4 gnd nmos L=" & models(l) & "nm W=’N’")

GuyFile.WriteLine(".ENDS")

GuyFile.WriteLine(".options TNOM=" & temperature(h) & " TEMP=" & temperature(h))

GuyFile.WriteLine(".print tran V(5)")

If clockspeed(m) = 37500000 Then

GuyFile.WriteLine(".tran 1ps 60ns")

Else

GuyFile.WriteLine(".tran .1ps 10000ps")

End If

GuyFile.WriteLine(".END")

GuyFile.Close

csvfile = path & "" & temperature(h) & ".csv"

Set Command = WScript.CreateObject("WScript.Shell")

cmd = "%comspec% /c sed s/" & chr(34) & "tnom = 27" & chr(34) & "/tnom="

& temperature(h) & "/ " & models(l) & "nm_bulk.model > " & models(l) & "nm_bulk.model1"

Command.Run(cmd)

circuit = path & "test.cir"

output = path & "test.out"

raw = path & "test.raw"

cmd = path & "scad3.exe -b " & circuit

Command.Run (cmd)

WScript.Sleep(5000)

’Convert raw to txt

cmd = "ltsputil.exe -x0 test.raw test.out " & chr(34) & "%15.7e" & chr(34)

& " " & chr(34) & "," & chr(34) & " " & chr(34) & "Time,Voltage" & chr(34) & " *"

Command.Run (cmd)

’Open Output File

WScript.Sleep(200)

Set GuyFile = fso.OpenTextFile(output,1)

’Read in file into arrFileLines

i = 0

Do Until GuyFile.AtEndOfStream

Redim Preserve arrFileLines(i)

arrFileLines(i) = GuyFile.ReadLine

i = i + 1

Loop

37

GuyFile.Close

j = i - 1
k = 0
temp = 0
valid = 0
For i = 0 to j
’get rid of excess spaces
arrFileLines(i) = Trim(arrFileLines(i))
Redim Preserve arrValidLines(k)
arrValidLines(k) = arrFileLines(i)
k = k + 1
Next
’FOR DEBUGGING PURPOSES, PRINT OUT arrVALIDLINES
’Set GuyFile = fso.CreateTextFile("temp.txt", True)
’j = k - 1
’for i = 0 to j
’myArray = Split(arrValidLines(i),",")
’myArray(1) = Trim(myArray(1))
’GuyFile.WriteLine(myArray(0) & "," & myArray(1))
’next
’GuyFile.Close
’END DEBUG

’Check to see if it detected the error properly
j = k - 1
k = 0
errordetect = 0
For k = 0 to j
myArray = Split(arrValidLines(k),",")
myArray(1) = Trim(MyArray(1))
If k > 50 Then
’are we below threshold?
If myArray(1) < 0.7 Then
If errordetect = 0 Then
errortime = myArray(0)
errordetect = 1
End If
End If
’Does it reset after finding an error?
If (errordetect = 1) Then
If myArray(1) > 0.5 Then
errordetect = 2
End If
End If
End If
Next
If errordetect <> 2 Then
’Error not detected
’Lets export all our information to an error file
’Transistor Feature Size,Clock Speed,Temperature,Setup or Hold Violation,Error Detected?
’n = 0 is setup, n = 1 is hold
’Error Detected? 0 is yes, 1 is no
ErrorFile.WriteLine(models(l) & "," & clockspeed(m) & "," & temperature(h) & "," & n & ",1")

Else
’Error detected
ErrorFile.WriteLine(models(l) & "," & clockspeed(m) & "," & temperature(h) & "," & n & ",0")
End If
’Export to a CSV
k = 0
Set GuyFile = fso.CreateTextFile(csvfile, True)
For k = 0 to j
myArray = Split(arrValidLines(k),",")

38

myArray(1) = Trim(myArray(1))
GuyFile.WriteLine(myArray(0) & "," & myArray(1))
Next
GuyFile.Close
Set GuyFile = Nothing
’make the directory heirarchy
’Feature Size
directory = path & models(l) & "nm_bulk\"
MD(directory)
’Clock Speed
directory = path & models(l) & "nm_bulk\" & clockspeed(m) & "Hz\"
MD(directory)
’Setup or Hold Time Violation
If CDbl(triggertime) > 0.5*clockperiod Then
’Hold Time Violation
directory = path & models(l) & "nm_bulk\" & clockspeed(m) & "Hz\" & "Hold_Violation\"
Else
directory = path & models(l) & "nm_bulk\" & clockspeed(m) & "Hz\" & "Setup_Violation\"
End If
MD(directory)
fso.MoveFile csvfile, directory
fso.DeleteFile(output)
fso.DeleteFile(circuit)
fso.DeleteFile(raw)
fso.DeleteFile(models(l) & "nm_bulk.model1")
Set fso = Nothing
Next
Next
Next
Next
ErrorFile.Close
Set ErrorFile = Nothing

