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ABSTRACT 

Setting signals at intersections to minimize 
the queue length and vehicle delay time is a key 
goal in traffic management. In this paper, a new 
control strategy for a signalized traffic intersection 
is developed by applying Markovian decision 
control theory. Statistical analysis of simulation 
results with different arrival rates indicate the 
excellent potential of this approach. 

I. INTRODUCTION 

The traditional approach for traffic signal 
control is to employ a set of fixed-time signal 
timing plans which are generated off-line based on 
the deterministic traffic conditions during different 
time periods of the day (e.g., peak hours, off-peak 
hours). For example, the most widely used 
computer software package for traffic signal 
control, TRANSYT-7F (TRAFFIC NETWORK 
STUDY TOOL) [3] relies on historical data and is 
considered to be an effective off-line control 
strategy. In SCOOT (SPLIT, CYCLE and OFFSET 
OPTIMIZATION TECHNIQUE) [4] and SCATS 
(SYDNEY COORDINATED ADAPTIVE TRAFFIC 
SYSTEM) [5],  the control strategy is to "match" the 
current traffic conditions obtained from detectors 
to the "best" precalculated off-line timing plan. 
Generally, these conventional traffic signal control 

approaches do not hold much promise to achieve 
fully real-time adaptive control. 

The Markov decision process, or the 
controlled Markov process, has been studied by 
many researchers since the 1950s, e.g. [l]. It has 
found applications in many areas. A discrete time, 
stationary Markov control model is defined on (X, 
A, P, R) where X: the state space, where every 
element X E X  is called a state; A: the set of all 
possible controls (or alternatives); P: a probability 
measure space, in which an element pkj denotes 
the transition probability from state i to state j 
under alternative k; and R: a measurable function, 
called a one-step reward. 

Choosing a particular alternative results in 
an immediate reward and a transition probability to 
the next step. The ultimate objective is to find the 
supremum (least upper bound) of the total 
expected discounted reward over an infinite period 
of time: 

J 4 E CPtr (x t ,a t )  
- Lo 1 

where r is the one-step transition reward, p (0 5 p 
< 1) is the discount factor, and a is the policy. 
The optimal reward v* is defined as: 

v*(x,a") = sup[J(x,a)] 
acA 

It can be obtained by solving a DPE (dynamic 
programming equation): 

v* = Tv*, 
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ABSTRACT

Setting signals at intersections to minimize
the queue length and vehicle delay time is a key
goal in traffic management. In this paper, a new
control strategy for a signalized traffic intersection
is developed by applying Markovian decision
control theory. Statistical analysis of simulation
results with different arrival rates indicate the
excellent potential of this approach.

I. INTRODUCTION

The traditional approach for traffic signal
control is to employ a set of fixed-time signal
timing plans which are generated off-line based on
the deterministic traffic conditions during different
time periods of the day (e.g., peak hours, off-peak
hours). For example, the most widely used
computer software package for traffic signal
control, TRANSYT-7F (TRAFFIC NETWORK
STUDY TOOL) [3] relies on historical data and is
considered to be an effective off-line control
strategy. In SCOOT (SPLIT, CYCLE and OFFSET
OPTIMIZATION TECHNIQUE) [4] and SCATS
(SYDNEY COORDINATED ADAPTIVE TRAFFIC
SYSTEM) [5], the control strategy is to "match" the
current traffic conditions obtained from detectors
to the "best" precalculated off-line timing plan.
Generally, these conventional traffic signal control

approaches do not hold much promise to achieve
fully real-time adaptive control.

The Markov decision process, or the
controlled Markov process, has been studied by
many researchers since the 1950s, e.g. [1]. It has
found applications in many areas. A discrete time,
stationary Markov control model is defined on (X,
A, P, R) where X: the state space, where every
element x E X is called a state; A: the set of all
possible controls (or alternatives); P: a probability

measure space, in which an element P~j denotes

the transition probability from state i to state j
under alternative k; and R: a measurable function,
called a one-step reward.

