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Abstract We present a computationally inexpensive yet

accurate phenomenological model of memristive behavior

in titanium dioxide devices by fitting experimental data. By

design, the model predicts most accurately I–V relation at

small non-disturbing electrical stresses, which is often the

most critical range of operation for circuit modeling. While

the choice of fitting functions is motivated by the switching

and conduction mechanisms of particular titanium dioxide

devices, the proposed modeling methodology is general

enough to be applied to different types of memory devices

which feature smooth non-abrupt resistance switching.

1 Introduction

The recent progress in resistive switching devices [15, 20,

22, 28, 42, 46, 47] gives hope for adoption of this tech-

nology in various computing applications [44, 49] in the

near future. The development of such applications, and in

particular those utilizing analog properties of memristive

devices [2, 3], will heavily rely on the availability of

accurate predictive device models. Ideally, such models

should describe complete I–V behavior, e.g., being able to

predict current i(t0) via device at time t0 for an applied

voltage bias v(t0). Because resistive switching devices have

memory, the current i(t0) should also depend on the history

of applied voltage bias before time t0, or, equivalently, on

the memory state variable vector w at time t0. Such

memory state variables represent certain physical param-

eters, which are changing upon switching the device, e.g.,

radius and/or length of switching filament [13, 29, 36, 50].

A very convenient method for capturing the complete I–

V behavior is to use a set of two equations describing

memristive system [11]. In particular, the change in

memory state of a device is described as a function of

applied electrical stimulus (e.g., voltage bias) and the

current memory state of the device, i.e.,

_w ¼ G v tð Þ;wð Þ: ð1Þ

and the static equation models current–voltage relation for

a particular memory state, i.e.,

i ¼ F v tð Þ;wð Þv tð Þ: ð2Þ

While there has been an impressive progress in under-

standing and modeling switching behavior in memristive

devices, the majority of reported models are not suitable

for large-scale circuit simulations. For example, some

models focus on specific aspects of the memristive

behavior, e.g., static equation only [4], or a particular

aspect of switching dynamics [13, 19, 21, 43], and hence

are incomplete. Others are derived assuming very simple

physical models [6, 18, 48] and therefore could not accu-

rately predict experimental behavior—see also compre-

hensive reviews of such models in Refs. [12, 26].

Alternatively, some models are too computationally

intensive, e.g., due to necessity of solving coupled differ-

ential equations [8, 16, 23–25, 27, 31, 32, 40] or running

molecular dynamic simulations [9, 35, 38]. Several com-

pact (SPICE) models, which are the most suitable for large-

scale simulations, have been also very recently proposed

for valence change [1, 17, 36, 39, 45] and electrochemical

resistive switching devices [29, 50]. Unfortunately, models
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for at least the former type of devices are still not suffi-

ciently accurate and require further improvement. Such

models are typically derived by assuming a particular

(typically simple) physical mechanism for resistive

switching and electron transport and fitting experimental

data to the equations corresponding to this mechanism. For

example, in Ref. [36], both dynamic and static equations

are fitted assuming modulation of the tunneling barrier

width, which is certainly a simplification of the actual

physical mechanism and as a result, the model does not

predict accurately set transition. Because multiple mecha-

nisms are possibly involved in resistive switching [49],

such simplification may not always be adequate for accu-

rate models. Additionally, the models are not likely to be

general (e.g., judging by the diversity of reported models

for the same material system even from the same authors),

and future devices may require development of a com-

pletely new model from scratch. This is not a marginal

issue because as the attempts are made to improve mem-

ristive devices, the I–V behavior may change significantly.

The main contribution of this paper is a development of a

general approach for modeling memristive devices. The

approach is mainly based on fitting experimental data and

hence potentially applicable to broad class of devices fea-

turing smooth non-abrupt switching transition. Using the

proposed approach, we derive a model for specific titanium

dioxide devices. The model is accurate and at the same time,

simple enough to be suitable for large-scale simulations.