Function MD(strDirName)
Dim lFSObj
MD = False
’ First See if it already exists
set lFSObj = Wscript.CreateObject("Scripting.FileSystemObject")

If lFSObj.FolderExists(strDirName) Then
MD = True
Else
lFSObj.CreateFolder(strDirName)
MD = True
End If

Set lFSObj = Nothing
End Function

Franco and McCluskey Setup Time Calculator Script

Option Explicit
Dim fso, GuyFile
Dim arrFileLines(),temp
Dim Command
Dim circuit,output,cmd,i,j
Dim arrValidLines()
Dim k
Dim myArray
Dim raw
Dim temperature
Dim h, csvfile,tempfile
Dim l,m,n

39

Dim valid

Dim models,directory

Dim path

Dim errortime

Dim TransFile,OutputFile

Dim vth,vtl,found,setuptime

path = "I:\spice\SeniorProject\CircuitRuns\McCluskeyRuns\"

temperature = Array(20,60,100,140,180)

models = Array(32,45,65,90,130)

Set fso = CreateObject("Scripting.FileSystemObject")

Set OutputFile = fso.CreateTextFile("McCluskey_Setup_Times.csv",True)

OutputFile.WriteLine("Transistor Feature Size (nm),Temperature (C),Setup Time (ps)")

For l = 0 to UBound(models)

For h = 0 to UBound(temperature)

’Check both high to low and low to high transitions

For m = 0 to 1

tempfile = path & "test.cir"

Set fso = CreateObject("Scripting.FileSystemObject")

Set GuyFile = fso.CreateTextFile(tempfile, True)

GuyFile.WriteLine("*Stability FF")

GuyFile.WriteLine(".INCLUDE " & models(l) & "nm_bulk.model1")

GuyFile.WriteLine("Vclk clk 0 DC 0V")

GuyFile.WriteLine("Vcc Vcc 0 DC 1V")

GuyFile.WriteLine("Vin 1 0 PWL(0ns " & m & "V 1ps " & m & "V 1.00001ps " & abs(m - 1) & "V)")

GuyFile.WriteLine("*error transistor")

GuyFile.WriteLine("M1 5 11 Vcc Vcc pmos L=" & models(l) & "nm W=" & models(l)/2*3*4 & "nm")

GuyFile.WriteLine("*inverters")

GuyFile.WriteLine("X_inv1 5 0 1 2 Vcc 0 Inverter")

GuyFile.WriteLine("X_inv2 5 0 2 3 Vcc 0 Inverter")

GuyFile.WriteLine("X_inv3 5 0 3 4 Vcc 0 Inverter")

GuyFile.WriteLine("X_tgate1 4 2 8 11 Vcc 0 TGate")

GuyFile.WriteLine("X_clkinv1 Vcc 0 clk 8 Vcc 0 Inverter")

GuyFile.WriteLine("X_clkinv2 Vcc 0 8 11 Vcc 0 Inverter")

GuyFile.WriteLine("* TGate Input Output P_gate N_gate Pwr Gnd")

GuyFile.WriteLine(".SUBCKT TGate 1 3 2 4 vcc gnd P=" & models(l)/2*6 & "nm N=" & models(l)/2*3 & "nm")

GuyFile.WriteLine(" M1 3 2 1 vcc pmos L=" & models(l) & "nm W=’P’")

GuyFile.WriteLine(" M2 1 4 3 gnd nmos L=" & models(l) & "nm W=’N’")

GuyFile.WriteLine(".ENDS")

GuyFile.WriteLine("* Inverter Vdd Vss Input Output Pwr Gnd")

GuyFile.WriteLine(".SUBCKT Inverter 1 4 2 3 vcc gnd P=" & models(l)/2*6 & "nm N=" & models(l)/2*3 & "nm")

GuyFile.WriteLine(" M1 3 2 1 vcc pmos L=" & models(l) & "nm W=’P’")

GuyFile.WriteLine(" M2 3 2 4 gnd nmos L=" & models(l) & "nm W=’N’")

GuyFile.WriteLine(".ENDS")

GuyFile.WriteLine(".options TNOM=" & temperature(h) & " TEMP=" & temperature(h))

GuyFile.WriteLine(".print tran V(4)")

GuyFile.WriteLine(".tran .01ps 2ns")

GuyFile.WriteLine(".END")

GuyFile.Close

csvfile = path & "" & temperature(h) & ".csv"

Set Command = WScript.CreateObject("WScript.Shell")

cmd = "%comspec% /c sed s/" & chr(34) & "tnom = 27" & chr(34) & "/tnom="

& temperature(h) & "/ " & models(l) & "nm_bulk.model > " & models(l) & "nm_bulk.model1"

Command.Run(cmd)
circuit = path & "test.cir"
output = path & "test.out"
raw = path & "test.raw"
cmd = path & "scad3.exe -b " & circuit
Command.Run (cmd)
WScript.Sleep(1500)
’Convert raw to txt
cmd = "ltsputil.exe -x0 test.raw test.out " & chr(34) & "%15.7e" & chr(34) & " "