Choosing a particular alternative results in
an immediate reward and a transition probability to
the next step. The ultimate objective is to find the
supremum (least upper bound) of the total
expected discounted reward over an infinite period
oftime:

J t!c E[~wr(X"a,)]
where r is the one-step transition reward, ~ (0 :::; ~
< 1) is the discount factor, and a is the policy.
The optimal reward v* is defined as:

v*(x,a*) = SUP[J(x,a)]
aEA

It can be obtained by solving a DPE (dynamic
programming equation):

v* = Tv*,
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T is a contraction mapping and: 

1 N 
r(x,a)+ ~ C v ( x ) p ; , ~  . 

j=1 aeA 

It has been proved that the optimal solution of the 
above DPE is unique and can be calculated 
iteratively by the successive approximation 
method 11 : 

Therefore, for a specific control problem, 
once the transition matrix and the reward matrix are 
determined, then by maximizing the total expected 
reward, a policy of choosing a certain alternative in 
each state will be obtained. This represents the 
optimal strategy which should be taken. 

In the following sections, a new approach 
based on the above Markov decision theory is 
proposed and applied to traffic signal control 
problem. 

II. TRAFFIC DYNAMIC MODEL FOR AN 
INTERSECTION 

Modeling traffic dynamics and optimizing 
the control signal are two interrelated problems. A 
typical four-legged intersection is shown in Fig. 1. 
There are four approaches in this intersection and 
each one of them has one through movement and 
one left turn movement, summing to a total of 8 
movements. The number on each movement is 
labeled according to NEMA (National Electrical 
Manufacturers Association) convention. 

Assume a continuous traffic flow process 
that is sampled every At time interval with the 
discrete time index, k. The output of the 
intersection (i.e., number of vehicles leaving this 
intersection) qout (k) can be defined as a vector: - 

T 
qout - (k) = [ dn (k), q t t  (k),. . ., dUt (k)] 

q(k) = [q'(k),q2(k),...,qS(k)f 

q , ( k )  = fout(u(k), -- q_(k)) 

- f,, (k) = [cut (k),f& (k ),...,f :"t 001' 

where the superscript j (j = 1,2, ..., 8) denotes the 
j-th movement. Sinnilarly, the current queue g(k) 
will be defined as: 

qout(k) can be further expressed as a 
functionof the current control of the intersection, 
@), and q(k): - 

where - f out (k) is also a vector: 

and 

when d(k) = 0 
where j = 1, 2, ..., 8. h,, is the minimum 
headway, and u1 (k) is the control signal for the jth 
movement: uJ (k) = 1 denotes a green signal, UJ (k) 
= 0 indicates a red signal. 

Figure 1. A itypical traffic intersection 

The current queue q(k) - can also be written 
as: 
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j
when u(k) = 1

where T is a contraction mapping and:

Tv(x) =max[r(x, a) +~iV(X)P:,j].
aeA j~l

It has been proved that the optimal solution of the
above DPE is unique and can be calculated
iteratively by the successive approximation
method [1]:

vn(x) =max[r(x, a) +~iVn.l(X)P~,j]
aeA j~l

Therefore, for a specific control problem,
once the transition matrix and the reward matrix are
determined, then by maximizing the total expected
reward, a policy ofchoosing a certain alternative in
each state will be obtained. This represents the
optimal strategy which should be taken.

In the following sections, a new approach
based on the above Markov decision theory is
proposed and applied to traffic signal control
problem.

II. TRAFFIC DYNAMIC MODEL FOR AN
INTERSECTION

Modeling traffic dynamics and optimizing
the control signal are two interrelated problems. A
typical four-legged intersection is shown in Fig. 1.
There are four approaches in this intersection and
each one of them has one through movement and
one left tum movement, summing to a total of 8
movements. The number on each movement is
labeled according to NEMA (National Electrical
Manufacturers Association) convention.

Assume a continuous traffic flow process
that is sampled every M time interval with the
discrete time index, k. The output of the
intersection (i.e., number of vehicles leaving this
intersection) qout (k) can be defined as a vector:
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[ 1 2 8]Tqout(k) = qout(k),qout(k),···,qout(k)

where the superscript j G= 1, 2, ..., 8) denotes the
j-th movement. Similarly, the current queue g,(k)
will be defined as:

[
1 2 8]T

~(k) = q (k),q (k), ... ,q (k)

qout<k) can be further expressed as a
function of the curr,ent control of the intersection,
y(k), and ~ (k):

qout(k) =foulQ(k), ~(k»)
where fout(k) is also a vector:

_[ 1 2 8]Tfout(k) - fout(k),fout(k), ... ,fout(k)

and

j {min[qj(k);hL\t Jfout (.) = min
jo when u(k) = 0

where j = 1, 2, ... , 8. h min is the minimum

headway, and u i (k) is the control signal for the jth
movement: u i (k) = 1 denotes a green signal, u i (k)
= 0 indicates a red signal.

