
of the American Control Conference 
Anchorage, AK May 8-10,2002 

Arrival Rate Identification for a Class of Traffic Signal Control Problem 

Xiao-Hua Yu*, Allen R. Stubberud** 
*Department of Electrical Engineering 

California Polytechnic State University, San Luis Obispo, CA 93407 
**Department of Electrical and Computer Engineering 

University of California, Irvine, CA 92697 

ABSTRACT 

Setting signals at traffic intersections to 
reduce congestion is one of the most 
challenging problems in traffic management. 
To find the optimal control strategy, specific 
information of the traffic flows passing 
through intersections, such as vehicle arrival 
rates (number of vehicles per hour), must be 
provided in advance. In most control 
approaches, this parameter is assumed to be 
a known constant; however, for an on-line 
adaptive control in real-time, when this 
information is not available, or when it 
fluctuates around its nominal value, 
parameter estimationlidentification becomes 
crucial. 

It has been shown that the Markovian 
decision control theory can be successfully 
applied to solve traffic signal control 
problems, when both the state transition 
probabilities and the one-step reward 
function are known. For a class of 
controlled Markov processes in which each 
state transition probability is a function of an 
unknown parameter, an on-line estimation 
algorithm needs to be developed to identify 
the unknown parameter fxst; then an optimal 
adaptive control law can be generated to 
maximize the long-term total expected 
reward based on this estimate. In this case, 
the choice of the feedback control law 
“interacts” with the parameter identification, 
which is also known as the “dual” aspect for 
adaptive control. 

In this paper, an on-line parameter 

identification algorithm is investigated for 
adaptive Markovian decision control at an 
isolated traffic intersection with unknown 
vehicle viva1 rates. Section 1 gives a brief 
introduction to Markovian control processes 
and a maximum likelihood estimation 
algorithm. Section 2 discusses the traffic 
dynamic equations and the adaptive 
Markovian decision control model for an 
isolated traffic intersection. The proposed 
algorithm is then tested by computer 
simulation and the result is shown in section 
3. 

Keywords: Markov decision control, 
parameter estimation, adaptive control, 
traffic signal control, maximum likelihood 
estimation. 

I. MARKOVIAN ADAPTIVE 
CONTROL PROCESS 

1.1. Introduction 
A discrete, stationary, Markov control 

model (also known as a Markov decision 
process or Markov dynamic programming) , 

is defined on (X, A, P, R) where: 
(a) X, a Borel space, is the state space 

and every element in the space X E X  is 
called a state; 

(b) A, also a Borel space, is defined as 
the set of all possible controls (or 
alternatives). Each state X E  X is associated 
with a non-empty measurable subset A(x) of 
A whose elements are the admissible 
controls when the system is in state x; 
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ABSTRACT

Setting signals at traffic intersections to
reduce congestion is one of the most
challenging problems in traffic management.
To find the optimal control strategy, specific
information of the traffic flows passing
through intersections, such as vehicle arrival
rates (number of vehicles per hour), must be
provided in advance. In most control
approaches, this parameter is assumed to be
a known constant; however, for an on-line
adaptive control in real-time, when this
information is not available, or when it
fluctuates around its nominal value,
parameter estimation/identification becomes
crucial.

It has been shown that the Markovian
decision control theory can be successfully
applied to solve traffic signal control
problems, when both the state transition
probabilities and the one-step reward
function are known. For a class of
controlled Markov processes in which each
state transition probability is a function of an
unknown parameter, an on-line estimation
algorithm needs to be developed to identify
the unknown parameter first; then an optimal
adaptive control law can be generated to
maximize the long-term total expected
reward based on this estimate. In this case,
the choice of the feedback control law
"interacts" with the parameter identification,
which is also known as the "dual" aspect for
adaptive control.

In this paper, an on-line parameter
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identification algorithm is investigated for
adaptive Markovian decision control at an
isolated traffic intersection with unknown
vehicle .~ival rates. Section 1 gives a brief
introduction to Markovian control processes
and a maximum likelihood estimation
algorithm. Section 2 discusses the traffic
dynamic equations' and the adaptive
Markovian decision control model for an
isolated traffic intersection. The proposed
algorithm is then tested by computer
simulation and the result is shown in section
3.

Keywords: Markov decision control,
parameter estimation, adaptive control,
traffic signal control, maximum likelihood
estimation.