40

& chr(34) & "," & chr(34) & " " & chr(34) & "Time,Voltage" & chr(34) & " *"
Command.Run (cmd)
’Open Output File
WScript.Sleep(100)
Set GuyFile = fso.OpenTextFile(output,1)
’Read in file into arrFileLines
i = 0
Do Until GuyFile.AtEndOfStream
Redim Preserve arrFileLines(i)
arrFileLines(i) = GuyFile.ReadLine
i = i + 1
Loop
GuyFile.Close

j = i - 1
k = 0
valid = 0
For i = 0 to j
’get rid of excess spaces
arrFileLines(i) = Trim(arrFileLines(i))
Redim Preserve arrValidLines(k)
arrValidLines(k) = arrFileLines(i)
k = k + 1
Next
’FOR DEBUGGING PURPOSES, PRINT OUT arrVALIDLINES
’Set GuyFile = fso.CreateTextFile("temp.txt", True)
’j = k - 1
’for i = 0 to j
’myArray = Split(arrValidLines(i),",")
’myArray(1) = Trim(myArray(1))
’GuyFile.WriteLine(myArray(0) & "," & myArray(1))
’next
’GuyFile.Close
’END DEBUG

’Measure the Setup Time
j = k - 1
k = 0
’Transistor Characterization Data
’Transistor Feature Size,Temperature,Max Voltage,Min Voltage,High to Low, Low to High
Set TransFile = fso.OpenTextFile("Transistor_Characteristics.csv")
i = 0
Do Until TransFile.AtEndOfStream
Redim Preserve arrFileLines(i)
arrFileLines(i) = TransFile.ReadLine
i = i + 1
Loop
TransFile.Close
’Find Which Line Corresponds to the Transistor and Temp Being Used
’Skip the 1st line cause its all text
For k = 1 to i - 1
temp = split(arrFileLines(k),",")
’msgbox temp(0) & " = " & models(l)
’msgbox temp(1) & " = " & temperature(h)
’Make them numeric
For n = 0 to 5
temp(n) = CDbl(temp(n))
Next
If temp(0) = models(l) Then
If temp(1) = temperature(h) Then
’We got a match!
vtl = temp(4)
vth = temp(5)
End If

41

End If
Next

’m = 1 is low to high, m = 0 is high to low
found = 0
setuptime = 0
For k = 0 to j
myArray = Split(arrValidLines(k),",")
myArray(1) = Trim(MyArray(1))
’Convert to pico-seconds
myArray(0) = myArray(0) * 1000000000000
myArray(0) = round(myArray(0),6)
myArray(1) = round(myArray(1),3)
If m = 0 Then
’are we below threshold?
If myArray(1) < vth Then
If found = 0 Then
found = 1
setuptime = myArray(0) - 1
End If
End If
End If
If m = 1 Then
’are we above threshold?
If myArray(1) > vtl Then
If found = 0 Then
found = 1
’the longer time between the two is going to be the setup time
n = myArray(0) - 1
If n > setuptime Then
setuptime = myArray(0) - 1
End If
End If
End If
End If
Next
If m = 1 Then
OutputFile.WriteLine(models(l) & "," & temperature(h) & "," & setuptime)
End If
fso.DeleteFile(output)
fso.DeleteFile(circuit)
fso.DeleteFile(raw)
fso.DeleteFile(models(l) & "nm_bulk.model1")

Next
Next
Next
OutputFile.Close
Set OutputFile = Nothing
Set fso = Nothing

Function MD(strDirName)
Dim lFSObj
MD = False
’ First See if it already exists
set lFSObj = Wscript.CreateObject("Scripting.FileSystemObject")

If lFSObj.FolderExists(strDirName) Then
MD = True
Else
lFSObj.CreateFolder(strDirName)
MD = True
End If

Set lFSObj = Nothing
End Function

42

Modified Stability Checker Batch Script

Option Explicit

Dim fso, GuyFile

Dim arrFileLines(),temp

Dim Command

Dim circuit,output,cmd,i,j

Dim arrValidLines()

Dim k

Dim myArray

Dim raw

Dim temperature

Dim h, csvfile,tempfile

Dim l,m,n

Dim valid

Dim models,directory

Dim ErrorFile

Dim path

Dim clockspeed,clockperiod,inputtimeoffset

Dim triggertime

Dim difference,maxdiff

Dim clockdelay

path = "I:\spice\SeniorProject\CircuitRuns\MSCLatchRuns\"

temperature = Array(20,60,100,140,180)

models = Array(32,45,65,90,130)

clockspeed = Array(2500000000,1250000000,250000000)

’clock delay in pico-seconds

clockdelay = 40

’set the input signal time offset in pico-seconds from the 2nd rising edge of the clock

inputtimeoffset = Array(-10,10)

Set fso = CreateObject("Scripting.FileSystemObject")