Figure 1. A typical traffic intersection

The current queue 9(k) can also be written
as:

~(k) = 9(k -1) +qin(k) - qout(k)



q(k-1) - is the queue at the previous time 
instant (k-1) and q,(k) is the input (number of 
vehicles) during time interval [k- 1, k). 

- 

The time duration of the current signal, z, 
must be bounded between some minimum and 
maximum time period: 

2,,125Tm, 

In an eight-phase dual-ring control, the 
phases are divided into two groups (rings) by a 
barrier. In each ring, 4 movements (2 through 
movements and their corresponding left turn 
movements) must be served if there is demand. 
Theoretically, there are 2-4! = 48 different phase 
sequences available, but in fact, in order to avoid 
conflict traffic, only certain sequences (1 0 out of 
48) are allowed (see reference [6] for more details). 
Since there are up to 3 admitted phases in each 
ring, when choosing current control, three previous 
control signals need to be considered in order to 
satisfy the sequence constraint: 
- u(k) = - -  f,(q(k),z,u(k - T,)/U(k - z,),u(k - T 3 ) )  

III. TRAFFIC SIGNAL, CONTROL USING 
MARKOV DECISIONS 

To apply Markovian control to traffic 
systems, a state space X and a probability measure 
P must be defined. A threshold (number of 
vehicles) is chosen for the queue of each movement 
at an intersection. If the queue length of a specific 
movement is greater than the threshold value, then 
this movement is defined to be in its congestion 
mode; otherwise it is in the non-congestion mode. 
These two modes (congestiodnon-congestion) are 
defined as the two states in the state space X. The 
signal phasing can be considered as different 
alternatives in each state. For a simple example, 
assume the traffic flow moves only in two 
directions: either north/south (denoted by 1) or 

east/west (denoted by 2). Then there are four 
possible situations: a) both directions are 
noncongested; b) direction 1 is congested but 
direction 2 is noncongested; c) direction 2 is 
congested but direction 1 is noncongested; and d) 
both directions are congested. These four different 
situations can be defined as the four states of the 
Markov process. Furthermore, if there are 8 
independent movements under 8-phase signal 
control, the traffic control problem can be 
formatted as a 256-state Markov process with 8 
alternatives in each state. 

The state space is discrete, thus the 
probability measure P is defined as a discrete 
transition law. An element of this matrix P, i.e., 
p:j denotes the transition probability from state i 
to state j under alternative k. Let ~ ( k )  be a row 
vector of state probabilities (i.e., n,(k) is the 
probability that the system will occupy state i 
after k transitions). In the traffic control problem, 
the probability matrix P is time-varying due to the 
time-varying traffic flow, therefore: 

- n(k + 1) = - f,[n;(k)/m)] 

P(k) = f,[q(k)&,(k - - + 1>,u(k),q,l 

where the probability matrix P(k) is a function of 
the current queue, the estimated number of arrivals 
in the next time interval, and the control signal: 

The probability matrix can be specified 
based on different arrival patterns. Under most 
circumstances, the arrival of vehicles at an isolated 
intersection follows the Poisson distribution, i.e.,: 

where n = 1,2, ..., h is the arrival rate and At is 
the time interval. Assuming that at a specific time 
instant, the current queue length of a specific 
movement i is denoted by q, and there are qg 
vehicles passing through the intersection if the 
signal of this direction is green, then: 
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where 9o(k-l) is the queue at the previous time

instant (k-l) and qin(k) is the input (number of

vehicles) during time interval [k-l, k).