I. MARKOVIAN ADAPTIVE
CONTROL PROCESS

1.1. Introduction
A discrete, stationary, Markov control

model (also known as a Markov decision
process or Markov dynamic programming)
is defined on (X, A, P, R) where:

(a) X, a Borel space, is the state space
and every element in the space x E X is
called a state;

(b) A, also a Borel space, is defined as
the set of all possible controls (or
alternatives). Each state XE X is associated
with a non-empty measurable subset A(x) of
A whose elements are the admissible
controls when the system is in state x;



P, a probability measure space in 
which an element p,; denotes the transition 
probability from state i to state j under 
control a ; and 

(d) R, a measurable function called a 
one-step (immediate) reward [ 11. 

Choosing a particular alternative 
(control) in a Markov process results in an 
immediate reward and a transition to the next 
state. The total expected discounted reward 
over an infinite period of time is defined as: 

VLJ E [  2 P % W a ( f ) ) ]  r=O (1) 

where r is the one-step immediate reward, 
and p (0 <p < 1) is the discount factor. 
The optimal reward v*, or the supremum 
(least upper bound) of V, is defined as: 
v*(x, a *) = SUP [V(x, a )] (2) 

If both the state transition probabilities 
1 and the reward function are known, the 

optimal reward is only a function of the 
optimal control a* .  This optimal reward 
can be obtained by solving a functional 
dynamic programming equation (or DPE): 
v* = Tv* (3) 
with initial condition v(0) = V ,  and 

as A 

contraction operator T: 

where the expected one-step transition 
reward (x, a ), is defined as: 

j=l 

By using Banach's fixed-point theorem, 
the unique solution of the above DPE can be 
calculated iteratively by successive 
approximation: 

r 

1.2. Parameter Estimation for an 
Adaptive Markovian Control Process 

For a class of adaptive Markov control 
problems in which the state transition 
probability is a function of a time-invariant 
parameter a ,  the Markov control model 
can be defined on (X, A, P(a), R). The 
total expected discounted reward now 
becomes: 

r -  1 
V b  Pt r (x (07  a(t),a)] (7) 

t=O 

The optimal reward v* also becomes a 
function of parameter a : 

(8) v*(x, a *, a )  = sup [lJ(x, a ,  a )I 
acA 

A block diagram of the proposed 
adaptive Markov control strategy is shown 
in Fig 1. If the parameter a is known, then 
the control signal a (t) can be generated by 
the controller, based on the current state 
observation x(t), to maximize the total 
expected reward. 'This is the standard 
optimization problem as discussed in section 
1.1. However, if a is unknown, it must be 
estimated using the current and previous 
state observations before solving the 
optimization problem. An adaptive control 
signal a ( t , a )  is then generated based on 
the estimated value of the parameter. 
Obviously, if the parameter estimation 
converges to the true value asymptotically 
as t + 00, the total expected reward of Eq. 
(8) approximates the optimal reward given 
inEq. (2). 

Borkar and Varaiya [2] showed that 
when the unknown parameter takes values 
from a finite set, the maximum likelihood 
estimate asymptotically converges to a value 
in the given finite sei: such that the closed- 
loop transition probabilities with the 
estimated value of the unknown parameter 
are identical to the transition probabilities 
with the true value. 
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(c) P, a probability measure space in
which an element Pj~ denotes the transition

probability from state i to state j under
control a; and

(d) R, a measurable function called a
one-step (immediate) reward [1].

Choosing a particular alternative
(control) in a Markov process results in an
immediate reward and a transition to the next
state. The total expected discounted reward
over an infinite period of time is defined as:

V~ E[~p'r(x(t),a(t))] (1)

where r is the one-step immediate reward,
and /3 (0 </3 < 1) is the discount factor.
The optimal reward v*, or the supremum
(least upper bound) of V, is defined as:

v*(x, a *) =sup [V(x, a)] (2)
aeA

If both the state transiti~n probabilities
and the reward function are known, the
optimal reward is only a function of the
optimal control a *. This optimal reward
can be obtained by solving a functional
dynamic programming equation (or DPE):
v* = Tv* (3)
with initial condition v(0) = Vo and

contraction operator T:

Tv(x) = ~[;(x, a)+P~v(x)p; ] (4)

where ~he expected one-step transition

reward r (x, a), is defined as:
_ N

r (x, a) = L 1f; P~ (5)
j=1

By using Banach's fixed-point theorem,
the unique solution of the above DPE can be
calculated iteratively by successive
approximation:

v, (x) =~[;(x, a)+P~v,_lx)p; ] (6)
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1.2. Parameter Estimation for an
Adaptive Markovian Control Process

