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Three species of the family Enterobacteriaceae that biochemically reduced hexahydro-l,3,5-trinitro-l,3,5­
triazine (RDX) and octahydro-l,3,5,7-tetranitro-l,3,5,7-tetrazocine (HMX) were isolated from nitramine 
explosive-contaminated soil. Two isolates, identified as Morganella morganii and Providencio rettgeri, completely 
transformed both RDX and the nitroso-RDX reduction intermediates. The third isolate, identified as 
Citrobacter freundii, partially transformed RDX and generated high concentrations of nitroso-RDX interme­
diates. All three isolates produced 14COZ from labeled RDX under 0z-depleted culture conditions. While all 
three isolates transformed HMX, only M. morganii transformed HMX in the presence of RDX. 

The nitramine explosives hexahydro-1,3,5-trinitro-1,3,5-tria­
zine (RDX) and octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazo­
cine (HMX) are used by the military in high-yield munitions, 
often in combination. Manufacture and testing of explosives 
have resulted in soils contaminated with mixtures of these 
nitramine explosives. Bioremediation is proposed as a safe and 
cost-effective means of site cleanup (9, 11, 15). Attempts to 
biodegrade RDX and HMX aerobically have not been success­
ful (8, 12, 15, 19). However, biodegradation of both RDX and 
HMX has been reported to occur under anaerobic or anoxic 
conditions (6, 9, 12, 13, 16, 19). 

The first step of biological RDX degradation involves reduc­
tion of the nitro groups to form nitroso compounds. Stable 
mono-, die, and trinitroso derivatives of RDX have been 
isolated (12, 13). Mono-, die, trio, and tetranitroso intermedi­
ates of biological HMX reduction have also been observed (13, 
19). McCormick et al. used results obtained with a sewage 
sludge inoculum to propose a degradation pathway for RDX 
wherein the biochemical reduction of mono-, die, and trini­
troso-RDX intermediates to unstable hydroxylamino com­
pounds is followed immediately by hydrolytic ring cleavage 
(12). Hydrolysis of the remaining carbon-nitrogen bonds and 
reduction of all nitro groups to amines complete the postulated 
pathway. Strictly anaerobic cultures did not produce I4C02 
from labeled RDX; however, I4C02 production was observed 
in composting experiments (9). 

Previous work with RDX degradation used sewage sludge, 
horse manure, or amended soils; however, no microorganisms 
were isolated or identified (6, 9, 12, 13). In this report, we 
describe the isolation and identification of three individual 
members of the family Enterobacteriaceae, each of which 
degraded RDX in pure culture. 

Isolation and identification of RDX-reducing bacterial 
strains. The numerically predominant, aerotolerant bacteria 
from a nitramine explosive-contaminated soil inoculum were 
the subject of this investigation. An aqueous extract of nitra­
mine explosive-contaminated soil from Los Alamos National 
Laboratory (110 mg of HMX g of soil- I and 16 mg of RDX g 
of SOil-I) was used to inoculate nutrient broth (Difco) con­
taining 0.33 mM RDX and 0.05 mM HMX. The culture was 
shaken (150 rpm, 30°C) in a stoppered flask for 2 weeks, when 
1 ml was transferred to fresh medium and incubated for 7 more 
days. During this time, both RDX and HMX were completely 

transformed. The predominant organisms from this culture 
were isolated by dilution plating onto nutrient agar (Difco) and 
subsequently tested for the ability to degrade RDX. Several of 
the isolated bacterial strains tested did not transform RDX 
after 2 weeks of growth under the conditions described below. 
However, three isolated species were able to transform RDX 
in pure liquid culture. These isolates were identified as Provi­
dencia rettgeri B1, Morganella morganii B2, and Citrobacter 
freundii NS2 with the Biolog system (2) and the API20E system 
(18) (Table 1). The identifications were confirmed by reference 
to Bergey's Manual of Systematic Bacteriology (3). Standard 
bacterial physiology tests (7) were also applied (Table 1). 
These strains were sent to the American Type Culture Collec­
tion for storage and dissemination. 