The time duration of the current signal, 't,
must be bounded between some minimum and
maximum time period:

'tmin ::;; 't ::;; 'tmax

In an eight-phase dual-ring control, the
phases are divided into two groups (rings) by a
barrier. In each ring, 4 movements (2 through
movements and their corresponding left turn
movements) must be served if there is demand.
Theoretically, there are 2·4! = 48 different phase
sequences available, but in fact, in order to avoid
conflict traffic, only certain sequences (10 out of
48) are allowed (see reference [6] for more details).
Since there are up to 3 admitted phases in each
ring, when choosing current control, three previous
control signals need to be considered in order to
satisfy the sequence constraint:

!!(k) = f u(~(k), 't,!!(k - 'tj),!!(k - 't2),!!(k - 't3 »)

Ill. TRAFFIC SIGNAL CONTROL USING
MARKOV DECISIONS

To apply Markovian control to traffic
systems, a state space X and a probability measure
P must be defined. A threshold (number of
vehicles) is chosen for the queue ofeach movement
at an intersection. If the queue length of a specific
movement is greater than the threshold value, then
this movement is defined to be in its congestion
mode; otherwise it is in the non-congestion mode.
These two modes (congestion/non-congestion) are
defined as the two states in the state space X. The
signal phasing can be considered as different
alternatives in each state. For a simple example,
assume the traffic flow moves only in two
directions: either north/south (denoted by 1) or
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east/west (denoted by 2). Then there are four
possible situations: a) both directions are
noncongested; b) direction I is congested but
direction 2 is noncongested; c) direction 2 is
congested but direction 1 is noncongested; and d)
both directions are congested. These four different
situations can be defined as the four states of the
Markov process. Furthermore, if there are 8
independent movements under 8-phase signal
control, the traffic control problem can be
formatted as a 256-state Markov process with 8
alternatives in each state.

The state space is discrete, thus the
probability measure P is defined as a discrete
transition law. An element of this matrix P, i.e.,

P~j denotes the transition probability from state i

to state j under alternative k. Let 1t (k) be a row
vector of state probabilities (i.e., 1ti (k) is the
probability that the system will occupy state i
after k transitions). In the traffic control problem,
the probability matrix P is time-varying due to the
time-varying traffic flow, therefore:

~(k+1) = f7t[~(k),r(k)]

where the probability matrix £(k) is a function of
the current queue, the estimated number of arrivals
in the next time interval, and the control signal:

E(k) = f p[90(k),cLn(k + l),g(k),qg]

The probability matrix can be specified
based on different arrival patterns. Under most
circumstances, the arrival of vehicles at an isolated
intersection follows the Poisson distribution, Le.,:

(A,!1t)n e-Mt

p (n) = n!

where n = 1, 2, ..., A is the arrival rate and .M is
the time interval. Assuming that at a specific time
instant, the current queue length of a specific
movement i is denoted by q, and there are qg

vehicles passing through the intersection if the
signal of this direction is green, then:



when ui = Gi 
0, otherwise 

and Si = Ni,Ci ( Ni for non-congestion and Ci for 
congestion); ui = Gi,Ri ( Gi for green signal and 
Ri for red signal). 

The reward matrix R has the same 
dimension and a similar definition to the 
probability matrix. The control objective herein is 
to minimize the queue length, so the functions of 
queue length corresponding to different states are 
chosen to generate the reward matrix: 

Rr&el, state2 = u(qL,qLeshold, ui )  

Once the transition matrix and the reward 
matrix are obtained, a certain policy of choosing a 
certain alternative in each state, which is the 
optimal strategy we should take, will be obtained 
by maximizing the total expected reward. It has 
been shown that this optimal solution is unique 
and can be calculated iteratively [l]. Thus, the 
problem of choosing signal phasing becomes a 
decision-making problem for a Markov process. 

The adaptive control procedure for a 
traffic intersection consists of 2 parts, i.e., a 
probability calculation and a Markov decision 
based on the probability and reward (Fig. 2). 

Being related to the current state of each 
traffic movement, the probability matrix and 
reward matrix are time-varying in the traffic 
control problem. Future arrival information is 
needed for adaptive control; however, it is very 
difficult to make a long term estimate due to the 
randomness of traffic system. Thus the sampling 
frequency of the traffic system should be set as 
high as possible. On the other hand, a large 
sampling rate will increase the cost and 

computation time. Here we choose At =z-, 
(i.e., minimum green extension time). Every At 
seconds, the time-varying probability matrix P 
and reward matrix are calculated; then a decision is 
made to choose the control signal for the next time 
interval based on the current measurement from 
the detector and ouv estimation. Once the optimal 
policy is found, it is only implemented for At 
seconds. At the next time interval, the probability 
matrix and rewarld matrix are updated and the 
whole decision-making process is repeated. 