2 General modeling approach

The modeling approach is based on several assumptions,

which simplify derivation of Eqs. 1 and 2. The first assump-

tion is to use pulse stress for deriving a dynamic equation. The

primary reason is that for a constant voltage pulse with suf-

ficiently short duration Dt, Eq. 1 can be written as

Dw � Gðv;wÞDt; ð3Þ

which simplifies derivation of G(v, w) by a fitting

procedure.

The second assumption, which helps to decouple the

derivation of static and dynamic equations, is that practical

(nonvolatile) memristive devices have highly nonlinear

kinetics [47, 49] so that it should be possible to measure I–

V at relatively small biases without causing much distur-

bance to the memory state. The safe range of voltages

depends on the particular type of devices and can be, e.g.,

determined by performing characterization of the switching

kinetics [2, 36]. A related assumption is that the memory

state is considered to be uniquely characterized by I–

V measured at small non-disturbing biases (denoted as

‘‘read’’ biases in this paper).

Taking into account the described assumptions, the first

step of dynamic equation modeling is the collection of

large amounts of data by switching the device with fixed

short-duration voltage pulses with different amplitudes and

measuring the I–V at a non-disturbing bias after each pulse,

e.g., similar to the pulse algorithms described in Refs. [2,

36]. To simplify the model, it is convenient to use as few

state variables as possible, so that only a small number of

measurements along non-disturbing I–V is required to

characterize uniquely the internal state of the device. Ide-

ally, this could be just one state variable, e.g., a measured

resistance of the devices w : RVread at some non-disturb-

ing bias vread. In this ideal case, the objective is to measure

the change in state DRVread for many different combina-

tions of initial state RVread and pulse amplitude v. The

actual implementation details of the pulse generation

algorithm are not important as long as it will cover all

combinations of RVread and v. The next step is to find G(v,

RVread) by fitting a surface to DRVread (v, RVread) data. If the

DRVread (v, RVread) data are noisy and, e.g., there is a large

spread of DRVread for the same values of RVread and v, then

more state variables might be needed, e.g., corresponding

to the measured resistance at different non-disturbing bia-

ses. In this case, separate fitting for each state variable

should be performed.

The static equation is modeled by first obtaining I–

V data from fast non-disturbing sweeps for the device in

various initial states, and then fitting the data. For example,

in case of single state variable, F(v, RVread) is found by

fitting a surface to i(v, RVread) data, where v is within a

range of voltages used for sweep experiment. Similar to the

modeling of dynamic equation, more state variables must

be introduced if data are noisy and, e.g., if the device has

different I–Vs for the same RVread. Note that it is important

to use as large voltage range as possible without disturbing

the state of the device (which can be ensured by checking

that the currents for rising and falling directions of voltage

sweep overlap), because nonlinear features in static I–V are

typically prominent at high voltages.

3 Model for Pt/TiO22x/Pt memristive devices

Let us now demonstrate the proposed modeling approach

on the example of Pt/TiO2-x/Pt memristive devices, whose

structure and fabrication methods are described in Ref.

[3].1 For such devices, a single state variable R0.5, which

represents resistance measured at non-disturbing read bias

1 Unfortunately, at the moment, we could not test our modelling

approach for other types of devices. In general, memristors with

repeatable cycle-to-cycle behavior are required for successful

modeling and we have only access to high quality titanium dioxide

devices developed in our lab.
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vread = 0.5 V, turns out to be sufficient for good accuracy.

Following the proposed approach, the device is switched

into different intermediate states by applying a sequence of

positive and negative write voltage pulses with Dt = 10 ls

and different amplitudes (Fig. 1a, b). Each write voltage

pulse is followed by a read pulse to measure the new device

state R0.5 ? DR0.5. The process is repeated for sufficiently

large number of different write voltage pulses and initial

device states R0.5 (with more than 15,000 measurements in

total) to gather enough points for fitting procedure. Note

-2

0

2

4

A
pp

lie
d 

vo
lta

ge
 (V

)
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

0

1

2

3

4

5 x 10 4

Pulse #

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Pulse #

R
0.