For a class of adaptive Markov control
problems in which the state transition
probability is a function of a time-invariant
parameter a, the Markov control model
can be defined on (X, A, P( a), R). The
total expected discounted reward now
becomes:

V~ E[~P' r(x(t),a(t),a)] (7)

The optimal reward v* also becomes a
function of parameter a:
v*(x, a *, a) = sup [V(x, a, a)] (8)

aeA

A block diagrarn of the proposed
adaptive Markov cont:ro~ strategy is shown
in Fig 1. If the parameter a is known, then
the control signal a (t) can be generated by
the controller, based on the current state
observation x(t), to maximize the total
expected reward. This is the standard
optimization problem as discussed in section
1.1. However, if a is unknown, it must be
estimated using the current and previous
state observations before solving the
optimization problem. An adaptive control
signal a (t, a) is then generated based on
the estimated value: of the parameter.
Obviously, if the parameter estimation
converges to the true value asymptotically
as t~ 00, the total expected reward of Eq.
(8) approximates the optimal reward given
in Eq. (2).

Borkar and Varaiya [2] showed that
when the unknown parameter takes values
from a finite set, the maximum likelihood
estimate asymptotically converges to a value
in the given finite set such that the closed
loop transition probabilities with the
estimated value of the unknown parameter
are identical to the transition probabilities
with the true value.



consider the case in which the 
element of the probability transition matrix 
contains both linear and nonlinear functions 
of the unknown parameter. Note that 
0 I p ;  51, where i and j are the indices of 
the probability matrix; U is the control signal. 

ul i t  Blay 3 

Figure 1 .  The Adaptive Markov Decision 
Control Process 

The maximum likelihood function can be 
defined as a function of the unknown 
parameter a which can be obtained from the 
joint probability of the observations xo , xl, 

..., x L  (where L is also called the “length” 
of data set): 

L-1 

J ( a ; x o , x l , - . . , x L )  = n P  x,x,+, ( t7a)  (9) 

If we take logarithms on both sides, then: 
t=O 

L-1 =c 10g[pxlx,+, (t7a>l (10) 
I =o 

The maximum value of the likelihood 
function can be found by setting its gradient 
(with respect to a )  to be 0: 

(1  1) 
4log J ( W 0  , x, ,-.., X L  ) I  

da 

that is, 
L-1 c v[’ogp,xl+l ( t ,  4 )I = 0 (12) 
t=O 

where V() is  the gradient and dL is the 
estimate after (L-1) state transitions. The 
maximum likelihood estimate at the next 
transition also satisfies: 

Applying a Taylor series expansion to Eq. 
(13), we have: 

L 

I =o 

(14) 
where V2(-) denotes the second order 
derivative. Consider Eqs. (12), (13) and 
(14), the parameter estimation after the N-th 
state transition can be updated as: 

4+* =4 -(&v2[logPx,xt+l (t,aL)ly * 

w o g  pxfx,+, ( 1 9 4  > I  (15) 
/ .  \ -1 

when 2 V2 [log ( t ,  aL 11 J exists. A Lo 
step size y can be included in Eq. (15) for 
faster convergence: 

\t=o J 

w o g  P,,,,,,, ( L 4  )I (16) 
Note that the convergence condition for 

this algorithm is that the initial estimation of 
the parameter is not too far away from its 
true value so that the remainder of Taylor 
expansion is small. In the next session, this 
algorithm will be applied to estimate the 
vehicle arrival rate on-line at a traffic 
intersection when this arrival rate fluctuates 
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(12)

that is,
L-I
LV[logPx,x,+,(t,aL)] = 0
t=o

Applying a Taylor series expansion to Eq.
(13), we have:

L

LV[log PX/X/+
1
(t,aL +I )]

t=O

L

=LV[log PX/
X1

+
1
(t,aJ]

1=0

+(~V2[lOgP./xl+l (t,aJ]}aL+1 -aL)

(14)

where V2
(-) denotes the second order

derivative. Consider Eqs. (12), (13) and
(14), the parameter estimation after the N-th
state transition can be updated as:

a", =a, -(~V'[logp, ...,(I,a,llr

V[logPX/Xl+l (t,aL )] (15)

when (tV'[log P"'''' (I, a, l]rexists. A

step size r can be included in Eq. (15) for
faster convergence:

a,., =a, -r(tv'[!OgP.,...,(I,a,llr

V[logPxx (t,aL)] (16)
t 1+1

Note that the convergence condition for
this algorithm is that the initial estimation of
the parameter is not too far away from its
true value so that the remainder of Taylor
expansion is small. In the next session, this
algorithm will be applied to estimate the
vehicle arrival rate on-line at a traffic
intersection when this arrival rate fluctuates

where Vn is the gradient and aL is the
estimate after (L-1) state transitions. The
maximum likelihood estimate at the next
transition also satisfies:

L

LV[logPx,xl+,(t,aL+I)]=O (13)
t=O

(11)

(10)
L-I

=l)og[Pv /+
1
(t,a)]

1=0

The maximum value of the likelihood
function can be found by setting its gradient
(with respect to a) to be 0:

d[log J(a;xo,XI'·· .,XL)]I
=0

da &L

Figure 1. The Adaptive Markov Decision
Control Process

The maximum likelihood function can be
defined as a function of the unknown
parameter a which can be obtained from the
joint probability of the observations xo' XI'

... , XL (where L is also called the "length"
of data set):

L-I
J(a;xO'xl'···'xL ) = II PX/XI+

1
(t,a) (9)

t=O

If we take logarithms on both sides, then:
L-l

logJ(a;xo,x1 ,.··,xJ = 10gTIP (t,a)
1=0 x,x.+l

Let's consider the case in which the
element of the probability transition matrix
contains both linear and nonlinear functions
of the unknown parameter. Note that
o$ p~ $1, where i and j are the indices of

the probability matrix; u is the control signal.
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its nominal value. fL, (U J (k), q J (k), At, h ,min , t hr 1 

min qJ(k),-- 

0 

when U' (k) = Green 

when U J (k) = Red 
( h d  +t,) =[ [ At 1 

(19) 
where h,, is the minimum headway 
(headway is the time or distance spacing 
between two successive vehicles in a given 
traffic lane measured from front to front); 
t, is the human reaction time to the green 
signal; U' (k) is the control signal for the j- 
th movement (j = 1, 2) and similarly, q'(k) 
is the queue for the j-th movement at time 
instant k. 

11. MARKOVIAN CONTROL FOR AN 
ISOLATED TRAFFIC INTERSECTION 

2.1. The Dynamic Model of an Isolated 
Traffic Intersection 

A typical four-legged intersection is 
shown in Fig. 2. Assume that the traffic 
flows move along two directions, i.e, 
north/south (denoted by 1) and east/west 
(denoted by 2); and it is sampled every At 
time interval with the discrete time index, k. 
The relationship between the current queue 
length q (k), the queue length at the previous 
time instant q (k-1), the input q,, (k) and the 

output qour (k) during time interval [k-1, k), 
can be written as: 

- 

- - 
- 

tl 
Figure 2. An isolated traffic intersection 

with through movement only 

where q,,, (k) can be further expressed as a 

nonlinear function: 
- 

and 

2.2. The Markovian Control Model 
A state space X and a probability 

measure P must be defined in order to apply' 
the above adaptive Markovian control 
theory to traffic systems. Since the queue 
length is the state variable in the traffic 
dynamics equation, one may want to choose 
the number of vehicles to be the state of the 
Markov control model. However, the 
resulting total numbe:r of states is very large. 
In order to reduce the number of states (and 
thus reduce both the computational time and 
memory space), a threshold (number of 
vehicles) is chosen for the queue of each 
movement at an intersection. If the queue 
length of a specific movement is greater 
than the threshold value, then this 
movement is defined in the congested mode; 
otherwise it is in the non-congested mode. 
These two modes (congestiodnon- 
congestion) are defined as the two states in 
the binary state space X. 

The state space is discrete, thus the 
probability measure P defines a discrete 
transition law. In the traffic control 
problem, the probability matrix is time 
varying due to the l.ime-varying traffic flow, 
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around its nominal value.

II. MARKOVIAN CONTROL FOR AN
ISOLATED TRAFFIC INTERSECTION

2.1. The Dynamic Model of an Isolated
Traffic Intersection .

A typical four-legged intersection is
shown in Fig. 2. Assume that the traffic
flows move along two directions, i.e,
north/south (denoted by 1) and east/west
(denoted by 2); and it is sampled every At
time interval with the discrete time index, k.
The relationship between the current queue
length ~ (k), the queue length at the previous

time instant q (k-I), the input qin (k) and the
;- -

output qout(k) during time interval [k-l, k),

can be written as:

~~fL
_-.. .. 2

~HI
Figure 2. An isolated traffic intersection

with through movement only

~(k) = '1(k -I) + qin (k) - qout (k) (17)

where qout (k) can be further expressed as a

nonlinear function:
qout (k) = fout (g(k),~(k),At,hmin' thr )

(18)
and
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f jut (u i (k), qi (k), ~t, h min' t hr )

{ [. M] .min q J (k),--- when u J (k) =Green
= (h min + t hr )

o when ui(k)=Red

(19)
where h min is the mInImUm headway

(headway is the tim(~ or distance spacing
between two successive vehicles in a given
traffic lane measured from front to front);
t hr is the human reaction time to the green

signal; u j (k) is the control signal for the j

th movement (j = 1, 2) and similarly, qj (k)

is the queue for the j-th movement at time
instant k.