+pzq ystem Dynamic outpui Queue ;* I 

Figure 2. Block diagram of traffic control system 
for one intersection 

N. SIMITLATION RESULTS 

The proposed Markovian adaptive control 
algorithm was simulated for an isolated 
intersection (with a Poisson arrival pattern 
generated as the external input) to evaluate its 
performance in comparison to a fully actuated 
control method. Some of the simulation 
parameters are surnmarized as the following: 
Minimum green time: 3 seconds 
Maximum green time: 30 seconds 
Extension (gap) time: 3 seconds 
Yellow time: 3 seconds 
Minimum departure headway: 2 seconds 
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and

Pll; -1- pllj
Sj --+Cj - Sj --+N j

where

B( .) ={I, when ut =G j

u l 0, otherwIse
and Si = N j'C j (N j for non-congestion and Ci for
congestion); u j = Gi' Ri (Gi for green signal and
R j for red signal).

The reward matrix R has the same
dimension and a similar definition to the
probability matrix. The control objective herein is
to minimize the queue length, so the functions of
queue length corresponding to different states are
chosen to generate the reward matrix:

R:~tel. state2 = f II (q~,q:meshold' uJ

Once the transition matrix and the reward
matrix are obtained, a certain policy of choosing a
certain alternative in each state, which is the
optimal strategy we should take, will be obtained
by maximizing the total expected reward. It has
been shown that this optimal solution is unique
and can be calculated iteratively [1]. Thus, the
problem of choosing signal phasing becomes a
decision-making problem for a Markov process.

The adaptive control procedure for a
traffic intersection consists of 2 parts, i.e., a
probability calculation and a Markov decision
based on the probability and reward (Fig. 2).

Being related to the current state of each
traffic movement, the probability matrix and
reward matrix are time-varying in the traffic
control problem. Future arrival information is
needed for adaptive control; however, it is very
difficult to make a long term estimate due to the
randomness of traffic system. Thus the sampling
frequency of the traffic system should be set as
high as possible. On the other hand, a large
sampling rate will increase the cost and
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computation time" Here we choose ~t = 'tmini
(Le., minimum green extension time). Every M
seconds, the time··varying probability matrix P
and reward matrix are calculated; then a decision is
made to choose the control signal for the next time
interval based on the current measurement from
the detector and our estimation. Once the optimal
policy is found, it is only implemented for M
seconds. At the ne:xt time interval, the probability
matrix and reward matrix are updated and the
whole decision-making process is repeated.

--I

Intersection
r----tl~ystem Dynamic

Figure 2. Block diagram oftraffic control system
for one intersection

N. SIMULATION RESULTS

The proposed Markovian adaptive control
algorithm was simulated for an isolated
intersection (with a Poisson arrival pattern
generated as the external input) to evaluate its
performance in comparison to a fully actuated
control method" Some of the simulation
parameters are summarized as the following:
Minimum green time: 3 seconds
Maximum green tilme: 30 seconds
Extension (gap) time: 3 seconds
YeHow time: 3 se:conds
Minimum departure headway: 2 seconds



two algorithms were tested on four 
different arrival rates, Le., 200 vehicles per hour 
per movement, 300 vehicles per hour per 
movement, 400 vehicles per hour per movement, 
500 vehicles per hour per movement, and 600 
vehicles per hour per movement. For each arrival 
rate, the algorithms were tested on forty different 
sets of random data. The mean, covariance and 
standard deviation of the average steady state 

s 
3 40- 
p" 

., 8 50- 

delay (of the 40 sets of data) were calculated and 
are listed in table 1, where "MAC" stands for the 
Markov adaptive control algorithm, and "FAG" 
stands for the fully actuated control. The means 
(of the 40 sets of data) of the steady state delay 
are also plotted in Fig. 3, where the solid line 
represents the Markov algorithm and the dotted 
line represents the fully actuated control. 