5 (Ω
)

(d)

(c)

(a)

(b)

α [Ω/s] λ [1/Ω] δ [1/Ω] Θ χ [1/V] ζ
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Fig. 1 a Evolution of device

resistance measured at 0.5 V as

a result of (b) application of

sequence of voltage pulses with

10 ls write pulse duration and

1 s time between pulses. c Same

as a shown as a normalized 3D

plot (in percent) and (d) fitted

surface described by Eq. 4 with

fitting parameters shown in the

inset. To reduce the effect of

random telegraph noise [14], the

resistance measurement is

averaged over 20,000 samples

taken over 1 ms
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that write voltage amplitudes were limited to [-2.5 and

\5 V for set and reset transitions, respectively, to avoid

breaking the device.

The resulting 3D plot for resistance change (Fig. 1c) is

smooth and features an effective voltage threshold, which

justifies using 0.5 V bias for non-disturbing read, and

convergence to zero for both very high and very low

resistances. These features are likely related to Joule

heating-assisted resistive switching [49], e.g., super-linear

dependence of temperature increase on applied voltage,

redistribution of dissipated power from active region to

series resistance upon decrease in resistance [7], and

decrease in total dissipated power when resistance increa-

ses. Instead of relying on accurate physical model, we use

fitting functions sinh v½ �= 1þ exp vvþ f½ �ð Þ, R0:5= 1þð
exp dR0:5 þ h½ �Þ, and exp kR0:5½ � to mimic these three fea-

tures, respectively, i.e.,

DR0:5 ¼ a
sinh½v�

1þ exp vvþ f½ �
R0:5

1þ exp dR0:5 þ h½ � exp kR0:5½ �Dt;

ð4Þ

where a, k, d, h are fitting parameters specific to the

direction of switching (inset of Fig. 1d). Figure 1d shows

the 3D surface based on least square error fitting of Eq. 4 to

the experimental data. For such fitting, the first term grows

super-exponentially with the voltage and emulates an

effective switching threshold, the second term is super-

linear with R0.5 for R0.5 \ 10 kX for set switching and

linear with R0.5 for both set and reset switching in the

remaining range, while the last term introduces an expo-

nential decrease with respect to R0.5 in the whole range of

resistances for reset switching and for R0.5[50 kX for set

switching. Note that such choice of fitting function is ad

hoc and primarily motivated by having as few fitting

coefficients as possible.

To obtain the static model, the device is first switched into

several intermediate states (represented by R0.5) by applying

positive and negative triangular sweep voltage stimuli

(Fig. 2). The static portion of the experimental data i(v, R0.5)

is then fitted with the following function of v and R0.5

log10 jij ¼ g1 tanh 1:5 log10 vj jð Þ þ log10 jvj þ g2; ð5Þ

where g1 and g2 are functions of R0.5 (Fig. 3). Similar to a

dynamic model derivation, the choice of fitting function for

static equation is ad hoc and motivated by a tilted tangent

hyperbolic shape of the static curves in the log–log scale

(Fig. 2b, d). It is worth noting that for either small or large

voltages, Eq. 5 simplifies to the following linear relation

between i and v

i � 10g2�g1 v; vj j � 1

10g2þg1 v; vj j � 1

�
: ð6Þ

The physical explanation for linear behavior at small

voltages is self-evident, while at high voltages, it is likely

due to the dominant effect of series resistance in memris-

tive devices [7].
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Given G(v, w) from Eq. 4, the device response to an

arbitrary time-varying voltage stimulus can be in principle

calculated by solving differential Eq. 1. However, another

approach is to approximate time-varying voltage stimulus

with a sequence of corresponding fixed-duration voltage

pulses and use Eq. 3 instead. Figure 4 shows simulation

results for the full I–V sweep using approximated stimuli

with the only input parameters to the simulation are initial

(measured) state of the device R0.5 and applied voltage

stimulus. In particular, two cases are simulated and shown

on Fig. 4. In the first case, only the dynamic equation is

utilized (which predicts change in the resistance at 0.5 V),

and linear current–voltage dependence i = v/R0.5 is

assumed to get the current at the specific applied voltage.