Set ErrorFile = fso.CreateTextFile("ErrorFile.csv",True)

ErrorFile.WriteLine("Transistor Feature Size,Clock Speed

,Temperature,Setup or Hold Violation (0 = Setup 1 = Hold),Sense and Dummy Error")

For l = 0 to UBound(models)

For m = 0 to UBound(clockspeed)

For h = 0 to UBound(temperature)

For n = 0 to UBound(inputtimeoffset)

’clock period in pico-seconds

clockperiod = (1 / clockspeed(m))*1000000000000

tempfile = path & "test.cir"

Set fso = CreateObject("Scripting.FileSystemObject")

Set GuyFile = fso.CreateTextFile(tempfile, True)

triggertime = 1.5*clockperiod + inputtimeoffset(n)

temp = triggertime + 0.0001

’Test During the Setup and Hold Times (hold times being defined as the time right after the clock goes high)

GuyFile.WriteLine("*MSC with MS Latch")

GuyFile.WriteLine(".INCLUDE " & models(l) & "nm_bulk.model1")

GuyFile.WriteLine("*MSLatch Input Output invOutput Clk Vcc Gnd")

GuyFile.WriteLine("*Inverter Vcc Gnd Input Output")

GuyFile.WriteLine("*TGate Input Output P_gate N_gate")

GuyFile.WriteLine("*MSCCell clk vcc co ffo sense dummy")

’co = combinational out, ffo = flip-flop out

’inputs: co, clk, vcc outputs: sense,dummy

GuyFile.WriteLine("Vcc vcc 0 DC 1V")

GuyFile.WriteLine("Vclk clk 0 PULSE(1 0 0ns .1fs .1fs " & 0.5*clockperiod & "ps " & clockperiod & "ps)")

GuyFile.WriteLine("Vclkd clkd 0 PULSE(1 0 0ns .1fs .1fs " & 0.5*clockperiod+clockdelay & "ps " & clockperiod & "ps)")

GuyFile.WriteLine("Vco co 0 PWL(0ns 0V " & triggertime & "ps 0V " & temp & "ps 1V)")

GuyFile.WriteLine("X_mslatch co ffo 1 clk Vcc 0 MSLatch")

GuyFile.WriteLine("X_msccell clkd vcc co ffo sense dummy MSCCell")

GuyFile.WriteLine(".options TNOM=" & temperature(h) & " TEMP=" & temperature(h))

GuyFile.WriteLine(".op")

GuyFile.WriteLine(".probe")

GuyFile.WriteLine(".print tran V(dummy) V(sense)")

43

GuyFile.WriteLine(".tran 1ps 1.2ns")

GuyFile.WriteLine(".SUBCKT MSCCell clkd vcc co ffo sense dummy")

GuyFile.WriteLine("*Dummy Pullup")

GuyFile.WriteLine("Mud dummy clkd vcc vcc pmos L=" & models(l) & "nm W=" & models(l)/2*3 & "nm")

GuyFile.WriteLine("*Sense Pullup")

GuyFile.WriteLine("Mus sense clkd vcc vcc pmos L=" & models(l) & "nm W=" & models(l)/2*3 & "nm")

GuyFile.WriteLine("*Sense Pulldown")

GuyFile.WriteLine("Mds 1 clkd 0 0 nmos L=" & models(l) & "nm W=" & models(l)/2*6 & "nm")

GuyFile.WriteLine("*Dummy Pulldown")

GuyFile.WriteLine("Mdd 4 0 0 0 nmos L=" & models(l) & "nm W=" & models(l)/2*6 & "nm")

GuyFile.WriteLine("")

GuyFile.WriteLine("*Sense Cell")

GuyFile.WriteLine("M1 2 ffo sense sense pmos L=" & models(l) & "nm W=" & models(l)/2*6 & "nm")

GuyFile.WriteLine("M2 2 co 1 0 nmos L=" & models(l) & "nm W=" & models(l)/2*3 & "nm")

GuyFile.WriteLine("M3 3 co sense vcc pmos L=" & models(l) & "nm W=" & models(l)/2*6 & "nm")

GuyFile.WriteLine("M4 3 ffo 1 0 nmos L=" & models(l) & "nm W=" & models(l)/2*3 & "nm")

GuyFile.WriteLine("*Dummy Cell")

GuyFile.WriteLine("M5 6 ffo dummy vcc pmos L=" & models(l) & "nm W=" & models(l)/2*6 & "nm")

GuyFile.WriteLine("M6 6 co 4 0 nmos L=" & models(l) & "nm W=" & models(l)/2*3 & "nm")

GuyFile.WriteLine("M7 5 co dummy vcc pmos L=" & models(l) & "nm W=" & models(l)/2*6 & "nm")

GuyFile.WriteLine("M8 5 ffo 4 0 nmos L=" & models(l) & "nm W=" & models(l)/2*3 & "nm")

GuyFile.WriteLine(".ends")