Nitramine explosive degradation in liquid culture. Explo­
sive degradation was accomplished by aerobic culturing of the 
organisms followed by culturing under 02-depleted conditions. 
YE medium (minimal salts (1] with 0.8% yeast extract [Difco]) 
was supplemented with either a mixture of RDX (0.33 mM) 
and HMX (0.05 mM) or HMX (0.07 mM) alone. Thirty­
milliliter cultures were initially grown aerobically in 50-ml 
fluted flasks at 30°C with shaking (150 rpm). Although the 
aerobic growth rate of each bacterial isolate was unaffected by 
these concentrations of RDX and HMX, they were unable to 
transform either compound when grown aerobically. There­
fore, once aerobic cultures reached an A S60 of 1.0 (6 to 8 h of 
growth), the flasks were plugged with rubber stoppers to obtain 
02-depleted conditions. Each culture was momentarily ex­
posed to air once every 2 to 3 days when samples were taken. 
Samples (400 fl.l) were centrifuged for 5 min in a microcentri­
fuge, and 350 fl.l of the culture supernatant was set aside. The 
cell pellet was resuspended in acetonitrile (400 fl.\) to recover 
any hydrophobic compounds that may have been attached to 
cell wall material. After centrifugation, 350 fl.l of acetonitrile 
supernatant was combined with the culture supernatant and 
filtered (0.2-fl.m-pore-size filter). The filtrate was analyzed for 
RDX, HMX, and the products of biotransformation. After 45 
days of growth, cultures were plated on nutrient agar. Inspec­
tion of the colonies growing on these plates after 2 days of 
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TABLE 2. Distribution of radioactivity' from metabolism of ['4C]RDX
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M. morganii B2 100 75 (5) 1 (0.2) <1 5 (1) 7 (1) 62 (7)


M. morganii B2 100 75 (5) 1 (0.2) <1 5 (1) 7 (1) 62 (7)P. rettgeni B1 100 75 (7) <1 1 8 (2) 14(2) 52(5)
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a Distribution by percentage of initial [14C]RDX added (total, 2.8 x 107 cpm). The values shown are averages of duplicate samples with one standard deviation in
 

a Distribution by percentage of initial [14C]RDX added (total, 2.8 X 107 cpm). The values shown are averages of duplicate samples with one standard deviation inparentheses.
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FIG. 1. Degradation of an RDX-HMX mixture in YE medium by M. morganii B2 (A), P. rettgeri Bl (B), and C. freundii NS2 (C). Each nitroso

FIG. 1. Degradation of an RDX-HMX mixture in YE medium by M morganii B2 (A), P. rettgeri B1 (B), and C. freundii NS2 (C). Each nitrosointermediate concentration is expressed as a percentage of the parent compound's initial concentration. Symbols: C, RDX; 0, mononitroso-RDX;

intermediate concentration is expressed as a percentage of the parent compound's initial concentration. Symbols: 0, RDX; 0, mononitroso-RDX;A, dinitroso-RDX; O, trinitroso-RDX; *, HMX; 0, mononitroso-HMX; A, dinitroso-HMX; X, cell growth (A560). Nota bene: because the initial



~,dinitroso-RDX; 0, trinitroso-RDX; _, HMX; e, mononitroso-HMX; A, dinitroso-HMX; x, cell growth (AS60). Nota bene: because the initial concentration of HMX was an order of magnitude less than that of RDX, the absolute rate of HMX transformation by M. morganii was an order

concentration of HMX was an order of magnitude less than that of RDX, the absolute rate of HMX transformation by M morganii was an order of magnitude less than that of RDX transformation.

of magnitude less than that of RDX transformation. 