As expected, in this case model is somewhat accurate for

small voltages (and hence the static equation may not be

needed for modeling) but significantly underestimates

current at high voltages. On the other hand, the simulated

switching I–V characteristics are in a good agreement with

experimental data in the whole range of voltages if both

static and dynamic equations are employed.

4 Discussion and summary

Let us now discuss some limitations and potential

improvements for the proposed modeling approach. One

reservation concerning using pulse stress (the first

assumption of the modeling approach) is that transient

effects with slow characteristic times are challenging to

model. For example, such transient may be due to a rela-

tively slow heating transient in the device and could be

represented by a state variable corresponding to the internal

temperature [5, 37]. In this case, the device response to a

train of pulses greatly depends on an interpulse delay, even

if Dt is very small. In the proposed modeling approach,

slow transients are neglected assuming that there is suffi-

ciently long time �Dt between applied write and read

voltage pulses. Nevertheless, because voltage pulse stim-

ulus is easy to implement in a hardware, this simplification

is justified for practical applications. Another compelling

reason to use pulse train stimulus with large interpulse

delay is to eliminate the effect of secondary volatile

switching, which is often present in metal oxide devices [5,

10, 30, 33, 34].

It is clear from Fig. 1 that there are not much mean-

ingful data for the applied voltages below effective

switching threshold and for the device states close to

extreme on or off values. In these regions, the changes in

R0.5 are insignificant and typically too noisy to be used for
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reliable fitting. To address this issue, the modeling

approach can be extended by applying variable duration

pulse stress [2, 36]. Measured changes in the device state

upon application of long-duration voltage pulses can be

normalized with respect to Dt duration and used reliably for

the proposed fitting approach. Additionally, subthreshold

behavior might be modeled in ad hoc fashion by intro-

ducing an additional term in dynamic equation, e.g., based

on activation energy of switching [41]. For example, the

model predicts that the switching rate for set transition

changes by as little as a factor of 900 when applied voltage

is reduced from 1 to 0.5 V, which is not appropriate for

true nonvolatile memory. By multiplying right hand side of

Eq. 4 by 1/(1 ? exp[(v1 - |v|)/v2]), the ratio of switching

rates at the same applied voltages is increased to [1016

when using v1 = 0.75 and v2 = 0.008, which is expected

retention performance for the considered devices [3]. At

the same time, it is easy to check that such extra term will

have no effect on the simulation shown on Fig. 4.

More generally, the switching model can be approxi-

mated with an equivalent circuit shown on Fig. 5. It is

natural to expect that the maximum resistance of the

memristive device is limited by the leakage through the

film, which is modeled with resistor in parallel to the active

part of the device. Its minimum resistance is determined by

a resistance (e.g., corresponding to a filament) connected in

series with an active part of the device, which is described

by memristive equations. The advantage of such equivalent

circuit is that it naturally bounds the device resistance and

provides physically plausible switching behavior of the

device near extreme on and off states. Additionally, the

equivalent circuit can be extended to include secondary

volatile switching behavior [5, 10, 30, 33, 34] and elec-

tronic noise [14]. Finally, a practical way to include

switching variations is to modify parameter f in the model,

for example, by adding a zero-mean Gaussian random

variable to mimic device-to-device and cycle-to-cycle

variations.

In summary, this paper outlines a general approach for

deriving memristive equations for resistive switching

devices. The approach is purely phenomenological and is

based on fitting of the experimental data and hence can be

applied to a broad class of memristive devices. The

knowledge of the switching mechanisms and electron

transport can be helpful for finding the best fitting func-

tions; however, it is not a requirement, which further

simplifies modeling approach. The proposed approach is

tested on a particular metal oxide device by comparing

simulated and experimental I–Vs for a full sweep. The

model shows good accuracy and at the same time, because

of explicit form of equations, is computationally inexpen-

sive, which makes it suitable for simulation of large-scale

memristive circuits.
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