GuyFile.WriteLine("*MSLatch Input Output invOutput Clk Vcc Gnd")

GuyFile.WriteLine(".SUBCKT MSLatch 1 7 13 clk Vcc Gnd")

GuyFile.WriteLine("X_inv1 Vcc Gnd 1 2 Inverter")

GuyFile.WriteLine("X_inv2 Vcc Gnd 3 4 Inverter")

GuyFile.WriteLine("X_inv3 Vcc Gnd 5 6 Inverter")

GuyFile.WriteLine("X_inv4 Vcc Gnd 6 7 Inverter")

GuyFile.WriteLine("X_inv5 Vcc Gnd 4 9 Inverter")

GuyFile.WriteLine("X_inv6 Vcc Gnd 6 12 Inverter")

GuyFile.WriteLine("X_inv7 Vcc Gnd clk 8 Inverter")

GuyFile.WriteLine("X_inv8 Vcc Gnd 8 11 Inverter")

GuyFile.WriteLine("X_inv9 Vcc Gnd 12 13 Inverter")

GuyFile.WriteLine("X_tgate1 2 3 11 8 TGate")

GuyFile.WriteLine("X_tgate2 4 5 8 11 TGate")

GuyFile.WriteLine("X_tgate3 9 3 8 11 TGate")

GuyFile.WriteLine("X_tgate4 12 5 11 8 TGate")

GuyFile.WriteLine(".ends")

GuyFile.WriteLine("* Inverter Vcc Gnd Input Output")

GuyFile.WriteLine("* TGate Input Output P_gate N_gate")

GuyFile.WriteLine(".SUBCKT TGate 1 3 2 4")

GuyFile.WriteLine("M1 3 2 1 Vcc pmos L=" & models(l) & "nm W=" & models(l)/2*6 & "nm")

GuyFile.WriteLine("M2 1 4 3 0 nmos L=" & models(l) & "nm W=" & models(l)/2*3 & "nm")

GuyFile.WriteLine(".ENDS")

GuyFile.WriteLine("* Inverter Vcc Gnd Input Output")

GuyFile.WriteLine(".SUBCKT Inverter 1 4 2 3")

GuyFile.WriteLine("M1 3 2 1 Vcc pmos L=" & models(l) & "nm W=" & models(l)/2*6 & "nm")

GuyFile.WriteLine("M2 3 2 4 0 nmos L=" & models(l) & "nm W=" & models(l)/2*3 & "nm")

GuyFile.WriteLine(".ENDS")

GuyFile.WriteLine(".end")

GuyFile.Close

csvfile = path & "" & temperature(h) & ".csv"

Set Command = WScript.CreateObject("WScript.Shell")

cmd = "%comspec% /c sed s/" & chr(34) & "tnom = 27" & chr(34)

& "/tnom=" & temperature(h) & "/ " & models(l) & "nm_bulk.model > " & models(l) & "nm_bulk.model1"

Command.Run(cmd)

circuit = path & "test.cir"

output = path & "test.out"

raw = path & "test.raw"

cmd = path & "scad3.exe -b " & circuit

44

Command.Run (cmd)
WScript.Sleep(3000)
’Convert raw to txt
cmd = "ltsputil.exe -x0 test.raw test.out " & chr(34) & "%15.7e" & chr(34) & " "
& chr(34) & "," & chr(34) & " " & chr(34) & "Time,Voltage" & chr(34) & " *"
Command.Run (cmd)
’Open Output File
WScript.Sleep(200)
Set GuyFile = fso.OpenTextFile(output,1)
’Read in file into arrFileLines
i = 0
Do Until GuyFile.AtEndOfStream
Redim Preserve arrFileLines(i)
arrFileLines(i) = GuyFile.ReadLine
i = i + 1
Loop
GuyFile.Close

j = i - 1
k = 0
temp = 0
valid = 0
For i = 0 to j
’get rid of excess spaces
arrFileLines(i) = Trim(arrFileLines(i))
Redim Preserve arrValidLines(k)
arrValidLines(k) = arrFileLines(i)
k = k + 1
Next
’FOR DEBUGGING PURPOSES, PRINT OUT arrVALIDLINES
’~ Set GuyFile = fso.CreateTextFile("temp.txt", True)
’~ j = k - 1
’~ for i = 0 to j
’~ myArray = Split(arrValidLines(i),",")
’~ myArray(1) = Trim(myArray(1))
’~ GuyFile.WriteLine(myArray(0) & "," & myArray(1) & "," & myArray(2))
’~ next
’~ GuyFile.Close
’END DEBUG