I 

Table 1. Mean, covariance, and standard deviation of two algorithms 

20 

101 

Table 2. Bounds 

.* - 
_,.a' -.--- - , 

for simulation results 

arrival K a l e  (VeMU)  

Figure 3. Mean of two algorithms 

I 
200 250 300 350 400 450 500 550 &XI 

arrival rate (veMu) 

Figure 4. Bounds for simulation results 
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the concept of distribution-free order 
statistics, the limits within which at least 90% of 
the probability of the steady state delay obtained 
from simulation are found in Table 2, with 92% 
confidence. In other words, the probability that 
90% of the probability of the delay time lies 
between the above lower and upper bound is 0.92. 
The bounds are also plotted in Figure 4. 

From the above data, it is shown that when 
the traffic volume is slight (e.g., arrival rate is 200 
vehicles/hour/movement), the performance of 
Markov algorithm is comparable with the fully 
actuated controller. However, when the traffic 
volume increases, especially for arrival rate ( h  ) 
equal to 400 (veh./hr/movement) and 500 
(veh./hr/movement), the Markov algorithm 
outperforms the traditional one. For example, 
when h=300, the Markov algorithm shows about 
26.19% improvement on the average steady state 
delay. When h=400 and h=500, the average 
steady state delay of the Markov controller is only 
about one half of that of the fully actuated 
controller. When h is further increased, the 
intersection becomes saturated, resulting a large 
delay for both algorithms. 

V. CONCLUSIONS 

The traffic system is a stochastic system. 
In this paper, a new approach for traffic signal 
control based on Markov decision theory is 
presented. Computer simulation results and 
analysis are also reported. From the simulation, 
the new approach is seen to outperform the 
traditional fully actuated control. Further 
evaluation and testing are being performed. 

ACKN(3WLEDGMENT 

This research work was supported by the 
California Department of Transportation, under its 
Advanced Transportation Management Systems 
Testbed Program. 

[ 13 Hernandez-Lerma, O., Adaptive Markov 
control process, Aplplied mathematical sciences 79, 
Springer-Verlag, 1989 

[2] Recker W., Ranianathan, B., Yu, X.-H., et. al., 
"Markovian real-time adaptive control of signal 
systems", Journal of mathematical and computer 
modeling, Pergamon Press, vol. 22, August 1995 

[3] Transportation research center, Trafzc network 
study tool: TRAATSYT- 7F software summary, 
University of Floridla, 1987 

[4] Hunt, P. B., Robertson, D. I., et al., "The 
SCOOT on-line traffic signal optimization 
technique", Trafic engineering and control, April 
1982 

[5] Lowrie, P., "The Sydney coordinated adaptive 
control system -.- Principles, methodology, 
algorithms", IEE conference publication, vol. 207, 
1982 
[6] Wilshire, R., Black, R., et al., Truflc control 
systems handbook, FHWA-IP-85-12, 1985 

4787 

Using the concept of distribution-free order
statistics, the limits within which at least 90% of
the probability of the steady state delay obtained
from simulation are found in Table 2, with 92%
confidence. In other words, the probability that
90% of the probability of the delay time lies
between the above lower and upper bound is 0.92.
The bounds are also plotted in Figure 4.

From the above data, it is shown that when
the traffic volume is slight (e.g., arrival rate is 200
vehicles/hour/movement), the performance of
Markov algorithm is comparable with the fully
actuated controller. However, when the traffic
volume increases, especially for arrival rate (A)
equal to 400 (veh.lhr/movement) and 500
(veh.lhr/movement), the Markov algorithm
outperforms the traditional one. For example,
when A=300, the Markov algorithm shows about
26.19% improvement on the average steady state
delay. When A=400 and A=500, the average
steady state delay of the Markov controller is only
about one half of that of the fully actuated
controller. When A is further increased, the
intersection becomes saturated, resulting a large
delay for both algorithms.

v. CONCLUSIONS

The traffic system is a stochastic system.
In this paper, a new approach for traffic signal
control based on Markov decision theory is
presented. Computer simulation results and
analysis are also reported. From the simulation,
the new approach is seen to outperform the
traditional fully actuated control. Further
evaluation and testing are being performed.
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