C. freundii transformed the least RDX and accumulated the

c. freundii transformed the least RDX and accumulated the most nitroso-RDX compounds (Fig. 1C). Only this isolate

most nitroso-RDX compounds (Fig. lC). Only this isolate produced detectable amounts of trinitroso-RDX, which may

produced detectable amounts of trinitroso-RDX, which may indicate a reduced ability to transform these nitroso com­

indicate a reduced ability to transform these nitroso com­pounds.


pounds.Biochemical reduction of HMX by three individual strains.



Biochemical reduction of HMX by three individual strains. Each isolate catalyzed the disappearance of another nitramine


Each isolate catalyzed the disappearance of another nitramine explosive, HMX, although the process was slower and less


explosive, HMX, although the process was slower and less complete than that for RDX. After 45 days, M. morganii

complete than that for RDX. After 45 days, M. morganiitransformed approximately 60% of the initial HMX, P. rettgeri

transformed approximately 60% of the initial HMX, P. rettgeritransformed -60%, and C. freundii transformed -50%.


transformed ........60%, and C. freundii transformed ........50%.
Mono- and dinitroso intermediates of HMX also accumulated


Mono- and dinitroso intermediates of HMX also accumulated in the media of all three cultures.


in the media of all three cultures. The extent of HMX transformation by M. morganii was not



The extent of HMX transformation by M. morganii was not inhibited by RDX (Fig. 1A). In contrast, RDX strongly


inhibited by RDX (Fig. lA). In contrast, RDX stronglyinhibited transformation of HMX by either C. freundii or P.


inhibited transformation of HMX by either C. freundii or P.rettgeri (Fig. 1B and C). M. morganii was probably able to


rettgeri (Fig. IB and C). M morganii was probably able to further metabolize nitroso-HMX intermediates in the pres­

further metabolize nitroso-HMX intermediates in the pres­ence of RDX, as supported by accounting for the initial HMX.
 

ence of RDX, as supported by accounting for the initial HMX. At the end of the incubation, 15% remained as HMX, 25% was


At the end of the incubation, 15% remained as HMX, 25% wasmononitroso-HMX, and 25% was dinitroso-HMX, leaving


mononitroso-HMX, and 25% was dinitroso-HMX, leaving about one-third further metabolized, presumably in a manner


about one-third further metabolized, presumably in a manner similar to the fate of the nitroso-RDX intermediates.


similar to the fate of the nitroso-RDX intermediates. Summary. We have isolated three RDX-degrading members



Summary. We have isolated three RDX-degrading members of the family Enterobacteriaceae from explosive-contaminated

of the family Enterobacteriaceae from explosive-contaminated soil. All three isolates released 14C02 from [14C]RDX under
 

soil. All three isolates released 14C02 from P4C]RDX under02-depleted conditions and were therefore able to break the
 

02-depleted conditions and were therefore able to break the RDX ring. All three isolates also transformed HMX; however,


RDX ring. All three isolates also transformed HMX; however, P. rettgeri and C. freundii were unable to do so when RDX was
 

P. rettgeri and C. freundii were unable to do so when RDX waspresent. The best demonstrations of RDX degradation have
 

present. The best demonstrations of RDX degradation have been obtained with inocula derived from either sewage sludge

been obtained with inocula derived from either sewage sludge (11, 12) or horse manure (9). Each of these inocula are good


(11, 12) or horse manure (9). Each of these inocula are good 

sources of members of the family Enterobacteriaceae, and
 
sources of members of the family Enterobacteriaceae, andtherefore members of this family may be responsible for most

therefore members of this family may be responsible for most of the nitramine explosive degradation witnessed under these

of the nitramine explosive degradation witnessed under thesecircumstances. Coincidentally, many enteric bacteria are rec­
circumstances. Coincidentally, many enteric bacteria are rec­ognized for their aromatic nitroreductase activities (4, 5, 14, 17,

ognized for their aromatic nitroreductase activities (4, 5, 14, 17, 20). We are currently examining an aromatic nitroreductase

20). We are currently examining an aromatic nitroreductase activity in M. morganii to determine its involvement in nitra­
activity in M. morganii to determine its involvement in nitra­mine reduction.


mine reduction. 
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