2.2. The Markovian Control Model
A state space X and a probability

measure P must be defined in order to apply'
the above adaptive Markovian control
theory to traffic systems. Since the queue
length is the state variable in the traffic
dynamics equation, one may want to choose
the number of vehicles to be the state of the
Markov control model. However, the
resulting total numbe:r of states is very large.
In order to reduce the number of states (and
thus reduce both the computational time and
memory space), a threshold (number of
vehicles) is chosen for the queue of each
movement at an intersection. If the queue
length of a specific movement is greater
than the threshold value, then this
movement is defined in the congested mode;
otherwise it is in the non-congested mode.
These two modes (congestion/non
congestion) are defined as the two states in
the binary state space X.

The state space is discrete, thus the
probability measure P defines a discrete
transition law. In the traffic control
problem, the probability matrix r is time
varying due to the time-varying traffic flow,



- p ( k )  = - fp[y(k),A4(k - +l>,u(k)l (20) 

where q(k )  is the current queue, AG(k + 1) 
is the estimated number of arrivals in the 
next time interval, and u(k) is the control 
signal. The probability matrix can be further 
specified based on different arrival patterns. 
Under most circumstances, the arrival of 
vehicles at an isolated intersection follows 
the Poisson distribution, i.e., 

- - 

( A  At)ke-aa 
k!  

p ( n  = k )  = 

where n = 1, 2, ...; 2 is the arrival rate and 
At is the time interval. Assuming that at a 
specific time instant there are q6 vehicles 
passing through the intersection if the signal 
of this direction is green, then for each 
movement j: 

U j 
Px i ->N = P ( A ~ ’  + 4’ - ~ ( U ’ I Y ;  5 qireshol t l )  

(22) 

(23) 

and 
U j  

where 
P x >  j -  c = 1- P : j - > N  

1, when U J  = G  
0, Otherwise 

and X ’ =  N or C is the current state (N for 
non-congestion and C for congestion); U’ = 
G or R is the control signal (G for green 
signal and R for red signal). Two special 
cases are noted that: 
pc->c = 1 and P ~ - , ~  = 0. 

The reward matrix R has the same 
dimension and a definition similar to that of 
the probability matrix. The control objective 
herein is to minimize the queue length, so the 
functions of queue length corresponding to 
different states are chosen to generate the 
reward matrix: 

(25) R R 

Ri: J ,x 2J = f u  (4 J , qtihreshokd 7 ’ > (26) 

2.3. Parameter Estimation and Adaptive 
Control 

In the above discussion, it is assumed 
that the vehicle arrival rates (for both 
directions) at the intersection are known 
constants. When the vehicle arrival rates 
are unknown, or when they fluctuate around 
their nominal values, it is necessary to 
estimate these parameters on line to make 
our adaptive controls more accurate. The 
maximum likelihood estimation algorithm 
discussed in section 1.2 can be employed: 

Consider Eq. (21), we have: 
ap(n = IC) - (1 blk-’ Ate-’& ( k - A b )  - an k !  

(28) 
d Z p ( n  = k )  

an 

(29) 
Assume the four traffic movements at 
intersection are independent, then: 

where N=4. Finally, the vehicle arrival rate 
can be estimated by: / .  \ -1 

A set of optimal traffic control signals 
will be obtained using Eq.(l) to Eq.(5) 
based on this estimated value of vehicle 
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(24)

(23)

therefore:
ffk) = fp[qfk),~~(k + I),~(k)] (20)

where CJ..(k) is the current queue, ~~(k+ 1)

is the estimated number of -arrivals in the
next time interval, and g(k) is the control
signal. The probability matrix can be further
specified based on different arrival patterns.
Under most circumstances, the arrival of
vehicles at an isolated intersection follows
the Poisson distribution, i.e.,

p(n = k) = (A ~t)ke-
H1

(21)
k!