’Check to see if it detected the error properly
j = k - 1
k = 0
’Lets see our differences for debugging
’Set GuyFile = fso.CreateTextFile("Temp.txt",true)
maxdiff = 0
For k = 0 to j
myArray = Split(arrValidLines(k),",")
myArray(1) = Trim(MyArray(1))
myArray(2) = Trim(MyArray(2))
’Subtract dummy from sense and see if theres a difference
difference = (MyArray(1) - MyArray(2)) / MyArray(1)
difference = round(difference,2)
’There is going to be a difference between the sense and dummy lines, but hopefully it wont be much if theres no error
If MyArray(0) > 600*10^(-12) Then
If difference > maxdiff Then
’Store max difference between sense and dummy
maxdiff = difference
’ignore the error line difference if the difference is due to capactance
If MyArray(1) > 0.9 Then
If MyArray(2) > 0.9 Then
difference = 0
End If
End If

45

End If
’GuyFile.WriteLine(MyArray(0) & " " & difference)
End If
Next
’Transistor Feature Size,Clock Speed,Temperature,Setup or Hold Violation (0 = Setup 1 = Hold),sense/dummy error
ErrorFile.WriteLine(models(l) & "," & clockspeed(m) & "," & temperature(h) & "," & n & "," & maxdiff)
’GuyFile.Close
’Export to a CSV
k = 0
Set GuyFile = fso.CreateTextFile(csvfile, True)
For k = 0 to j
myArray = Split(arrValidLines(k),",")
myArray(1) = Trim(myArray(1))
GuyFile.WriteLine(myArray(0) & "," & myArray(1) & "," & myArray(2))
Next
GuyFile.Close
Set GuyFile = Nothing
’make the directory heirarchy
’Feature Size
directory = path & models(l) & "nm_bulk\"
MD(directory)
’Clock Speed
directory = path & models(l) & "nm_bulk\" & clockspeed(m) & "Hz\"
MD(directory)
’Setup or Hold Time Violation
If CDbl(triggertime) > 1.5*clockperiod Then
’Hold Time Violation
directory = path & models(l) & "nm_bulk\" & clockspeed(m) & "Hz\" & "Hold_Violation\"
Else
directory = path & models(l) & "nm_bulk\" & clockspeed(m) & "Hz\" & "Setup_Violation\"
End If
MD(directory)
fso.MoveFile csvfile, directory
fso.DeleteFile(output)
fso.DeleteFile(circuit)
fso.DeleteFile(raw)
fso.DeleteFile(models(l) & "nm_bulk.model1")
Set fso = Nothing

Next
Next
Next
Next
ErrorFile.Close
Set ErrorFile = Nothing

Function MD(strDirName)
Dim lFSObj
MD = False
’ First See if it already exists
set lFSObj = Wscript.CreateObject("Scripting.FileSystemObject")

If lFSObj.FolderExists(strDirName) Then
MD = True
Else
lFSObj.CreateFolder(strDirName)
MD = True
End If

Set lFSObj = Nothing
End Function

46

Modified Stability Checker Setup Time Calculator Script

Option Explicit

Dim fso, GuyFile

Dim arrFileLines(),temp

Dim Command

Dim circuit,output,cmd,i,j

Dim arrValidLines()

Dim k

Dim myArray

Dim raw

Dim temperature

Dim h, csvfile,tempfile

Dim l,m,n

Dim valid

Dim models,directory

Dim path

Dim errortime

Dim OutputFile

Dim found,setuptime

path = "I:\spice\SeniorProject\CircuitRuns\MSCLatchRuns\"

temperature = Array(20,60,100,140,180)

models = Array(32,45,65,90,130)

Set fso = CreateObject("Scripting.FileSystemObject")

Set OutputFile = fso.CreateTextFile("MSLatchwithMSC_Setup_Times.csv",True)

OutputFile.WriteLine("Transistor Feature Size (nm),Temperature (C),Setup Time (ps)")

For l = 0 to UBound(models)

For h = 0 to UBound(temperature)

’Check both high to low and low to high transitions

For m = 0 to 1

tempfile = path & "test.cir"

Set fso = CreateObject("Scripting.FileSystemObject")

Set GuyFile = fso.CreateTextFile(tempfile, True)

GuyFile.WriteLine("*MSC with MS Latch")

GuyFile.WriteLine(".global Vcc")

GuyFile.WriteLine(".INCLUDE " & models(l) & "nm_bulk.model1")

GuyFile.WriteLine("*MSLatch Input Output invOutput Clk Vcc Gnd")

GuyFile.WriteLine("*Inverter Vcc Gnd Input Output")

GuyFile.WriteLine("*TGate Input Output P_gate N_gate")

GuyFile.WriteLine("*MSCCell clk vcc co ffo sense dummy")

GuyFile.WriteLine("Vcc vcc 0 DC 1V")

GuyFile.WriteLine("Vclk clk 0 PULSE(1 0 0ns .1fs .1fs 100ps 200ps)")

GuyFile.WriteLine("Vclkd clkd 0 DC 0V")

GuyFile.WriteLine("Vco co 0 PWL(0ns " & m & "V 240ps " & m & "V 240.00001ps " & abs(m - 1) & "V)")

GuyFile.WriteLine("X_mslatch co ffo 1 clk Vcc 0 MSLatch")