where n = 1, 2, ... ~ A is the arrival rate and
~t is the time interval. Assuming that at a
specific time instant there are qg vehicles

passing through the intersection if the signal
of this direction is green, then for each
movementj:

u
j (A A j j 5:( j) j < j )

p x j ->N = P uq + q - u U q g - q threshold

(22)
and

u
j -1- u

j

Pxj->c - PXj->N

where

- {I, when u j = G
8(u J) =

0, Othetwise

and X j = N or C is the current state (N for
non-congestion and C for congestion)~ u j =
G or R is the control signal (G for green
signal and R for red signal). Two special
cases are noted that:

P~->c =1, and P~->N =O. (25)

The reward matrix R has the same
dimension and a definition similar to that of
the probability matrix. The control objective
herein is to minimize the queue length, so the
functions of queue length corresponding to
different states are chosen to generate the
reward matrix:

R;~j.X2j = fu (qj ,q~reshold ,u j) (26)
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2.3. Parameter Estimation and Adaptive
Control

In the above discussion, it is assumed
that the vehicle arrival rates (for both
directions) at the intersection are known
constants. When the vehicle arrival rates
are unknown, or when they fluctuate around
their nominal values, it is necessary to
estimate these parameters on line to make
our adaptive controls more accurate. The
maximum likelihood estimation algorithm
discussed in section 1.2 can be employed:

d[lOg}(A;Xo,XI"",XL)]1 =0 (27)
dA 1

L

Consider Eq. (21), we have:

dp(n=k) (A&)k-I&e-
Ht

(k-A&)

dA k!
(28)

d2 p(n=k)

dA 2

(A~t)'-2(~t)2e-l'" [(AM)2 -2(AM)k +k(k -1)]
k!

(29)
Assume the four traffic movements at
intersection are independent, then:

" " ~dPi
V[logPxlxl+' (t,AL )] = [1/ PX,XI+I (t,AL)]f,:t dA

(30)

A " 2 ~ dp-
V

2
[log P X,Xl+l (t,AL ] = -[11 PXIXI+1 (t,At> ]~ :11/

.-1 0/1..

" N d2 Pi
+[1/ P

XX
(t,AL )]L-2 (31)

11+\ i=l dA
i

where N=4. Finally, the vehicle arrival rate
can be estimated by:

ie,' =i, -r(~ \7' [log p""" <d, )]r
V[logPxx (t,iL )] (32)

, 1+1

A set of optimal traffic control signals
will be obtained using Eq.(1) to Eq.(5)
based on this estimated value of vehicle



rate. The flow chart for this 
control algorithm is shown in Fig. 3. 

< Start -> - r 

adaptive 

I & Estimation 

1- 
ext Time Step 

Fig. 3. Flow chart for adaptive Markovian 
decision control at a traffic intersection 

111. SIMULATION RESULT 

The proposed adaptive control algorithm 
with on-line parameter identification is tested 
by computer simulation. Assume that at an 
isolated intersection, the traffic flows move 
along two directions (as shown in Fig. 2) 
with two sets of traffic control signals (green 
for east/west or green for northlsouth). 
Since there are four traffic movements under 
consideration, the total number of states for 
this intersection is 16. The arrival vehicles 
are assumed to follow Poisson distribution. 

The following figure illustrates the result 
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arrival rate. The flow chart for this adaptive
control algorithm is shown in Fig. 3.

Fig. 3. Flow chart for adaptive Markovian
decision control at a traffic intersection

III. SIMULATION RESULT

The proposed adaptive control algorithm
with on-line parameter identification is tested
by computer simulation. Assume that at an
isolated intersection, the traffic flows move
along two directions (as shown in Fig. 2)
with two sets of traffic control signals (green
for east/west or green for north/south).
Since there are four traffic movements under
consideration, the total number of states for
this intersection is 16. The arrival vehicles
are assumed to follow Poisson distribution.

The following figure illustrates the result
when the initial value of the arrival rate is
350 (vehiclelhour) while the actual arrival
rate is 400 (vehiclelhour). The x-axis shows
the time (in seconds) and the y-axis shows
the estimated arrival rate. The estimated
value approaches to the true value in 200
seconds, with the steady state error of 1.1 %.

3212

IV. CONCLUSION

In this paper, an on-line parameter
identification algorithm based on maximum
likelihood estimation for adaptive Markov
control theory is discussed .and applied to
estimate the vehicle arrival rates at an
isolated traffic intersection. Further
evaluation and testing on this algorithm will
be conducted.
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