GuyFile.WriteLine("X_msccell clkd vcc co ffo sense dummy MSCCell")

GuyFile.WriteLine(".options TNOM=" & temperature(h) & " TEMP=" & temperature(h))

GuyFile.WriteLine(".op")

GuyFile.WriteLine(".probe")

GuyFile.WriteLine(".print tran V(ffo)")

GuyFile.WriteLine(".tran 0.001ps 400ps")

GuyFile.WriteLine(".SUBCKT MSCCell clkd vcc co ffo sense dummy")

GuyFile.WriteLine("*Dummy Pullup")

GuyFile.WriteLine("Mud dummy clkd vcc vcc pmos L=" & models(l) & "nm W=" & models(l)/2*6 & "nm")

GuyFile.WriteLine("*Sense Pullup")

GuyFile.WriteLine("Mus sense clkd vcc vcc pmos L=" & models(l) & "nm W=" & models(l)/2*6 & "nm")

GuyFile.WriteLine("*Sense Pulldown")

GuyFile.WriteLine("Mds 1 clkd 0 0 nmos L=" & models(l) & "nm W=" & models(l)/2*3 & "nm")

GuyFile.WriteLine("*Dummy Pulldown")

GuyFile.WriteLine("Mdd 4 0 0 0 nmos L=" & models(l) & "nm W=" & models(l)/2*3 & "nm")

GuyFile.WriteLine("")

GuyFile.WriteLine("*Sense Cell")

GuyFile.WriteLine("M1 2 ffo sense sense pmos L=" & models(l) & "nm W=" & models(l)/2*6 & "nm")

47

GuyFile.WriteLine("M2 2 co 1 0 nmos L=" & models(l) & "nm W=" & models(l)/2*3 & "nm")

GuyFile.WriteLine("M3 3 co sense vcc pmos L=" & models(l) & "nm W=" & models(l)/2*6 & "nm")

GuyFile.WriteLine("M4 3 ffo 1 0 nmos L=" & models(l) & "nm W=" & models(l)/2*3 & "nm")

GuyFile.WriteLine("*Dummy Cell")

GuyFile.WriteLine("M5 6 ffo dummy vcc pmos L=" & models(l) & "nm W=" & models(l)/2*6 & "nm")

GuyFile.WriteLine("M6 6 co 4 0 nmos L=" & models(l) & "nm W=" & models(l)/2*3 & "nm")

GuyFile.WriteLine("M7 5 co dummy vcc pmos L=" & models(l) & "nm W=" & models(l)/2*6 & "nm")

GuyFile.WriteLine("M8 5 ffo 4 0 nmos L=" & models(l) & "nm W=" & models(l)/2*3 & "nm")

GuyFile.WriteLine(".ends")

GuyFile.WriteLine("*MSLatch Input Output invOutput Clk Vcc Gnd")

GuyFile.WriteLine(".SUBCKT MSLatch 1 7 13 clk Vcc Gnd")

GuyFile.WriteLine("X_inv1 Vcc Gnd 1 2 Inverter")

GuyFile.WriteLine("X_inv2 Vcc Gnd 3 4 Inverter")

GuyFile.WriteLine("X_inv3 Vcc Gnd 5 6 Inverter")

GuyFile.WriteLine("X_inv4 Vcc Gnd 6 7 Inverter")

GuyFile.WriteLine("X_inv5 Vcc Gnd 4 9 Inverter")

GuyFile.WriteLine("X_inv6 Vcc Gnd 6 12 Inverter")

GuyFile.WriteLine("X_inv7 Vcc Gnd clk 8 Inverter")

GuyFile.WriteLine("X_inv8 Vcc Gnd 8 11 Inverter")

GuyFile.WriteLine("X_inv9 Vcc Gnd 12 13 Inverter")

GuyFile.WriteLine("X_tgate1 2 3 11 8 TGate")

GuyFile.WriteLine("X_tgate2 4 5 8 11 TGate")

GuyFile.WriteLine("X_tgate3 9 3 8 11 TGate")

GuyFile.WriteLine("X_tgate4 12 5 11 8 TGate")

GuyFile.WriteLine(".ends")

GuyFile.WriteLine("* Inverter Vcc Gnd Input Output")

GuyFile.WriteLine("* TGate Input Output P_gate N_gate")

GuyFile.WriteLine(".SUBCKT TGate 1 3 2 4")

GuyFile.WriteLine("M1 3 2 1 Vcc pmos L=" & models(l) & "nm W=" & models(l)/2*6 & "nm")

GuyFile.WriteLine("M2 1 4 3 0 nmos L=" & models(l) & "nm W=" & models(l)/2*3 & "nm")

GuyFile.WriteLine(".ENDS")

GuyFile.WriteLine("* Inverter Vcc Gnd Input Output")

GuyFile.WriteLine(".SUBCKT Inverter 1 4 2 3")

GuyFile.WriteLine("M1 3 2 1 Vcc pmos L=" & models(l) & "nm W=" & models(l)/2*6 & "nm")

GuyFile.WriteLine("M2 3 2 4 0 nmos L=" & models(l) & "nm W=" & models(l)/2*3 & "nm")

GuyFile.WriteLine(".ENDS")

GuyFile.WriteLine(".end")

GuyFile.Close

csvfile = path & "" & temperature(h) & ".csv"

Set Command = WScript.CreateObject("WScript.Shell")

cmd = "%comspec% /c sed s/" & chr(34) & "tnom = 27" & chr(34)

& "/tnom=" & temperature(h) & "/ " & models(l) & "nm_bulk.model > " & models(l) & "nm_bulk.model1"

Command.Run(cmd)
circuit = path & "test.cir"
output = path & "test.out"
raw = path & "test.raw"
cmd = path & "scad3.exe -b " & circuit
Command.Run (cmd)
WScript.Sleep(3000)
’Convert raw to txt
cmd = "ltsputil.exe -x0 test.raw test.out " & chr(34) & "%15.7e" & chr(34)
& " " & chr(34) & "," & chr(34) & " " & chr(34) & "Time,Voltage" & chr(34) & " *"
Command.Run (cmd)
’Open Output File
WScript.Sleep(100)
Set GuyFile = fso.OpenTextFile(output,1)
’Read in file into arrFileLines
i = 0
Do Until GuyFile.AtEndOfStream
Redim Preserve arrFileLines(i)
arrFileLines(i) = GuyFile.ReadLine

48

i = i + 1
Loop
GuyFile.Close

j = i - 1
k = 0
valid = 0
For i = 0 to j
’get rid of excess spaces
arrFileLines(i) = Trim(arrFileLines(i))
Redim Preserve arrValidLines(k)
arrValidLines(k) = arrFileLines(i)
k = k + 1
Next
’FOR DEBUGGING PURPOSES, PRINT OUT arrVALIDLINES
’Set GuyFile = fso.CreateTextFile("temp.txt", True)
’j = k - 1
’for i = 0 to j
’myArray = Split(arrValidLines(i),",")
’myArray(1) = Trim(myArray(1))
’GuyFile.WriteLine(myArray(0) & "," & myArray(1))
’next
’GuyFile.Close
’END DEBUG

’Measure the Setup Time
j = k - 1
k = 0

’m = 1 is low to high, m = 0 is high to low
found = 0
If m = 0 Then
setuptime = 0
End If
For k = 0 to j
myArray = Split(arrValidLines(k),",")
myArray(1) = Trim(MyArray(1))
’Convert to pico-seconds
myArray(0) = myArray(0) * 1000000000000
myArray(0) = round(myArray(0),9)
myArray(1) = round(myArray(1),9)
’MsgBox "vtl: " & vtl
’MsgBox "vth: " & vth
If myArray(0) > 300 Then
’MsgBox myArray(0)
If m = 0 Then
’are we above threshold?
’Vth0 = 0.5088 for the worst case
If myArray(1) > 0.5088 Then
If found = 0 Then
found = 1
setuptime = myArray(0) - 300
End If
End If
End If
If m = 1 Then
’are we below threshold?
If myArray(1) < 0.5088 Then
If found = 0 Then
found = 1
n = myArray(0) - 300
’the longer time between the two is going to be the setup time
If n > setuptime Then

49

setuptime = myArray(0) - 300

End If

End If

End If

End If

End If

Next

If m = 1 Then

OutputFile.WriteLine(models(l) & "," & temperature(h) & "," & setuptime)

End If

fso.DeleteFile(output)

fso.DeleteFile(circuit)

fso.DeleteFile(raw)

fso.DeleteFile(models(l) & "nm_bulk.model1")

Next

Next

Next

OutputFile.Close

Set OutputFile = Nothing

Set fso = Nothing

Function MD(strDirName)
Dim lFSObj
MD = False
’ First See if it already exists
set lFSObj = Wscript.CreateObject("Scripting.FileSystemObject")

If lFSObj.FolderExists(strDirName) Then
MD = True
Else
lFSObj.CreateFolder(strDirName)
MD = True
End If

Set lFSObj = Nothing
End Function

50

	Introduction
	Background
	Off-line Testing
	On-line Testing

	Requirements
	Design
	Franco and McCluskey's Stability Checker
	Modified Stability Checker

	Development and Construction
	Franco and McCluskey's Stability Checker
	Modified Stability Checker
	Electric Layouts

	Integration and Test Results
	Franco and McCluskey's Stability Detector
	Optimizing Setup Time
	Optimizing Error Detection

	Modified Stability Checker
	Circuit Sizing
	Electric Simulation Results

	Conclusion
	Bibliography
	Appendices
	Inverter Characterization Script
	Franco and McCluskey Batch Script
	Franco and McCluskey Setup Time Calculator Script
	Modified Stability Checker Batch Script
	Modified Stability Checker Setup Time Calculator Script

